KR20210077962A - Method for recovering valuable metals from used battery cell - Google Patents

Method for recovering valuable metals from used battery cell Download PDF

Info

Publication number
KR20210077962A
KR20210077962A KR1020190169515A KR20190169515A KR20210077962A KR 20210077962 A KR20210077962 A KR 20210077962A KR 1020190169515 A KR1020190169515 A KR 1020190169515A KR 20190169515 A KR20190169515 A KR 20190169515A KR 20210077962 A KR20210077962 A KR 20210077962A
Authority
KR
South Korea
Prior art keywords
positive electrode
electrode plate
battery cell
valuable metals
minutes
Prior art date
Application number
KR1020190169515A
Other languages
Korean (ko)
Inventor
서현승
김권수
Original Assignee
주식회사 어스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 어스텍 filed Critical 주식회사 어스텍
Priority to KR1020190169515A priority Critical patent/KR20210077962A/en
Publication of KR20210077962A publication Critical patent/KR20210077962A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for recovering valuable metals from a battery cell, and more specifically, to a method for recovering valuable metals from a battery cell, which minimizes powder loss by optimizing milling and heat treatment conditions and improves process efficiency by shortening processing time.

Description

배터리셀로부터 유가금속을 회수하는 방법{METHOD FOR RECOVERING VALUABLE METALS FROM USED BATTERY CELL} Method for recovering valuable metals from battery cells {METHOD FOR RECOVERING VALUABLE METALS FROM USED BATTERY CELL}

본 발명은 배터리셀로부터 유가금속을 회수하는 방법에 관한 것으로써, 보다 상세하게는, 밀링과 열처리조건을 최적화 하여 분말손실을 최소화하고, 가공시간을 단축시켜 공정효율을 높인 배터리셀로부터 유가금속을 회수하는 방법에 관한 것이다. The present invention relates to a method for recovering valuable metals from battery cells, and more particularly, to minimize powder loss by optimizing milling and heat treatment conditions, and to shorten processing time to increase process efficiency by optimizing valuable metals from battery cells. It's about how to get it back.

리튬이차전지(Lithium Rechargeable Battery)는 니켈-카드뮴(Ni-Cd), 니켈-금속수소화물(Ni-MH), 은-아연(Ag-Zn) 전지 등과 같은 다른 이차전지에 비해 고용량과 고출력 등 전지성능이 우수할 뿐만 아니라, 전지의 무게와 부피에 있어서도 상대적 우위를 가지고 있기 때문에 노트북 PC, 휴대폰, 카메라, MP3 등의 휴대용 전자기기의 에너지원으로서 그 사용이 점점 확대되고 있으며, 또한 앞으로 휴대용 정보통신기기에 대한 수요가 지속적으로 증가할 것으로 예상됨에 따라 리튬이차전지에 대한 수요도 계속 확대될 것으로 전망된다.Lithium rechargeable batteries have high capacity and high output compared to other secondary batteries such as nickel-cadmium (Ni-Cd), nickel-metal hydride (Ni-MH), and silver-zinc (Ag-Zn) batteries. Because of its excellent performance and relative superiority in weight and volume of batteries, its use as an energy source for portable electronic devices such as notebook PCs, mobile phones, cameras, and MP3 players is gradually expanding, and in the future, portable information and communication technologies As the demand for devices is expected to continue to increase, the demand for lithium secondary batteries is also expected to continue to expand.

이에 더하여 고유가의 지속, 기후변화 협약에 따른 이산화탄소 배출저감 등과 같은 환경규제 강화, 청정에너지 보급 확대 등의 추세에 따라 하이브리드 자동차 분야, 로봇분야, 에너지 저장 등의 새로운 응용분야에서 폭발적인 신규수요의 창출이 예상되며, 따라서 리튬이차전지 제조회사들은 생산설비를 증설하여 전지의 생산량을 계속 증가시키고 있다. 또한 이와 같은 리튬이차전지의 생산설비의 증설에 따른 생산량 증가는 필연적으로 제조공정에서 불량품의 발생량 증가로 이어지고 있다.In addition, with the trend of strengthening environmental regulations such as continuous high oil prices, reduction of carbon dioxide emissions according to the climate change agreement, and the expansion of clean energy supply, explosive new demand is created in new application fields such as hybrid vehicles, robots, and energy storage. Therefore, lithium secondary battery manufacturers continue to increase the production of batteries by expanding production facilities. In addition, the increase in production due to the expansion of production facilities for lithium secondary batteries inevitably leads to an increase in the amount of defective products in the manufacturing process.

한편, 리튬이차전지는 양극판, 음극판, 전해질, 격리막 등으로 구성되어 있고, 이 중에서 양극판은 양극 활물질(active cathodic material), 도전체, 바인더, 집전체로 이루어져 있으며, 양극 활물질로서 가장 널리 사용되는 소재는 리튬코발트산화물(LiCoO2)인데, 최근 들어 리튬이온폴리머 전지의 경우 코발트의 일부를 망간(Mn) 또는 니켈(Ni)로 대체하고 있으며, 또한 Li(NixCoyMnzO2) 등과 같은 3원계의 양극 활물질의 사용량도 점차 증가하고 있다.On the other hand, a lithium secondary battery consists of a positive electrode plate, a negative electrode plate, an electrolyte, and a separator, among which the positive electrode plate consists of an active cathodic material, a conductor, a binder, and a current collector, and is the most widely used material as a positive electrode active material. is lithium cobalt oxide (LiCoO2). Recently, in the case of lithium ion polymer batteries, a part of cobalt has been replaced with manganese (Mn) or nickel (Ni), and 3 such as Li(Ni x Co y Mn z O 2 ) The amount of the positive electrode active material used is also gradually increasing.

리튬이차전지의 제조공정에서 발생하는 양극판 스크랩에는 다량의 코발트가 함유되어 있으며 코발트의 고부가가치 측면뿐만 아니라 희유금속의 자원확보 측면에서 이의 재활용이 커다란 관심을 모으고 있다. A large amount of cobalt is contained in the positive electrode scrap generated in the manufacturing process of lithium secondary batteries, and its recycling is attracting great attention in terms of securing resources of rare metals as well as high added value of cobalt.

양극판 스크랩으로부터 코발트를 회수하는 방법으로서 주로 고온 용융로를 이용하여 코발트 합금으로 추출한 뒤 습식분리정제기술을 사용하여 정제한 뒤 코발트 화합물 또는 리튬코발트 산화물로 회수하는 방법이 사용되고 있다. 그러나 고온 용융로를 이용하여 코발트를 합금으로 추출하는 건식제련공정은 설비투자비가 매우 크기 때문에 중소 재활용 업체들이 채택하기 쉽지 않은 공정이다.As a method for recovering cobalt from positive electrode scrap, a method is mainly used to extract cobalt alloy using a high-temperature melting furnace, then refining it using wet separation and refining technology, and then recovering it as a cobalt compound or lithium cobalt oxide. However, the pyrometallurgical process of extracting cobalt into an alloy using a high-temperature melting furnace is a process that is not easy to adopt by small and medium-sized recycling companies because the facility investment cost is very high.

또한 건식제련공정을 사용하여 양극판을 용융시키는 경우 양극 활물질의 성분인 리튬과 집전체의 소재인 알루미늄(Al)의 동시회수가 어렵다. 따라서 산 또는 알칼리를 사용하는 습식회수기술을 이용하여 코발트와 리튬을 추출한 뒤, 분리 정제하여 고순도 화합물 또는 양극 활물질의 전구체로 회수하는 것이 바람직하다.In addition, when the positive electrode plate is melted using the dry smelting process, it is difficult to simultaneously recover lithium, a component of the positive electrode active material, and aluminum (Al), a material of the current collector. Therefore, it is preferable to extract cobalt and lithium using a wet recovery technique using an acid or alkali, and then separate and purify it to recover a high-purity compound or a precursor of a positive electrode active material.

그러나 건식제련공정 및 습식회수기술은 입도분리장치를 이용하여 수차례 반복적으로 분말을 분리하는 공정을 거침으로써 분말손실이 크고 작업 효율이 저하되는 문제가 발생할 수 있다. However, in the dry smelting process and wet recovery technology, the powder loss is large and the working efficiency is lowered by repeatedly separating the powder several times using a particle size separator.

따라서, 공정을 단순화하여 분말손실을 최소화 하고 가공시간을 단축시켜 공정효율을 높일 수 있는 유가금속을 회수하는 방법의 개발이 요구되고 있다. Therefore, it is required to develop a method for recovering valuable metals that can minimize powder loss by simplifying the process and increase process efficiency by shortening the processing time.

한국등록특허 제10-1618373호Korean Patent Registration No. 10-1618373

본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 양극극판을 2번에 나눠 분쇄한 후 열처리하여 공정단계를 단순화하고 분말손실을 최소화한 배터리셀로부터 유가금속을 회수하는 방법을 제공하는 것이다. The present invention has been devised to solve the above-mentioned problems, and an object of the present invention is to recover valuable metals from a battery cell that simplifies the process step and minimizes powder loss by dividing the positive electrode plate into two parts and pulverizing it and then heat-treating it. to provide a way

본 발명의 일 실시예에 따른 배터리셀로부터 유가금속을 회수하는 방법은 배터리셀을 방전 및 분리하는 단계; 상기 분리된 배터리셀에서 양극극판을 수득하는 단계; 상기 양극극판을 분쇄하는 단계; 및 상기 분쇄된 양극극판을 열처리하는 단계;를 포함하는 것을 특징으로 한다. A method for recovering a valuable metal from a battery cell according to an embodiment of the present invention comprises the steps of discharging and separating the battery cell; obtaining a positive electrode plate from the separated battery cell; grinding the positive electrode plate; and heat-treating the pulverized positive electrode plate.

일 실시예에서, 상기 열처리된 양극극판을 체분리하여 상기 유가금속을 회수하는 단계;를 더 포함하는 것을 특징으로 한다. In one embodiment, the step of separating the heat-treated positive electrode plate to recover the valuable metal; characterized in that it further comprises.

일 실시예에서, 상기 분리하는 단계는, 상기 배터리셀을 양극극판, 분리막 및 음극극판으로 분리하는 것을 특징으로 한다. In one embodiment, the separating step is characterized in that the battery cell is separated into a positive electrode plate, a separator and a negative electrode plate.

일 실시예에서, 상기 양극극판의 양극활물질은 Lix[NiaCobMnc]O2(1<x<2, a+b+c=1)인 것을 특징으로 한다. In an embodiment, the positive electrode active material of the positive electrode plate is Li x [Ni a Co b Mn c ]O 2 (1<x<2, a+b+c=1).

일 실시예에서, 상기 분쇄하는 단계는, 볼밀을 통해 상기 양극극판을 분쇄하고, 상기 분쇄시간은 25분 이내인 것을 특징으로 한다. In one embodiment, the pulverizing step comprises pulverizing the positive electrode plate through a ball mill, and the pulverizing time is characterized in that within 25 minutes.

일 실시예에서, 상기 분쇄하는 단계는, 상기 배터리셀에서 분리된 양극극판을 절단하는 단계; 상기 절단된 양극극판을 분쇄하는 제1 분쇄단계; 및 상기 제1 분쇄단계에 의해 분쇄된 양극극판을 분쇄하는 제2 분쇄단계;를 포함하는 것을 특징으로 한다. In one embodiment, the pulverizing comprises: cutting the positive electrode plate separated from the battery cell; a first grinding step of grinding the cut positive electrode plate; and a second grinding step of pulverizing the positive electrode plate pulverized by the first pulverizing step.

일 실시예에서, 상기 제1 분쇄단계에서 상기 볼밀은 150 내지 250의 회전수로, 5분 이내 작동되고, 상기 제2 분쇄단계에서 상기 볼밀은 450 내지 550회전수로, 10분 내지 20분 동안 작동되는 것을 특징으로 한다. In one embodiment, in the first grinding step, the ball mill is operated within 5 minutes at a rotation speed of 150 to 250, and in the second crushing step, the ball mill is operated at 450 to 550 rotation speed, for 10 minutes to 20 minutes. characterized in that it works.

일 실시예에서, 상기 열처리하는 단계는, 400℃ 내지 600℃온도에서 30분 내지 1시간반 동안 열처리되는 것을 특징으로 한다. In an embodiment, the heat treatment is characterized in that the heat treatment is performed at a temperature of 400° C. to 600° C. for 30 minutes to 1 and a half hours.

본 발명에 따르면, 양극극판을 2번에 나눠 분쇄한 후 열처리하여 공정단계를 단순화하고 분말손실을 최소화하는 효과가 발생하게 된다. According to the present invention, the positive electrode plate is divided into two parts and then heat-treated to simplify the process step and minimize powder loss.

도 1은 본 발명의 일 실시예에 따른 배터리셀로부터 유가금속을 회수하는 방법의 순서도이다. 1 is a flowchart of a method for recovering a valuable metal from a battery cell according to an embodiment of the present invention.

본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다. The present invention will be described in detail with reference to the accompanying drawings as follows. Here, repeated descriptions and detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted. The embodiments of the present invention are provided in order to completely explain the present invention to those of ordinary skill in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clearer description.

명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for better understanding of the present invention, and the content of the present invention is not limited by the examples.

<< 배터리셀로부터from the battery cell 유가금속을 회수하는 방법 > How to recover valuable metals >

도 1은 본 발명의 일 실시예에 따른 배터리셀로부터 유가금속을 회수하는 방법을 나타낸 순서도이다. 1 is a flowchart illustrating a method for recovering valuable metals from a battery cell according to an embodiment of the present invention.

배터리셀로부터 유가금속을 회수하는 방법은 배터리셀을 방전 및 분리하는 단계(S100), 분리된 배터리셀에서 양극극판을 수득하는 단계(S200), 양극극판을 분쇄하는 단계(S300), 분쇄된 양극극판을 열처리하는 단계(S400)을 포함할 수 있다. The method for recovering valuable metals from a battery cell includes the steps of discharging and separating the battery cell (S100), obtaining a positive electrode plate from the separated battery cell (S200), crushing the positive electrode plate (S300), the crushed positive electrode It may include the step of heat-treating the electrode plate (S400).

배터리셀을 방전 및 분리하는 단계(S100)에서 배터리셀은 양극극판, 분리막 및 음극극판으로 분리될 수 있습니다. In the step of discharging and separating the battery cell (S100), the battery cell may be separated into a positive electrode plate, a separator, and a negative electrode plate.

분리된 배터리셀에서 양극극판을 수득하는 단계(S200)에서 양극극판에는 양극활물질이 포함되어 있고, 양극활물질은 Lix[NiaCobMnc]O2(1<x<2, a+b+c=1)인 것을 특징으로 한다. 즉, 본원발명은 양극극판에 포함된 양극활물질로부터 리튬(Li), 니켈(Ni), 코발트(Co) 및 망간(Mn)을 회수하는 방법에 관한 것이다. In the step (S200) of obtaining a positive electrode plate from the separated battery cell, the positive electrode plate contains a positive electrode active material, and the positive electrode active material is Li x [Ni a Co b Mn c ]O 2 (1<x<2, a+b +c = 1). That is, the present invention relates to a method for recovering lithium (Li), nickel (Ni), cobalt (Co) and manganese (Mn) from a positive electrode active material included in a positive electrode plate.

양극극판을 분쇄하는 단계(S300)는 볼밀을 이용하여 양극극판을 분쇄하는 단계이다. 일 실시예에 있어서, 양극극판을 분쇄하는 단계(S300)는 배터리셀에서 분리된 양극극판을 절단하는 단계(S310), 절단된 양극극판을 분쇄하는 제1 분쇄단계(S320) 및 제1 분쇄단계에 의해 분쇄된 양극극판을 분쇄하는 제2 분쇄단계(S330)를 포함할 수 있다. The step of crushing the positive electrode plate (S300) is a step of crushing the positive electrode plate using a ball mill. In one embodiment, the step of crushing the positive electrode plate (S300) includes the step of cutting the positive electrode plate separated from the battery cell (S310), the first crushing step (S320) and the first crushing step of crushing the cut positive electrode plate. may include a second grinding step (S330) of pulverizing the anode plate pulverized by

양극극판을 2번의 공정을 통해 분쇄하여 입도분리작업이 생략가능하고, 따라서, 분말손실을 최소화하는 효과가 발생할 수 있다. By pulverizing the positive electrode plate through two processes, the particle size separation operation can be omitted, and thus, the effect of minimizing powder loss can occur.

제1 분쇄단계는 볼밀의 회전수가 150 내지 250이고, 제2 분쇄단계는 볼밀의 회전수가 450 내지 550이다. 분쇄하는 단계(S300)에서 볼밀 진행시간은 제1 및 제2 분쇄단계를 합쳐서 25분 이내이다. 일 실시예에 있어서, 제1 분쇄단계는 볼밀 진행시간은 5분 이내이고, 제2 분쇄단계는 10분 내지 20분인 것을 특징으로 한다. 볼밀의 회전수가 150 미만이면 시료와 볼의 마찰수 및 마찰력이 작아 시료가 분쇄되지 않는 문제가 발생할 수 있다. 그리고, 볼밀의 회전수가 250 초과고, 볼밀 진행시간의 합이 25분을 초과한다고 해도 효과 증가가 미비하다. In the first grinding step, the number of revolutions of the ball mill is 150 to 250, and in the second grinding step, the number of revolutions of the ball mill is 450 to 550. In the pulverizing step (S300), the ball mill progress time is less than 25 minutes in total in the first and second pulverizing steps. In one embodiment, the first grinding step is characterized in that the ball mill progress time is within 5 minutes, the second grinding step is characterized in that 10 minutes to 20 minutes. If the number of revolutions of the ball mill is less than 150, the number of friction between the sample and the ball and the friction force are small, which may cause a problem in that the sample is not pulverized. And, even if the rotation speed of the ball mill exceeds 250 and the sum of the ball mill running times exceeds 25 minutes, the effect increase is insignificant.

분쇄된 양극극판을 열처리하는 단계(S400)는 400℃ 내지 600℃온도에서 30분 내지 1시간반 동안 열처리되는 것을 특징으로 한다. The heat treatment of the pulverized positive electrode plate (S400) is characterized in that the heat treatment is performed at a temperature of 400° C. to 600° C. for 30 minutes to 1 and a half hours.

그리고, 본원발명에 따른 배터리셀로부터 유기금속을 회수하는 방법은 열처리된 양극극판을 체분리하여 유가금속을 회수하는 단계(S500)를 더 포함할 수 있다. And, the method of recovering the organic metal from the battery cell according to the present invention may further include the step of recovering the valuable metal by sieving the heat-treated positive electrode plate (S500).

열처리 온도가 400℃ 미만이고 진행 시간이 30분 미만이면, 체분리에 의해 회수되는 유가금속의 수율이 감소되고, 열처리 온도가 600℃ 초과이고 열처리 진행 시간이 1시간반을 초과하면, 효과 증대가 없어 비효율적이다. If the heat treatment temperature is less than 400 ° C and the duration is less than 30 minutes, the yield of valuable metals recovered by sieving is reduced, and when the heat treatment temperature is more than 600 ° C and the heat treatment proceeding time exceeds 1 hour and a half, the effect increases no it is inefficient

<< 실험예Experimental example 1> 1>

폐리튬이차전지셀을 해체하여 양극극판을 수득한 후, 양극극판을 1㎝X1㎝로 절단한 후, planetray mono mill 500㎖(FRITSCH社)에 음극시료 50g과 직경 10㎜인 지르코니아 볼 200g을 투입하여 20분동안 분쇄를 진행하였다. After dismantling the waste lithium secondary battery cell to obtain a positive electrode plate, the positive electrode plate was cut to 1 cmX1 cm, and 50 g of a negative electrode sample and 200 g of a 10 mm diameter zirconia ball were put into 500 ml of a planetray mono mill (FRITSCH). Grinding was carried out for 20 minutes.

조건Condition 제1 분쇄first crush 제2 분쇄second crush 총시간total time 분말수율(%)Powder yield (%) 실시예 1Example 1 시간(분)hours (minutes) 00 2020 2020 85.2385.23 회전수number of revolutions 200200 500500 실시예 2Example 2 시간(분)hours (minutes) 55 1515 2020 98.1598.15 회전수number of revolutions 200200 500500 실시예 3Example 3 시간(분)hours (minutes) 1010 1010 2020 94.0894.08 회전수number of revolutions 200200 500500 실시예 4Example 4 시간(분)hours (minutes) 1515 55 2020 90.7690.76 회전수number of revolutions 200200 500500

제1 분쇄단계는 볼밀의 회전수를 200으로 설정하였고, 제2 분쇄단계는 500으로 설정하여 실험하였다. 그리고, 실험예 1은 동일한 조건에서 분쇄공정의 볼밀 작동 시간 변화에 따른 분말수율을 나타낸 것이다. 상기 표 1을 참고하면, 제1 분쇄단계는 시료를 5분동안 볼밀에서 분쇄하고, 제2 분쇄단계는 시료를 15분동안 볼밀에서 분쇄하였을 때, 분말수율이 가장 높은 것을 알 수 있다. In the first grinding step, the number of revolutions of the ball mill was set to 200, and the second grinding step was set to 500. And, Experimental Example 1 shows the powder yield according to the change in the operation time of the ball mill in the grinding process under the same conditions. Referring to Table 1, in the first grinding step, when the sample is pulverized in a ball mill for 5 minutes, and in the second pulverizing step, when the sample is pulverized in a ball mill for 15 minutes, it can be seen that the powder yield is the highest.

<< 실험예Experimental example 2> 2>

실험예 1에서 분말수율이 가장 높은 실험예 2 분말을 열처리 하여 분말수율을 측정하였다. 이때, 열처리 조건은 400℃ 내지 700℃로, 열처리 온도 400℃에서 시작하여 각 시료당 100℃씩 증가시켜 분말수율을 측정하였다. 열처리 시간은 1시간으로 고정하였고, 80mesh의 체분리로 1회 실시하여 분말을 수득하였다. In Experimental Example 1, the powder of Experimental Example 2 having the highest powder yield was heat-treated to measure the powder yield. At this time, the heat treatment conditions were 400° C. to 700° C., and the powder yield was measured by increasing the heat treatment temperature by 100° C. for each sample starting at 400° C. The heat treatment time was fixed to 1 hour, and the powder was obtained by performing once by 80 mesh sieve separation.

온도(℃)Temperature (℃) 시간(hr)time (hr) 체분리(회수)Sieve separation (recovery) 분말수율(%)Powder yield (%) 실시예 5Example 5 400400 1One 1One 38.5838.58 실시예 6Example 6 500500 1One 1One 39.2339.23 실시예 7Example 7 600600 1One 1One 41.6741.67 실시예 8Example 8 700700 1One 1One 40.0740.07

상기 표 2를 참고하면, 열처리 온도가 증가할수록 분말수율이 증가되는 것을 알 수 있다. 그리고, 열처리 온도가 600℃를 초과할 경우, 분말수율이 증가되지 않아 효과가 미비한 것을 알 수 있다. Referring to Table 2, it can be seen that the powder yield increases as the heat treatment temperature increases. And, when the heat treatment temperature exceeds 600 ℃, it can be seen that the effect is insufficient because the powder yield is not increased.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that it can be done.

Claims (8)

배터리셀을 방전 및 분리하는 단계;
상기 분리된 배터리셀에서 양극극판을 수득하는 단계;
상기 양극극판을 분쇄하는 단계; 및
상기 분쇄된 양극극판을 열처리하는 단계;를 포함하는,
배터리셀로부터 유가금속을 회수하는 방법.
discharging and separating the battery cells;
obtaining a positive electrode plate from the separated battery cell;
grinding the positive electrode plate; and
Including; heat-treating the pulverized positive electrode plate;
A method for recovering valuable metals from battery cells.
제1항에 있어서,
상기 열처리된 양극극판을 체분리하여 상기 유가금속을 회수하는 단계;를 더 포함하는 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
According to claim 1,
Recovering the valuable metal by sieving the heat-treated positive electrode plate; Method for recovering valuable metal from a battery cell, characterized in that it further comprises.
제1항에 있어서,
상기 분리하는 단계는,
상기 배터리셀을 양극극판, 분리막 및 음극극판으로 분리하는 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
According to claim 1,
The separating step is
A method for recovering valuable metals from a battery cell, characterized in that the battery cell is separated into a positive electrode plate, a separator and a negative electrode plate.
제1항에 있어서,
상기 양극극판의 양극활물질은 Lix[NiaCobMnc]O2(1<x<2, a+b+c=1)인 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
According to claim 1,
The positive electrode active material of the positive electrode plate is Li x [Ni a Co b Mn c ]O 2 (1<x<2, a+b+c=1) A method of recovering a valuable metal from a battery cell, characterized in that.
제1항에 있어서,
상기 분쇄하는 단계는,
볼밀을 통해 상기 양극극판을 분쇄하고, 상기 분쇄시간은 25분 이내인 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
According to claim 1,
The crushing step is
A method for recovering valuable metals from a battery cell, characterized in that the anode plate is pulverized through a ball mill, and the pulverization time is within 25 minutes.
제5항에 있어서,
상기 분쇄하는 단계는,
상기 배터리셀에서 분리된 양극극판을 절단하는 단계;
상기 절단된 양극극판을 분쇄하는 제1 분쇄단계; 및
상기 제1 분쇄단계에 의해 분쇄된 양극극판을 분쇄하는 제2 분쇄단계;를 포함하는 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
6. The method of claim 5,
The crushing step is
cutting the positive electrode plate separated from the battery cell;
a first grinding step of grinding the cut positive electrode plate; and
A method for recovering valuable metals from a battery cell, comprising: a second crushing step of crushing the positive electrode plate pulverized by the first crushing step.
제6항에 있어서,
상기 제1 분쇄단계에서 상기 볼밀은 150 내지 250의 회전수로, 5분 이내 작동되고, 상기 제2 분쇄단계에서 상기 볼밀은 450 내지 550회전수로, 10분 내지 20분 동안 작동되는 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
7. The method of claim 6,
In the first grinding step, the ball mill is operated within 5 minutes at a rotation speed of 150 to 250, and in the second crushing step, the ball mill is operated at 450 to 550 rotation speed, for 10 minutes to 20 minutes. A method for recovering valuable metals from battery cells.
제1항에 있어서,
상기 열처리하는 단계는,
400℃ 내지 600℃온도에서 30분 내지 1시간반 동안 열처리되는 것을 특징으로 하는, 배터리셀로부터 유가금속을 회수하는 방법.
According to claim 1,
The heat treatment step is
A method for recovering valuable metals from battery cells, characterized in that heat treatment is performed at a temperature of 400° C. to 600° C. for 30 minutes to 1 hour and a half.
KR1020190169515A 2019-12-18 2019-12-18 Method for recovering valuable metals from used battery cell KR20210077962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190169515A KR20210077962A (en) 2019-12-18 2019-12-18 Method for recovering valuable metals from used battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190169515A KR20210077962A (en) 2019-12-18 2019-12-18 Method for recovering valuable metals from used battery cell

Publications (1)

Publication Number Publication Date
KR20210077962A true KR20210077962A (en) 2021-06-28

Family

ID=76607804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190169515A KR20210077962A (en) 2019-12-18 2019-12-18 Method for recovering valuable metals from used battery cell

Country Status (1)

Country Link
KR (1) KR20210077962A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102426585B1 (en) 2022-02-28 2022-08-01 (주)에코프로머티리얼즈 Heat treatment system for eco-friendly recycling of wasted battery
KR102447931B1 (en) 2022-01-04 2022-09-28 (주)에코프로머티리얼즈 Eco-friendly recycling method for wasted battery
KR102618272B1 (en) 2022-10-25 2023-12-28 (주)에코프로머티리얼즈 Eco-friendly gas processing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618373B1 (en) 2010-03-30 2016-05-04 광동제약 주식회사 New multivitamin drug composition with the effect of antifatigue available for oral

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618373B1 (en) 2010-03-30 2016-05-04 광동제약 주식회사 New multivitamin drug composition with the effect of antifatigue available for oral

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447931B1 (en) 2022-01-04 2022-09-28 (주)에코프로머티리얼즈 Eco-friendly recycling method for wasted battery
KR102426585B1 (en) 2022-02-28 2022-08-01 (주)에코프로머티리얼즈 Heat treatment system for eco-friendly recycling of wasted battery
KR102618272B1 (en) 2022-10-25 2023-12-28 (주)에코프로머티리얼즈 Eco-friendly gas processing system

Similar Documents

Publication Publication Date Title
Yu et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review
CN102780053B (en) A kind of method of overheated steam clean separation waste lithium ion cell anode material
CN105428745B (en) A kind of innoxious comprehensive reutilization method of applying waste lithium ionic power battery
CN102347520B (en) Method for recovering power cells for new energy vehicles
CN103346365B (en) Method for recycling negative material from waste lithium ion battery
CN101603126B (en) Process for efficiently leaching anode active material of waste lithium battery
Vanitha et al. Waste minimization and recovery of valuable metals from spent lithium-ion batteries–a review
KR20210077962A (en) Method for recovering valuable metals from used battery cell
US9359659B2 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
CN112510281B (en) Method for recovering all components of waste lithium ion battery
JP2016219401A (en) Recovery method of valuables from lithium ion secondary battery
KR20070046990A (en) A valuable material recovery method of a scrapped lithium ion battery
CN107069134A (en) A kind of method that waste lithium cell positive electrode is separated with collector
CN104183888A (en) Green method for recovery and disposal of waste lithium iron phosphate power battery
KR100358528B1 (en) recycling method of lithium ion secondary battery
CN107946686A (en) A kind of waste and old lithium ion battery recovery method
KR20210145454A (en) Reuse method of active material of positive electrode scrap
WO2012161168A1 (en) Method for recovering valuable material from positive electrode in lithium-ion secondary battery
EP4164027A1 (en) Active material reuse method using cathode scraps
KR101197439B1 (en) Separation Method of Active Cathodic Material from Scrap of Positive Plate in Lithium Rechargeable Battery
CN108321452A (en) A kind of method directly recycling lithium iron phosphate battery positive material
CN106058355A (en) Method for recycling lithium titanate electrode slice
CN112777648B (en) High-performance cathode material regenerated by simple solid phase recovery method and preparation method thereof