KR20210082149A - 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법 - Google Patents

변동 저저항 라인 기반 전자 소자 및 이의 제어 방법 Download PDF

Info

Publication number
KR20210082149A
KR20210082149A KR1020210082690A KR20210082690A KR20210082149A KR 20210082149 A KR20210082149 A KR 20210082149A KR 1020210082690 A KR1020210082690 A KR 1020210082690A KR 20210082690 A KR20210082690 A KR 20210082690A KR 20210082149 A KR20210082149 A KR 20210082149A
Authority
KR
South Korea
Prior art keywords
region
low resistance
active layer
resistance line
variable low
Prior art date
Application number
KR1020210082690A
Other languages
English (en)
Inventor
손종화
손종역
Original Assignee
브이메모리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브이메모리 주식회사 filed Critical 브이메모리 주식회사
Priority to KR1020210082690A priority Critical patent/KR20210082149A/ko
Publication of KR20210082149A publication Critical patent/KR20210082149A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H01L45/122
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • H01L45/1253
    • H01L45/14
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명의 일 실시예는, 서로 다른 항전기장을 가지는 제1 영역과 제2 영역을 포함하는 베이스; 및 상기 베이스에 전기장을 인가하도록 상기 베이스에 인접하여 배치된 게이트;를 포함하고, 상기 베이스는, 자발 분극성 재료를 포함하는 활성층; 및 상기 활성층의 상면과 하면 중 적어도 어느 한 면 상에 위치한 상유전체층;을 포함하고, 상기 상유전체층은 상기 제1 영역과 대응하여 위치하는 제1 상유전체층과 상기 제2 영역에 대응하여 위치하는 제2 상유전체층을 포함하고, 상기 제1 상유전체층의 유전률과 상기 제2 상유전체층의 유전률이 상이한 변동 저저항 라인 기반 전자 소자를 개시한다.

Description

변동 저저항 라인 기반 전자 소자 및 이의 제어 방법{Variable low resistance line based electronic device and controlling thereof}
본 발명은 변동 저저항 라인을 이용한 전자 소자 및 이의 제어 방법에 관한 것이다.
기술의 발전 및 사람들의 생활의 편의에 대한 관심이 증가함에 따라 다양한 전자 제품에 대한 개발 시도가 활발해지고 있다.
또한 이러한 전자 제품은 갈수록 소형화되고 있고 집적화되고 있으며, 사용되는 장소가 광범위하게 증가하고 있다.
이러한 전자 제품은 다양한 전기 소자를 포함하고, 예를들면 CPU, 메모리, 기타 다양한 전기 소자를 포함한다. 이러한 기 소자들은 다양한 종류의 전기 회로를 포함할 수 있다.
예를들면 컴퓨터, 스마트폰 뿐만 아니라 IoT를 위한 가정용 센서 소자, 인체 공학용 바이오 전자 소자 등 다양한 분야의 제품에 전기 소자가 사용된다.
한편, 최근의 기술 발달 속도와 사용자들의 생활 수준의 급격한 향상에 따라 이러한 전기 소자의 사용과 응용 분야가 급격하게 늘어나 그 수요도 이에 따라 증가하고 있다.
이러한 추세에 따라 흔히 사용하고 있는 다양한 전기 소자들에 쉽고 빠르게 적용하는 전자 회로를 구현하고 제어하는데 한계가 있다.
한편, 메모리 소자, 특히 비휘발성 메모리 소자는 컴퓨터뿐 아니라, 카메라, 통신기기 등 다양한 전자 장치의 정보 기억 및/또는 처리 장치로서 폭넓게 이용되고 있다.
이러한 메모리 소자는, 특히 수명과 속도의 면에서 많은 개발이 이루어지고 있는 데, 대부분의 과제는 메모리 수명과 속도의 확보에 있으나, 이를 향상한 메모리 소자를 구현하는데 한계가 있다.
본 발명은 다양한 용도에 용이하게 적용할 수 있는 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법을 제공할 수 있다.
본 발명의 일 실시예는, 서로 다른 항전기장을 가지는 제1 영역과 제2 영역을 포함하는 베이스; 및 상기 베이스에 전기장을 인가하도록 상기 베이스에 인접하여 배치된 게이트;를 포함하고, 상기 베이스는, 자발 분극성 재료를 포함하는 활성층; 및 상기 활성층의 상면과 하면 중 적어도 어느 한 면 상에 위치한 상유전체층;을 포함하고, 상기 상유전체층은 상기 제1 영역과 대응하여 위치하는 제1 상유전체층과 상기 제2 영역에 대응하여 위치하는 제2 상유전체층을 포함하고, 상기 제1 상유전체층의 유전률과 상기 제2 상유전체층의 유전률이 상이한 변동 저저항 라인 기반 전자 소자를 개시한다.
본 실시예에 있어서, 상기 제1 상유전체층의 유전률이 상기 제2 상유전체층의 유전률보다 크고, 상기 제2 영역의 항전기장이 상기 제1 영역의 항전기장보다 클 수 있다.
본 실시예에 있어서, 상기 제2 영역은 상기 제1 영역을 에워싸고, 상기 게이트는 상기 제1 영역과 중첩하여 위치할 수 있다.
본 실시예에 있어서, 상기 전기장의 크기가 상기 제1 영역의 항전기장보다 크고 상기 제2 영역의 항전기장보다 작은 경우, 상기 제1 영역 내의 상기 활성층에 전류의 통로를 형성하는 제1 변동 저저항 라인이 형성될 수 있다.
본 실시예에 있어서, 상기 전기장의 크기가 상기 제2 영역의 항전기장보다 큰 경우, 상기 제2 영역 내의 상기 활성층에 제2 변동 저저항 라인이 형성될 수 있다.
본 실시예에 있어서, 상기 제1 변동 저저항 라인 및 상기 제2 변동 저저항 라인과 접하도록 위치하는 제1 전극; 및 상기 제1 변동 저저항 라인과 상기 제2 변동 저저항 라인 각각에 접하도록 위치하는 복수의 제2 전극;을 더 포함할 수 있다.
본 발명의 다른 실시예는, 자발 분극성 재료를 포함하는 활성층 및 상기 활성층의 상면과 하면 중 적어도 어느 한 면 상에 형성된 상유전체층을 포함하는 베이스와, 상기 베이스에 인접하도록 배치된 게이트를 포함하는 변동 저저항 라인 기반 전자 소자에 대하여, 상기 게이트에 전압을 인가하여 상기 베이스에 전기장을 인가하는 단계; 및 상기 전기장에 의해 상기 자발 분극성 재료의 분극 방향이 변경되어 상기 활성층에 전류가 흐를 수 있는 변동 저저항 라인이 형성되는 단계;를 포함하고, 평면상에서, 상기 베이스는 제1 영역과 상기 제1 영역의 외곽에 위치하는 제2 영역을 포함하고, 상기 상유전체층은 상기 제1 영역에 대응하여 형성된 제1 상유전체층과 상기 제2 영역에 대응하여 형성되고 상기 제1 상유전체층의 유전률과 상이한 유전률을 가지는 제2 상유전체층을 포함하여, 상기 제1 영역과 상기 제2 영역이 서로 다른 항전기장을 가지도록 형성되고, 상기 베이스에 인가되는 상기 전압의 크기에 따라, 상기 제1 영역 또는 상기 제2 영역에서 상기 활성층에 상기 변동 저저항 라인이 형성되는 변동 저저항 라인 기반 전자 소자 제어 방법을 개시한다.
본 실시예에 있어서, 상기 제2 영역은 상기 제1 영역을 에워싸도록 형성되고, 상기 제2 영역의 항전기장이 상기 제1 영역의 항전기장보다 크며, 상기 제1 상유전체층의 유전률이 상기 제2 상유전체층의 유전률보다 크게 형성될 수 있다.
본 실시예에 있어서, 상기 전기장의 크기가 상기 제1 영역의 항전기장보다 크고 상기 제2 영역의 항전기장보다 작은 경우, 상기 제1 영역 내에서 상기 활성층에 상기 변동 저저항 라인이 형성되고, 상기 전기장의 크기가 상기 제2 영역의 항전기장보다 큰 경우, 상기 제2 영역 내에서 상기 활성층에 상기 변동 저저항 라인이 형성될 수 있다.
본 실시예에 있어서, 상기 게이트는 상기 제1 상유전체층과 중첩하여 형성될 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명에 관한 변동 저저항 라인을 이용한 전자 소자 및 이의 제어 방법은 다양한 용도에 용이하게 적용할 수 있다.
도 1은 본 발명의 일 실시예에 관한 전자 소자를 도시한 개략적인 평면도이다.
도 2는 도 1의 I-I선을 따라 절취한 단면도이다.
도 3은 도 2의 K의 확대도이다.
도 4a 내지 도 4c는 도 1의 전자 소자 관련, 전류 경로 범위 제어 방법을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 관한 전자 소자를 도시한 개략적인 평면도이다.
도 6은 도 5의 Ⅱ-Ⅱ선을 따라 절취한 단면도이다.
도 7은 본 발명의 또 다른 일 실시예에 관한 전자 소자를 도시한 개략적인 평면도이다.
도 8은 도 7의 III-III선을 따라 절취한 단면도이다.
도 9는 제1 분극 영역과 변동 저저항 라인의 전압 및 전류 관계를 도시한 그래프이다.
도 10은 본 발명의 또 다른 일 실시예에 관한 전자 소자를 도시한 개략적인 평면도이다.
도 11 내지 도 14는 도 10의 IV-IV선을 따라 절취한 단면도들이다.
이하 첨부된 도면들에 도시된 본 발명에 관한 실시예를 참조하여 본 발명의 구성 및 작용을 상세히 설명한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전기장을 이용한 전류 경로 범위 제어 방법을 구체적으로 설명하기 위한 평면도이고, 도 2는 도 1의 I-I선을 따라 절취한 단면도이고, 도 3은 도 2의 K 부분의 확대도이다.
도 1 및 도 2을 참조하면 본 실시예의 전자 소자(10)는 활성층(11), 인가 전극(12), 변동 저저항 라인(VL)을 포함할 수 있다.
활성층(11)은 자발 분극성 재료를 포함할 수 있다. 예를 들면 활성층(11)은 절연 재료를 포함하고 강유전성 재료를 포함할 수 있다. 즉, 활성층(11)은 전기장의 존재 시 역전될 수 있는 자발적 전기 분극(전기 쌍극자)을 가진 재료를 포함할 수 있다.
선택적 실시예로서 활성층(11)은 페로브스카이트 계열 물질을 포함할 수 있고, 예를 들면 BaTiO3, SrTiO3, BiFe3, PbTiO3, PbZrO3, SrBi2Ta2O9을 포함할 수 있다.
또한 다른 예로서 활성층(11)은 ABX3 구조로서, A는 CnH2n+1의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질을 포함할 수 있고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있고, X는 할로겐 물질을 포함할 수 있다. 구체적인 예로서 활성층(11)은 CH3NH3PbI3, CH3NH3PbIxCl3-x, MAPbI3, CH3NH3PbIxBr3-x, CH3NH3PbClxBr3-x, HC(NH2)2PbI3, HC(NH2)2PbIxCl3-x, HC(NH2)2PbIxBr3-x, HC(NH2)2PbClxBr3-x, (CH3NH3)(HC(NH2)2)1-yPbI3, (CH3NH3)(HC(NH2)2)1-yPbIxCl3-x, (CH3NH3)(HC(NH2)2)1-yPbIxBr3-x, 또는 (CH3NH3)(HC(NH2)2)1-yPbClxBr3-x (0=x, y≤=1)를 포함할 수 있다.
기타 다양한 강유전성 재료를 이용하여 활성층(11)을 형성할 수 있는 바, 이에 대한 모든 예시의 설명은 생략한다. 또한 활성층(11)을 형성 시 강유전성 재료에 기타 다양한 물질을 도핑하여 부가적인 기능을 포함하거나 전기적 특성의 향상을 진행할 수도 있다.
활성층(11)은 자발 분극성을 갖고, 전기장의 인가에 따라 분극의 정도와 방향을 제어할 수 있다. 또한, 활성층(11)은 가해준 전기장이 제거되어도 분극 상태를 유지할 수 있다.
인가 전극(12)은 활성층(11)에 전기장을 인가할 수 있도록 형성될 수 있고, 예를 들면 전압을 활성층(11)에 인가할 수 있다.
선택적 실시예로서 인가 전극(12)은 활성층(11)의 상면에 접하도록 형성될 수 있다.
또한, 인가 전극(12)은 활성층(11)에 다양한 크기의 전압을 인가할 수 있고 전압 인가의 시간을 제어할 수 있도록 형성될 수 있다.
선택적 실시예로서 인가 전극(12)은 게이트 전극일 수 있다.
예를 들면 인가 전극(12)은 전원(미도시) 또는 전원 제어부와 전기적으로 연결될 수 있다.
인가 전극(12)은 다양한 재료를 포함할 수 있고, 전기적 도전성이 높은 재료를 포함할 수 있다. 예를 들면 다양한 금속을 이용하여 인가 전극(12)을 형성할 수 있는 데, 알루미늄, 크롬, 티타늄, 탄탈, 몰리브덴, 텅스텐, 네오디뮴, 스칸듐 또는 구리를 함유하도록 형성할 수 있다. 또는 이러한 재료들의 합금을 이용하여 형성하거나 이러한 재료들의 질화물을 이용하여 형성할 수도 있다.
또한 선택적 실시예로서 인가 전극(12)은 적층체 구조를 포함할 수도 있다.
도시하지 않았으나 선택적 실시예로서 인가 전극(12)과 활성층(11)의 사이에 하나 이상의 절연층이 더 배치될 수도 있다.
변동 저저항 라인(VL)은 활성층(11)에 형성된 영역으로서 전류가 흐를 수 있는 영역이고, 또한 도 1에 도시한 것과 같이 인가 전극(12)의 주변에 선형의 루프를 갖는 전류의 패쓰로 형성될 수 있다.
구체적으로 변동 저저항 라인(VL)은 활성층(11)의 영역 중 변동 저저항 라인(VL)과 인접한 다른 영역보다 전기적 저항이 낮아진 영역이다.
또한, 인가 전극(12)을 통한 변동 저저항 라인(VL)을 형성한 후에, 인가 전극(12)을 통한 전기장을 제거하여도, 예를 들면 전압을 제거하여도 활성층(11)의 분극 상태는 유지되므로 변동 저저항 라인(VL)은 유지되고, 전류의 패쓰를 형성한 상태를 유지할 수 있다.
이를 통하여 다양한 전자 소자를 구성할 수 있다.
변동 저저항 라인(VL)은 높이(HVL)을 갖고, 이러한 높이(HVL)는 활성층(11)의 전체의 두께에 대응될 수 있다.
이러한 변동 저저항 라인(VL)의 높이(HVL)는 인가 전극(12)을 통해 가해지는 전기장의 세기, 예를 들면 전압의 크기에 비례할 수 있다. 적어도 이러한 전기장의 크기는 활성층(11)이 갖는 고유의 항전기장보다 클 수 있다.
변동 저저항 라인(VL)은 인가 전극(12)을 통하여 전압이 활성층(11)에 인가되면 형성되는 영역이고, 인가 전극(12)의 제어를 통하여 변동, 예를 들면 생성, 소멸, 이동할 수 있다.
활성층(11)은 제1 분극 방향을 갖는 제1 분극 영역(11R)을 포함할 수 있고, 변동 저저항 라인(VL)은 이러한 제1 분극 영역(11R)의 경계에 형성될 수 있다.
또한, 활성층(11)은 제1 분극 영역(11R)에 인접하도록 제2 분극 방향을 갖는 제2 분극 영역(11F)을 포함할 수 있고, 변동 저저항 라인(VL)은 이러한 제2 분극 영역(11F)의 경계에 형성될 수 있다. 제2 방향은 적어도 제1 방향과 상이한 방향일 수 있고, 예를 들면 제1 방향과 반대 방향일 수 있다.
예를 들면 변동 저저항 라인(VL)은 제1 분극 영역(11R)과 제2 분극 영역(11F)의 사이 경계에 형성될 수 있다.
변동 저저항 라인(VL)은 일 방향, 즉, 마주하는 두 개의 변동 저저항 라인(VL) 사이의 폭(WVL)을 가질 수 있고, 이는 변동 저저항 라인(VL)의 이동 거리에 비례할 수 있고, 이는 후술한다.
선택적 실시예로서 도 3에서 볼 수 있듯이 변동 저저항 라인(VL)은 소정의 평면 방향 두께(TVL)를 가질 수 있는 데, 이는 0.3nm를 중심으로 +/-0.2nm일 수 있다.
도 4a 내지 도 4c는 도 1의 전자 소자에 대하여 전류 경로 범위 제어 방법을 설명하기 위한 도면이다.
도 4a를 참조하면, 활성층(11)은 제1 분극 방향을 갖는 제1 분극 영역(11R)을 포함할 수 있다. 상기 제1 분극 영역(11R)은 활성층(11)을 구성하는 물질 자체의 특성에 의해 형성되는 것일 수 있다. 선택적 실시예로서 인가 전극(12)을 통한 초기화 전기장을 인가하여 도 4a와 같은 활성층(11)의 분극 상태를 형성할 수 있다.
그리고 나서 도 4b를 참조하면, 활성층(11)에 제2 분극 영역(11F)이 형성된다. 구체적 예로서 인가 전극(12)의 폭에 대응하도록 적어도 인가 전극(12)과 중첩된 영역에 우선 제2 분극 영역(11F)이 형성될 수 있다.
인가 전극(12)을 통하여 활성층(11)의 항전기장보다 크고, 또한 적어도 활성층(11)의 두께 전체에 대응하도록 제2 분극 영역(11F)의 높이(HVL)가 형성될 수 있을 정도의 크기의 전기장을 활성층(11)에 인가할 수 있다.
이러한 인가 전극(12)을 통한 전기장의 인가를 통하여 활성층(11)의 제1 분극 영역(11R)의 일 영역에 대한 분극 방향을 바꾸어 제2 분극 영역(11F)으로 변하게 할 수 있다.
선택적 실시예로서 제2 분극 영역(11F)의 높이(HVL)방향으로의 성장 속도는 매우 빠를 수 있는 데, 예를 들면 약 1km/sec(초)의 속도를 갖고 성장할 수 있다.
그리고 나서 계속적으로 인가 전극(12)을 통한 전기장을 유지하면, 즉 시간이 지나면 제2 분극 영역(11F)은 수평 방향(H), 즉 높이(HVL)과 직교하는 방향으로 이동하여 그 크기가 커질 수 있다. 즉, 활성층(11)의 제1 분극 영역(11R)의 일부 영역을 점진적으로 제2 분극 영역(11F)으로 변환할 수 있으며, 일 실시예에 따르면, 변환된 제2 분극 영역(11F)은 활성층(11) 전체 두께에 걸쳐 형성되고 인가 전극(12)의 하부로부터 수평 방향(H)으로 확장되어 형성될 수 있다.
선택적 실시예로서 제2 분극 영역(11F)의 수평 방향(H)으로의 성장 속도는 매우 빠를 수 있는데, 예를 들면 1m/sec(초)의 속도를 갖고 성장할 수 있다.
이를 통하여 변동 저저항 라인(VL)의 크기를 제어할 수 있는데, 이러한 크기는 예를 들면 제2 분극 영역(11F)의 일 방향 폭(WVL)과 제2 분극 영역(11F)의 성장 거리에 대응하므로 성장 속력과 전기장 유지 시간에 비례할 수 있다. 예를 들면 성장 거리는 성장 속력과 전기장 유지 시간의 곱에 비례할 수 있다.
또한, 제2 분극 영역(11F)의 성장 속력은 높이(HVL)방향으로의 성장 속도와 수평 방향(H)으로의 성장 속도의 합에 비례할 수 있다.
그러므로 변동 저저항 라인(VL)의 크기는 전기장 유지 시간을 제어하여 원하는 대로 조절할 수 있다.
구체적으로 도 4c에 도시한 것과 같이 제2 분극 영역(11F)은 넓게 퍼져서 커지고, 그에 따라 변동 저저항 라인(VL)도 인가 전극(12)으로부터 멀리 떨어지는 방향으로 이동할 수 있다.
본 실시예는 인가 전극을 통하여 활성층에 전기장을 가하여 활성층에 제1 분극 방향과 다른 제2 분극 방향을 갖는 제2 분극 영역을 형성하고, 이러한 제1 분극 영역과 제2 분극 영역의 사이의 경계에 해당하는 변동 저저항 라인을 형성할 수 있다. 이러한 변동 저저항 라인은 저항이 낮은, 즉 저항이 감소한 영역으로서 전류의 패쓰가 될 수 있어 전자 소자를 용이하게 형성할 수 있다.
또한, 본 실시예는 인가 전극을 통한 전기장의 크기를 제어하여, 예를 들면 전압의 크기를 제어하여 변동 저저항 라인의 높이를 정할 수 있고, 구체적으로 활성층의 전체 두께에 대응하는 높이를 갖도록 제어할 수 있다.
또한, 인가 전극을 통한 전기장을 유지하는 시간을 제어하여 변동 저저항 라인의 크기, 예를 들면 폭을 결정할 수 있다. 이러한 변동 저저항 라인의 크기의 제어를 통하여 전류의 흐름의 패쓰의 크기를 용이하게 제어할 수 있다.
또한, 인가 전극을 통한 전기장을 제거하여도 분극 영역의 분극 상태는 유지되므로 전류의 패쓰를 용이하게 유지할 수 있고, 인가 전극을 통한 전기장을 지속적으로 유지하여 분극 영역이 확대되면 이미 형성되어 있던 변동 저저항 라인은 저항이 낮아져 전류가 흐르지 않게 될 수 있다.
이를 통하여 전류의 패쓰에 대한 소멸을 제어할 수 있고, 결과적으로 전류의 흐름에 대한 용이한 제어를 할 수 있다.
도 5는 본 발명의 일 실시예에 관한 변동 저저항 라인 전자 소자의 평면도이고, 도 6은 도 5의 Ⅱ-Ⅱ선을 따라 절취한 단면도이다.
도 5 및 도 6을 참조하면, 상기 변동 저저항 라인 전자 소자(100)는, 활성층(110), 게이트(120), 제1 전극(131) 및 제2 전극(132)을 포함하는 메모리 소자일 수 있다.
상기 활성층(110)은 자발 분극성 재료를 포함할 수 있다. 예를 들면 활성층(110)은 절연 재료를 포함하고 강유전성 재료를 포함할 수 있다. 즉, 활성층(110)은 전기장의 존재 시 역전될 수 있는 자발적 전기 분극(전기 쌍극자)을 가진 재료를 포함할 수 있다.
선택적 실시예로서 활성층(110)은 페로브스카이트 계열 물질을 포함할 수 있고, 예를 들면 BaTiO3, SrTiO3, BiFe3, PbTiO3, PbZrO3, SrBi2Ta2O9을 포함할 수 있다.
또한 다른 예로서 활성층(110)은 ABX3 구조로서, A는 CnH2n+1의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질을 포함할 수 있고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있고, X는 할로겐 물질을 포함할 수 있다. 구체적인 예로서 활성층(110)은 CH3NH3PbI3, CH3NH3PbIxCl3-x, MAPbI3, CH3NH3PbIxBr3-x, CH3NH3PbClxBr3-x, HC(NH2)2PbI3, HC(NH2)2PbIxCl3-x, HC(NH2)2PbIxBr3-x, HC(NH2)2PbClxBr3-x, (CH3NH3)(HC(NH2)2)1-yPbI3, (CH3NH3)(HC(NH2)2)1-yPbIxCl3-x, (CH3NH3)(HC(NH2)2)1-yPbIxBr3-x, 또는 (CH3NH3)(HC(NH2)2)1-yPbClxBr3-x(0=x, y≤=1)를 포함할 수 있다.
기타 다양한 강유전성 재료를 이용하여 활성층(110)을 형성할 수 있는 바, 이에 대한 모든 예시의 설명은 생략한다. 또한 활성층(110)을 형성 시 강유전성 재료에 기타 다양한 물질을 도핑하여 부가적인 기능을 포함하거나 전기적 특성의 향상을 진행할 수도 있다.
활성층(110)은 자발 분극성을 갖고, 전기장의 인가에 따라 분극의 정도와 방향을 제어할 수 있다. 또한, 활성층(110)은 가해준 전기장이 제거되어도 분극 상태를 유지할 수 있다.
상기 활성층(110)은, X-Y 평면 방향으로 서로 인접하게 위치하는 제1 분극 영역(110R)과 제2 분극 영역(110F)을 포함할 수 있다. 상기 제1 분극 영역(110R)은 제1 방향의 분극을 가질 수 있는 데, 상기 제1 방향은 베이스(110)의 두께 방향, 즉 제1 분극 영역(110R)과 제2 분극 영역(110F)이 배치된 방향에 수직한 Z-방향일 수 있다.
상기 제2 분극 영역(110F)은 제1 분극 영역(110R)에 대해 두께에 수직한 방향, 즉 X-Y 평면 방향으로 인접하게 위치하는 데, 상기 제2 분극 영역(110F)은 선택적으로 제1 방향과 반대되는 제2 방향으로 정렬된 분극을 가질 수 있다.
상기 제2 분극 영역(110F) 상에는 게이트(120)가 위치할 수 있다. 상기 게이트(120)는 도면에 도시되지는 않았지만 별도의 장치에 연결되어 게이트 신호를 인가받을 수 있다.
상기 제2 분극 영역(110F)이 제1 분극 영역(110R)과는 다른 방향, 예컨대 반대 방향의 분극을 이룰 수 있는 것은, 상기 게이트(120)에 인가되는 전압에 의해 가능해진다.
이렇게 서로 반대되는 방향의 분극을 갖는 제1 분극 영역(110R)과 제2 분극 영역(110F)의 사이에 변동 저저항 라인(140)이 형성될 수 있다. 상기와 같은 변동 저저항 라인(140)은 제1 분극 영역(110R) 및/또는 제2 분극 영역(110F)에 비해 저항이 매우 작은 영역이 되며, 이 영역을 통해 전류의 흐름이 형성될 수 있다.
이러한 변동 저저항 라인(140)은 다음의 일 실시예에 따라 형성될 수 있다.
먼저, 자발 분극성 재료를 포함하는 활성층(110)이 전체적으로 제1 방향의 분극을 갖도록 할 수 있다. 반드시 활성층(110) 전체가 제1 방향의 분극을 갖는 것에 한정되는 것은 아니며, 활성층(110)의 적어도 게이트(120)에 대향되는 일정 면적이 제1 방향의 분극을 가질 수 있다. 선택적으로 이렇게 제1 방향 분극을 갖도록 하는 것은 게이트(120)에 초기화 전기장을 인가하여 형성할 수 있다.
이 상태에서 게이트(120)에 제1 전압을 제1 시간 동안 인가하여 게이트(120)를 통해 활성층(110)에 전기장을 가함에 따라 게이트(120)에 대향되는 일정 면적이 제2 방향으로 분극이 변하게 된다. 분극의 방향이 바뀌도록 게이트(120)에 가하는 전기장은 제1 전압에 의해 조절될 수 있는 데, 즉, 활성층(110)을 형성하는 자발 분극성 재료의 항전기장보다 큰 전기장이 인가되도록 제1 전압을 가할 수 있다.
이렇게 형성되는 제2 분극 영역(110F)의 면적은 게이트(120)에 제1 전압이 가해지는 제1 시간에 의해 비례하여 결정될 수 있다. 따라서 원하는 면적 및/또는 크기의 제2 분극 영역(110F)을 형성하기 위해서는 해당 강유전체 물질에 대한 적당한 게이트 전압, 시간, 및 제2 분극 영역(110F)의 두께를 실험 및/또는 계산에 의해 미리 결정할 수 있다.
이렇게 제2 분극 영역(110F)의 분극 방향이 제1 방향에서 제2 방향으로 변하면, 제1 방향의 분극을 갖는 제1 분극 영역(110R)과 제2 방향의 분극을 갖는 제2 분극 영역(110F)의 사이에 소정 너비의 변동 저저항 라인(140)이 형성될 수 있다. 이 변동 저저항 라인(140)은 게이트(120)를 중심으로 형성될 수 있다. 상기 변동 저저항 라인(140)의 너비는 대략 0.3nm일 수 있는 데, 반드시 이에 한정되는 것은 아니며, 0.3nm를 중심으로 +/-0.2nm의 너비를 가질 수 있다.
도 9는 상기 제1 분극 영역과 변동 저저항 라인에서 전압을 증가함에 따라 전류가 변하는 상태를 나타낸 것이다. 변동 저저항 라인(140)은 제1 분극 영역(110R)에 비해 저항이 매우 작기 때문에 전압 인가에 따라 전류의 흐름이 원활히 일어남을 알 수 있다. 도면으로 도시하지는 않았지만, 상기 변동 저저항 라인(140)은 제2 분극 영역(110F)에 비해서도 저항이 매우 작기 때문에 이를 통한 전류의 흐름이 원활히 일어날 수 있다.
상기와 같이 형성되는 변동 저저항 라인(140)은 시간이 지나도 지워지지 않을 수 있다.
이렇게 형성된 변동 저저항 라인(140)에 접하도록 제1 전극(131)와 제2 전극(132)을 위치시킨다. 이 경우, 상기 변동 저저항 라인(140)을 통해 제1 전극(131)로부터 제2 전극(132)으로 전류의 흐름이 형성될 수 있다. 따라서 이 때 데이터 쓰기가 가능해 지며, 예컨대 1로 읽힐 수 있다. 일 실시예에 따르면, 상기 제1 전극(131)은 소스가 되고, 상기 제2 전극(132)은 드레인이 될 수 있는 데, 소스와 드레인은 서로 바뀌어도 무방하다. 이는 본 명세서의 모든 실시예에 그대로 적용될 수 있다.
선택적으로, 상기 변동 저저항 라인(140), 게이트(120)에 가해진 전압에 의해 제2 분극 영역(110F)의 분극 방향이 다시 제1 분극 영역(110R)의 분극 방향과 같아지도록 함으로써 지워질 수 있다.
즉, 게이트(120)에 제2 전압을 인가하여 제2 분극 영역(110F)의 분극 방향이 다시 제1 방향으로 할 수 있다. 이 후 제2 전압을 제2 시간 동안 유지하여 제1 방향으로 분극이 바뀌는 영역을 평면 방향으로 성장시킬 수 있으며, 제1 방향으로 분극이 바뀐 영역이 상기 변동 저저항 라인(140)을 지나가 제1 분극 영역(110R)에까지 연장되면 변동 저저항 라인(140)이 소멸될 수 있다. 이 경우 제1 전극(131)로부터 제2 전극(132)으로 전류가 흐를 수 없고, 따라서 이 때 데이터 지우기가 가능해 지며, 0으로 읽혀질 수 있다.
이 때, 상기 제2 전압은 상기 제1 전압과 상이한 전압이 될 수 있는 데, 일 실시예에 따른 제1 전압과 동일 크기에 반대 극성의 전압일 수 있다. 상기 제2 시간은 적어도 상기 제1 시간 이상일 수 있다. 즉, 제1 시간 이상의 제2 시간 동안 제2 전압을 인가하여 제1 분극 영역(110R)이 변동 저저항 라인(140)을 지나 충분히 성장되도록 함으로써 변동 저저항 라인(140)을 소멸시킬 수 있다.
상기와 같이 형성된 변동 저저항 라인 전자 소자는, 전술한 변동 저저항 라인(140)이 게이트(120)에 전원이 꺼지더라도 그 상태를 유지할 수 있기 때문에 비휘발성 메모리 소자로서 사용될 수 있다.
상기 변동 저저항 라인 메모리 소자는 약 1012회 이상의 쓰기/지우기가 가능하기 때문에, 기존 반도체 소자 기반의 메모리 소자에 비해 약 107배 이상의 메모리 수명을 가질 수 있다.
메모리 속도도, 상기 변동 저저항 라인 메모리 소자는 약 10-9 sec가 될 수 있어 기존 반도체 소자 기반의 메모리 소자에 비해 약 106배의 메모리 속도를 올릴 수 있다.
이처럼 상기 변동 저저항 라인 메모리 소자는 매우 탁월한 속도와 수명을 갖는 메모리 소자가 될 수 있다.
기존의 강유전체 메모리의 경우 강유전체의 분극을 이용하기 때문에 강유전체 소자의 크기를 줄이는 것에 한계가 있었지만, 상기 변동 저저항 라인 메모리 소자는 분극을 직접적으로 사용하지 않고 저저항 라인의 특성만을 상용하기 때문에 집적도를 더욱 높일 수 있다는 장점이 있다.
또한, 게이트 전압, 및/또는 인가 시간에 따라 상기 변동 저저항 라인(140)이 형성되는 위치를 조절할 수 있기 때문에, 다양한 메모리 소자의 설계가 가능하고, 강유전체를 이용한 기존의 강유전체 메모리 소자에 비해 박형화를 이룰 수 있다. 뿐만 아니라, 메모리 설계의 자유도가 높아지기 때문에 소자의 집적도를 높일 수 있다는 장점이 있다.
이렇게 형성되는 변동 저저항 라인(140)은 도 5에서 볼 수 있듯이 게이트(120)를 중심으로 폐루프상으로 형성될 수 있는 데, 이 폐루프상의 일부에 제1 전극(131) 및 제2 전극(132)을 배치함으로써 제1 전극(131)와 제2 전극(132)을 연결하는 선은 두 개가 될 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 베이스의 평면 방향 일 변에 게이트를 위치시키고 인접한 다른 두 변이 제1 전극과 제2 전극을 배치시키면 상기 변동 저저항 라인은 제1 전극과 제2 전극을 연결하는 단일의 선이 될 수 있다.
상기와 같은 제1 전극(131) 및 제2 전극(132)은 활성층(110) 상에 패터닝되어 형성되는 전극 구조일 수 있는 데, 본 발명은 반드시 이에 한정되는 것은 아니고, 도면에 도시하지는 않았지만 활성층(110)를 덮는 절연막에 형성된 비아 홀을 통해 변동 저저항 라인(140)과 컨택되는 것일 수 있다.
도 7은 본 발명의 다른 실시예에 관한 전자 소자를 도시한 개략적인 평면도이고, 도 8은 도 7의 III-III선을 따라 절취한 단면도이다.
도 7 및 도 8을 참조하면 본 실시예의 전자 소자(200)는 활성층(210), 게이트(220), 변동 저저항 라인(240), 제1 전극(231) 및 제2 전극(232)을 포함할 수 있다.
설명의 편의를 위하여 전술한 실시예와 상이한 점을 중심으로 설명하기로 한다.
제1 전극(231) 및 제2 전극(232)은 활성층(210)상에 형성될 수 있고, 예를 들면 게이트(220)와 이격되도록 활성층(210)의 면 중 게이트(220)이 형성된 면의 반대면에 형성될 수 있다.
게이트(220)는 활성층(210)의 상면에, 제1 전극(231) 및 제2 전극(232)은 활성층(210)의 하면에 형성될 수 있다.
선택적 실시예로서 제1 전극(231) 및 제2 전극(232)은 활성층(210)과 접하도록 형성될 수 있다.
제1 전극(231) 및 제2 전극(232)은 다양한 도전성 재료를 이용하여 형성할 수 있다.
제1 전극(231) 및 제2 전극(232)을 형성하는 재료에 대한 설명은 전술한 실시예에서 설명한 바와 동일하거나 이를 변형하여 적용할 수 있는 바 구체적 설명은 생략한다.
도 8을 참조하면 게이트(220)을 통하여 전압이 활성층(210)에 인가되면 베이스(210)의 적어도 일 영역은 제2 분극 영역(210F)을 포함할 수 있다.
변동 저저항 라인(VL)은 이러한 제2 분극 영역(210F)의 경계선의 측면에 대응하는 영역에 형성될 수 있고, 도 7을 참조하면 게이트(220)을 중심으로 게이트(220)을 둘러싸는 선형으로 형성될 수 있다.
또한, 변동 저저항 라인(240)은 제2 분극 영역(210F)의 경계선의 측면 전체에 대응하도록 형성될 수 있고, 제2 분극 영역(210F)의 측면으로부터 멀어지는 방향으로 두께를 가질 수 있고, 선택적 실시예로서 이러한 두께는 0.3nm를 중심으로 +/-0.2nm일 수 있다.
활성층(210)의 제2 분극 영역(210F)의 경계에 형성된 변동 저저항 라인(240)은 활성층(210)의 다른 영역에 비하여 저항이 낮은 영역으로 변할 수 있다. 예를 들면 변동 저저항 라인(240)은 활성층(210)의 제2 분극 영역(210F) 및 변동 저저항 라인(240)의 주변의 활성층(210)의 제1 분극 영역(210R)보다 낮은 저항을 가질 수 있다.
이를 통하여 변동 저저항 라인(240)은 전류의 통로를 형성할 수 있다.
선택적 실시예로서 변동 저저항 라인(240)은 활성층(210)에 구비된 복수의 도메인월의 일 영역에 대응될 수 있다.
또한, 이러한 변동 저저항 라인(240)은 제2 분극 영역(210F)의 분극 상태가 유지되면 계속 유지될 수 있다. 즉, 게이트(220)를 통하여 활성층(210)에 인가된 전압을 제거하여도 변동 저저항 라인(240)의 상태, 즉 저저항 상태는 유지될 수 있다.
변동 저저항 라인(240)을 통하여 전류의 통로가 형성될 수 있다.
또한 구체적인 예로서 제1 전극(231) 및 제2 전극(232)가 변동 저저항 라인(240)에 대응되도록 형성되고, 예를 들면 제1 전극(231) 및 제2 전극(232)이 서로 이격된 채 변동 저저항 라인(240)의 하면과 접하도록 배치될 수 있다.
이를 통하여 제1 전극(231) 및 제2 전극(232)을 통하여 전류가 흐를 수 있다.
본 실시예의 전자 소자(200)는 활성층(210)의 일면에 게이트(220)를 형성하고 타면에 제1,2 전극(231, 232)을 형성하여 정밀한 패터닝 및 미세화를 용이하게 진행할 수 있고, 설계 마진 및 자유도를 높일 수 있다.
도 10은 본 발명의 또 다른 일 실시예에 관한 전자 소자를 도시한 개략적인 평면도이고, 도 11 내지 도 14는 도 10의 IV-IV선을 따라 절취한 단면도들이다.
도면들을 참조하면, 본 실시예의 전자 소자(300)는 베이스(310), 게이트(320), 제1 전극(331), 복수의 제2 전극(332a, 332b) 및 복수의 변동 저저항 라인(341, 342)을 포함할 수 있다.
베이스(310)는 활성층(301)과 활성층(301)의 상면과 하면 중 적어도 어느 한 면 상에 적층된 상유전체층(311)을 포함할 수 있다.
활성층(301)은 전술한 실시예들과 마찬가지로, 자발 분극성 재료를 포함할 수 있다. 따라서, 전기장의 인가에 따라 분극의 정도와 방향을 제어할 수 있으며, 활성층(301)은 가해준 전기장이 제거되어도 분극 상태를 유지할 수 있다.
상유전체층(311)은 상유전체물질을 포함하는 층으로서, 베이스(310)로 전기장의 인가시에는 자화되나, 전기장이 인가되지 않을 때는 활성층(301)과는 달리 분극 상태를 유지하지 않는다. 이러한 상유전체층(311)은 SrTiO3, HfO2, SiO2, Al2O3, (Ba,Sr)TiO3, ZrTiO4, Ba(Zr,Ti)O3, (Pb,La)(Nb,Ti)O3, (Pb,Sr)TiO3 등을 포함할 수 있다.
상유전체층(311)은 베이스(310)의 제1 영역(312)에 대응하여 위치하는 제1 상유전체층(311a)과 베이스(310)의 제2 영역(314)에 대응하여 위치하는 제2 상유전체층(311b)을 포함할 수 있다. 이때, 제1 상유전체층(311a)와 제2 상유전체층(311b)은 서로 다른 유전률을 가지며, 그 결과 베이스(310)의 제1 영역(312)과 제2 영역(314)에서의 자기이력곡선이 서로 상이하게 변동되어, 제1 영역(312)의 항전기장과 제2 영역(314)의 항전기장이 달라질 수 있다.
일 예로, 제2 상유전체층(311b)의 유전률은 제1 상유전체층(311a)의 유전률보다 작고, 제2 영역(314)의 항전기장은 제1 영역(312)의 항전기장보다 클 수 있다. 예를 들어, 제1 상유전체층(311a)은 ZrTiO4, SrTiO3, (Ba,Sr)TiO3, (Pb,Sr)TiO3), ZrTiO4, Ba(Zr,Ti)O3 또는 (Pb,La)(Nb,Ti)O3를 포함하고, 제2 상유전체층(311b)은 SiO2, Al2O3 등을 포함할 수 있다. 다만, 본 발명은 이에 한정되지 않으며, 제1 상유전체층(311a)과 제2 상유전체층(311b)은 서로 다른 유전률을 가지는 다양한 재질을 포함할 수 있다.
한편, 도 11에서는 제1 상유전체층(311a)이 활성층(301)의 상면과 하면에서 제1 영역(312)에 대응하여 형성되고, 제2 상유전체층(311b)이 활성층(301)의 상면과 하면에서 제2 영역(314)에 대응하여 형성된 예를 도시하고 있으나, 활성층(301)의 상면과 하면 중 어느 한 면은 상유전체층(311)이 형성되지 않거나, 활성층(301)의 상면과 하면 중 어느 한 면에는 제1 상유전체층(311a) 또는 제2 상유전체층(311b)이 전체적으로 형성될 수 있다. 또한, 베이스(310)는 서로 다른 항전기장을 가지는 세 개 이상의 영역을 포함할 수 있으며, 이에 따라 상유전체층(311)은 서로 다른 유전률을 가지는 세 개 이상의 유전체층들을 포함할 수 있다.
게이트(320)는 베이스(310)에 전기장을 인가할 수 있도록 형성될 수 있고, 예를 들면 전압을 베이스(310)에 인가할 수 있다. 또한, 게이트(320)는 베이스(310)에 다양한 크기의 전압을 인가할 수 있고 전압 인가의 시간을 제어할 수 있도록 형성될 수 있다.
상술한 바와 같이, 베이스(310)는 서로 다른 항전기장을 가지는 제1 영역(312)과 제2 영역(314)을 포함할 수 있다. 제2 영역(314)의 항전기장은 제1 영역(312)의 항전기장보다 클 수 있으며, 제2 영역(314)은 제1 영역(312)의 외곽에 위치할 수 있다. 일 예로, 평면상에서 제2 영역(314)은 제1 영역(312)을 에워쌀 수 있다. 또는, 제1 영역(312)과 제2 영역(314)은 일렬로 배열되되, 제1 영역(312)의 양측에 제2 영역(314)이 배치될 수 있다. 이때, 게이트(320)는 제1 영역(312)과 중첩하여 위치할 수 있다. 즉, 게이트(320)는 제1 상유전체층(311a)과 중첩할 수 있다.
한편, 제1 영역(312)의 항전기장이 제2 영역(314)의 항전기장 보다 작으므로, 제2 영역(314)의 분극 방향을 바꾸기 위해서는 제1 영역(312)의 분극 방향을 바꿀 때보다 더 큰 전기장이 필요하게 된다.
일 예로, 도 11과 같이 제1 영역(312)에서 활성층(301)이 제1 분극 방향을 갖는 제1 분극 영역(312R)을 포함하고, 제2 영역(314)에서 활성층(301)이 제1 분극 방향을 갖는 제1 분극 영역(314R)을 포함할 때, 게이트(320)를 통해 제1 영역(312)의 항전기장 보다는 크고 제2 영역(314)의 항전기장 보다 작은 전기장을 베이스(310)에 인가하면, 도 12에 도시된 바와 같이, 제2 영역(314)에서 활성층(301)의 분극 방향은 바뀌지 않으면서, 제1 영역(312)에서만 활성층(301)에 제2 분극 영역(312F)이 형성된다.
따라서, 제1 변동 저저항 라인(341)의 형성 위치는 제1 영역(312) 내로 제한될 수 있다. 즉, 전기장의 인가 시간에 비례하여 분극 상태가 바뀌는 도메인 영역이 한정될 수 있는바, 전자 소자(300)의 제어시 전기장 인가 시간이라는 변수를 고려하지 않아도 되는 이점을 제공할 수 있다.
다른 예로, 도 11과 같은 상태에서, 게이트(320)를 통해 제2 영역(314)의 항전기장 보다 큰 전기장을 베이스(310)에 인가하면, 도 13에 도시된 바와 같이, 제1 영역(312)의 활성층(301)의 분극 방향이 바뀌어 제1 영역(312)에서 활성층(301)은 제2 분극 영역(312F)을 포함하게 되며, 제2 영역(314)에서도 활성층(301)에 제2 분극 영역(314F)이 형성됨에 따라, 제2 영역(314) 내에 제2 변동 저저항 라인(342)이 형성될 수 있다.
한편, 도 13과 같은 상태에서, 게이트(320)를 통해 제1 영역(312) 내의 활성층(301)을 제1 분극 영역(312R) 상태로 되돌리기 위한 반대 전기장을 베이스(310)에 인가하면, 도 14에 도시된 바와 같이, 제1 영역(312) 내의 활성층(301)에는 제1 변동 저저항 라인(341)이 추가로 형성될 수 있다. 이때 게이트(320)에 인가되는 전압은, 제1 영역(312)의 항전기장 보다는 크고 제2 영역(314)의 항전기장 보다 작은 전기장을 베이스(310)에 인가하되, 제1 영역(312) 내 활성층(301)의 제2 영역(312F)을 제1 영역(312R)으로 되돌리기 위해, 도 12에서 인가되는 전압과는 반대 극성을 가질 수 있다.
즉, 본 발명에 의하면, 베이스(310)가 서로 다른 항전기장을 가지는 제1 영역(312)과 제2 영역(314)을 포함함으로써, 게이트(320)에 인가되는 전압의 크기에 의해 제1 변동 저저항 라인(341)과 제2 변동 저저항 라인(342)의 형성 위치를 특정 영역 내로 제한할 수 있으므로, 전자 소자(300)의 제어가 용이해질 수 있다.
다시 도 10을 참조하면, 제1 전극(331)은 제1 영역(312)과 제2 영역(314)에 걸쳐 형성될 수 있다. 그리고 제2 전극(332a, 332b)은 제1 변동 저저항 라인(341)에만 전기적으로 연결된 제2-1전극(332a)과 제2 변동 저저항 라인(342)에만 전기적으로 연결된 제2-2전극(332b)를 포함할 수 있다. 예를 들어, 제2-1전극(332a)과 제2-2전극(332b)은 상유전체층(311)에 형성된 컨택홀을 통해 활성층(301)과 접할 수 있다.
상술한 바와 같이, 게이트(320)에 인가되는 전압의 크기를 조절하여, 제1 변동 저저항 라인(341)과 제2 변동 저저항 라인(342)이 형성될 수 있고, 이를 통해 제1 전극(331)과 제2 전극(332a, 332b) 사이에 전류 패쓰가 형성될 수 있다. 이때, 제1 변동 저저항 라인(341)과 제2 변동 저저항 라인(342)을 흐르는 전류량을 각각 측정함으로써 복수의 데이터 읽기가 가능해진다.
예를 들어, 도 12와 같이 제1 변동 저저항 라인(341)만 형성된 경우는 제1 전극(331)과 제2-1전극(332a)을 따라 측정되는 전류량에 따라 제1 데이터가 읽혀질 수 있다. 또한, 도 13과 같이 제2 변동 저저항 라인(342)만 형성된 경우는 제1 전극(331)과 제2-2전극(332b)을 따라 측정되는 전류량에 따라 제2 데이터가 읽혀질 수 있으며, 도 14와 같이 제1 변동 저저항 라인(341)과 제2 변동 저저항 라인(342)이 형성되면 제1 전극(331)과 제2-1전극(332a) 및 제2-2전극(332b)을 따라 측정되는 전류량에 따라 제3 데이터가 읽혀질 수 있다.
그리고, 제1 변동 저저항 라인(341) 및 제2 변동 저저항 라인(342)을 모두 소멸시킴으로써 데이터 지우기가 가능해지며, 0으로 읽혀질 수 있다. 제1 변동 저저항 라인(341) 및 제2 변동 저저항 라인(342)은 게이트(320)에 초기화 전압을 인가하여 소멸시킬 수 있다. 초기화 전압은 제2 영역(314)의 항전기장 보다 큰 전기장을 베이스(310)에 인가하되, 제1 영역(312)과 제2 영역(314)에서의 활성층(301)의 분극 방향을 되돌리기 위한 것으로, 도 13에서 인가되는 전압과는 반대 극성을 가질 수 있다.
한편, 상기 실시예에서는 베이스(310)가 제1 영역(312)과 제2 영역(314)을 포함함에 따라, 제1 변동 저저항 라인(341)과 제2 변동 저저항 라인(342)의 2개의 변동 저저항 라인이 형성되는 예를 나타내었으나, 본 발명은 반드시 이에 한정되는 것은 아니고, 베이스(310)는 서로 다른 항정기장을 가지는 3개 이상의 영역들을 포함하고, 이에 맞추어 제2 전극의 개수를 설계할 수 있다.
실시예의 명세서(특히 특허청구범위에서)에서 "상기"의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 실시 예에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 실시 예에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 실시 예들이 한정되는 것은 아니다. 실시 예에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 실시 예를 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 실시 예의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.

Claims (1)

  1. 서로 다른 항전기장을 가지는 제1 영역과 제2 영역을 포함하는 베이스; 및
    상기 베이스에 전기장을 인가하도록 상기 베이스에 인접하여 배치된 게이트;를 포함하고,
    상기 베이스는,
    자발 분극성 재료를 포함하는 활성층; 및
    상기 활성층의 상면과 하면 중 적어도 어느 한 면 상에 위치하고 상기 제1 영역과 상기 제2 영역이 각각 서로 상이한 재료의 상유전체 재료를 함유하는 상유전체층이 형성된 것을 포함하는 변동 저저항 라인 기반 전자 소자.
KR1020210082690A 2019-12-10 2021-06-24 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법 KR20210082149A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210082690A KR20210082149A (ko) 2019-12-10 2021-06-24 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190164154A KR102271382B1 (ko) 2019-12-10 2019-12-10 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법
KR1020210082690A KR20210082149A (ko) 2019-12-10 2021-06-24 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190164154A Division KR102271382B1 (ko) 2019-12-10 2019-12-10 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법

Publications (1)

Publication Number Publication Date
KR20210082149A true KR20210082149A (ko) 2021-07-02

Family

ID=76600203

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190164154A KR102271382B1 (ko) 2019-12-10 2019-12-10 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법
KR1020210082690A KR20210082149A (ko) 2019-12-10 2021-06-24 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190164154A KR102271382B1 (ko) 2019-12-10 2019-12-10 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법

Country Status (1)

Country Link
KR (2) KR102271382B1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590323B2 (ja) * 1986-08-23 1997-03-12 キヤノン株式会社 セラミツクの製造法
EP1628352A4 (en) * 2003-05-08 2009-07-22 Panasonic Corp ELECTRIC SWITCH AND MEMORY BLOCK WITH THIS
WO2011111305A1 (ja) * 2010-03-10 2011-09-15 パナソニック株式会社 排他的論理和回路として不揮発論理回路を駆動する方法
KR101609596B1 (ko) * 2010-10-13 2016-04-06 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 초격자 구조를 갖는 강유전체 박막과 그 제조방법, 및 강유전체 소자와 그 제조방법
KR102007391B1 (ko) * 2018-11-02 2019-08-06 브이메모리 주식회사 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법

Also Published As

Publication number Publication date
KR102271382B1 (ko) 2021-07-01
KR20210073702A (ko) 2021-06-21

Similar Documents

Publication Publication Date Title
KR102007391B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102652757B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102271382B1 (ko) 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법
KR102662869B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102293876B1 (ko) 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법
KR102084030B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102472111B1 (ko) 변동 저저항 라인 기반 전자 소자 및 이의 제어 방법
KR102370745B1 (ko) 변동 저저항 영역 기반 메모리 소자 및 이의 제어 방법
KR102059485B1 (ko) 변동 저저항 영역 기반 메모리 소자 및 이의 제어 방법
KR102280823B1 (ko) 변동 저저항 영역 기반 메모리 소자 및 이의 제어 방법
KR102467760B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102629599B1 (ko) 변동 저저항 영역 기반 메모리 소자 및 이의 제어 방법
KR102198947B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102154638B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102474130B1 (ko) 변동 저저항 라인 비휘발성 메모리 소자 및 이의 동작 방법
KR102302898B1 (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR102230796B1 (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR102262604B1 (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR102246246B1 (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR102051042B1 (ko) 변동 저저항 영역을 이용한 전자 회로 및 이의 제어 방법
KR20210033961A (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR20200083908A (ko) 변동 저저항 영역 기반 메모리 소자 및 이의 제어 방법
KR20200083842A (ko) 변동 저저항 영역 기반 메모리 소자 및 이의 제어 방법
KR20210052413A (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR20210049743A (ko) 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application