KR20210081176A - Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream - Google Patents

Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream Download PDF

Info

Publication number
KR20210081176A
KR20210081176A KR1020190173454A KR20190173454A KR20210081176A KR 20210081176 A KR20210081176 A KR 20210081176A KR 1020190173454 A KR1020190173454 A KR 1020190173454A KR 20190173454 A KR20190173454 A KR 20190173454A KR 20210081176 A KR20210081176 A KR 20210081176A
Authority
KR
South Korea
Prior art keywords
lng
heat exchanger
subcooling
boil
pche
Prior art date
Application number
KR1020190173454A
Other languages
Korean (ko)
Other versions
KR102313031B1 (en
Inventor
안주하
김효식
Original Assignee
탱크테크 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 탱크테크 (주) filed Critical 탱크테크 (주)
Priority to KR1020190173454A priority Critical patent/KR102313031B1/en
Publication of KR20210081176A publication Critical patent/KR20210081176A/en
Application granted granted Critical
Publication of KR102313031B1 publication Critical patent/KR102313031B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0063Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a PCHE built-in LNG boil-off gas (BOG) recondenser to control outlet subcooling degree, which is to improve the performance of a boil-off gas recondenser by adjusting the subcooling degree of the outlet flow discharged from a BOG recondenser, which is used to recondense boil-off gas of LNG fuel, which is emerging as a clean fuel.

Description

출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치{BOIL-OFF GAS RECONDENSER WITH PCHE INSTALLED INSIDE FOR IMPROVEMENT OF TEMPERATURE CONTROLLABILITY OF OUTLET STREAM}PCHE built-in LNG boil-off gas recondensation system for controlling outlet subcooling {BOIL-OFF GAS RECONDENSER WITH PCHE INSTALLED INSIDE FOR IMPROVEMENT OF TEMPERATURE CONTROLLABILITY OF OUTLET STREAM}

본 발명은 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치에 관한 것으로서, 보다 구체적으로는, 청정연료로 부상하는 LNG 연료의 증발가스를 재응축하기 위해 사용되는 BOG Recondenser(증발가스 재응축장치)로부터 배출되는 출구 유동의 과냉도를 조절함으로써 증발가스 재응축장치의 성능을 향상시키기 위한 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치에 관한 것이다.The present invention relates to a PCHE built-in LNG BOG recondensing device for controlling the degree of subcooling at an outlet, and more particularly, to a BOG Recondenser (BOG recondensing) used for recondensing BOG of an LNG fuel floating as a clean fuel. It relates to a PCHE built-in LNG boil-off gas recondensation device for controlling the outlet supercooling degree to improve the performance of the BOG recondensation device by controlling the supercooling degree of the outlet flow discharged from the device).

일반적으로, LNG는 기존의 화석연료 대비 SOx, NOx 및 이산화탄소 등의 유해물질 및 온실가스를 저감시킬 수 있는 청정연료로 부상하고 있으며 육상뿐만 아니라 해양, 즉 조선 및 선박 분야에서도 활용처가 매우 넓어지고 있는 추세이다.In general, LNG is emerging as a clean fuel that can reduce harmful substances such as SOx, NOx and carbon dioxide and greenhouse gases compared to conventional fossil fuels, and its application is very wide not only on land but also in the ocean, that is, in shipbuilding and ship fields. is the trend

LNG는 대기압 조건에서 -162°C의 초저온 액체상태로 존재하며, 초저온 탱크 내부에 저장된 후에 개별 수요처에 공급된다. 참고로 주요 수요처로 연결되는 천연가스의 주배관 공급망의 압력은 개별 나라마다 다르나 통상 70~120 bar 범위에서 운영되고 있다.LNG exists as a cryogenic liquid at -162°C under atmospheric pressure and is stored in cryogenic tanks before being supplied to individual consumers. For reference, the pressure of the main pipeline supply chain of natural gas that is connected to the main demand varies from country to country, but it is usually operated in the range of 70-120 bar.

저장탱크 내부에 저장된 LNG는 단열재 사용을 통해 열유입이 억제되어 있으나 대기온과 탱크 내부의 온도차이로 인해 불가피하게 열유입이 될 수밖에 없으며, 최근 단열기술의 발달로 선박에 사용되는 멤브레인 탱크의 경우 일일 기준 저장된 LNG의 0.15% vol%가 증발되어는 것으로 알려져 있다. 증발된 증발가스는 BOG 압축기에 의해 압축되며, 탱크에 저장된 LNG는 저압펌프 및 고압펌프를 통해 주배관 공급망의 압력으로 승압된 후, 기화되어 송출된다.The LNG stored inside the storage tank is suppressed from heat inflow through the use of insulating materials, but due to the temperature difference between the atmospheric temperature and the inside of the tank, it inevitably causes heat inflow. With the recent development of insulation technology, in the case of membrane tanks used in ships, It is known that 0.15% vol% of stored LNG is evaporated on a daily basis. The evaporated BOG is compressed by the BOG compressor, and the LNG stored in the tank is pressurized to the pressure of the main pipeline supply network through a low-pressure pump and a high-pressure pump, and then is vaporized and sent out.

증발가스 재응축장치는 저압펌프로 1차 승압된 LNG와 가압된 BOG를 서로 직접 접촉시킴으로써 LNG의 과냉(Sub-cooled)된 현열(Sensible heat)로 BOG를 냉각/액화하는 장치이다. 최종적으로 BOG가 액화된 LNG는 고압펌프로 이송된다. 증발가스 재응축장치 자체는 개발되어 사용된지 20년이 넘는 기술이다.BOG recondensation device is a device that cools/liquefies BOG with sub-cooled sensible heat of LNG by directly contacting the first boosted LNG with the low pressure pump and the pressurized BOG. Finally, BOG liquefied LNG is transferred to a high-pressure pump. The BOG recondensation device itself is a technology that has been developed and used for over 20 years.

증발가스 재응축장치는 통상적으로 운전압력 3~9 barg 범위에서 작동하며, 이 때 예상되는 문제로 인입된 BOG와 인입된 LNG가 직접 접촉하여 액화된 LNG가 포화상태로 존재할 수 있음으로 인해, 이러한 LNG가 고압펌프로 이송되었을 경우 고압펌프가 필요로 하는 과냉도를 맞출 수 없는 경우가 존재한다는 점이다. 펌프로 인입되는 유체는 펌프가 필요로 하는 과냉도를 맞추어야 하며, 이를 맞추지 못할 경우 펌프 내부에 기포가 발생하여 펌프 성능저하 및 파손의 문제가 발생할 수 있다.BOG re-condensation equipment typically operates in the operating pressure range of 3 to 9 barg, and at this time, the expected problem is that the incoming BOG and the incoming LNG directly contact and liquefied LNG may exist in a saturated state. When LNG is transferred to a high-pressure pump, there are cases in which the degree of subcooling required by the high-pressure pump cannot be met. The fluid introduced into the pump must match the degree of supercooling required by the pump, and if this is not met, air bubbles may be generated inside the pump, which may cause deterioration of pump performance and damage.

따라서 증발가스 재응축장치 내부에서 액화된 LNG를 고압펌프로 이송할 때 통상적으로 과냉된 상태의 LNG를 증발가스 재응축장치 드럼부(Drum of BOG Recondenser)에 주입하여 내부의 LNG와 혼합함으로써 과냉도를 맞추는 작업을 수행하거나, 증발가스 재응축장치와 고압펌프 사이로 과냉된 상태의 LNG를 주입하여 과냉도를 맞추는 등의 작업을 수행한다.Therefore, when transporting liquefied LNG from the inside of the BOG re-condensation device to the high-pressure pump, the normally supercooled LNG is injected into the Drum of BOG Recondenser and mixed with the LNG inside to achieve the degree of subcooling. , or by injecting supercooled LNG between the boil-off gas re-condensation device and the high-pressure pump to adjust the degree of supercooling.

기존 방법의 문제점을 살펴보면, 드럼부에 과냉된 LNG를 넣을 경우에는 인입되는 LNG를 충분히 받을 수 있을 만큼, 즉 액체 잔류시간(Liquid Hold-up 또는 Liquid Residence Time, 통상 1~10분)을 확보할 수 있을 만큼 드럼부의 크기가 커져야 하며, 증발가스 재응축장치와 고압 펌프 사이에 과냉된 LNG를 주입하는 경우에도 별도의 차가운 LNG를 주입함에 따라 과냉된 LNG 유량을 추가적으로 활용(또는 주입)하는 단점이 존재한다.Looking at the problems of the existing method, when subcooled LNG is put in the drum, it is necessary to secure enough liquid hold-up or Liquid Residence Time (usually 1 to 10 minutes) to receive the incoming LNG. The size of the drum unit should be large enough, and even when subcooled LNG is injected between the boil-off gas recondensation device and the high-pressure pump, there is a disadvantage of additionally utilizing (or injecting) the subcooled LNG flow rate as separate cold LNG is injected. exist.

따라서 이러한 문제점을 해결하기 위해 증발가스 재응축장치 내부의 출구단에 After-cooler를 설치한 After-Cooler 및 증발가스 재응축장치의 통합 시스템이 필요한 실정이다.Therefore, in order to solve this problem, an integrated system of an after-cooler installed with an after-cooler at the outlet end of the BOG re-condensation device and an BOG re-condensation device is required.

한국공개특허 제10-2018-0093405호Korean Patent Publication No. 10-2018-0093405

본 발명은 전술한 문제점을 해결하기 위한 것으로, 증발가스 재응축장치 출구단에서 배출되어 고압펌프로 이송되는 LNG의 과냉도를 조절함으로써, 증발가스 재응축장치 드럼부에 추가적인 과냉 LNG를 주입함으로 인한 드럼부 크기 증대와 불필요할 수 있는 별도의 과냉 LNG를 추가로 주입하는 문제점을 해결하기 위한 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치를 제공하고자 한다.The present invention is to solve the above problems, by controlling the degree of subcooling of the LNG discharged from the outlet end of the boil-off gas recondensation device and transferred to the high-pressure pump, by injecting additional subcooled LNG into the drum part of the boil-off gas recondensation device. An object of the present invention is to provide a PCHE built-in LNG boil-off gas recondensation device for adjusting the degree of outlet subcooling to solve the problems of increasing the drum unit size and additionally injecting additional subcooled LNG that may be unnecessary.

또한 본 발명은 증발가스 재응축장치 출구단의 LNG를 과냉할 수 있으며, 특히 기존의 알루미늄 열교환기(Aluminium plate fin heat exchanger, Al PFHE)보다 크기가 작고 열전달성능(전열면적)은 상대적으로 큰 열교환기인 PCHE(Printed circuit heat exchanger)를 증발가스 재응축장치 내부에 설치함으로써, 열교환기와 증발가스 재응축장치를 독립적으로 설치하였을 때 보다 공간효율이 높은 시스템을 제공하고자 한다.In addition, the present invention can supercool the LNG at the outlet of the boil-off gas recondensation device, and in particular, it is smaller in size than the conventional aluminum plate fin heat exchanger (Al PFHE) and the heat transfer performance (heat transfer area) is relatively large. By installing the printed circuit heat exchanger (PCHE) inside the BOG re-condensing device, we want to provide a system with higher space efficiency than when the heat exchanger and BOG re-condensing device are installed independently.

본 발명의 일 실시예에 따른 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치는 LNG 저장탱크와 연결된 하우징 및 상기 하우징의 내측 하부에 설치되며, 상기 LNG 저장탱크와 연결된 제1 압력 펌프를 통해 공급되는 제1 압력 LNG의 냉열을 이용하여 상기 하우징에서 LNG 토출배관을 통해 제2 압력 펌프를 향해 토출되는 LNG의 과냉도를 조절하는 열교환기를 포함하는 것을 특징으로 할 수 있다.The PCHE built-in LNG boil-off gas recondensation device for controlling the degree of outlet subcooling according to an embodiment of the present invention is installed in a housing connected to an LNG storage tank and an inner lower portion of the housing, and includes a first pressure pump connected to the LNG storage tank. and a heat exchanger for controlling the degree of subcooling of the LNG discharged from the housing toward the second pressure pump through the LNG discharge pipe by using the cooling heat of the first pressure LNG supplied through it.

일 실시예에서, 상기 열교환기는 인쇄형 열교환기(Printed Circuit Heat Exchanger, PCHE)인 것을 특징으로 할 수 있다.In an embodiment, the heat exchanger may be a printed circuit heat exchanger (PCHE).

일 실시예에서, 상기 열교환기는 모재(base meterial)인 금속 박판에 유로를 화학적 에칭(chemical etching) 방식으로 식각하여 유로를 식각한 후, 식각된 금속 박판을 확산 접합(diffusion bonding)하여 제작되며, LNG가 상기 열교환기로부터 배출되기 위한 분배기가 용접되는 것을 특징으로 할 수 있다.In one embodiment, the heat exchanger is manufactured by etching the flow path by a chemical etching method on a thin metal plate, which is a base meterial, and then performing diffusion bonding on the etched thin metal plate, A distributor for discharging LNG from the heat exchanger may be welded.

일 실시예에서, 상기 열교환기는 상기 LNG 토출배관의 노즐면에 용접됨에 따라, 상기 열교환기와 상기 LNG 토출배관 사이에는 별도 배관이 마련되지 않는 것을 특징으로 할 수 있다.In one embodiment, as the heat exchanger is welded to the nozzle surface of the LNG discharge pipe, a separate pipe may not be provided between the heat exchanger and the LNG discharge pipe.

일 실시예에서, 본 발명은 기 열교환기를 통한 상기 LNG의 과냉도 조절값이 상기 LNG 토출배관과 연결된 상기 제2 압력 펌프의 요구값에 도달하는지 여부를 판단하며, 만약 상기 요구값에 도달하지 않을 경우 상기 LNG 저장탱크로부터 상기 하우징에 공급되는 상기 제1 압력 LNG의 유량을 증가시키고, 만약 상기 요구값에 도달하는 경우 상기 LNG 저장탱크 내 상기 제1 압력 LNG를 바이패스(By-pass)시켜 상기 LNG 저장탱크 내 기체액체 분배기로 공급되도록 하는 LNG 과냉도 판단부를 더 포함할 수 있다.In one embodiment, the present invention determines whether the controlled value of the degree of subcooling of the LNG through the heat exchanger reaches a required value of the second pressure pump connected to the LNG discharge pipe, and if the required value is not reached When the flow rate of the first pressure LNG supplied from the LNG storage tank to the housing is increased, and when the required value is reached, the first pressure LNG in the LNG storage tank is bypassed by It may further include an LNG subcooling degree determination unit to be supplied to the gas-liquid distributor in the LNG storage tank.

본 발명의 일 측면에 따르면, 기존의 열교환기를 통해 LNG가 냉각(과냉)됨에 따라 증발가스 재응축장치에서 토출되는 LNG 사이에 발생 가능한 이상유동으로 인한 문제점을 해결할 수 있고, 이에 따라 Pre-cooler에서는 BOG가 액화됨에 구애받지 않고 고압 LNG의 과냉열을 이용하여 증발가스를 부분 또는 완전 액화시킬 수 있으며, 열교환기와 증발가스 재응축장치를 독립적으로 설치할 때 보다 공간효율이 높은 이점을 가진다.According to one aspect of the present invention, as the LNG is cooled (supercooled) through the existing heat exchanger, it is possible to solve a problem due to abnormal flow that may occur between the LNG discharged from the BOG recondensation device, and accordingly, in the pre-cooler, BOG can be partially or completely liquefied by using the supercooling heat of high-pressure LNG regardless of whether BOG is liquefied, and has the advantage of higher space efficiency than when the heat exchanger and the BOG recondensing device are installed independently.

또한 본 발명의 일 측면에 따르면, 열교환기와 증발가스 재응축장치의 LNG 토출배관 사이에 별도의 배관이 마련되지 않기 때문에, 기존 대비 배관에서 발생할 수 있는 진동, 소음, 배관파손 등의 문제점이 원천적으로 배제되는 이점을 가진다.In addition, according to one aspect of the present invention, since a separate pipe is not provided between the heat exchanger and the LNG discharge pipe of the boil-off gas recondensation device, problems such as vibration, noise, and pipe damage that may occur in the pipe compared to the existing one are fundamentally reduced. have the advantage of being excluded.

또한, 본 발명의 일 측면에 따르면, 증발가스가 충분히 냉각되지 않거나 액화되지 않을 경우, 저압 LNG의 유량을 증가시킴으로써 열교환기에서 소요되는 냉각성능을 적절하게 증가시킬 수 있는 이점을 가진다.In addition, according to one aspect of the present invention, when the boil-off gas is not sufficiently cooled or liquefied, the cooling performance required in the heat exchanger can be appropriately increased by increasing the flow rate of low-pressure LNG.

또한 본 발명의 일 측면에 따르면, 열교환기가 증발가스 재응축장치 내부에 설치됨에 따라, 열교환기의 고장으로 인한 파공, 파괴 등의 문제가 발생하더라도 증발가스 재응축장치 자체가 밀폐된 압력용기임으로 인해 외부환경으로 LNG가 누출되지 않는 이점을 가진다.In addition, according to one aspect of the present invention, as the heat exchanger is installed inside the boil-off gas recondensation device, even if problems such as puncture or destruction occur due to the failure of the heat exchanger, the boil-off gas recondensation device itself is a sealed pressure vessel. It has the advantage that LNG does not leak to the external environment.

또한 본 발명의 일 측면에 따르면, 열교환기가 증발가스 재응축장치 내부에 설치됨에 따라 단열 필요성이 해결되며, 인입되는 고압, 과냉의 LNG에서 발생하는 열누설이 오히려 증발가스 재응축장치 내부의 증발가스 온도를 냉각시켜줌에 따라, 콜드박스가 설치될 별도의 공간이 사라지며 공간적 효율이 향상되는 이점을 가진다.In addition, according to one aspect of the present invention, as the heat exchanger is installed inside the BOG recondensing device, the need for insulation is solved, and heat leakage generated from the incoming high-pressure, subcooled LNG is rather reduced by the BOG inside the BOG recondensing device. As the temperature is cooled, a separate space in which the cold box is to be installed disappears and spatial efficiency is improved.

도 1은 본 발명의 일 실시예에 따른 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치(100)의 구성을 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating the configuration of a PCHE-embedded LNG boil-off gas recondensation apparatus 100 for controlling the degree of outlet subcooling according to an embodiment of the present invention.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the content of the present invention is not limited by the examples.

도 1은 본 발명의 일 실시예에 따른 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치(100)의 구성을 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating the configuration of a PCHE-embedded LNG boil-off gas recondensation apparatus 100 for controlling the degree of outlet subcooling according to an embodiment of the present invention.

도 1을 살펴보면, 본 발명의 일 실시예에 따른 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치(100)는 크게 LNG 저장탱크와 연결된 하우징(110) 및 하우징(110) 내측 하부에 설치되는 열교환기(120)를 포함하여 구성될 수 있다.Referring to Figure 1, the PCHE built-in LNG boil-off gas recondensation device 100 for controlling the degree of subcooling of the outlet according to an embodiment of the present invention is largely installed in the lower housing 110 and the housing 110 connected to the LNG storage tank. It may be configured to include a heat exchanger (120).

보다 구체적으로, LNG 저장탱크의 일측에는 저압펌프에 해당하는 제1 압력 펌프로부터 저압 LNG인 제1 압력 LNG를 공급받기 위한 저압 LNG 인입배관이 마련된다. 또한, 내측에는 기체액체 분배기가 마련된다.More specifically, at one side of the LNG storage tank, a low-pressure LNG inlet pipe for receiving the first pressure LNG, which is low-pressure LNG, from the first pressure pump corresponding to the low-pressure pump is provided. In addition, a gas-liquid distributor is provided inside.

이때, 제1 압력 펌프는 저압펌프를 의미할 수 있고, 후술되는 제2 압력 펌프는 고압펌프를 의미할 수 있다.In this case, the first pressure pump may mean a low pressure pump, and the second pressure pump to be described later may mean a high pressure pump.

하우징(110)은 LNG 저장탱크의 하측에 마련에서 LNG 저장탱크와 연결된다.The housing 110 is connected to the LNG storage tank at the lower side of the LNG storage tank.

LNG 저장탱크의 저압 LNG 인입배관을 통해 공급되는 제1 압력 LNG(저압 LNG)는 하우징(110)으로 공급되는데, 이때 열교환기(120)는 저압 LNG 인입배관을 통해 공급되는 제1 압력 LNG가 가지는 냉열을 이용하여 하우징(110)으로부터 토출되는 LNG(액화 LNG)의 냉각시키게 된다.The first pressure LNG (low pressure LNG) supplied through the low-pressure LNG inlet pipe of the LNG storage tank is supplied to the housing 110, in which case the heat exchanger 120 has the first pressure LNG supplied through the low-pressure LNG inlet pipe. The LNG (liquefied LNG) discharged from the housing 110 is cooled by using the cooling heat.

열교환기(120)는 하우징(110)의 내측 하부에서 하우징(110)에 마련된 LNG 토출배관과 연결되는데, 이때 LNG 토출배관은 고압펌프에 해당하는 제2 압력 펌프를 향하게 된다.The heat exchanger 120 is connected to the LNG discharge pipe provided in the housing 110 at the lower inner side of the housing 110 , and in this case, the LNG discharge pipe faces the second pressure pump corresponding to the high-pressure pump.

열교환기(120)는 알루미늄 열교환기(Aluminium plate fin heat exchanger, Al PFHE)보다 크기가 작고 열전달성능(전열면적)은 상대적으로 큰 인쇄형 열교환기(Printed Circuit Heat Exchanger, PCHE)가 적용될 수 있다.The heat exchanger 120 has a smaller size than an aluminum plate fin heat exchanger (Al PFHE) and a printed circuit heat exchanger (PCHE) having a relatively large heat transfer performance (heat transfer area) may be applied.

이러한 열교환기(120)는 모재(base meterial)인 금속 박판에 화학적 에칭(chemical etching) 방식으로 식각하여 유로를 형성한 후, 식각된 다수의 금속 박판을 서로 포갠 후 확산 접합(diffusion bonding)시킨 후, 각 유체의 분배기를 열교환기(120)에 용접함으로써 제작된다.The heat exchanger 120 forms a flow path by etching a thin metal plate, which is a base meterial, by a chemical etching method, then stacks a plurality of etched thin metal plates on top of each other and performs diffusion bonding. , is manufactured by welding the distributor of each fluid to the heat exchanger 120 .

이렇게 제작된 열교환기(120)의 경우, 하우징(110)의 내측 하부에서 LNG 토출배관의 노즐 면에 직접 용접되는 형식으로 부착되기 때문에, 하우징(110) 하부에 저장된 LNG가 곧바로 열교환기(120)로 인입된다. 따라서, 열교환기(120)와 LNG 토출배관 사이에는 어떠한 배관도 존재하지 않기 때문에 배관에서 발생할 수 있는 진동, 소음, 배관파손 등의 문제점이 원천적으로 배제될 수 있다.In the case of the heat exchanger 120 manufactured in this way, since it is directly welded to the nozzle face of the LNG discharge pipe from the inner lower part of the housing 110 , the LNG stored in the lower part of the housing 110 is directly transferred to the heat exchanger 120 . is introduced into Therefore, since there is no pipe between the heat exchanger 120 and the LNG discharge pipe, problems such as vibration, noise, and pipe damage that may occur in the pipe can be fundamentally excluded.

한편, 본원발명에서는 열교환기(120)를 통한 LNG의 과냉도에 따라 제1 압력 펌프(저압펌프)로부터 공급되는 저압 LNG의 유량을 조절하거나, 또는 저온 LNG를 열교환기(120)를 거치지 않고 곧바로 기체액체 분배기로 공급하는 구성을 가지는데, 이에 관해 살펴보기로 한다.Meanwhile, in the present invention, the flow rate of the low-pressure LNG supplied from the first pressure pump (low-pressure pump) is adjusted according to the degree of subcooling of the LNG through the heat exchanger 120 , or the low-temperature LNG is directly transferred without passing through the heat exchanger 120 . It has a configuration for supplying a gas-liquid distributor, and we will look at this.

일 실시예에서, 본원발명에 따른 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치(100)은 열교환기(120)의 LNG 과냉도 조절값이 제2 압력 펌프(고압 펌프)의 요구값에 도달하는지 여부를 판단한 결과를 바탕으로, LNG 저장탱크로부터 하우징(110)에 공급되는 제1 압력 LNG(저압 LNG)의 유량을 증가시키거나, 또는 제1 압력LNG(저압 LNG)를 기체액체 분배기 방향으로 바이패스(By-pass)시켜 공급되도록 하는 LNG 과냉도 판단부(130)를 더 포함할 수 있다.In one embodiment, in the PCHE built-in LNG boil-off gas recondensation device 100 for controlling the degree of outlet subcooling according to the present invention, the LNG subcooling degree control value of the heat exchanger 120 is the required value of the second pressure pump (high pressure pump) Based on the result of determining whether to reach , increase the flow rate of the first pressure LNG (low pressure LNG) supplied to the housing 110 from the LNG storage tank, or the first pressure LNG (low pressure LNG) to the gas liquid distributor It may further include an LNG subcooling degree determination unit 130 to be supplied by bypassing in the direction.

LNG 과냉도 판단부(130)에서는 열교환기(120)를 통한 LNG 과냉도 조절값이 LNG 토출배관의 후단과 연결된 제2 압력 펌프(고압 펌프)에서 필요로 하는 과냉도를 만족하는지 여부를 판단하게 되는데, 만약 판단결과 LNG가 충분히 냉각되지 않은 것으로 판단될 경우 LNG 과냉도 판단부(130)에서는 제1 압력 펌프(저압 펌프)를 제어하여 하우징(110)에 공급되는 제1 압력 LNG(저압 LNG)의 유량을 증가시킴으로써 열교환기(120)에서 소요되는 냉각성능을 증가시키게 된다.The LNG subcooling degree determination unit 130 determines whether the LNG subcooling degree adjustment value through the heat exchanger 120 satisfies the supercooling degree required by the second pressure pump (high pressure pump) connected to the rear end of the LNG discharge pipe. However, if it is determined that the LNG is not sufficiently cooled, the LNG subcooling degree determination unit 130 controls the first pressure pump (low pressure pump) to supply the first pressure LNG (low pressure LNG) to the housing 110 . By increasing the flow rate of the heat exchanger 120 is increased the cooling performance required.

반대로, 열교환기(120)를 통한 LNG 과냉도 조절값이 LNG 토출배관의 후단과 연결된 제2 압력 펌프(고압 펌프)에서 필요로 하는 과냉도를 만족하는 것으로 판단될 경우, LNG 과냉도 판단부(130)에서는 제1 압력 펌프(저압 펌프)로부터 공급되는 제1 압력 LNG(저압 LNG)를 열교환기(120)가 아닌 LNG 저장탱크 내 기체액체 분배기로 바이패스시켜 공급되도록 한다.Conversely, when it is determined that the control value of the LNG subcooling degree through the heat exchanger 120 satisfies the supercooling degree required by the second pressure pump (high pressure pump) connected to the rear end of the LNG discharge pipe, the LNG subcooling degree determination unit ( In 130), the first pressure LNG (low pressure LNG) supplied from the first pressure pump (low pressure pump) is bypassed and supplied to the gas-liquid distributor in the LNG storage tank instead of the heat exchanger 120 .

살펴본 바와 같이, 본원발명에 따르면 제1 압력 펌프(저압 펌프)로부터 공급되는 저압 LNG가 가지는 냉열을 이용하여 증발가스 재응축장치 내 액화상태의 LNG를 냉각시킴으로써, 증발가스 재응축장치로부터 제2 압력 펌프(고압 펌프)로 토출되는 LNG의 과냉도가 제2 압력 펌프에서 만족하는 과냉도가 되도록 조절하여 증발가스 재응축장치의 성능을 보다 향상시킬 수 있게 된다.As described above, according to the present invention, by using the cooling heat of the low-pressure LNG supplied from the first pressure pump (low-pressure pump) to cool the LNG in the liquefied state in the BOG re-condensation device, the second pressure from the BOG re-condensation device It is possible to further improve the performance of the boil-off gas recondensation device by adjusting the degree of subcooling of the LNG discharged to the pump (high pressure pump) to the degree of subcooling satisfied by the second pressure pump.

특히, 본원발명에 따르면 열교환기가 증발가스 재응축장치 내부에 설치되기 때문에, 열교환기의 고장으로 인한 파공, 파괴 등의 문제가 발생하더라도 증발가스 재응축장치 자체가 밀폐된 압력용기임으로 인해 외부환경으로 LNG가 누출되지 않음은 물론, 단열 필요성이 해결되며 인입되는 고압, 과냉의 LNG에서 발생하는 열누설이 오히려 증발가스 재응축장치 내부의 증발가스 온도를 냉각시켜줌에 따라, 콜드박스가 설치될 별도의 공간이 사라지며 공간적 효율이 향상되는 이점을 가진다.In particular, according to the present invention, since the heat exchanger is installed inside the boil-off gas recondensation device, even if problems such as puncture or destruction occur due to the failure of the heat exchanger, the boil-off gas recondensation device itself is a sealed pressure vessel, so it is not exposed to the external environment. As the LNG does not leak, the need for insulation is solved, and heat leakage from the incoming high-pressure, subcooled LNG rather cools the BOG temperature inside the BOG re-condensation device, a separate cold box is installed. There is an advantage in that the space disappears and the spatial efficiency is improved.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can.

100: 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치
110: 하우징
120: 열교환기
130: LNG 과냉도 판단부
100: PCHE built-in LNG boil-off gas recondensation device for controlling outlet subcooling
110: housing
120: heat exchanger
130: LNG subcooling degree determination unit

Claims (5)

LNG 저장탱크와 연결된 하우징; 및
상기 하우징의 내측 하부에 설치되며, 상기 LNG 저장탱크와 연결된 제1 압력 펌프를 통해 공급되는 제1 압력 LNG의 냉열을 이용하여 상기 하우징에서 LNG 토출배관을 통해 제2 압력 펌프를 향해 토출되는 LNG의 과냉도를 조절하는 열교환기;를 포함하는 것을 특징으로 하는, 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치.
a housing connected to the LNG storage tank; and
It is installed in the lower inner portion of the housing and is discharged from the housing toward the second pressure pump through the LNG discharge pipe using the cooling heat of the first pressure LNG supplied through the first pressure pump connected to the LNG storage tank. A PCHE built-in LNG boil-off gas recondensation device for controlling the degree of subcooling at the outlet, comprising a heat exchanger for controlling the degree of subcooling.
제1항에 있어서,
상기 열교환기는,
인쇄형 열교환기(Printed Circuit Heat Exchanger, PCHE) 인 것을 특징으로 하는, 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치.
According to claim 1,
the heat exchanger,
A PCHE built-in LNG boil-off gas recondensation device for controlling the degree of subcooling at the outlet, characterized in that it is a printed circuit heat exchanger (PCHE).
제1항에 있어서,
상기 열교환기는,
모재(base meterial)인 금속 박판에 유로를 화학적 에칭(chemical etching) 방식으로 식각하여 유로를 식각한 후, 식각된 금속 박판을 확산 접합(diffusion bonding)하여 제작되며, LNG가 상기 열교환기로부터 배출되기 위한 분배기가 용접되는 것을 특징으로 하는, 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치.
According to claim 1,
the heat exchanger,
The flow path is etched by chemical etching on a thin metal plate, which is a base meterial, and the flow path is etched, and then the etched thin metal plate is produced by diffusion bonding, and LNG is discharged from the heat exchanger. A PCHE built-in LNG boil-off gas recondensation device for controlling the degree of outlet subcooling, characterized in that the distributor for
제1항에 있어서,
상기 열교환기는,
상기 LNG 토출배관의 노즐면에 용접됨에 따라, 상기 열교환기와 상기 LNG 토출배관 사이에는 별도 배관이 마련되지 않는 것을 특징으로 하는, 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치.
According to claim 1,
the heat exchanger,
As it is welded to the nozzle surface of the LNG discharge pipe, a PCHE built-in LNG boil-off gas recondensation device for controlling the degree of outlet subcooling, characterized in that no separate pipe is provided between the heat exchanger and the LNG discharge pipe.
제1항에 있어서,
상기 열교환기를 통한 상기 LNG의 과냉도 조절값이 상기 LNG 토출배관과 연결된 상기 제2 압력 펌프의 요구값에 도달하는지 여부를 판단하며,
만약 상기 요구값에 도달하지 않을 경우 상기 LNG 저장탱크로부터 상기 하우징에 공급되는 상기 제1 압력 LNG의 유량을 증가시키고,
만약 상기 요구값에 도달하는 경우 상기 LNG 저장탱크 내 상기 제1 압력 LNG를 바이패스(By-pass)시켜 상기 LNG 저장탱크 내 기체액체 분배기로 공급되도록 하는 LNG 과냉도 판단부;를 더 포함하는 것을 특징으로 하는, 출구 과냉도 조절을 위한 PCHE 내장형 LNG 증발가스 재응축장치.
According to claim 1,
It is determined whether the control value of the degree of subcooling of the LNG through the heat exchanger reaches a required value of the second pressure pump connected to the LNG discharge pipe,
If the required value is not reached, increasing the flow rate of the first pressure LNG supplied from the LNG storage tank to the housing,
When the required value is reached, an LNG subcooling degree determination unit configured to bypass the first pressure LNG in the LNG storage tank and supply it to the gas-liquid distributor in the LNG storage tank; PCHE built-in LNG boil-off gas re-condensation device for controlling outlet subcooling.
KR1020190173454A 2019-12-23 2019-12-23 Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream KR102313031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190173454A KR102313031B1 (en) 2019-12-23 2019-12-23 Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190173454A KR102313031B1 (en) 2019-12-23 2019-12-23 Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream

Publications (2)

Publication Number Publication Date
KR20210081176A true KR20210081176A (en) 2021-07-01
KR102313031B1 KR102313031B1 (en) 2021-10-14

Family

ID=76860262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190173454A KR102313031B1 (en) 2019-12-23 2019-12-23 Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream

Country Status (1)

Country Link
KR (1) KR102313031B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100063173A (en) * 2008-12-03 2010-06-11 삼성전자주식회사 Air conditioner and control method thereof
KR20180012599A (en) * 2016-07-27 2018-02-06 현대중공업 주식회사 liquefaction system of boil-off gas and ship having the same
KR20180093405A (en) 2017-02-13 2018-08-22 대우조선해양 주식회사 Method of BOG Reliquefaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100063173A (en) * 2008-12-03 2010-06-11 삼성전자주식회사 Air conditioner and control method thereof
KR20180012599A (en) * 2016-07-27 2018-02-06 현대중공업 주식회사 liquefaction system of boil-off gas and ship having the same
KR20180093405A (en) 2017-02-13 2018-08-22 대우조선해양 주식회사 Method of BOG Reliquefaction

Also Published As

Publication number Publication date
KR102313031B1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5349617B2 (en) Evaporative gas treatment device for electric propulsion LNG carrier with reliquefaction function
KR101726668B1 (en) System And Method For Treatment Of Boil Off Gas
KR102508476B1 (en) Vessel
KR20180090024A (en) liquefaction system of boil-off gas and ship having the same
KR20110021529A (en) Boil off gas control apparatus of lng carriers
KR20200046006A (en) Boil-Off Gas Reliquefaction System and Method for Vessel
KR20140075581A (en) BOG Multi-Step Reliquefaction System And Method For Boiled Off Gas
KR20170009577A (en) Vessel Including Engines
KR20190022200A (en) Fuel gas supply system
KR100885796B1 (en) Boil-off gas reliquefaction apparatus
KR102313031B1 (en) Boil-off gas recondenser with pche installed inside for improvement of temperature controllability of outlet stream
KR20190022191A (en) Fuel gas supply system
KR20210034156A (en) Reliquefaction system and pressure control system of storage tank of ship
KR20200074735A (en) System and Method for Re-liquefying Boil-Off Gas
KR101818526B1 (en) Fuel Supply Method and System of Engine for Vessel
KR102189807B1 (en) Apparatus for retreating boil off gas
KR20190081150A (en) Boil-Off Gas Reliquefaction System and Method for Vessel
KR20160112389A (en) BOG Re-liquefaction Apparatus and Method for Vessel
KR101699326B1 (en) System for treating boil-off gas for a ship
KR102237358B1 (en) liquefaction system of boil-off gas and ship having the same
KR20180113019A (en) Liquefied Gas Transferring Pipeline System and Gas Transferring Method for a Ship
KR101511211B1 (en) LNG storage tank with BOG reduction device
KR101257937B1 (en) System for handling boil-off-gas and handling method thereof
KR20200071613A (en) Boil-off gas recondenser with pche installed inside for partial liquefaction of boil-off gas
KR20190022194A (en) Fuel gas supply system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant