KR20210095289A - Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same - Google Patents

Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same Download PDF

Info

Publication number
KR20210095289A
KR20210095289A KR1020200008822A KR20200008822A KR20210095289A KR 20210095289 A KR20210095289 A KR 20210095289A KR 1020200008822 A KR1020200008822 A KR 1020200008822A KR 20200008822 A KR20200008822 A KR 20200008822A KR 20210095289 A KR20210095289 A KR 20210095289A
Authority
KR
South Korea
Prior art keywords
sealant
layer
calcium carbonate
cell pouch
hydrofluoric acid
Prior art date
Application number
KR1020200008822A
Other languages
Korean (ko)
Other versions
KR102338521B1 (en
Inventor
박한철
장지은
황부연
Original Assignee
율촌화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 율촌화학 주식회사 filed Critical 율촌화학 주식회사
Priority to KR1020200008822A priority Critical patent/KR102338521B1/en
Publication of KR20210095289A publication Critical patent/KR20210095289A/en
Application granted granted Critical
Publication of KR102338521B1 publication Critical patent/KR102338521B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/141Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Disclosed are a cell pouch and a manufacturing method thereof, wherein the cell pouch has two or more multilayer sealant layers, nano-sized calcium carbonate is included in the sealant layers, calcium carbonate is not included in the innermost sealant layer in contact with an electrolyte, and calcium carbonate is included in the sealant layer adjacent to the innermost layer. The corresponding cell pouch is excellent in strength, durability, water vapor and other gas barrier properties, thermal adhesiveness, thermal adhesiveness with electrode terminals, and the like required for the cell pouch and can improve hydrofluoric acid resistance. Accordingly, the deterioration of adhesion between a metal and the sealant layer due to hydrofluoric acid gas can be improved.

Description

내불산성이 향상된 이차전지용 셀 파우치 및 그 제조 방법{Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same}Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for manufacturing the same

본 명세서는 내불산성을 향상시킨 이차전지용 셀 파우치 및 그 제조 방법에 대한 것으로서, 더 상세하게는, 셀 파우치의 배리어층의 내층인 실란트(Sealant) 층을 다층으로 적용하고, 해당 실란트층에 적용되는 고분자 소재에 무기계 첨가제를 적용한 셀 파우치 및 그 제조 방법에 관한 것이다.The present specification relates to a cell pouch for a secondary battery having improved hydrofluoric acid resistance and a method for manufacturing the same, and more specifically, a sealant layer, which is an inner layer of a barrier layer of the cell pouch, is applied in multiple layers, and is applied to the sealant layer. It relates to a cell pouch in which an inorganic additive is applied to a polymer material and a method for manufacturing the same.

리튬이차전지(LIB)는 높은 에너지밀도와 우수한 출력을 갖는 등 다양한 장점을 바탕으로 소형 및 중대형 등 많은 어플리케이션에 적용되고 있다. Lithium secondary batteries (LIBs) are being applied to many applications such as small and medium-sized batteries based on various advantages such as high energy density and excellent output.

그러나 수분에 민감한 전해액이 사용되기 때문에 제조 공정 시 엄격한 수분관리가 필요하다. 참고로, 이차전지 내부에 수분이 침투할 경우 전해액에 포함된 불소(F)성분과 수분(H2O)이 반응하여 불산(HF)이 생성된다. However, since a moisture-sensitive electrolyte is used, strict moisture management is required during the manufacturing process. For reference, when moisture penetrates into the secondary battery, the fluorine (F) component contained in the electrolyte and moisture (H 2 O) react to generate hydrofluoric acid (HF).

불산(HF)은 끓는점이 19.5oC로 액체로 존재하거나 가스로 존재할 수 있는데, 침투성이 매우 높은 유독성 물질이다. 배터리 내부에서 발생시에는 전지 내부 압력을 높일 수 있다. 또한 배터리 내부에서 매우 미량의 불산이 생성되더라도 배리어층의 금속과 실란트층 사이 접착층에 영향을 주어 계면의 박리현상을 야기할 수 있다.Hydrofluoric acid (HF) has a boiling point of 19.5 o C and can exist either as a liquid or as a gas. It is a highly permeable and toxic substance. When it occurs inside the battery, the internal pressure of the battery may be increased. In addition, even if a very small amount of hydrofluoric acid is generated inside the battery, it may affect the adhesive layer between the metal of the barrier layer and the sealant layer and cause delamination of the interface.

한편, 폴리프로필렌(PP)은 기계적 특성과 화학적 안정성이 모두 우수한 소재로서, 열접착성 및 내열성 또한 우수하여 이차전지용 셀파우치 내층인 실란트층 소재로 널리 이용되고 있다. 이러한 폴리프로필렌은 불산에 대해 비교적 안정적이지만, 투기성이 취약하여 불산 가스 발생시 배리어층의 성분인 금속과의 접착층을 보호하기 어렵고, 이에 따라 접착력이 저하되는 현상이 발생할 수 있다. On the other hand, polypropylene (PP) is a material with excellent mechanical properties and chemical stability, and is widely used as a sealant layer material, which is an inner layer of a cell pouch for secondary batteries, because of its excellent thermal adhesion and heat resistance. Although such polypropylene is relatively stable to hydrofluoric acid, it is difficult to protect the adhesive layer with the metal, which is a component of the barrier layer, when the hydrofluoric acid gas is generated due to weak gas permeability, and thus the adhesive strength may be deteriorated.

이차전지 제조 사에서는 수분이 전지 내에 침투되었을 경우를 대비하여 내불산성 평가를 진행하고 있다. 즉, 이차전지 내불산성을 평가하기 위해서 수분을 임의로 침투시킨 후 셀 파우치의 안정성을 평가하고 있는바, 내불산성이 향상된 셀 파우치가 요구된다.Secondary battery manufacturers are conducting hydrofluoric acid resistance evaluation in case moisture penetrates into the battery. That is, in order to evaluate the hydrofluoric acid resistance of the secondary battery, the stability of the cell pouch is evaluated after moisture has been arbitrarily permeated, and a cell pouch with improved hydrofluoric acid resistance is required.

일본특허 제5463902호 공보Japanese Patent No. 5463902 Publication

본 발명의 예시적인 구현예들에서는, 일 측면에서, 셀파우치의 내층 소재를 개선함으로써 전해액과 수분의 반응으로 발생될 수 있는 불산(HF)에 대한 내성 즉 내불산성을 향상시킨 이차전지용 셀 파우치 및 그 제조 방법을 제공하고자 한다. In exemplary embodiments of the present invention, in one aspect, by improving the inner layer material of the cell pouch, the resistance to hydrofluoric acid (HF) that may be generated by the reaction of the electrolyte and moisture, that is, the cell pouch for secondary batteries with improved hydrofluoric acid resistance, and An object of the present invention is to provide a manufacturing method thereof.

본 발명의 예시적인 구현예들에서는, 다른 측면에서, 전술한 바와 같이 내불산성이 향상되면서도 셀 파우치에 요구되는 강도, 내구성, 수증기 및 기타 가스 배리어성, 열접착성, 전극 단자와의 열접착성 등도 우수한 셀 파우치 및 그 제조 방법을 제공하고자 한다.In exemplary embodiments of the present invention, in another aspect, as described above, while hydrofluoric acid resistance is improved, the strength, durability, water vapor and other gas barrier properties required for a cell pouch, thermal adhesiveness, and thermal adhesiveness with electrode terminals It is also intended to provide an excellent cell pouch and a method for manufacturing the same.

본 발명의 예시적인 구현예들에서는, 2층 이상의 실란트 층을 가지는 셀 파우치로서, 1000nm 미만의 나노 크기의 탄산 칼슘을 실란트 층에 포함하되, 전해액과 접촉하는 최 내층인 실란트층에는 탄산 칼슘이 포함되지 않는 것이고, 상기 최 내층에 인접한 실란트층에 탄산 칼슘이 포함되는 것을 특징으로 하는 셀 파우치를 제공한다. In exemplary embodiments of the present invention, as a cell pouch having two or more sealant layers, calcium carbonate having a nano size of less than 1000 nm is included in the sealant layer, and the sealant layer, which is the innermost layer in contact with the electrolyte, includes calcium carbonate. It does not, and provides a cell pouch, characterized in that calcium carbonate is included in the sealant layer adjacent to the innermost layer.

본 발명의 예시적인 구현예들에서는 또한, 셀 파우치 제조 방법으로서, 2층 이상의 실란트 층을 가지는 셀 파우치 제조 시 나노 크기의 탄산 칼슘을 하나 이상의 실란트 층에 포함하되, 전해액과 접촉하는 최 내층에는 탄산 칼슘이 포함되지 않도록 하고, 상기 최 내층에 인접한 실란트층에는 탄산 칼슘이 포함되도록 하는 단계;를 포함하는 셀 파우치 제조 방법을 제공한다.In exemplary embodiments of the present invention, as a method for manufacturing a cell pouch, nano-sized calcium carbonate is included in one or more sealant layers when manufacturing a cell pouch having two or more sealant layers, but carbonic acid is provided in the innermost layer in contact with the electrolyte. It provides a method of manufacturing a cell pouch comprising; preventing calcium from being included, and allowing calcium carbonate to be included in the sealant layer adjacent to the innermost layer.

본 발명의 예시적인 구현예들에서는 또한, 셀 파우치의 내불산성 향상 방법으로서, 2층 이상의 실란트 층을 가지는 셀 파우치 제조 시 나노 크기의 탄산 칼슘을 하나 이상의 실란트 층에 포함하되, 전해액과 접촉하는 최 내층에는 탄산 칼슘이 포함되지 않도록 하고, 상기 최 내층에 인접한 실란트층에는 탄산 칼슘이 포함되도록 하는 단계;를 포함하는 셀파우치의 내불산성 향상 방법을 제공한다.In exemplary embodiments of the present invention, as a method for improving hydrofluoric acid resistance of a cell pouch, nano-sized calcium carbonate is included in one or more sealant layers when manufacturing a cell pouch having two or more sealant layers, but the most It provides a method for improving hydrofluoric acid resistance of a cell pouch, comprising the steps of not containing calcium carbonate in the inner layer, and allowing calcium carbonate to be included in the sealant layer adjacent to the innermost layer.

본 발명의 예시적인 구현예들에 따른 셀 파우치는, 셀 파우치에 요구되는 강도, 내구성, 수증기 및 기타 가스 배리어성, 열접착성, 전극 단자와의 열접착성 등이 우수하면서도 내불산성이 향상될 수 있다. 이에 따라 불산가스로 인한 금속과 실란트층간의 접착력 저하현상을 개선할 수 있다.The cell pouch according to the exemplary embodiments of the present invention is excellent in strength, durability, water vapor and other gas barrier properties, thermal adhesiveness, thermal adhesiveness with electrode terminals, etc. required for a cell pouch, and hydrofluoric acid resistance is improved. can Accordingly, it is possible to improve the deterioration of the adhesion between the metal and the sealant layer due to the hydrofluoric acid gas.

도 1은 본 발명의 예시적인 구현예에 따른 셀 파우치의 층 구성을 나타내는 개략도이다.
도 2는 본 발명의 예시적인 구현예에 따른 셀 파우치의 내층 구성을 나타내는 개략도이다.
1 is a schematic diagram showing a layer configuration of a cell pouch according to an exemplary embodiment of the present invention.
2 is a schematic diagram showing an inner layer configuration of a cell pouch according to an exemplary embodiment of the present invention.

본 명세서에서 나노 크기는 1000nm 미만을 의미한다.Nano size in this specification means less than 1000 nm.

본 명세서에서 n-CaCO3은 나노 크기의 탄산칼슘 첨가제를 의미한다. 예컨대, 예컨대 900nm 이하 등의 탄산칼슘 첨가제를 의미할 수 있다.In the present specification, n-CaCO 3 refers to a nano-sized calcium carbonate additive. For example, it may mean a calcium carbonate additive of, for example, 900 nm or less.

본 명세서에서 m-CaCO3은 1㎛ 이상의 탄산칼슘 첨가제를 의미한다.In the present specification, m-CaCO 3 means a calcium carbonate additive of 1 μm or more.

이하, 첨부한 도면을 참조하여 본 발명의 예시적인 구현예들을 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 예시적인 구현예들에서는, 이차전지용 셀파우치에 있어서, 셀 파우치의 실란트 층을 2층 이상의 다층으로 구성하고, 나노 크기의 탄산 칼슘을 실란트 층에 포함하도록 하되, 전해액과 접촉하는 최 내층 즉, 다층 실란트 층 중 최 내층에는 탄산 칼슘이 포함되지 않도록 하면서 상기 최 내층에 인접한 실란트층에 탄산 칼슘이 포함되도록 한다.In exemplary embodiments of the present invention, in the cell pouch for a secondary battery, the sealant layer of the cell pouch is composed of two or more multi-layers, and nano-sized calcium carbonate is included in the sealant layer, but the innermost layer in contact with the electrolyte That is, calcium carbonate is included in the sealant layer adjacent to the innermost layer while not including calcium carbonate in the innermost layer of the multilayer sealant layer.

도 1은 본 발명의 예시적인 구현예에 따른 셀 파우치의 층 구성을 나타내는 개략도이다. 1 is a schematic diagram showing a layer configuration of a cell pouch according to an exemplary embodiment of the present invention.

도 1에 도시된 바와 같이, 셀 파우치는 외층, 배리어층, 내층의 실란트층으로 구성되어 있다. 통상 외층 또는 최외층은 나일론이나 나일론과 PET(폴리에틸렌테레프탈레이트)의 혼합 소재, OPP (연신 폴리프로필렌), 폴리에틸렌 등으로 구성되고 있다. 이러한 외층 또는 최외층의 요구 특성으로서는 내열성, 내핀홀성, 내화학성, 성형성 및 절연성 등이 요구된다. 1, the cell pouch is composed of an outer layer, a barrier layer, and a sealant layer of an inner layer. Usually, the outer layer or outermost layer is composed of nylon or a mixed material of nylon and PET (polyethylene terephthalate), OPP (stretched polypropylene), polyethylene, and the like. As the required characteristics of the outer layer or the outermost layer, heat resistance, pinhole resistance, chemical resistance, moldability, insulation, and the like are required.

배리어층은 수증기나 기타 기체에 대한 배리어성과 함께 성형성이 요구된다. 이러한 측면에서 배리어층에는 성형 가능한 금속 예컨대 알루미늄(Al), 철(Fe), 구리(Cu), 니켈(Ni) 등이 사용되며, 현재 알루미늄이 가장 많이 사용되고 있다.The barrier layer is required to formability together with barrier properties to water vapor or other gases. In this respect, a moldable metal such as aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), etc. is used for the barrier layer, and aluminum is currently the most used.

내층의 실란트층은 열접착성, 성형성과 함께 전해액과 접촉하는 층이라는 점에서 내전해액성, 절연저항성 등이 요구된다.In the sense that the sealant layer of the inner layer is a layer in contact with the electrolyte along with thermal adhesion and moldability, electrolyte resistance and insulation resistance are required.

본 발명의 예시적인 구현예들에서는 실란트층이 하나 이상의 층 바람직하게는 2층 이상의 다층 구조로 형성되도록 한다.Exemplary embodiments of the present invention allow the sealant layer to be formed in a multilayer structure of one or more layers, preferably two or more layers.

도 2는 본 발명의 예시적인 구현예에 따른 셀 파우치의 내층 구성을 나타내는 개략도이다. 2 is a schematic diagram showing an inner layer configuration of a cell pouch according to an exemplary embodiment of the present invention.

도 2는 3층 구조의 실란트 층을 예시하는 것으로서, 배리어층(금속층)과 접촉하는 실란트 A 층, 중간층인 실란트 B 층, 전해액과 직접 접촉하는 실란트 C 층을 예시한다. 실란트 A 층은 배리어층인 금속과의 접착성과 함께 내전해액성, 내불산성, 절연성이 요구된다. 실란트 B층도 내열성, 열접착성과 함께 내전해액성, 내불산성, 절연성이 요구된다. 실란트 C 층은 슬립(slip) 성, 협착물 접착성과 함께, 열접착성, 내전해액성, 절연성이 요구된다.2 illustrates a sealant layer having a three-layer structure, a sealant A layer in contact with a barrier layer (metal layer), a sealant B layer as an intermediate layer, and a sealant C layer in direct contact with an electrolyte. The sealant A layer is required to have electrolyte resistance, hydrofluoric acid resistance, and insulation properties as well as adhesion to the metal as a barrier layer. The sealant B layer also requires heat resistance and thermal adhesion, as well as electrolyte resistance, hydrofluoric acid resistance and insulation. The sealant C layer is required to have thermal adhesion, electrolyte resistance, and insulation as well as slip properties and stenosis adhesion.

본 발명의 예시적인 구현예들에서는 상기와 같은 2층 이상의 다층 실란트 층에 있어서, 나노 크기의 탄산 칼슘을 포함하도록 하며, 전해액과 접촉하는 최 내층 즉, 다층 실란트 층 중 최 내층(도 2의 경우에는 실란트 C 층)에는 탄산 칼슘이 포함되지 않도록 한다. 그 이유는 나노 크기의 CaCO3가 전해액에 직접 노출될 경우 폴리프로필렌 등으로 이루어진 실란트층으로부터 전해액으로 용출될 수 있기 때문에 직접 접촉층에는 적용하지 않도록 한다. 또한, 상기 최 내층에 인접한 실란트층에 탄산 칼슘이 포함되도록 한다.In exemplary embodiments of the present invention, in the multilayer sealant layer of two or more layers as described above, nano-sized calcium carbonate is included and the innermost layer in contact with the electrolyte, that is, the innermost layer among the multilayer sealant layers (in the case of FIG. 2 ) Sealant C layer) should not contain calcium carbonate. The reason is that when nano-sized CaCO 3 is directly exposed to the electrolyte, it may be eluted from the sealant layer made of polypropylene or the like into the electrolyte, so it should not be applied to the direct contact layer. In addition, calcium carbonate is included in the sealant layer adjacent to the innermost layer.

이에 따라, 셀 파우치의 강도, 내구성 및 수증기 및 기타 가스 배리어성, 열접착성, 전극단자와의 열접착성등이 우수함과 동시에, 전해액과 수분의 반응으로 발생될 수 있는 불산(HF)에 대한 내성 즉, 내불산성이 향상될 수 있다.Accordingly, the cell pouch has excellent strength, durability, water vapor and other gas barrier properties, thermal adhesiveness, thermal adhesiveness with electrode terminals, etc. Resistance, that is, hydrofluoric acid resistance may be improved.

상술하면, 불산은 다음 화학식과 같이 칼슘과 같은 무기물로 제거할 수 있다.In detail, hydrofluoric acid can be removed with an inorganic material such as calcium as shown in the following formula.

[화학식 1][Formula 1]

Ca2 + HF -> CaF2 + H2 Ca 2 + HF -> CaF 2 + H 2

[화학식 2][Formula 2]

Ca2 + + 2F- -> CaF2 Ca 2 + + 2F - -> CaF 2

본 발명의 예시적인 구현예들에서는, 이러한 칼슘계 첨가제 중 특히 나노 크기의 탄산칼슘(CaCO3)을 사용한다. 일반적으로 사용되는 탄산칼슘은 마이크로 사이즈 즉, 1㎛ 이상, 예컨대 1~50㎛ 크기의 m-CaCO3를 사용하는데, 이러한 m-CaCO3는 셀파우치 내층의 주요 성분인 폴리프로필렌과의 계면접착력이 좋지 않다.In exemplary embodiments of the present invention, among these calcium-based additives, in particular, nano-sized calcium carbonate (CaCO 3 ) is used. Calcium carbonate is commonly used is to use a micro-size i.e., 1㎛ or more, such as 1 ~ 50㎛ amount of m-CaCO 3, such m-CaCO 3 is the interfacial adhesion between the polypropylene as the major component of the cell inner pouch Not good.

반면, 1000nm 미만의 나노 크기의 n-CaCO3는 같은 양의 m-CaCO3에 비해 표면적이 넓으며 폴리프로필렌에 적정량이 분산됨으로써 내열성을 높여줄 수 있다.On the other hand, nano-sized n-CaCO 3 of less than 1000 nm has a larger surface area than the same amount of m-CaCO 3 , and by dispersing an appropriate amount in polypropylene, heat resistance can be improved.

예시적인 일 구현예에서, 상기 나노 크기의 n-CaCO3는 1000nm 미만, 예컨대 950nm 이하 또는 900nm 이하 등일 수 있으며, 비제한적인 예시로서 200nm~900nm일 수 있다. 예컨대 n-CaCO3는 900nm 이하, 800nm 이하, 700nm 이하, 600nm 이하, 500nm 이하, 400nm 이하, 300nm 이하일 수 있고, 200 nm 이상, 300nm 이상, 400nm 이상, 500nm 이상, 600nm 이상, 700 nm 이상, 800nm 이상일 수 있지만, 이에 한정되지 않는다. 다만, 200nm 미만인 경우는 분산성이 좋지 않아 가공이 어려우며 물성이 균일하지 못할 가능성이 높다.In an exemplary embodiment, the nano-sized n-CaCO 3 may be less than 1000 nm, such as 950 nm or less or 900 nm or less, and may be 200 nm to 900 nm as a non-limiting example. For example, n-CaCO 3 may be 900 nm or less, 800 nm or less, 700 nm or less, 600 nm or less, 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or more, 300 nm or more, 400 nm or more, 500 nm or more, 600 nm or more, 700 nm or more, 800 nm or more, but is not limited thereto. However, in the case of less than 200 nm, the dispersibility is not good, so processing is difficult, and there is a high possibility that the physical properties may not be uniform.

참고로, 탄산 칼슘의 사이즈는 예컨대 셀파우치 제품 적용 전 탄산 칼슘의 SEM 사진으로부터 측정할 수 있으며, SEM 사진에서 얻어진 탄산 칼슘 입자의 사이즈의 평균적인 값일 수 있다.For reference, the size of calcium carbonate may be measured from, for example, an SEM photograph of calcium carbonate before application of the cell pouch product, and may be an average value of the size of calcium carbonate particles obtained from the SEM photograph.

예시적인 일 구현예에서, 상기 나노 크기의 n-CaCO3는 일정 함량이 되도록 조절하는 것이 바람직하다. 바람직하게는, n-CaCO3는 실란트 B 층에 해당 층 조성물 중 2중량% 초과 15중량% 이하로 포함되는 것이 바람직하다. 15 중량%를 초과할 경우에는 각 실란트 층의 기계적 특성은 향상되지만, 열접착성과 내전해액성 및 금속접착성이 지나치게 저하될 수 있다. 반면 2중량% 이하인 경우에는 불산에 대한 내성이 나타나지 않을 수 있다. 예시로서, n-CaCO3는 해당 실란트 층 조성물 중 15중량% 이하, 14중량% 이하, 13중량% 이하, 12중량% 이하, 11중량% 이하, 10중량% 이하, 9중량% 이하, 8중량% 이하, 7 중량% 이하, 6중량% 이하, 5중량% 이하, 4중량% 이하, 3중량% 이하로 사용될 수 있고, 또는 2중량% 이상, 3중량% 이상, 4중량% 이상, 5중량% 이상, 6중량% 이상, 7중량% 이상, 8중량% 이상, 9중량% 이상, 10중량% 이상, 11중량% 이상, 12중량% 이상, 13중량% 이상, 14중량% 이상으로 사용될 수 있다. In an exemplary embodiment, the nano-sized n-CaCO 3 is preferably adjusted to a certain content. Preferably, n-CaCO 3 is included in the sealant B layer in an amount of greater than 2% by weight and not more than 15% by weight of the layer composition. When it exceeds 15 wt%, the mechanical properties of each sealant layer are improved, but thermal adhesion properties, electrolyte resistance properties, and metal adhesion properties may be excessively deteriorated. On the other hand, in the case of 2 wt% or less, resistance to hydrofluoric acid may not appear. As an example, n-CaCO 3 is 15 wt% or less, 14 wt% or less, 13 wt% or less, 12 wt% or less, 11 wt% or less, 10 wt% or less, 9 wt% or less, 8 wt% or less in the corresponding sealant layer composition. % or less, 7 wt% or less, 6 wt% or less, 5 wt% or less, 4 wt% or less, 3 wt% or less, or 2 wt% or more, 3 wt% or more, 4 wt% or more, 5 wt% or less % or more, 6% by weight or more, 7% by weight or more, 8% by weight or more, 9% by weight or more, 10% by weight or more, 11% by weight or more, 12% by weight or more, 13% by weight or more, 14% by weight or more there is.

바람직하게는, n-CaCO3는 5중량% 이상 10중량%, 더 바람직하게는 5중량% 이상 10중량% 미만 또는 5중량% 내지 9중량%로 사용되는 것일 수 있다.Preferably, n-CaCO 3 may be used in an amount of 5 wt% or more and 10 wt% or more, more preferably 5 wt% or more and less than 10 wt% or 5 wt% to 9 wt%.

이와 같이 이차전지용 셀파우치 내층인 실란트층 필름을 다층으로 설계하되, 전해액에 직접 접촉층이 아닌 중간층에 n-CaCO3 함량을 조절하여 내불산성을 안정적으로 구현할 수 있다.As described above, the sealant layer film, which is the inner layer of the cell pouch for secondary batteries, is designed as a multilayer, but hydrofluoric acid resistance can be stably implemented by controlling the n-CaCO 3 content in the intermediate layer, not in the direct contact layer with the electrolyte.

다시 도 2를 참조하면, 예시적인 일 구현예에서, 직접 접촉층인 실란트 C층은 전체 실란트 층의 약 10~20%에 해당하는 두께를 갖는 것이 바람직하며, 최소 3~10㎛ 정도의 두께인 것이 적합하다. 너무 얇으면 실란트층 협착물 간의 접착성과 내전해액성이 떨어지고, 너무 두꺼우면 열접착성이 떨어질 수 있다.Referring back to FIG. 2 , in an exemplary embodiment, the sealant C layer, which is the direct contact layer, preferably has a thickness corresponding to about 10 to 20% of the total sealant layer, and is at least 3 to 10 μm thick. it is suitable If it is too thin, the adhesion between the sealant layer stenosis and the electrolyte resistance may be deteriorated, and if it is too thick, the thermal adhesion may be deteriorated.

또한 직접 접촉층인 실란트 C층에는 슬립(slip)성이 요구되므로, 안티블록킹(Anti-Blocking)제, 슬립(Slip)제(예컨대 아미드 계열) 등의 첨가제를 하나 이상 포함하는 것이 바람직하다. 안티블로킹제로는 제올라이트, 실리콘입자 등과 같은 무기물 입자를 첨가하며, 안티블록킹제를 함유함으로써 필름 표면에 돌출이 되도록 한다. 한편, 슬립제는 Erucamide, Behen-amide, Oleamide, 실리콘 Oil 등을 사용하며, 슬립제를 함유함으로써 필름 표면이 미끄럽도록 해줄 수 있다.In addition, since slip property is required for the sealant C layer, which is the direct contact layer, it is preferable to include at least one additive such as an anti-blocking agent and a slip agent (eg, amide-based). As the anti-blocking agent, inorganic particles such as zeolite and silicon particles are added, and by containing the anti-blocking agent, it is made to protrude on the film surface. On the other hand, the slip agent uses erucamide, behen-amide, oleamide, silicone oil, etc., and by containing the slip agent, the film surface can be made slippery.

또한, 상기 첨가제는 해당 직접 접촉층인 실란트 C 층 조성물 중 1~10중량%의 함량을 갖도록 하는 것이 좋다. 1% 미만 함량은 물성구현이 어려우며 10%이상의 함량은 열접착성 및 맞닿는 필름 반대면에 전사되어 기재와의 접착력에도 악영향을 줄 수 있다. In addition, it is preferable that the additive has a content of 1 to 10 wt% in the composition of the sealant C layer, which is the direct contact layer. A content of less than 1% is difficult to realize physical properties, and an amount of 10% or more is transferred to the opposite side of the film in contact with heat adhesion and may adversely affect adhesion with the substrate.

다만, 앞서 언급한 바와 같이, 전해액과 직접 접촉하기 때문에 탄산칼슘 첨가제 등과 같이 전해액으로 인해 용출될 수 있는 첨가제는 포함시키지 않도록 하는 것이 바람직하다.However, as mentioned above, since it is in direct contact with the electrolyte, it is preferable not to include an additive that can be eluted by the electrolyte, such as a calcium carbonate additive.

한편, 중간층인 실란트 B층은 전체 실란트 층의 50~80%에 해당하는 두께를 갖는 것이 좋으며, 최소 10~40㎛ 이상인 것이 적합하다. 실란트층에서 요구되는 대부분의 특성이 이 중간층으로부터 구현될 수 있으므로 실란트 A, C층보다 두꺼워야 한다.On the other hand, the sealant B layer, which is the intermediate layer, preferably has a thickness corresponding to 50 to 80% of the total sealant layer, and is preferably at least 10 to 40 μm or more. Since most of the properties required for the sealant layer can be realized from this intermediate layer, it should be thicker than the sealants A and C layers.

또한, 중간층은 직접 접촉층이나 금속 접촉층에 비해 상대적으로 두껍기 때문에 n-CaCO3첨가제의 첨가량 조절이 용이하다는 장점이 있다. 이러한 중간층에서는 내열성을 위하여 중간층 원료의 용융점(Tm)이 150℃ 이상인 것이 바람직하다.In addition, since the intermediate layer is relatively thick compared to the direct contact layer or the metal contact layer, there is an advantage in that it is easy to control the amount of the n-CaCO 3 additive. In such an intermediate layer, it is preferable that the melting point (Tm) of the intermediate layer raw material is 150° C. or higher for heat resistance.

또한, 배리어층 접촉층인 실란트 A층은 금속접착력 및 내전해액성을 위해 전체 실란트 층의 10~20%에 해당하는 두께를 갖는 것이 좋다.In addition, the sealant layer A, which is the barrier layer contact layer, preferably has a thickness corresponding to 10 to 20% of the total sealant layer for metal adhesion and electrolyte resistance.

한편, 본 발명의 예시적인 구현예들에서는, 전술한 셀 파우치로 외장된 이차 전지를 제공한다.On the other hand, in exemplary embodiments of the present invention, there is provided a secondary battery external to the cell pouch described above.

예시적인 일 구현예에서, 상기 이차 전지는 리튬 이차전지일 수 있다.In an exemplary embodiment, the secondary battery may be a lithium secondary battery.

예시적인 일 구현예에서, 상기 이차 전지는 소형 또는 중대형 이차전지일 수 있고, 상기 중대형 이차전지는 예컨대 전기자동차 또는 에너지 저장 장치 용일 수 있다.In an exemplary embodiment, the secondary battery may be a small or medium-large secondary battery, and the medium-large secondary battery may be, for example, for an electric vehicle or an energy storage device.

본 발명의 예시적인 구현예들에서는 또한, 셀 파우치 제조 방법으로서, 2층 이상의 실란트 층을 가지는 셀 파우치 제조 시 나노 크기의 탄산 칼슘을 하나 이상의 실란트 층에 포함하되, 전해액과 접촉하는 최 내층에는 탄산 칼슘이 포함되지 않도록 하고, 상기 최 내층에 인접한 실란트층에는 탄산 칼슘이 포함되도록 하는 단계;를 포함하는 셀 파우치 제조 방법을 제공한다.In exemplary embodiments of the present invention, as a method for manufacturing a cell pouch, nano-sized calcium carbonate is included in one or more sealant layers when manufacturing a cell pouch having two or more sealant layers, but carbonic acid is provided in the innermost layer in contact with the electrolyte. It provides a method of manufacturing a cell pouch comprising; preventing calcium from being included, and allowing calcium carbonate to be included in the sealant layer adjacent to the innermost layer.

본 발명의 예시적인 구현예들에서는 또한, 셀 파우치의 내불산성 향상 방법으로서, 2층 이상의 실란트 층을 가지는 셀 파우치 제조 시 나노 크기의 탄산 칼슘을 하나 이상의 실란트 층에 포함하되, 전해액과 접촉하는 최 내층에는 탄산 칼슘이 포함되지 않도록 하고, 상기 최 내층에 인접한 실란트층에는 탄산 칼슘이 포함되도록 하는 단계;를 포함하는 셀파우치의 내불산성 향상 방법을 제공한다.In exemplary embodiments of the present invention, as a method for improving hydrofluoric acid resistance of a cell pouch, nano-sized calcium carbonate is included in one or more sealant layers when manufacturing a cell pouch having two or more sealant layers, but the most It provides a method for improving hydrofluoric acid resistance of a cell pouch, comprising the steps of not containing calcium carbonate in the inner layer, and allowing calcium carbonate to be included in the sealant layer adjacent to the innermost layer.

이하의 실시예를 통하여 본 발명의 예시적인 구현예들을 더욱 상세하게 설명된다. 본 명세서에 개시된 실시예들은 단지 설명을 위한 목적으로 예시된 것으로서, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 안 된다. Exemplary embodiments of the present invention are described in more detail through the following examples. The embodiments disclosed in this specification are illustrated for the purpose of explanation only, and the embodiments of the present invention may be embodied in various forms and should not be construed as being limited to the embodiments described herein.

[실시예 및 비교예][Examples and Comparative Examples]

실시예 및 비교예에서 공통되는 최외층은 공지의 나일론 층을 사용하고, 배리어층은 공지의 AL Foil을 사용하였다. 또한, 실란트 A, B, C 층에서 탄산칼슘 외에는 폴리프로필렌 수지를 사용하였다. 각 재료를 혼합한 뒤 용융시킨 후 T-die 압출을 통해 필름을 제조하였다. A known nylon layer was used for the outermost layer common to Examples and Comparative Examples, and a known AL Foil was used for the barrier layer. In addition, polypropylene resin was used in the sealant A, B, and C layers other than calcium carbonate. After each material was mixed and melted, a film was manufactured through T-die extrusion.

실시예들 및 비교예에서는 도 2에 도시된 바와 같이 3층으로 실란트 층을 구성하였다. 이하 각 실시예 및 비교예의 층 구성을 기재하였다.In Examples and Comparative Examples, as shown in FIG. 2 , the sealant layer was composed of three layers. Hereinafter, the layer structure of each Example and Comparative Example is described.

비교예comparative example 1: n- 1: n- CaCOCaCO 33 첨가 없음no addition

비교예 1에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였다. n-CaCO3 은 첨가하지 않았다.In Comparative Example 1, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm. n-CaCO 3 was not added.

비교예comparative example 2 : 실란트 2: sealant C층에on the C floor n- n- CaCOCaCO 3 3 10중량%10% by weight 첨가 adding

비교예 2에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 C층에 n-CaCO3 (200~900nm; 이하 동일)을 실란트 C층 전체 조성물 중 10중량%로 첨가하였다.In Comparative Example 2, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, the sealant B layer was designed to be 35 to 40 μm, and n-CaCO in the sealant C layer 3 (200-900 nm; hereinafter the same) was added in an amount of 10% by weight of the total composition of the sealant C layer.

비교예comparative example 3 : 실란트 3: sealant A층에만A floor only n- n- CaCOCaCO 3 3 10중량%10% by weight 첨가 adding

비교예 3에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 A층에만 n-CaCO3을 실란트 A층 전체 조성물 중 10중량%로 첨가하였다.In Comparative Example 3, the total thickness of the sealant layer was 50 μm, the sealant A and C layers were 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm, and only the sealant A layer was designed with n-CaCO 3 was added in an amount of 10% by weight of the total composition of the sealant A layer.

비교예comparative example 4 : 실란트 4: sealant B층에on the B floor n- n- CaCOCaCO 3 3 2중량%2% by weight 첨가 adding

비교예 4에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 B층에 n-CaCO3을 실란트 B층 전체 조성물 중 2중량%로 첨가하였다.In Comparative Example 4, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm, and n-CaCO in the sealant B layer 3 was added at 2% by weight of the total composition of the sealant B layer.

실시예Example 1 : 실란트 1: sealant B층에on the B floor n- n- CaCOCaCO 3 3 5중량%5% by weight 첨가 adding

실시예 1에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 B층에 n-CaCO3을 실란트 B층 전체 조성물 중 5중량%로 첨가하였다.In Example 1, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm, and n-CaCO in the sealant B layer 3 was added at 5% by weight of the total composition of the sealant B layer.

실시예Example 2 : 실란트 2: sealant B층에on the B floor n- n- CaCOCaCO 3 3 10중량%10% by weight 첨가 adding

실시예 2에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 B층에 n-CaCO3을 실란트 B층 전체 조성물 중 10중량%로 첨가하였다.In Example 2, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, the sealant B layer was designed to be 35 to 40 μm, and n-CaCO in the sealant B layer 3 was added in an amount of 10% by weight of the total composition of the sealant B layer.

실시예Example 3 : 실란트 3: sealant B층에on the B floor n- n- CaCOCaCO 3 3 15중량%15% by weight 첨가 adding

실시예 3에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 B층에 n-CaCO3을 실란트 B층 전체 조성물 중 15중량%로 첨가하였다.In Example 3, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm, and n-CaCO in the sealant B layer 3 was added at 15% by weight of the total composition of the sealant B layer.

실시예Example 4 : 실란트 4: sealant B층에on the B floor n- n- CaCOCaCO 3 3 20중량%20% by weight 첨가 adding

실시예 4에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 B층에 n-CaCO3을 실란트 B층 전체 조성물 중 20중량%로 첨가하였다.In Example 4, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm, and n-CaCO in the sealant B layer 3 was added at 20% by weight of the total composition of the sealant B layer.

실시예Example 5 : 실란트 5: sealant B층에on the B floor m- m- CaCOCaCO 3 3 20중량%20% by weight 첨가 adding

실시예 5에서는 전체 실란트 층 총 두께를 50㎛로 구성하고, 실란트 A층 및 C층을 4~5㎛로 구성하고, 실란트 B층은 35~40㎛로 설계하였으며, 실란트 B층에 m-CaCO3 (2~5㎛)을 실란트 B층 전체 조성물 중 20중량%로 첨가하였다.In Example 5, the total thickness of the sealant layer was designed to be 50 μm, the sealant A and C layers were configured to be 4 to 5 μm, and the sealant B layer was designed to be 35 to 40 μm, and m-CaCO in the sealant B layer 3 (2-5 μm) was added in an amount of 20% by weight of the total composition of the sealant B layer.

[평가][evaluation]

이상과 같이 각 실란트층을 구성하여 셀 파우치를 제조한 후 내불산성 등의 비교 평가를 실시하였다. 구체적으로 초기 박리 강도 평가, 내불산 강도 평가 및 열접착 강도 평가는 다음과 같이 하였다.After each sealant layer was constituted as described above to manufacture a cell pouch, comparative evaluation of hydrofluoric acid resistance and the like was performed. Specifically, the initial peel strength evaluation, hydrofluoric acid resistance strength evaluation, and thermal bonding strength evaluation were performed as follows.

초기박리강도 평가Initial peel strength evaluation

(1) 셀파우치를 가로1.5cm, 세로 15cm로 잘라 시편을 준비하였다.(1) A specimen was prepared by cutting the cell pouch into 1.5 cm in width and 15 cm in length.

(2) 금속층과 실란트층을 박리하여 박리강도를 측정하였다.(2) The peel strength was measured by peeling the metal layer and the sealant layer.

내불산성hydrofluoric acid resistance 평가 evaluation

(1) 셀파우치를 가로10cm, 세로20cm 로 자른 후 양쪽 2면을 열접착하였다.(1) After cutting the cell pouch into 10cm wide and 20cm long, both sides were heat-bonded.

(2) 2면이 접착된 셀파우치 내부에 전해액과 물(전해액+물 중 물이 10,000ppm으로 포함됨)을 넣고 열접착하여 팩을 제조하였다.(2) Electrolyte and water (10,000 ppm of electrolyte + water is included in the electrolytic solution + water) were put inside the cell pouch with two sides and were heat-bonded to prepare a pack.

(3) 고온조건(85℃)에서 24시간 보관하였다.(3) Stored at high temperature (85°C) for 24 hours.

(4) 팩 내부 전해액을 폐기하고 전술한 초기박리강도 평가와 같이 시료를 준비하였다(가로1.5cm, 세로 15cm).(4) Discard the electrolyte solution inside the pack and prepare a sample as described above for initial peel strength evaluation (width 1.5 cm, length 15 cm).

(5) 금속층과 실란트층 간의 박리강도를 측정하였다.(5) The peel strength between the metal layer and the sealant layer was measured.

열접착성heat adhesion 평가 evaluation

(1) 셀파우치를 가로 4.5cm, 세로 15cm로 잘라 시료를 준비하였다.(1) A sample was prepared by cutting the cell pouch into 4.5 cm in width and 15 cm in length.

(2) 시편을 세로방향으로 접어 실란트층끼리 맞닿게 하였다.(2) The specimen was folded in the longitudinal direction so that the sealant layers were in contact with each other.

(3) 180℃로 열접착 후 가로 15cm 로 시편을 준비하였다.(3) After thermal bonding at 180° C., a specimen with a width of 15 cm was prepared.

(4) 열접착된 면의 접착강도를 측정하였다.(4) The adhesive strength of the heat-bonded surface was measured.

이하에서 평가 결과를 표 1 및 2에 표시하였다.The evaluation results are shown in Tables 1 and 2 below.

시험항목Test Items 비교예 1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 초기박리강도(N/15mm)Initial peel strength (N/15mm) 1414 1414 88 1313 내불산강도(N/15mm)Hydrofluoric acid resistance (N/15mm) 55 44 1One 55 열접착강도(N/15mm)Thermal bonding strength (N/15mm) 120120 5050 6565 120120

시험항목Test Items 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 초기박리강도
(N/15mm)
Initial peel strength
(N/15mm)
1414 1313 1414 1414 1414
내불산강도(N/15mm)Hydrofluoric acid resistance (N/15mm) 1111 1010 1111 1111 88 열접착강도(N/15mm)Thermal bonding strength (N/15mm) 120120 110110 100100 8080 7070

위 표로부터 알 수 있듯이, 비교예 2와 같이 C층에 n-CaCO3를 첨가한 경우 내불산 강도는 비교예 1과 유사하나 열접착성이 현저히 떨어졌다. 비교예 3에서는 기재와의 접착력(초기박리강도)이 감소하게 되고, 이에 따라 내불산 강도와 열접착강도도 모두 감소하게 되었다. As can be seen from the table above, as in Comparative Example 2, when n-CaCO 3 was added to the C layer, the hydrofluoric acid resistance was similar to that of Comparative Example 1, but the thermal adhesiveness was significantly inferior. In Comparative Example 3, the adhesion to the substrate (initial peel strength) was reduced, and accordingly, both the hydrofluoric acid resistance and the thermal adhesion strength were reduced.

비교예 4는 B층에 첨가한 n-CaCO3의 양이 너무 작아 효능이 나타나지 않아 비교예 1과 유사한 결과가 나왔다. In Comparative Example 4, the amount of n-CaCO 3 added to the B layer was too small to show efficacy, resulting in similar results to Comparative Example 1.

실시예 1에서는 비교예 4보다 많은 양의 n-CaCO3를 첨가하였으며, 이러한 효과로 내불산강도가 향상되는 결과를 얻게 되었다.In Example 1, a larger amount of n-CaCO 3 than in Comparative Example 4 was added, and hydrofluoric acid resistance was improved by this effect.

실시예 2~4는 실시예 1보다 더 많은 양의 n-CaCO3를 첨가하였으며, 초기박리강도 및 내불산강도가 향상되는 효과를 확인했다. 그러나 n-CaCO3첨가량이 증가함에 따라 열접착강도가 점차 감소했다.In Examples 2 to 4, a larger amount of n-CaCO 3 was added than in Example 1, and the effect of improving initial peel strength and hydrofluoric acid resistance was confirmed. However, as the amount of n-CaCO 3 added increased, the thermal bonding strength gradually decreased.

실시예 5는 m-CaCO3을 실시예 4와 동일한 함량으로 첨가하였으나, 열접착강도의 감소효과가 발생했으며, 내불산강도는 비교적 크게 향상되지 않음을 확인하였다.In Example 5, m-CaCO 3 was added in the same amount as in Example 4, but the effect of reducing the thermal adhesive strength occurred, and it was confirmed that the hydrofluoric acid resistance was not significantly improved.

결론적으로 실시예 1 및 실시예 2가 가장 좋은 물성을 나타내고 있음을 알 수 있다.In conclusion, it can be seen that Examples 1 and 2 exhibit the best physical properties.

이상에서 본 발명의 비제한적이고 예시적인 구현예들을 설명하였으나, 본 발명의 기술 사상은 첨부 도면이나 상기 설명 내용에 한정되지 않는다. 본 발명의 기술 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함이 이 분야의 통상의 지식을 가진 자에게는 자명하며, 또한, 이러한 형태의 변형은 본 발명의 특허청구범위에 속한다고 할 것이다.Although non-limiting and exemplary embodiments of the present invention have been described above, the technical spirit of the present invention is not limited to the accompanying drawings or the above description. It will be apparent to those skilled in the art that various types of modifications are possible within the scope of the present invention without departing from the spirit of the present invention, and also, such modifications will fall within the scope of the claims of the present invention.

Claims (17)

2층 이상의 실란트 층을 가지는 셀 파우치로서,
1000nm 미만의 나노 크기의 탄산 칼슘을 실란트 층에 포함하되,
전해액과 접촉하는 최 내층인 실란트층에는 탄산 칼슘이 포함되지 않는 것이고, 상기 최 내층에 인접한 실란트층에 탄산 칼슘이 포함되는 것을 특징으로 하는 셀 파우치.
A cell pouch having two or more layers of sealant, comprising:
Including nano-sized calcium carbonate of less than 1000 nm in the sealant layer,
A cell pouch, characterized in that the sealant layer, which is the innermost layer in contact with the electrolyte, does not contain calcium carbonate, and the sealant layer adjacent to the innermost layer contains calcium carbonate.
제 1 항에 있어서,
상기 최내층에 인접한 실란트 층 조성물 총 100 중량에 대하여 탄산 칼슘이 2 중량% 초과 15 중량% 이하로 포함되는 것을 특징으로 하는 셀 파우치.
The method of claim 1,
A cell pouch, characterized in that calcium carbonate is contained in an amount of more than 2% by weight and not more than 15% by weight based on a total weight of 100% by weight of the sealant layer composition adjacent to the innermost layer.
제 1 항에 있어서,
상기 나노 크기의 탄산 칼슘은 200~900nm인 것을 특징으로 하는 셀 파우치.
The method of claim 1,
The nano-sized calcium carbonate is a cell pouch, characterized in that 200 ~ 900nm.
제 1 항에 있어서,
상기 2층 이상의 실란트 층은 배리어 층과 접촉하는 실란트 A층, 중간층인 실란트 B층 및 전해액과 직접 접촉하는 실란트 C층을 포함하는 것이고,
상기 탄산 칼슘은 실란트 B 층에 포함되는 것을 특징으로 하는 셀 파우치.
The method of claim 1,
The two or more sealant layers include a sealant A layer in contact with the barrier layer, a sealant B layer as an intermediate layer, and a sealant C layer in direct contact with the electrolyte,
The cell pouch, characterized in that the calcium carbonate is included in the sealant B layer.
제 4 항에 있어서,
상기 탄산 칼슘은 실란트 B층에 포함되는 것이되,
실란트 B 층 조성물 총 100 중량에 대하여 탄산 칼슘이 2 중량% 초과 15 중량% 이하로 포함되는 것을 특징으로 하는 셀 파우치.
5. The method of claim 4,
The calcium carbonate is included in the sealant B layer,
A cell pouch, characterized in that calcium carbonate is contained in an amount of more than 2% by weight and not more than 15% by weight based on 100% by weight of the sealant B layer composition.
제 5 항에 있어서,
실란트 B 층 조성물 총 100 중량에 대하여 탄산 칼슘이 5 중량% 내지 10중량%로 포함되는 것을 특징으로 하는 셀 파우치.
6. The method of claim 5,
A cell pouch, characterized in that calcium carbonate is contained in an amount of 5 wt% to 10 wt% based on 100 wt% of the sealant B layer composition.
제 5 항에 있어서,
실란트 B 층 조성물 총 100 중량에 대하여 탄산 칼슘이 5 중량% 내지 9중량%로 포함되는 것을 특징으로 하는 셀 파우치.
6. The method of claim 5,
A cell pouch, characterized in that calcium carbonate is contained in an amount of 5% to 9% by weight based on 100% by weight of the sealant B layer composition.
제 4 항에 있어서,
상기 실란트 A층 및 C층은 전체 실란트 층의 10~20%에 해당하는 두께를 갖는 것이고,
상기 실란트 B층은 전체 실란트 층의 50~80%에 해당하는 두께를 갖는 것을 특징으로 하는 셀 파우치.
5. The method of claim 4,
The sealant layers A and C have a thickness corresponding to 10 to 20% of the total sealant layer,
The cell pouch, characterized in that the sealant B layer has a thickness corresponding to 50 to 80% of the total sealant layer.
제 4 항에 있어서,
상기 실란트 C층에는 안티블록킹(Anti-Blocking)제 및 슬립(Slip)제 중 하나 이상의 첨가제가 포함되는 것을 특징으로 하는 셀 파우치.
5. The method of claim 4,
The cell pouch, characterized in that the sealant C layer contains at least one additive of an anti-blocking agent and a slip agent.
제 4 항에 있어서,
상기 실란트 B층에 포함되는 수지는 용융점(Tm)이 150℃ 이상인 것을 특징으로 하는 셀 파우치.
5. The method of claim 4,
The resin included in the sealant layer B has a melting point (Tm) of 150° C. or higher.
제 1 항에 있어서,
상기 실란트 층에는 폴리프로필렌 수지가 포함되는 것을 특징으로 하는 셀 파우치.
The method of claim 1,
Cell pouch, characterized in that the sealant layer contains a polypropylene resin.
제 1 항 내지 제 11 항 중 어느 한 항의 셀 파우치로 외장된 것을 특징으로 하는 이차 전지.
A secondary battery, characterized in that it is externally covered with the cell pouch of any one of claims 1 to 11.
제 12 항에 있어서,
상기 이차 전지는 리튬 이차전지인 것을 특징으로 하는 이차 전지.
13. The method of claim 12,
The secondary battery is a secondary battery, characterized in that the lithium secondary battery.
제 13 항에 있어서,
상기 이차 전지는 전기 자동차 또는 에너지 저장 장치 용인 것을 특징으로 하는 이차 전지.
14. The method of claim 13,
The secondary battery is a secondary battery, characterized in that for an electric vehicle or an energy storage device.
제 1 항 내지 제 11 항 중 어느 한 항의 셀 파우치 제조 방법으로서,
2층 이상의 실란트 층을 가지는 셀 파우치 제조 시 나노 크기의 탄산 칼슘을 하나 이상의 실란트 층에 포함하되,
전해액과 접촉하는 최 내층에는 탄산 칼슘이 포함되지 않도록 하고, 상기 최 내층에 인접한 실란트층에는 탄산 칼슘이 포함되도록 하는 단계;를 포함하는 것을 특징으로 하는 셀 파우치 제조 방법.
The method for manufacturing the cell pouch of any one of claims 1 to 11,
When manufacturing a cell pouch having two or more sealant layers, nano-sized calcium carbonate is included in one or more sealant layers,
A method for manufacturing a cell pouch, comprising: preventing calcium carbonate from being contained in the innermost layer in contact with the electrolyte, and allowing calcium carbonate to be contained in the sealant layer adjacent to the innermost layer.
셀 파우치의 내불산성 향상 방법으로서,
2층 이상의 실란트 층을 가지는 셀 파우치 제조 시 나노 크기의 탄산 칼슘을 하나 이상의 실란트 층에 포함하되,
전해액과 접촉하는 최 내층에는 탄산 칼슘이 포함되지 않도록 하고, 상기 최 내층에 인접한 실란트층에는 탄산 칼슘이 포함되도록 하는 단계;를 포함하는 것을 특징으로 하는 셀파우치의 내불산성 향상 방법.
As a method of improving hydrofluoric acid resistance of a cell pouch,
When manufacturing a cell pouch having two or more sealant layers, nano-sized calcium carbonate is included in one or more sealant layers,
The method for improving hydrofluoric acid resistance of a cell pouch, comprising: preventing calcium carbonate from being contained in the innermost layer in contact with the electrolyte, and allowing calcium carbonate to be contained in the sealant layer adjacent to the innermost layer.
제 16 항에 있어서,
상기 방법은 셀 파우치의 내불산성 향상 방법으로서, 탄산칼슘을 실란트층에 포함하지 않은 경우와 대비하여, 내불산성은 향상시키면서 초기 박리 강도 및 열접착 강도는 저하시키지 않도록 탄산칼슘을 첨가하는 것을 특징으로 하는 셀파우치의 내불산성 향상 방법.
17. The method of claim 16,
The method is a method for improving the hydrofluoric acid resistance of the cell pouch. Compared to the case where calcium carbonate is not included in the sealant layer, calcium carbonate is added so as to improve the hydrofluoric acid resistance while not lowering the initial peel strength and thermal adhesion strength. A method of improving hydrofluoric acid resistance of a cell pouch.
KR1020200008822A 2020-01-22 2020-01-22 Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same KR102338521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200008822A KR102338521B1 (en) 2020-01-22 2020-01-22 Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200008822A KR102338521B1 (en) 2020-01-22 2020-01-22 Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20210095289A true KR20210095289A (en) 2021-08-02
KR102338521B1 KR102338521B1 (en) 2021-12-14

Family

ID=77315714

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200008822A KR102338521B1 (en) 2020-01-22 2020-01-22 Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102338521B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601727B1 (en) * 2022-11-03 2023-11-15 율촌화학 주식회사 Pouch film for secondary battery according to extrusion lamination with controlled thickness parameter and method for preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584627B1 (en) * 2014-10-10 2016-01-12 주식회사 케이엠지 Battery having adhesive for battery and method for manufacturing the same
JP2017076509A (en) * 2015-10-14 2017-04-20 昭和電工パッケージング株式会社 Sealant film for exterior package material of power storage device, exterior package material for power storage device, power storage device, and method for manufacturing resin composition for sealant film of power storage device exterior package material
JP2017112014A (en) * 2015-12-18 2017-06-22 大日本印刷株式会社 Battery packaging material
JP2017224485A (en) * 2016-06-15 2017-12-21 凸版印刷株式会社 Exterior material for power storage device
KR20180092814A (en) * 2017-02-09 2018-08-20 주식회사 네패스 Lead sealant films and secondary batteries using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584627B1 (en) * 2014-10-10 2016-01-12 주식회사 케이엠지 Battery having adhesive for battery and method for manufacturing the same
JP2017076509A (en) * 2015-10-14 2017-04-20 昭和電工パッケージング株式会社 Sealant film for exterior package material of power storage device, exterior package material for power storage device, power storage device, and method for manufacturing resin composition for sealant film of power storage device exterior package material
JP2017112014A (en) * 2015-12-18 2017-06-22 大日本印刷株式会社 Battery packaging material
JP2017224485A (en) * 2016-06-15 2017-12-21 凸版印刷株式会社 Exterior material for power storage device
KR20180092814A (en) * 2017-02-09 2018-08-20 주식회사 네패스 Lead sealant films and secondary batteries using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601727B1 (en) * 2022-11-03 2023-11-15 율촌화학 주식회사 Pouch film for secondary battery according to extrusion lamination with controlled thickness parameter and method for preparing the same

Also Published As

Publication number Publication date
KR102338521B1 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
EP1787805B1 (en) Polyolefin microporous membrane
US9252412B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9343719B2 (en) Method for producing laminated porous film, and laminated porous film
US9818999B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP2502743A1 (en) Laminated porous film, separator for battery, and battery
KR101894449B1 (en) Cell pouch and method of preparing the same
CN103094497A (en) Battery Exterior Body, Method Of Manufacturing Battery Exterior Body, And Lithium Secondary Battery
EP2626380A1 (en) Porous polyolefin resin film
EP3709391A1 (en) Separator for electricity storage devices, and electricity storage device
JP2008235256A (en) Lithium secondary cell using laminate housing material
KR20200036803A (en) Lithium secondary battery separator with improved adhesiveness toward an electrode and Lithium secondary battery comprising the separator
JP7359937B2 (en) Separation membrane for lithium secondary batteries having improved electrode adhesion and resistance characteristics, and lithium secondary battery containing the separation membrane
KR102338521B1 (en) Cell pouch for rechargeable battery having improved hydrofluoric acid resistance and method for preparing the same
JP2022532562A (en) Thin film with at least two layers and its manufacturing method
KR20130011976A (en) Packaging material for cell and process for producing the same
JP7231123B1 (en) Resin film for power storage device and power storage device
KR20180057926A (en) Cell pouch with high chemical resistance and moldability
JP2004311227A (en) Sheath material for lithium ion battery
KR20220046992A (en) Heat dissipation sealant film, cell pouch including the same and method for manufacturing the same
KR102601727B1 (en) Pouch film for secondary battery according to extrusion lamination with controlled thickness parameter and method for preparing the same
KR102601726B1 (en) Pouch film for secondary battery with controlled thickness parameter according to solvent dry lamination or extrusion lamination and method for preparing the same
KR102299210B1 (en) Sealant film for cell pouch having gradient composition type barrier properties, cell pouch including the same and method for preparing the same
KR102566179B1 (en) Substrate for separator of electrochemical device, separator including same, and method of forming battery cell separator
KR102299209B1 (en) Cell pouch having improved high temperature stability and method for preparing the same
KR102647429B1 (en) Sealant resin composition, and secondary battery packaging material using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant