KR20210098737A - Regeneration method of scrap of polyolefin foam - Google Patents

Regeneration method of scrap of polyolefin foam Download PDF

Info

Publication number
KR20210098737A
KR20210098737A KR1020200012654A KR20200012654A KR20210098737A KR 20210098737 A KR20210098737 A KR 20210098737A KR 1020200012654 A KR1020200012654 A KR 1020200012654A KR 20200012654 A KR20200012654 A KR 20200012654A KR 20210098737 A KR20210098737 A KR 20210098737A
Authority
KR
South Korea
Prior art keywords
scrap
screw
polyolefin
polyolefin foam
foam
Prior art date
Application number
KR1020200012654A
Other languages
Korean (ko)
Inventor
이창훈
Original Assignee
이창훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창훈 filed Critical 이창훈
Priority to KR1020200012654A priority Critical patent/KR20210098737A/en
Publication of KR20210098737A publication Critical patent/KR20210098737A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0476Cutting or tearing members, e.g. spiked or toothed cylinders or intermeshing rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The present invention relates to a method for recycling cross-linked polyolefin foam scraps. The present invention includes the steps of: making pellets; and mixing and using new polyolefin foams. The present invention can increase the reuse rate of polyolefin foam scraps.

Description

가교된 폴리올레핀 폼 스크랩의 재생 사용 방법{REGENERATION METHOD OF SCRAP OF POLYOLEFIN FOAM}REGENERATION METHOD OF SCRAP OF POLYOLEFIN FOAM

본 발명은 가교된 폴리올레핀 폼 스크랩의 재생 사용 방법에 관한 것이다.The present invention relates to a method of recycling cross-linked polyolefin foam scrap.

가교된 폴리올레핀 폼은 다양하게 사용된다. 충격흡수 매트, 물놀이 기구, 전자제품 건축제품의 단열재, 차음재, 유치원용 바닥재, 양식용 Buoy 등. 그러나 그 중에서도 사용량도 많고 쓰레기도 많고, 특히 제조 중에 쓰레기 발생량이 가장 많은 것이 신발용 Midsole, Unitsole에 쓰이는 EVA Foam(EVA 외의 다른 Polyolefin도 많이 씀)이다. 특히 신발 공정에서 가장 많은 EVA Injection 공정에서 나오는 Sprue, Runner와 제품 불량에서 나오는 쓰레기 발생량은 전체의 15~20%로서 엄청난 양이 발생하고, Injection 외의 공정에서도 10~15%의 쓰레기가 발생하고 있다. 이것은 자원의 낭비일 뿐만 아니라, 환경문제에 지대한 영향을 미치고, 제품의 원가상승 요인이기도 하다. 이렇게 발생되는 EVA Foam Scrap의 재생을 위해 그 동안 수많은 연구가 되어 왔으며 그 것들은 다음과 같다.Crosslinked polyolefin foams are used in a variety of ways. Shock-absorbing mats, water play equipment, insulation materials for electronic and building products, sound insulation materials, flooring materials for kindergartens, buoy for aquaculture, etc. However, among them, there is a lot of waste and a lot of waste. In particular, EVA foam used for midsole and unitsole for shoes (polyolefin other than EVA is also used a lot) is the one that generates the most waste during manufacturing. In particular, waste generated from sprue and runners and defective products from the EVA injection process, which is the most in the footwear process, is 15-20% of the total, and 10-15% of waste is generated in processes other than injection. This is not only a waste of resources, but also has a great impact on environmental problems and is a factor in the cost increase of products. Numerous studies have been conducted for the regeneration of EVA Foam Scrap generated in this way, and they are as follows.

1. Scrap을 고온의 Open Mill에서 Phenol계 산화방지제 등을 ››은 뒤 Open Mill의 전단력으로 으깨어 Sheet 형태로 만든 뒤, 그 것을 EVA Foam 제조시 혼합하여 사용 하는 것.One. After scraping the scrap with phenol-based antioxidants in an open mill at a high temperature, and then crushing it with the shear force of the open mill to form a sheet, it is mixed and used when manufacturing EVA foam.

2. Scrap을 역방향으로 회전하는 연마석판 사이에 밀어 넣어 갈아서 Scrap Foam 분말을 만든 뒤, 그 것을 EVA Foam 제조시 혼합하여 사용하는 것.2. To make scrap foam powder by pushing scrap between the abrasive slabs rotating in the opposite direction and mixing it to use when manufacturing EVA foam.

3. Scrap을 특별히 제작된 냉동분쇄기에 넣고 -150℃로 얼려 분쇄하여 분말을 만든 뒤, 그 것을 EVA Foam 제조시 혼합하여 사용하는 것.3. Put scrap into a specially designed freezing grinder, freeze it at -150°C, grind it to make a powder, and mix and use it when manufacturing EVA Foam.

4. Scrap을 고슴도치처럼 침이 박힌 두 Roller 사이에 넣고 돌리면 Scrap Foam이 뜯어져서 Chip상으로 되는데 3-5mm 크기의 chip을 골라 세멘트 콘크리트에 혼합하여 경량 콘크리트 제조에 사용하는 것. 등으로 재생되고 있으나, 이 방법들은 다음과 같은 상당한 문제점들을 갖고 있다.4. When scrap is put between two rollers with saliva like a hedgehog and turned, the scrap foam is torn and turned into a chip. Select a 3-5mm chip and mix it with cement concrete and use it to manufacture lightweight concrete. However, these methods have significant problems as follows.

즉, 상기 1의 방법은 Scrap을 재생하는데 큰 동력이 필요하고 기계 한대당 처리 능력이 적어 설비가 많이 필요하며 Open Mill에서의 작업 특성상 균일한 재생처리가 어렵고 처리된 재생품의 용융점도가 너무 높아 EVA Foam 제조시 혼합 사용량이 최대 10%를 넘기 어렵다.That is, the method of 1 above requires a lot of power to regenerate scrap and requires a lot of equipment because of the small processing capacity per machine. It is difficult to exceed a maximum of 10% in the amount of mixing during manufacturing.

상기 2의 방법은, 최근의 신발 공정에서 나오는 EVA Foam Scrap은 Injection 공정에서 나오는 Sprue Runner가 많은 데 이것을 연마석판 사이에 밀어 넣기가 쉽지 않아 재생품의 생산 속도가 느려 처리 단가가 높고 재생 시에 분진 발생이 심하여 작업환경이 좋지 못하고 연마석의 고속회전 시에 열과 정전기의 발생으로 화재 위험이 높아 그 방지책에 투자비가 많이 들어가고 고속회전음과 마찰음 등의 소음이 발생하는 등 작업자들의 기피대상이 된다. 이렇게 만들어진 재생품은 분말 상태인데 그대로는 신품 Foam의 생산시에 투입할 수가 없고 (작업장내의 비산 문제와 신품에 배합시의 분산문제 등) EVA 등에 섞어 Master Batch를 만들어 투입해야 하므로 원가가 비싸진다. 그리고 이 방법으로 신품 Foam에 투입할 수 있는 Scrap 사용 비율은 10%를 넘기 어렵다.In the method of 2 above, EVA Foam Scrap from the recent shoe process has a lot of sprue runners from the injection process, but it is not easy to push it between the abrasive slabs. This is so severe that the working environment is not good and the risk of fire is high due to the generation of heat and static electricity during high-speed rotation of the grinding stone. The regenerated product made in this way is in a powder state, but it cannot be put into the production of new foam as it is (the problem of scattering in the workshop and the problem of dispersion when mixing with the new product, etc.), and the cost is high because it has to be mixed with EVA, etc. to make a master batch. And it is difficult to exceed 10% of the scrap use rate that can be put into new foam in this way.

상기 3의 방법은 일반적으로 고무타이어의 분쇄품 등을 만들 때 많이 쓰이는 방법이나 장비값이 고가이고, EVA Foam 같은 Foam 물질은 단열성이 높고 열전도성이 낮아 -150℃로 얼리는데 많은 에너지가 소요되어 경제성이 떨어지고, 실용화되어 있는 장비들이 대형 장비들뿐이라 작은 규모의 신발 제조회사들에서는 사용할 수가 없다.The method of 3 above is a method commonly used for making pulverized products of rubber tires, but the equipment cost is high. The economic feasibility is low, and the only equipment that is put into practical use is large equipment, so it cannot be used by small-scale shoe manufacturers.

상기 4의 방법은 Scrap 발생지와 재생품의 사용처간의 거리가 멀어 운반비가 많이 들고 사용량 자체가 많지 않아 Scrap의 소모가 적으나, 신발제조 공정에서 나오는 EVA Foam Scrap은 땅에 묻거나 불로 태워 연료로 사용하는 등으로 처리되어 지구 환경에 엄청난 저해 요인이 되고 있다.In the method of 4 above, the distance between the scrap generating place and the reclaimed product is long, so the transportation cost is high and the amount of use itself is small, so the scrap consumption is small. It is being treated as a major detriment to the global environment.

본 발명은 가교된 폴리올레핀 폼 스크랩을 효율적으로 재생 사용 방법을 제공하고자 한다.An object of the present invention is to provide a method for efficiently recycling cross-linked polyolefin foam scrap.

상기 과제를 해결하기 위해 본 발명은, Peroxide 가교된 폴리올레핀 폼 Scrap을 가로x세로x높이 (또는 직경, 또는 불 특정 모양이되 가장 큰 부분의 길이가) 3~30mm의 크기로 절단 한 뒤, Peroxide 가교 가능한 폴리올레핀 수지와 섞되, 폼/수지=90/10~50/50되게 섞고, 이 혼합물을 일축 또는 이축 압출기의 호퍼에 붓고 상기 폴리올레핀 수지의 DSC Melting Point 이상의 온도에서 압출하여 펠렛을 만드는 단계; 및In order to solve the above problems, the present invention cuts the peroxide cross-linked polyolefin foam scrap to a size of 3 to 30 mm in width x length x height (or diameter, or the length of the largest part of an unspecified shape), then peroxide Mixing with the crosslinkable polyolefin resin, foam / resin = 90/10 ~ 50/50 mixing, pouring the mixture into the hopper of a single screw or twin screw extruder, extruding at a temperature above the DSC Melting Point of the polyolefin resin to make pellets; and

상기 펠렛을 원료의 일부로 하여 신품 폴리올레핀 폼 제조에 혼합 사용하는 단계를 포함하는 가교된 폴리올레핀 폼 스크랩의 재생 사용 방법을 제공한다.It provides a recycling and use method of cross-linked polyolefin foam scrap comprising the step of using the pellets as a part of the raw material to be mixed and used in the production of a new polyolefin foam.

상기 Peroxide 가교 가능한 폴리올레핀은 PE (HDPE, MDPE, LDPE, LLDPE, VLDPE, ULDPE)일 수 있다.The peroxide crosslinkable polyolefin may be PE (HDPE, MDPE, LDPE, LLDPE, VLDPE, ULDPE).

또는 Ethylene Copolymer (EVA, EBA, EMA, EMMA 등), Ionomer, Ethylene α-olefin Copolymer (POE, OBC), Ethylene Propylene Copolymer일 수 있다.or Ethylene Copolymer (EVA, EBA, EMA, EMMA, etc.), Ionomer, Ethylene α-olefin Copolymer (POE, OBC), or Ethylene Propylene Copolymer.

상기 일축 또는 이축 압출기의 L/D는 20~40일 수 있다.L/D of the single screw or twin screw extruder may be 20-40.

상기 일축 또는 이축 압출기의 스크류 압축비 (공급부의 스크류 깊이/계량부의 스크류 깊이)는 2.5~3.5일 수 있다.The screw compression ratio of the single-screw or twin-screw extruder (the screw depth of the supply part/the screw depth of the metering part) may be 2.5 to 3.5.

본 발명은 폴리올레핀 폼 스크랩(scrap)의 재사용율을 높일 수 있다.The present invention can increase the reuse rate of polyolefin foam scrap.

본 발명은, Peroxide 가교된 폴리올레핀 폼 Scrap을 가로x세로x높이 (또는 직경, 또는 불 특정 모양이되 가장 큰 부분의 길이가) 3~30mm의 크기로 절단 한 뒤, Peroxide 가교 가능한 폴리올레핀 수지와 섞되 폼/수지=90/10~50/50 되게 섞고, 이 혼합물을 일축 또는 이축 압출기의 호퍼에 붓고 상기 폴리올레핀 수지의 DSC Melting Point 이상의 온도에서 압출하여 펠렛을 만드는 단계(제일 공정)와, 상기 펠렛을 원료의 일부로 하여 신품 폴리올레핀 폼 제조에 혼합 사용하는 단계(제이 공정)를 포함하는 가교된 폴리올레핀 폼 스크랩의 재생 사용 방법을 제공한다.In the present invention, after cutting peroxide crosslinked polyolefin foam scrap to a size of 3 to 30 mm in width x length x height (or diameter, or the length of the largest part of an unspecified shape), it is mixed with peroxide crosslinkable polyolefin resin. Foam/resin = 90/10 to 50/50, pouring the mixture into the hopper of a single screw or twin screw extruder, and extruding at a temperature above the DSC Melting Point of the polyolefin resin to make pellets (the first process), and the pellets It provides a method of recycling and using cross-linked polyolefin foam scrap, which includes the step of mixing and using as a part of the raw material to produce a new polyolefin foam (J. process).

상기 3~30mm의 크기: 30mm 이상의 크기는 압출기의 Screw에 잘 안 먹혀 들어가고 호퍼 투입구에서 밑으로 내려가지 않는다. 3mm 이하의 크기는 절단기, 분쇄기 등으로 분쇄시 생산성이 낮고 비용이 많이 들며 3mm보다 작아도 3mm의 것과 압출후의 재생품의 품질에 차이가 없다.The size of 3~30mm: A size of 30mm or more does not fit well into the screw of the extruder and does not go down from the hopper inlet. The size of 3mm or less has low productivity and high cost when pulverizing with a cutter or pulverizer, and even if it is smaller than 3mm, there is no difference in the quality of the regenerated product after extrusion with that of 3mm.

상기 90/10~50/50: 폴리올레핀 수지가 10보다 적으면 펠렛이 안 만들어지고, 50이 넘으면 압출지 압출기내의 전단력이 약해져서 재생품의 품질이 떨어지고 재생원가가 비싸진다.The 90/10 ~ 50/50: If the polyolefin resin is less than 10, pellets are not made, and if it exceeds 50, the shear force in the extruded paper extruder is weakened, so that the quality of the regenerated product is deteriorated and the regeneration cost is high.

상기 DSC Melting Point 이하의 온도에서는 폴리올레핀의 용융점도가 높아 압출속도가 떨어져 재생품 생산성이 현저히 떨어진다.At a temperature below the DSC Melting Point, the melt viscosity of the polyolefin is high, and the extrusion speed is lowered, thereby significantly lowering the productivity of the recycled product.

상기 Peroxide 가교 가능한 폴리올레핀은 PE (HDPE, MDPE, LDPE, LLDPE, VLDPE, ULDPE), Ethylene Copolymer (EVA, EBA, EMA, EMMA 등), Ionomer, Ethylene α-olefin Copolymer (POE, OBC), Ethylene Propylene Copolymer일 수 있다.The peroxide crosslinkable polyolefin is PE (HDPE, MDPE, LDPE, LLDPE, VLDPE, ULDPE), Ethylene Copolymer (EVA, EBA, EMA, EMMA, etc.), Ionomer, Ethylene α-olefin Copolymer (POE, OBC), Ethylene Propylene Copolymer can be

상기 일축 또는 이축 압출기의 L/D는 20~40일 수 있다.L/D of the single screw or twin screw extruder may be 20-40.

상기 L/D가 20 이하이면 실린더내의 전단력이 낮아 재생품의 용융이 충분히 되지않아 용융점도가 높아져 재생품의 품질에 문제가 있고, 40 이상이면 전단력이 너무 높아져 실린더 내의 발열이 심해져서 재생품의 색깔이 변하거나 산화되어 물성이 저하되고 심할 경우는 탄화되어 버리기도 한다.If the L/D is 20 or less, the shear force in the cylinder is low, and the melting viscosity of the regenerated product is not sufficiently melted, so there is a problem in the quality of the reclaimed product. Or, it is oxidized and the physical properties are lowered, and in severe cases, it is carbonized.

상기 일축 또는 이축 압출기의 스크류 압축비 (공급부의 스크류 깊이/계량부의 스크류 깊이)가 2.5~3.5일 수 있다.The screw compression ratio (the screw depth of the supply part / the screw depth of the metering part) of the single-screw or twin-screw extruder may be 2.5 to 3.5.

상기 압축비가 2.5 이하이면 실린더내의 전단력이 낮아 재생품의 용융이 충분히 되지않아 용융점도가 높아져 재생품의 품질에 문제가 있고 생산성이 낮으며, 3.5 이상이면 전단력이 너무 높아져 실린더 내의 발열이 심해져서 재생품의 색깔이 변하거나 산화되어 물성이 저하되고 심할 경우는 탄화되어 버리기도 한다.If the compression ratio is 2.5 or less, the shear force in the cylinder is low, so that the melt viscosity is high because the melting viscosity of the recycled product is high, and the productivity is low. It is changed or oxidized, and the physical properties are deteriorated, and in severe cases, it may be carbonized.

이렇게 하면 신품에 대한 Scrap의 사용 비율을 30%까지 올릴 수 있다.In this way, the rate of use of scrap for new products can be raised to 30%.

<실시예><Example>

EVA Midsole FoamEVA Midsole Foam

EVA (VA21%, MI 2.5) 100, Steraic Acid 1.0, ZnO 2.0, DCP 0.8, 발포제 ADCA 2.5, TiO2 5.0을 Kneader로 혼합하고 압출하여 직경 4mm의 펠렛을 얻었다. 이 펠렛을 신발 Midsole용 사출발포기의 호퍼에 붓고 Midsole을 생산하면서 Midsole 사출품에 달려있는 Sprue Runner을 제거하여 Scrap (이후 Scrap-1이라 함)을 얻었다.EVA (VA21%, MI 2.5) 100, Steraic Acid 1.0, ZnO 2.0, DCP 0.8, blowing agent ADCA 2.5, TiO2 5.0 were mixed with a kneader and extruded to obtain pellets with a diameter of 4 mm. This pellet was poured into the hopper of the injection molding machine for midsole for shoes, and while the midsole was produced, the sprue runner attached to the midsole injection product was removed to obtain a scrap (hereafter referred to as Scrap-1).

<비교예1><Comparative Example 1>

상기의 Scrap-1을 Plastic Crusher로 분쇄하여 직경 10mm 크기의 EVA Scrap Chip을 얻었다. 이 Chip 100과 산화방지제 BHT 5를 혼합한 후 표면온도 120℃의 Open Mill (Mill 간격 1mm)에서 10분 동안 통과 시킨 뒤 두께 1.5mm의 Foam Scrap sheet인 Sheet-1을 얻었다.The scrap-1 above was pulverized with a plastic crusher to obtain an EVA scrap chip having a diameter of 10 mm. After mixing this Chip 100 and antioxidant BHT 5, it was passed for 10 minutes in an open mill with a surface temperature of 120℃ (mill interval 1mm), and then Sheet-1, a foam scrap sheet with a thickness of 1.5mm, was obtained.

<비교예2><Comparative Example 2>

상기 <비교예1>에서 분쇄된 Chip 80과 EVA(VA21%, MI 2.5) 20과 산화방지제 BHT 5를 혼합한 후 표면온도 120℃의 Open Mill (Mill 간격 1mm)에서 10분 동안 통과 시킨 뒤 두께 1.5mm의 Foam Scrap sheet인 Sheet-2를 얻었다.After mixing the chip 80, EVA (VA21%, MI 2.5) 20, and antioxidant BHT 5 crushed in <Comparative Example 1>, the mixture was passed through an open mill (1 mm spacing between mills) at a surface temperature of 120° C. for 10 minutes. Sheet-2, a foam scrap sheet of 1.5 mm, was obtained.

<비교예3><Comparative Example 3>

상기의 Scrap-1을 역방향으로 회전하는 #100 연마석판 사이에 밀어 넣어 갈아서 입자크기 500~700㎛의 Scrap Foam 분말인 Powder-1을 얻었다.Powder-1, a scrap foam powder having a particle size of 500 to 700 μm, was obtained by pushing and grinding the scrap-1 above between #100 abrasive slabs rotating in the reverse direction.

<비교예4><Comparative Example 4>

상기의 Scrap-1을 -150℃의 냉동분쇄기에서 분쇄하여 입자크기 300~500㎛의 Scrap Foam 분말인 Powder-2를 얻었다.The scrap-1 above was pulverized in a freeze grinder at -150° C. to obtain Powder-2, a scrap foam powder having a particle size of 300 to 500 μm.

<비교예5><Comparative Example 5>

상기 <비교예1>에서 분쇄된 Chip을 Screw 직경 40mm이고 L/D가 36이며 압축비가 2.8인 동방향회전 이축압출기의 호퍼에 넣고 실린더 온도 130℃에서 압출하여 Scrap Foam 분말인 Powder를 얻었다. 이 분말은 압출기 Nozzle에서 토출 되자마자 응결되어 포도송이와 같이 덩어리형태로 되었다. 이 덩어리를 냉각시킨 뒤 다시 Plastic crusher로 분쇄하여 입자크기 1.0-1.5m의 Powder-3를 얻었다. 이 Powder-3는 색상이 짙은 황색으로 변해있었다.The chip pulverized in <Comparative Example 1> was put into the hopper of a co-rotating twin-screw extruder having a screw diameter of 40 mm, L/D of 36, and compression ratio of 2.8, and extruded at a cylinder temperature of 130° C. to obtain a scrap foam powder, powder. As soon as this powder was discharged from the extruder nozzle, it was condensed and became a lump like a bunch of grapes. After cooling this mass, it was crushed again with a plastic crusher to obtain Powder-3 having a particle size of 1.0-1.5m. This Powder-3 had changed color to dark yellow.

<비교예6><Comparative Example 6>

상기 <비교예1>에서 분쇄된 Chip 95와 EVA(VA21%, MI 2.5) 5를 혼합한 후 Screw 직경 40mm이고 L/D가 36이며 압축비가 2.8인 동방향회전 이축압출기의 호퍼에 넣고 실린더 온도 130℃에서 압출하였더니 Under water pelletizing 할 수 없었고 Nozzle에서 그대로 압출하여 Powder를 얻었다. 이 분말은 압출기 Nozzle에서 토출 되자마자 응결되어 포도송이와 같이 덩어리형태로 되었다. 이 덩어리를 냉각시킨 뒤 다시 Plastic crusher로 분쇄하여 입자크기 1.0-1.5m의 Powder-4를 얻었다. 이 Powder-4는 색상이 옅은 황색으로 변해있었다.After mixing the chip 95 and EVA (VA21%, MI 2.5) 5 pulverized in <Comparative Example 1>, the screw diameter is 40 mm, L/D is 36, and the compression ratio is 2.8. When extruded at 130°C, under water pelletizing could not be performed, and powder was obtained by extruding directly from the nozzle. As soon as this powder was discharged from the extruder nozzle, it was condensed and became a lump like a bunch of grapes. After cooling this mass, it was crushed again with a plastic crusher to obtain Powder-4 having a particle size of 1.0-1.5m. This Powder-4 had changed color to pale yellow.

<실시예1><Example 1>

상기 <비교예1>에서 분쇄된 Chip 85과 EVA(VA21%, MI 2.5) 15를 혼합한 후 Screw 직경 40mm이고 L/D가 36이며 압축비가 2.8인 동방향회전 이축압출기의 호퍼에 넣고 실린더 온도 130℃에서 압출하고 Under water pelletizing하여 직경4mm의 Pellet-1을 얻었다.After mixing the chip 85 crushed in <Comparative Example 1> and EVA (VA21%, MI 2.5) 15, the screw diameter is 40 mm, L/D is 36, and the compression ratio is 2.8. Pellet-1 with a diameter of 4 mm was obtained by extruding at 130° C. and under water pelletizing.

<실시예2><Example 2>

상기 <비교예1>에서 분쇄된 Chip 60과 EVA(VA21%, MI 2.5) 40을 혼합한 후 Screw 직경 40mm이고 L/D가 36이며 압축비가 2.8인 동방향회전 이축압출기의 호퍼에 넣고 실린더 온도 130℃에서 압출하고 Under water pelletizing하여 직경4mm의 Pellet-2을 얻었다.After mixing the chip 60 and EVA (VA21%, MI 2.5) 40 pulverized in <Comparative Example 1>, the screw diameter is 40mm, L/D is 36, and the compression ratio is 2.8. Pellet-2 with a diameter of 4 mm was obtained by extruding at 130° C. and under water pelletizing.

<비교예7><Comparative Example 7>

상기 <비교예1>에서 분쇄된 Chip 40과 EVA(VA21%, MI 2.5) 60을 혼합한 후 Screw 직경 40mm이고 L/D가 36이며 압축비가 2.8인 동방향회전 이축압출기의 호퍼에 넣고 실린더 온도 130℃에서 압출하고 Under water pelletizing하여 직경4mm의 Pellet-3을 얻었다. 이 Pellet은 Scrap dl 완전히 분쇄되지 않아 Pellet 내부에 Foam 형태의 Scrap 입자가 섞여 있는 상태이고 Pellet모양이 구상이 아니고 울퉁불퉁 불규칙한 모양이었다.After mixing the chip 40 and EVA (VA21%, MI 2.5) 60 pulverized in <Comparative Example 1>, the screw diameter is 40 mm, L/D is 36, and the compression ratio is 2.8. Pellet-3 with a diameter of 4 mm was obtained by extruding at 130°C and under water pelletizing. This pellet was not completely pulverized, so foam-type scrap particles were mixed inside the pellet, and the pellet shape was not spherical but irregular.

상기에서 얻어진 비교예, 실시예들의 재생품을 이용해 표 1 및 표 2에 기재된 배합으로 혼합한 뒤 Injection EVA Foam Molding기로 사출하여 신발 Midsole을 생산 하고 물성을 측정하였다.The regenerated products of Comparative Examples and Examples obtained above were mixed with the formulations shown in Tables 1 and 2, and then injected with an Injection EVA Foam Molding machine to produce a shoe midsole and measure physical properties.

EVA MidsoleEVA Midsole 비교예1-1Comparative Example 1-1 비교예1-2Comparative Example 1-2 비교예2-1Comparative Example 2-1 비교예2-2Comparative Example 2-2 비교예3Comparative Example 3 비교예4Comparative Example 4 EVA (VA21% MI 2.5)EVA (VA21% MI 2.5) 100100 9090 8585 8888 8585 9090 9090 Sheet-1Sheet-1 1010 1515 Sheet-2 Sheet-2 1212 1515 Powder-1 Powder-1 1010 Powder-2 Powder-2 1010 Powder-3 Powder-3 Powder-4 Powder-4 Pellet-1 Pellet-1 Pellet-2 Pellet-2 Pellet-3 Pellet-3 Stearic AcidStearic Acid 1.01.0 0.90.9 0.850.85 0.9040.904 0.880.88 0.90.9 0.90.9 ZnOZnO 2.02.0 1.81.8 1.71.7 1.8081.808 1.761.76 1.81.8 1.81.8 DCPDCP 0.80.8 0.720.72 0.680.68 0.7230.723 0.7040.704 0.720.72 0.720.72 ADCAADCA 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 TiO2TiO2 5.05.0 4.54.5 4.254.25 4.524.52 4.44.4 4.54.5 4.54.5 Scrap 사용 비율 %Scrap usage % 1010 1515 9.69.6 1212 1010 1010 MI (150℃ 5Kg) g/10분MI (150℃ 5Kg) g/10min 3.03.0 1.51.5 1.01.0 1.61.6 1.21.2 1.41.4 1.41.4 사출가능여부Injection availability 가능possible 가능possible 불가impossible 가능possible 불가impossible 불가impossible 불가impossible 경도 Shore CHardness Shore C 5555 5656 5757 5656 5757 5757 5757 인장강도 Kg/cm2Tensile strength Kg/cm2 2525 2323 2323 2323 2323 2323 2323 신장율 %elongation % 300300 250250 200200 250250 200200 200200 200200 제품 표면 외관product surface appearance 재생 적용 가능 여부Replay Applicability 부적charm 부적charm 부적charm 부적charm 부적charm 부적charm

EVA MidsoleEVA Midsole 비교예5-1Comparative Example 5-1 비교예5-2Comparative Example 5-2 비교예6-1Comparative Example 6-1 비교예6-2Comparative Example 6-2 실시예1Example 1 실시예2Example 2 비교예7-1Comparative Example 7-1 비교예7-2Comparative Example 7-2 EVA (VA21% MI 2.5)EVA (VA21% MI 2.5) 100100 9090 8080 9090 8080 7070 5050 5050 7070 Sheet-1Sheet-1 Sheet-2 Sheet-2 Powder-1 Powder-1 Powder-2 Powder-2 Powder-3 Powder-3 1010 2020 Powder-4 Powder-4 1010 2020 Pellet-1 Pellet-1 3030 Pellet-2 Pellet-2 5050 Pellet-3 Pellet-3 5050 3030 Stearic AcidStearic Acid 1.01.0 0.90.9 0.80.8 0.9050.905 0.810.81 0.7450.745 0.70.7 0.80.8 0.880.88 ZnOZnO 2.02.0 1.81.8 1.61.6 1.811.81 1.621.62 1.491.49 1.41.4 1.61.6 1.761.76 DCPDCP 0.80.8 0.720.72 0.640.64 0.7240.724 0.6480.648 0.5960.596 0.560.56 0.640.64 0.7400.740 ADCAADCA 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 TiO2TiO2 5.05.0 4.54.5 4.04.0 4.5254.525 4.054.05 3.7253.725 3.53.5 4.04.0 4.44.4 Scrap 사용 비율 %Scrap usage % 1010 2020 9.59.5 1919 25.525.5 3030 2020 1212 MI (150℃ 5Kg) g/10분MI (150℃ 5Kg) g/10min 3.03.0 2.02.0 1.51.5 2.22.2 1.71.7 2.22.2 1.91.9 1.01.0 1.41.4 사출가능여부Injection availability 가능possible 가능possible 가능possible 가능possible 가능possible 가능possible 가능possible 불가impossible 불가impossible 경도 Shore CHardness Shore C 5555 5555 5656 5555 5656 5555 5555 폼안됨no form 폼안됨no form 인장강도 Kg/cm2Tensile strength Kg/cm2 2525 2424 2424 2424 2424 2525 2525 신장율 %elongation % 300300 280280 280280 280280 280280 290290 290290 제품 표면 외관product surface appearance 표면황변surface yellowing 표면
황변
surface
yellowing
약간
황변
slightly
yellowing
약간
황변
slightly
yellowing
폼내부
기포
inside the form
bubble
폼내부기포foam inside bubble
재생 적용 가능 여부Replay Applicability 부적charm 부적charm 부적charm 부적charm 적합fitness 적합fitness 부적charm 부적charm

Claims (4)

Peroxide 가교된 폴리올레핀 폼 스크랩을 가로, 세로, 또는 높이 중 어느 한 부분의 길이가 3~30mm의 크기가 되도록 절단 한 뒤, Peroxide 가교 가능한 폴리올레핀 수지와 섞되, 폼 스크랩:수지가 90:10 내지 50:50이 되게 섞고, 이 혼합물을 일축 또는 이축 압출기의 호퍼에 붓고 상기 폴리올레핀 수지의 DSC Melting Point 이상의 온도에서 압출하여 펠렛을 만드는 단계; 및
상기 펠렛을 원료의 일부로 하여 신품 폴리올레핀 폼 제조에 혼합 사용하는 단계를 포함하는 가교된 폴리올레핀 폼 스크랩의 재생 사용 방법.
After cutting the peroxide cross-linked polyolefin foam scrap so that the length of any one of the width, length, or height is 3 to 30 mm, it is mixed with peroxide cross-linkable polyolefin resin, foam scrap: resin is 90: 10 to 50: mixing to 50, pouring the mixture into the hopper of a single screw or twin screw extruder and extruding at a temperature higher than the DSC Melting Point of the polyolefin resin to make pellets; and
A recycling and use method of cross-linked polyolefin foam scrap comprising the step of using the pellet as a part of the raw material and mixing and using the new polyolefin foam.
제1 항에 있어서,
상기 Peroxide 가교 가능한 폴리올레핀이 PE (HDPE, MDPE, LDPE, LLDPE, VLDPE, ULDPE), Ethylene Copolymer (EVA, EBA, EMA, EMMA 등), Ionomer, Ethylene α-olefin Copolymer (POE, OBC), Ethylene Propylene Copolymer인 것인 폴리올레핀 폼 스크랩의 재생 사용 방법.
According to claim 1,
The peroxide crosslinkable polyolefin is PE (HDPE, MDPE, LDPE, LLDPE, VLDPE, ULDPE), Ethylene Copolymer (EVA, EBA, EMA, EMMA, etc.), Ionomer, Ethylene α-olefin Copolymer (POE, OBC), Ethylene Propylene Copolymer A method of using recycled polyolefin foam scrap that is phosphorus.
제1 항에 있어서,
상기 일축 또는 이축 압출기의 L/D가 20~40인 것인 폴리올레핀 폼 스크랩의 재생 사용 방법.
According to claim 1,
L/D of the single-screw or twin-screw extruder is 20-40 of the recycling method of polyolefin foam scrap.
제 1항에 있어서,
상기 일축 또는 이축 압출기의 스크류 압축비 (공급부의 스크류 깊이/계량부의 스크류 깊이)가 2.5~3.5인 것인 폴리올레핀 폼 스크랩의 재생 사용 방법.
The method of claim 1,
A method of recycling and using polyolefin foam scrap in which the screw compression ratio of the single-screw or twin-screw extruder (the screw depth of the supply part / the screw depth of the metering part) is 2.5 to 3.5.
KR1020200012654A 2020-02-03 2020-02-03 Regeneration method of scrap of polyolefin foam KR20210098737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200012654A KR20210098737A (en) 2020-02-03 2020-02-03 Regeneration method of scrap of polyolefin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200012654A KR20210098737A (en) 2020-02-03 2020-02-03 Regeneration method of scrap of polyolefin foam

Publications (1)

Publication Number Publication Date
KR20210098737A true KR20210098737A (en) 2021-08-11

Family

ID=77314087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200012654A KR20210098737A (en) 2020-02-03 2020-02-03 Regeneration method of scrap of polyolefin foam

Country Status (1)

Country Link
KR (1) KR20210098737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071236A (en) * 2022-05-23 2022-09-20 青岛伟东包装有限公司 Ultralow-temperature heat-sealing plastic film and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071236A (en) * 2022-05-23 2022-09-20 青岛伟东包装有限公司 Ultralow-temperature heat-sealing plastic film and preparation method thereof
CN115071236B (en) * 2022-05-23 2024-04-05 青岛伟东包装有限公司 Ultralow-temperature heat sealing plastic film and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101376718B (en) Method for recycling waste polyurethane
KR100781608B1 (en) Recylced asphalt concrete comprising polymer modifier for pavement and manufacturing method thereof
KR20130020783A (en) Method for producing composite pellet for extrusion molding, and composite pellet for extrusion molding produced by the method
US20060151643A1 (en) Pulverization process of a vulcanized rubber material
CN102391639A (en) Polyurethane and rubber foamed compound material and preparation method thereof
CN102922838A (en) Three-layer coextruded PVC (polyvinylchloride) wood-plastic composite foam board and preparation method thereof
JP5635262B2 (en) Method and apparatus for manufacturing wood composite materials
JP5457933B2 (en) Method for producing composite pellet for extrusion molding, and composite pellet for extrusion produced by the above method
CN102516666B (en) Polypropylene-based microcellular foaming wood-plastic composite material and production method thereof
CN103038278A (en) Thermos et composite made from engineered recycled rubber powder
CN105924992A (en) Anti-aging wear-resistant wood-plastic floor and preparation technology
JP5707403B2 (en) Production method and use of leather pellets and compound granules
Datta et al. Mechanical recycling via regrinding, rebonding, adhesive pressing, and molding
CN102952334A (en) Aging-resistant PP (polypropylene) lunch box and manufacturing process thereof
KR20210098737A (en) Regeneration method of scrap of polyolefin foam
CN110387096A (en) Regenerated PVC pipe preparation method can be recycled in one kind
CN100482431C (en) A process for recycling waste FRP
KR101004394B1 (en) Method for manufacturing synthetic wood
JP3576451B2 (en) Wood-like molded article and method for producing wood-like molded article
CN108795081A (en) A kind of environment-friendlywood-plastic wood-plastic composite material and preparation method thereof
JP5535744B2 (en) Method for producing resin composition
KR20210098736A (en) Regeneration method of scrap of sole
TWI818736B (en) Plastic composite material and preparation method thereof
KR101024866B1 (en) System and method for manufacturing of synthetic wood
JP5774075B2 (en) Method for producing resin composition