KR20210070833A - Method of manufacturing a light emitting device - Google Patents

Method of manufacturing a light emitting device Download PDF

Info

Publication number
KR20210070833A
KR20210070833A KR1020190161050A KR20190161050A KR20210070833A KR 20210070833 A KR20210070833 A KR 20210070833A KR 1020190161050 A KR1020190161050 A KR 1020190161050A KR 20190161050 A KR20190161050 A KR 20190161050A KR 20210070833 A KR20210070833 A KR 20210070833A
Authority
KR
South Korea
Prior art keywords
semiconductor
electrode
light emitting
emitting device
semiconductor region
Prior art date
Application number
KR1020190161050A
Other languages
Korean (ko)
Other versions
KR102301879B1 (en
Inventor
장태진
Original Assignee
웨이브로드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웨이브로드 주식회사 filed Critical 웨이브로드 주식회사
Priority to KR1020190161050A priority Critical patent/KR102301879B1/en
Priority to PCT/KR2020/017767 priority patent/WO2021112648A1/en
Priority to US17/781,398 priority patent/US20230069883A1/en
Priority to CN202080083219.6A priority patent/CN114762133A/en
Publication of KR20210070833A publication Critical patent/KR20210070833A/en
Application granted granted Critical
Publication of KR102301879B1 publication Critical patent/KR102301879B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present disclosure relates to a method for manufacturing a semiconductor light emitting device capable of improving light quality in applications such as displays and lighting. The method includes the steps of: providing a growth substrate on which an N type first semiconductor region, an active region generating light through recombination of electrons and holes, and a P type second semiconductor region are sequentially formed; bonding a first light-transmitting substrate to the second semiconductor region; removing the growth substrate from the first semiconductor region; attaching a second light-transmitting substrate to the first semiconductor region, from which the growth substrate has been removed, by using an adhesive layer; ablating the first light-transmitting substrate from the second semiconductor region by means of laser; exposing a portion of the first semiconductor region by removing portions of the second semiconductor region and the active region; and forming a first electrode of a flip chip and a second electrode of the flip chip in the exposed first semiconductor region and the second semiconductor region, respectively.

Description

반도체 발광소자를 제조하는 방법{METHOD OF MANUFACTURING A LIGHT EMITTING DEVICE}Method of manufacturing a semiconductor light emitting device {METHOD OF MANUFACTURING A LIGHT EMITTING DEVICE}

본 개시(Disclosure)는 전체적으로 반도체 발광소자를 제조하는 방법에 관한 것으로, 특히 플립칩 타입의 반도체 발광소자를 제조하는 방법에 관한 것이다. 더욱 한정적으로는 마이크로 엘이디 디스플레이에 사용되는 플립칩 타입의 반도체 발광소자(예: 미니 엘이디(폭이 100㎛ 정도(300㎛ 이하)), 마이크로 엘이디(폭이 100㎛ 미만의 소자))를 제조하는 방법에 관한 것이다. 마이크로 엘이디 디스플레이는 기존 엘이디 백라이팅 LCD와 달리 반도체 발광소자를 백라이트로 사용하는 것이 아니라, OLED 디스플레이와 마찬가지로 직접 발광에 이용한다. 여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 자외선, 청색 및 녹색을 발광하는 AlGaInN계 반도체 발광소자 및 적색을 발광하는 AlGaInP(As)계 반도체 발광소자를 예로 들 수 있다.The present disclosure relates to a method of manufacturing a semiconductor light emitting device as a whole, and more particularly, to a method of manufacturing a flip chip type semiconductor light emitting device. More specifically, the manufacturing of flip-chip type semiconductor light emitting devices used in micro LED displays (e.g., mini LEDs (about 100 μm in width (300 μm or less)), micro LEDs (devices less than 100 μm in width)) it's about how Unlike the existing LED backlighting LCD, the micro LED display does not use a semiconductor light emitting device as a backlight, but uses it for direct light emission like an OLED display. Here, the semiconductor light emitting device means a semiconductor optical device that generates light through recombination of electrons and holes, and includes an AlGaInN based semiconductor light emitting device that emits ultraviolet light, blue and green light and an AlGaInP(As) based semiconductor light emitting device that emits red light. for example.

여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Herein, background information related to the present disclosure is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).

도 1은 미국 공개특허공보 제US2019/0067255호에 제시된 반도체 발광 구조물의 일 예를 나타내는 도면으로서, 반도체 발광 구조물은 제1 반도체 발광소자(101; 예: 적색 발광 엘이디 플립칩), 제2 반도체 발광소자(103; 예: 청색 발광 엘이디 플립칩), 제3 반도체 발광소자(105; 예: 녹색 발광 엘이디 플립칩) 그리고 3개의 반도체 발광소자(101,103,105)가 놓이는 배선 기판(107)을 포함한다.1 is a view showing an example of a semiconductor light emitting structure disclosed in US Patent Publication No. US2019/0067255, wherein the semiconductor light emitting structure includes a first semiconductor light emitting device 101 (eg, a red light emitting LED flip chip) and a second semiconductor light emitting structure. and a wiring board 107 on which the device 103 (eg, a blue light emitting LED flip chip), a third semiconductor light emitting device 105 (eg, a green light emitting LED flip chip), and three semiconductor light emitting devices 101, 103, and 105 are placed.

도 2는 미국 공개특허공보 제US2019/0067525호에 제시된 반도체 발광소자의 일 예(도 1에 제시된 반도체 발광 구조물에 사용될 수 있는 반도체 발광소자의 일 예)를 나타내는 도면으로서, 반도체 발광소자는 P형 GaP 윈도우층(104), P형 컨파인먼트층(106), MQW 활성 영역(108), N형 컨파인먼트층(110) 그리고 N형 전류확산층(112)을 포함한다. 또한, 반도체 발광소자는 성장 기판이 제거된 측에 금속 반사층(164), N측 전극(182) 그리고 P측 전극(180)을 구비한다. 또한, 반도체 발광소자는 그 반대 측에 P형 전류확산층(118; 예: ITO), 투명 접착층(130) 그리고 투명 지지 기판(102)을 구비한다. 이러한 구성을 통해, 반도체 발광소자는 적색 파장의 빛을 발광할 수 있다. 그러나, 전극(180,182)이 위치하는 측, 즉 리드전극, 배선 내지는 배선기판과 플립칩 본딩이 이루어지는 측에 N형 AlGaInP(As)계 반도체층이 배치되는 경우(소위, N-side up 플립칩)에, 특히 칩의 크기가 초소형화됨에 따라, P측 전극(180)으로부터 P형 반도체 영역(104,106)에 전류를 주입하기 위해 두꺼운 N형 반도체 영역(110,112)과 MQW 활성 영역(108)을 제거하는 MESA 식각 공정 및 전기적 연결 공정의 어려움과 함께, N형 반도체 영역(110,112)에서 불균일한 전류 흐름 등에 의해 과다한 열이 발생하는 것으로 알려져 있다. 이러한 문제를 해소하는 방안으로 P-side up 플립칩을 이용하는 것을 고려할 수 있으며, 종래에 두 가지 방안이 제시되고 있다.FIG. 2 is a view showing an example of a semiconductor light emitting device (an example of a semiconductor light emitting device that can be used in the semiconductor light emitting structure shown in FIG. 1) disclosed in US Patent Publication No. US2019/0067525, wherein the semiconductor light emitting device is a P-type a GaP window layer 104 , a P-type confinement layer 106 , an MQW active region 108 , an N-type confinement layer 110 , and an N-type current spreading layer 112 . In addition, the semiconductor light emitting device includes a metal reflective layer 164 , an N-side electrode 182 , and a P-side electrode 180 on a side from which the growth substrate is removed. In addition, the semiconductor light emitting device includes a P-type current diffusion layer 118 (eg, ITO), a transparent adhesive layer 130 , and a transparent support substrate 102 on the opposite side. Through this configuration, the semiconductor light emitting device may emit light of a red wavelength. However, when the N-type AlGaInP(As)-based semiconductor layer is disposed on the side where the electrodes 180 and 182 are positioned, that is, on the side where the flip-chip bonding is performed with the lead electrode, wiring or wiring board (so-called N-side up flip chip) In particular, as the size of the chip is miniaturized, the thick N-type semiconductor regions 110 and 112 and the MQW active region 108 are removed to inject current from the P-side electrode 180 to the P-type semiconductor regions 104 and 106 . It is known that excessive heat is generated by non-uniform current flow in the N-type semiconductor regions 110 and 112 along with difficulties in the MESA etching process and the electrical connection process. As a method to solve this problem, it may be considered to use a P-side up flip chip, and two methods have been proposed in the prior art.

도 3은 미국 등록특허공보 제US5,376,580호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 P형 GaAs 성장 기판(14), P형 반도체 영역(11; 예: AlGaAs), 활성 영역(12) 그리고 N형 반도체 영역(13; 예: AlGaAs)을 포함할 수 있다. 이러한 형태(에피의 성장 과정에서 P형 반도체 영역(11)을 먼저 성장함)의 반도체 발광소자에, 도 2에 제시된 것과 같은 방식의 전극 형성 과정을 거치면, 소위 P-side up 플립칩을 제조할 수 있게 된다. 그러나, AlGaInN계 반도체 발광소자이든 AlGaInP(As)계 반도체 발광소자이든, 활성 영역(12)을 성장하기에 앞서, N형 반도체 영역(13)보다 P형 반도체 영역(11)을 먼저 성장하면, 표면이 거칠어서 활성 영역(12)을 성장할 때 활성 영역(12)의 박막 품질의 악화로 인해서 전기/광학적 특성이 나빠지게 되며, 따라서 에피의 성장 과정에서 P형 반도체 영역(11)을 먼저 성장시키는 상용의 반도체 발광소자는 찾아보기가 어렵다.3 is a view showing an example of a semiconductor light emitting device disclosed in US Patent No. 5,376,580, wherein the semiconductor light emitting device includes a P-type GaAs growth substrate 14, a P-type semiconductor region 11 (eg, AlGaAs); It may include an active region 12 and an N-type semiconductor region 13 (eg, AlGaAs). If the semiconductor light emitting device of this type (the P-type semiconductor region 11 is first grown during the epi growth process) undergoes the electrode formation process as shown in FIG. 2, a so-called P-side up flip chip can be manufactured. there will be However, whether the AlGaInN-based semiconductor light-emitting device or the AlGaInP(As)-based semiconductor light-emitting device is formed prior to growing the active region 12 , if the P-type semiconductor region 11 is grown before the N-type semiconductor region 13 , the surface When the active region 12 is grown due to its roughness, electrical/optical properties are deteriorated due to deterioration of the thin film quality of the active region 12, so a commercial method for growing the P-type semiconductor region 11 first in the epitaxial growth process of semiconductor light emitting devices are difficult to find.

도 4 내지 도 7은 미국 등록특허공보 제US7,067,340호에 제시된 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면으로서, 먼저, 도 4에 도시된 바와 같이, 성장 기판(300; 예: GaAs 기판)에 N형 반도체 영역(302), 활성 영역(304) 및 P형 반도체 영역(306)을 순차로 성장시킨 다음, 연성을 가지며 투명한 접착층(308; Soft transparent adhesive layer; 예: BCB(Bisbenzocyclobutene), 폴리이미드, 글라스, 에폭시)을 이용하여, 임시 기판(310; 예: 글라스, 실리콘, 세라믹, Al2O3)을 P형 반도체 영역(306)에 부착한다. 다음으로, 도 5에 도시된 바와 같이, 임시 기판(310)을 지지 기판으로 하여, 성장 기판(300)을 제거한다. 다음으로, 도 6에 도시된 바와 같이, 성장 기판(300)이 제거된 N형 반도체 영역(302)에, 연성을 가지며 투명한 접착층(312; Soft transparent adhesive layer; 예: BCB(Bisbenzocyclobutene), 폴리이미드, 글라스, 에폭시)을 이용하여, 투광성 기판(314; 예: 투광성을 가지는 기판(사파이어, 글라스, GaP, SiC))을 부착한 다음, 연성을 가지는 투명한 접착층(308)과 임시 기판(310)을 제거한다. 마지막으로, 도 7에 도시된 바와 같이, 식각을 통해 P형 반도체 영역(306)과 활성 영역(304)의 일부를 제거한 다음, N형 반도체 영역(302)과 P형 반도체 영역(306) 각각에, N측 전극(316,318,320)과 P측 전극(316,318,322)을 형성하여 반도체 발광소자를 제조한다. 전극(316)은 금속 반사층(예: Au, Al, Ag, Ag 합금)이며, 전극(318)은 장벽층(예: Ni, W, TiN, WN, Pt, ZnO, ITO)이고, 전극(320,322)은 본딩 패드층(예: Au, Al)이다. 도 4 내지 도 7에 제시된 반도체 발광소자는 도 3에 제시된 반도체 발광소자와 달리, 에피의 성장 과정이 아니라, 칩 공정을 통해 P-side up 플립칩을 제조하였다는 점에서 차이를 가진다. 그러나, 임시 기판(310)의 부착과 투광성 기판(314)의 부착에 있어, 부착 물질로 동일한 연성을 가지며 투명한 접착층(308, 312)을 사용하므로, 투광성 기판(314)을 부착하는 공정에서 연성을 가지며 투명한 접착층(308)의 변형과 국부적인 본딩 계면 내의 공극(Void)이 생길 수 있으며, 또한 임시 기판(310)과 연성을 가지며 투명한 접착층(308)을 제거하는 공정에서 연성을 가지며 투명한 접착층(312)이 손상을 입을 수 있어 개선이 필요하다 하겠다. 또한 N형 반도체 영역(302), 활성 영역(304) 및 P형 반도체 영역(306)을 순차로 성장시킨 성장 기판(300; 예: GaAs 기판)은 성장 기판(300)과 성장된 물질들(302, 304, 306) 간의 격자 상수(Lattice Constant) 및 열팽창 계수(CTE; Coefficient of Thermal Expansion) 차이로 발생된 스트레스(Stress)로 인해 웨이퍼 휨(Bowing)이 심한 상태이고, 이러한 강한 스트레스를 품고 있는 성장 기판(300)을 연성을 가지며 투명한 접착층(308)을 이용해서 임시 기판(310)과 부착할 때 연성을 갖는 투명한 접착층(308)의 약한 결합력(Bonding Strength)과 국부적인 본딩 계면 내의 공극(Void) 발생으로 인해서 공정 중에 손상, 특히 기판 깨짐과 미세 크랙 등이 비일비재한 상황이 발생되고 있다.4 to 7 are views illustrating an example of a method for manufacturing a semiconductor light emitting device disclosed in US Patent No. US7,067,340. First, as shown in FIG. 4, a growth substrate 300 (eg: GaAs) An N-type semiconductor region 302, an active region 304, and a P-type semiconductor region 306 are sequentially grown on the substrate), and then a soft transparent adhesive layer 308 (Soft transparent adhesive layer; for example, BCB (Bisbenzocyclobutene)) , polyimide, glass, epoxy), a temporary substrate 310 (eg, glass, silicon, ceramic, Al 2 O 3 ) is attached to the P-type semiconductor region 306 . Next, as shown in FIG. 5 , the growth substrate 300 is removed using the temporary substrate 310 as a support substrate. Next, as shown in FIG. 6 , in the N-type semiconductor region 302 from which the growth substrate 300 is removed, a soft transparent adhesive layer 312 (eg, bisbenzocyclobutene (BCB), polyimide) is flexible and transparent. , glass, epoxy), attaching a light-transmitting substrate 314 (eg, a light-transmitting substrate (sapphire, glass, GaP, SiC)), and then attaching a flexible transparent adhesive layer 308 and a temporary substrate 310 Remove. Finally, as shown in FIG. 7 , a portion of the P-type semiconductor region 306 and the active region 304 is removed through etching, and then, the N-type semiconductor region 302 and the P-type semiconductor region 306 are respectively formed. , N-side electrodes 316 , 318 , and 320 and P-side electrodes 316 , 318 and 322 are formed to manufacture a semiconductor light emitting device. Electrode 316 is a metal reflective layer (eg, Au, Al, Ag, Ag alloy), electrode 318 is a barrier layer (eg, Ni, W, TiN, WN, Pt, ZnO, ITO), and electrodes 320 and 322 ) is a bonding pad layer (eg, Au, Al). The semiconductor light emitting device shown in FIGS. 4 to 7 is different from the semiconductor light emitting device shown in FIG. 3 in that the P-side up flip chip is manufactured through a chip process rather than an epitaxial growth process. However, in the attachment of the temporary substrate 310 and the attachment of the light-transmitting substrate 314 , since the transparent adhesive layers 308 and 312 having the same ductility as the attachment material are used, the ductility in the process of attaching the light-transmitting substrate 314 is reduced. The transparent adhesive layer 308 may be deformed and a void may be generated in the local bonding interface. Also, the flexible and transparent adhesive layer 312 having ductility with the temporary substrate 310 and in the process of removing the transparent adhesive layer 308 . ) may be damaged, so it needs improvement. In addition, the growth substrate 300 (eg, a GaAs substrate) on which the N-type semiconductor region 302 , the active region 304 , and the P-type semiconductor region 306 are sequentially grown is formed with the growth substrate 300 and the grown materials 302 . , 304, 306) between the lattice constant (Lattice Constant) and the coefficient of thermal expansion (CTE) due to the stress (Stress) generated by the difference between the wafer bowing (Bowing) is a severe state, such a strong growth When the substrate 300 is attached to the temporary substrate 310 using the flexible and transparent adhesive layer 308, the weak bonding strength of the flexible transparent adhesive layer 308 and the void in the local bonding interface (Void) Due to the occurrence, damage during the process, in particular, substrate breakage and micro-cracks, are not uncommon.

도 12는 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(100), 성장 기판(100) 위에 성장되는 제1 반도체 영역(300; 예: n형 반도체 영역), 제1 반도체 영역(300) 위에 성장되는 활성 영역(400), 활성 영역(400) 위에 성장되는 제2 반도체 영역(500; 예: p형 반도체 영역), 제2 반도체 영역(500) 위에 형성되는 반사막으로 기능하는 전극(901,902,903) 그리고 식각되어 노출된 제1 반도체 영역(300) 위에 형성되는 전극(800)을 포함한다. 제1 반도체 영역(300)과 제2 반도체 영역(500)은 그 도전성을 반대로 하는 것이 가능하다. 바람직하게는, 성장 기판(100)과 제1 반도체 영역(300) 사이에 버퍼 영역(도시 생략)이 구비된다. 이러한 구조의 칩, 즉 성장 기판(100)의 반대 측에 전극(901,902,903) 및 전극(800) 모두가 형성되어 있고, 전극(901,902,903)이 반사막으로 기능하는 형태의 칩을 플립칩이라 한다. 전극(901,902,903)은 반사율이 높은 전극(901; 예: Ag), 본딩을 위한 전극(903; 예: Au) 그리고 전극(901) 물질과 전극(903) 물질 사이의 확산을 방지하는 전극(902; 예: Ni)으로 이루어진다. 이러한 금속 반사막 구조는 반사율이 높고, 전류 확산에 이점을 가진다. 그러나, 성장 기판(100) 측이 아니라, 전극(901,902,903) 및 전극(800) 측이 본딩에 이용되므로, 전극(901,902,903)과 전극(800) 간의 높이차로 인해 본딩시 플립칩에 구조적 기울어짐(높이차)이 발생한다.12 is a view showing an example of a semiconductor light emitting device disclosed in U.S. Patent No. 7,262,436, in which the semiconductor light emitting device includes a growth substrate 100 and a first semiconductor region 300 grown on the growth substrate 100; for example: n-type semiconductor region), an active region 400 grown on the first semiconductor region 300 , a second semiconductor region 500 grown on the active region 400 (eg, a p-type semiconductor region), a second semiconductor region ( It includes electrodes 901 , 902 , and 903 serving as a reflective film formed on the 500 ) and an electrode 800 formed on the exposed first semiconductor region 300 by etching. It is possible for the first semiconductor region 300 and the second semiconductor region 500 to have opposite conductivity. Preferably, a buffer region (not shown) is provided between the growth substrate 100 and the first semiconductor region 300 . A chip having such a structure, that is, a chip in which all of the electrodes 901 , 902 , 903 and the electrode 800 are formed on the opposite side of the growth substrate 100 , and the electrodes 901 , 902 , and 903 function as a reflective film is called a flip chip. The electrodes 901, 902, and 903 include an electrode 901 having a high reflectance (eg, Ag), an electrode 903 for bonding (eg, Au), and an electrode 902 preventing diffusion between the material of the electrode 901 and the material of the electrode 903; Example: Ni). Such a metal reflective film structure has a high reflectance and an advantage in current diffusion. However, since the electrode 901, 902, 903 and the electrode 800 side are used for bonding, not the growth substrate 100 side, the structural inclination (height) to the flip chip during bonding due to the height difference between the electrodes 901, 902, 903 and the electrode 800. car) occurs.

도 13은 미국 등록특허공보 제9,466,768호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(100), 성장 기판(100)에 성장되는 버퍼 영역(200), 버퍼 영역(200)위에 성장되는 제1 반도체 영역(300), 제1 반도체 영역(300) 위에 성장되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성 영역(400), 활성 영역(400) 위에 성장되는 제2 반도체 영역(500)을 구비한다. 성장 기판(100)으로 주로 사파이어, SiC, Si, GaN 등이 이용되며, 성장 기판(100)은 최종적으로 제거될 수 있고, 버퍼 영역(200)은 생략될 수 있다. 제1 반도체 영역(300)과 제2 반도체 영역(500)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. 각각의 반도체층(200,300,400,500)이 다층으로 구성될 수 있으며, 추가의 층이 구비될 수도 있다. 한편, 도 12와 달리 반사막으로 기능하는 전극(901,902,903) 대신에 비도전성 반사막(910)이 구비되어 있다. 비도전성 반사막(910)은 단층의 유전체막(예: SiOx, TiOx, Ta2O5, MgF2), 다층의 유전체막, DBR 반사막(예: SiO2/TiO2)으로 이루어지거나 이들의 조합으로 이루질 수 있다. 전류의 공급을 위해, 전극(920,930)과 전극(800,810)이 구비되어 있고, 전극(920)과 전극(930)의 연결을 위해 비도전성 반사막(910)을 관통하는 전기적 연결(940)이 형성되어 있다. 제1 반도체 영역(300)과 제2 반도체 영역(500)의 전류 확산을 위해 가지 전극(810)과 가지 전극(930)이 구비될 수 있으며, 제2 반도체 영역(500)의 전류 확산을 보다 원활하게 하기 위해 투광성 도전막(600; 예: ITO, TCO)이 형성되어 있다. 그러나 이러한 구성의 경우에도 마찬가지로, 전극(920)과 전극(800) 간에는 구조적 기울어짐(높이차)을 가진다. 미설명 부호는 950는 전류 차단층(CBL; Current Blocking layer)이다.13 is a view showing an example of a semiconductor light emitting device disclosed in U.S. Patent No. 9,466,768. The semiconductor light emitting device includes a growth substrate 100, a buffer region 200 grown on the growth substrate 100, and a buffer region ( 200), the first semiconductor region 300 is grown on the first semiconductor region 300, and the active region 400 is grown on the first semiconductor region 300 and generates light through recombination of electrons and holes, and the second is grown on the active region 400 A semiconductor region 500 is provided. Sapphire, SiC, Si, GaN, etc. are mainly used as the growth substrate 100 , the growth substrate 100 may be finally removed, and the buffer region 200 may be omitted. The positions of the first semiconductor region 300 and the second semiconductor region 500 may be changed, and in the group III nitride semiconductor light emitting device, they are mainly made of GaN. Each of the semiconductor layers 200 , 300 , 400 , and 500 may be composed of multiple layers, and additional layers may be provided. Meanwhile, unlike FIG. 12 , a non-conductive reflective film 910 is provided instead of the electrodes 901 , 902 , and 903 serving as a reflective film. The non-conductive reflective film 910 is made of a single-layer dielectric film (eg , SiO x , TiO x , Ta 2 O 5 , MgF 2 ), a multi-layered dielectric film, or a DBR reflective film (eg, SiO 2 /TiO 2 ), or a combination thereof. can be made in combination. For the supply of current, electrodes 920 and 930 and electrodes 800 and 810 are provided, and an electrical connection 940 passing through the non-conductive reflective film 910 is formed to connect the electrode 920 and the electrode 930. have. A branch electrode 810 and a branch electrode 930 may be provided for current diffusion between the first semiconductor region 300 and the second semiconductor region 500 , and the current diffusion of the second semiconductor region 500 may be more smoothly A light-transmitting conductive film 600 (eg, ITO, TCO) is formed. However, also in this configuration, there is a structural inclination (height difference) between the electrode 920 and the electrode 800 . Unexplained reference numeral 950 denotes a current blocking layer (CBL).

도 14는 일본 공개특허공보 제2006-120913호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(100), 성장 기판(100) 위에 성장되는 버퍼 영역(200), 버퍼 영역(200) 위에 성장되는 제1 반도체 영역(300), 제1 반도체 영역(300) 위에 성장되는 활성 영역(400), 활성 영역(400) 위에 성장되는 제2 반도체 영역(500), 제2 반도체 영역(500) 위에 형성되며, 전류 확산 기능을 하는 투광성 도전막(600; 예: ITO, TCO), 투광성 도전막(600) 위에 형성되는 전극(700) 그리고 식각되어 노출된 제1 반도체 영역(300) 위에 형성되는 전극(800)을 포함한다. 그리고 투광성 도전막(600) 위에는 분포 브래그 리플렉터(900; DBR: Distributed Bragg Reflector)와 금속 반사막(904)이 구비되어 있다. 전극(800)의 높이를 전극(700)의 높이에 맞추어 형성함으로써, 본딩시 플립칩의 구조적 기울어짐(높이차)을 해소할 수 있다. 그러나, 전극(700)과 전극(800)의 형성을 별도로 해야 하는 단점을 가진다.14 is a view showing an example of a semiconductor light emitting device disclosed in Japanese Patent Application Laid-Open No. 2006-120913. The semiconductor light emitting device includes a growth substrate 100, a buffer region 200 grown on the growth substrate 100, and a buffer. A first semiconductor region 300 grown on the region 200 , an active region 400 grown on the first semiconductor region 300 , a second semiconductor region 500 grown on the active region 400 , and a second semiconductor A light-transmitting conductive film 600 (eg, ITO, TCO) formed on the region 500 and having a current diffusion function, an electrode 700 formed on the light-transmitting conductive film 600 , and a first semiconductor region 300 exposed by etching ) and an electrode 800 formed thereon. In addition, a distributed Bragg reflector (DBR) and a metal reflection film 904 are provided on the transmissive conductive film 600 . By forming the height of the electrode 800 to match the height of the electrode 700 , the structural inclination (height difference) of the flip chip during bonding can be eliminated. However, it has a disadvantage that the electrode 700 and the electrode 800 must be separately formed.

도 15는 미국 등록특허공보 제9,748,446호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 도 2에 도시된 바와 같이, 성장 기판(100), 버퍼 영역(200), 제1 반도체 영역(300), 활성 영역(400), 제2 반도체 영역(500), 투광성 도전막(600), 비도전성 반사막(910), 전극(920,930,940), 전극(800,810) 그리고 전류 차단층(950)을 포함한다. 다만, 전극(800)과 전극(920) 간의 구조적 기울어짐(높이차)을 줄이기 위해 전극(800)이 비도전성 반사막(920) 위에 형성되어 있으며, 가지 전극(810)과 전극(800)의 전기적 연결을 위해 비도전성 반사막(910)을 관통하는 전기적 연결(820)이 이용된다.FIG. 15 is a view showing an example of a semiconductor light emitting device disclosed in US Patent No. 9,748,446. As shown in FIG. 2 , the semiconductor light emitting device includes a growth substrate 100, a buffer region 200, and a first semiconductor. The region 300, the active region 400, the second semiconductor region 500, the transmissive conductive film 600, the non-conductive reflective film 910, the electrodes 920, 930, 940, the electrodes 800, 810, and the current blocking layer 950 are formed. include However, in order to reduce the structural inclination (height difference) between the electrode 800 and the electrode 920 , the electrode 800 is formed on the non-conductive reflective film 920 , and the branch electrode 810 and the electrode 800 are electrically connected to each other. An electrical connection 820 penetrating through the non-conductive reflective film 910 is used for connection.

이외에도 반도체층을 식각하여 비아홀을 형성하고, 여기에 N측 전극을 형성하여, P측 전극과의 높이차를 없앤 예들을 일본 공개특허공보 제S55-009442호 등에서 찾아볼 수 있다.In addition, examples in which a via hole is formed by etching a semiconductor layer and an N-side electrode is formed therein to eliminate a height difference with the P-side electrode can be found in Japanese Patent Laid-Open No. S55-009442 or the like.

도 16은 미국 등록특허공보 제9,236,524호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 비도전성 반사막(910)의 구성을 제외하면 도 15에 제시된 것과 동일한 구성을 가지는 반도체 발광소자가 제시되어 있다. 비도전성 반사막(910)은 DBR을 형성하는 유전체막(910d,910e)에 더하여, 두꺼운 유전체막(910c)을 추가로 구비하여 전극(800)과 전극(920) 간의 구조적 기울어짐(높이차)을 제거한다. 한편 물리 기상 증착법(PVD; Physical Vapor Deposition)으로 증착되는 DBR을 형성하는 유전체막(910d,910e)과 달리, 화학 기상 증착법(CVD; Chemical Vapor Deposition)으로 두꺼운 유전체막(910c)을 형성함으로써, 스텝 커버리지(Step Coverage)를 향상시켜서 전체적으로 안정적인 비도전성 반사막(910)을 형성하는 기술을 제시하고 있다.FIG. 16 is a view showing an example of the semiconductor light emitting device disclosed in US Patent No. 9,236,524. A semiconductor light emitting device having the same configuration as that shown in FIG. 15 is presented except for the configuration of the non-conductive reflective film 910. . The non-conductive reflective film 910 is provided with a thick dielectric film 910c in addition to the dielectric films 910d and 910e forming the DBR to reduce the structural inclination (height difference) between the electrode 800 and the electrode 920 . Remove. On the other hand, unlike the dielectric films 910d and 910e that form the DBR deposited by physical vapor deposition (PVD), the thick dielectric film 910c is formed by chemical vapor deposition (CVD). A technique for forming the overall stable non-conductive reflective film 910 by improving the step coverage is presented.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This will be described later in 'Specific Contents for Implementation of the Invention'.

여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).Herein, a general summary of the present disclosure is provided, which should not be construed as limiting the scope of the present disclosure (This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).

본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 플립칩인 반도체 발광소자를 제조하는 방법에 있어서, N형을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 통해 빛을 생성하는 활성 영역, P형을 가지는 제2 반도체 영역이 순차로 형성된 성장 기판을 제공하는 단계; 제2 반도체 영역 측에 제1 투광성 기판을 본딩하는 단계; 성장 기판을 제1 반도체 영역 측으로부터 제거하는 단계; 성장 기판이 제거된 제1 반도체 영역 측에 접착층을 이용하여 제2 투광성 기판을 부착하는 단계; 제1 투광성 기판을 제2 반도체 영역 측으로부터 레이저 어블레이션(Laser Ablation)하는 단계; 제2 반도체 영역과 활성 영역의 일부를 제거하여 제1 반도체 영역의 일부를 노출하는 단계; 그리고, 노출된 제1 반도체 영역과 제2 반도체 영역 각각의 위에 플립칩의 제1 전극과 플립칩의 제2 전극을 형성하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법에 관한 것이다.According to one aspect according to the present disclosure (According to one aspect of the present disclosure), in a method of manufacturing a flip-chip semiconductor light emitting device, light is emitted through a first semiconductor region having an N-type and recombination of electrons and holes. providing a growth substrate in which an active region and a second semiconductor region having a P-type are sequentially formed; bonding the first light-transmitting substrate to the side of the second semiconductor region; removing the growth substrate from the first semiconductor region side; attaching a second light-transmitting substrate to the side of the first semiconductor region from which the growth substrate is removed using an adhesive layer; laser ablation of the first light-transmitting substrate from the side of the second semiconductor region; removing a portion of the second semiconductor region and the active region to expose a portion of the first semiconductor region; and forming a first electrode of a flip chip and a second electrode of a flip chip on the exposed first semiconductor region and the second semiconductor region, respectively.

본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체 영역; 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역; 제1 반도체 영역과 제2 반도체 영역 사이에 개재되며, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역; 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역에 위치하며, 제1 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제1 전극; 그리고, 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 다른 제1 반도체 영역에 위치하며, 절연층을 개재하여 제1 반도체 영역과 절연되며, 제2 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제2 전극;을 포함하는 반도체 발광소자가 제공된다.According to another aspect of the present disclosure (According to another aspect of the present disclosure), there is provided a semiconductor light emitting device, comprising: a first semiconductor region having a first conductivity; a second semiconductor region having a second conductivity different from the first conductivity; an active region interposed between the first semiconductor region and the second semiconductor region and generating light by recombination of electrons and holes; a first electrode positioned in the first semiconductor region exposed by removing a portion of the first semiconductor region, the active region, and the second semiconductor region, in electrical communication with the first semiconductor region, and functioning as a flip-chip bonding pad; In addition, a portion of the first semiconductor region, the active region, and the second semiconductor region are removed and located in another first semiconductor region exposed, insulated from the first semiconductor region through an insulating layer, and electrically connected to the second semiconductor region A semiconductor light emitting device including a second electrode communicating and functioning as a flip chip bonding pad is provided.

본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체 영역; 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역; 제1 반도체 영역과 제2 반도체 영역 사이에 개재되며, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역; 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역에 위치하며, 제1 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제1 전극; 그리고, 제2 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제2 전극;을 포함하며, 제1 전극은 비발광 영역인 제2 반도체 영역 위로 이어져 있는 반도체 발광소자가 제공된다.According to another aspect of the present disclosure (According to another aspect of the present disclosure), there is provided a semiconductor light emitting device, comprising: a first semiconductor region having a first conductivity; a second semiconductor region having a second conductivity different from the first conductivity; an active region interposed between the first semiconductor region and the second semiconductor region and generating light by recombination of electrons and holes; a first electrode positioned in the first semiconductor region exposed by removing a portion of the first semiconductor region, the active region, and the second semiconductor region, in electrical communication with the first semiconductor region, and functioning as a flip-chip bonding pad; The semiconductor light emitting device includes a second electrode in electrical communication with the second semiconductor region and functioning as a flip-chip bonding pad, wherein the first electrode extends over the second semiconductor region, which is a non-emission region.

본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체 영역; 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역; 제1 반도체 영역과 제2 반도체 영역 사이에 개재되며, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역; 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제1 전극; 제2 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제2 전극; 그리고, 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역을 메우며(filling), 제1 전극과 제2 전극의 아래에 놓이는 절연층;을 포함하는 반도체 발광소자가 제공된다.According to another aspect of the present disclosure (According to another aspect of the present disclosure), there is provided a semiconductor light emitting device, comprising: a first semiconductor region having a first conductivity; a second semiconductor region having a second conductivity different from the first conductivity; an active region interposed between the first semiconductor region and the second semiconductor region and generating light by recombination of electrons and holes; a first electrode in electrical communication with the first semiconductor region exposed by removing a portion of the first semiconductor region, the active region, and the second semiconductor region, and functioning as a flip-chip bonding pad; a second electrode in electrical communication with the second semiconductor region and functioning as a flip-chip bonding pad; In addition, a portion of the first semiconductor region, the active region, and the second semiconductor region are removed to fill the exposed first semiconductor region, and an insulating layer disposed under the first electrode and the second electrode; A device is provided.

본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자에 있어서, 투광성 기판; 순차로 성장된, 제1 도전성을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역, 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역을 구비하는 반도체 발광소자 칩;으로서, 제1 반도체 영역과 전기적으로 연결되는 제1 전극과 제2 반도체 영역과 전기적으로 연결되어 있는 제2 전극을 구비하는 제1 반도체 발광소자 칩; 투광성 기판과 제1 반도체 발광소자 칩의 제1 반도체 영역 측을 결합하는 접착층; 그리고 적어도 제1 반도체 발광소자 칩과 접착층을 덮는 패시베이션층;을 포함하는 반도체 발광소자가 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a semiconductor light emitting device, a light-transmitting substrate; A semiconductor light emitting comprising a first semiconductor region having a first conductivity, an active region generating light by using recombination of electrons and holes, and a second semiconductor region having a second conductivity different from the first conductivity, which are sequentially grown A device chip; comprising: a first semiconductor light emitting device chip having a first electrode electrically connected to a first semiconductor region and a second electrode electrically connected to a second semiconductor region; an adhesive layer bonding the light transmitting substrate and the first semiconductor region side of the first semiconductor light emitting device chip; and a passivation layer covering at least the first semiconductor light emitting device chip and the adhesive layer.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This will be described later in 'Specific Contents for Implementation of the Invention'.

도 1은 미국 공개특허공보 제US2019/0067255호에 제시된 반도체 발광 구조물의 일 예를 나타내는 도면,
도 2는 미국 공개특허공보 제US2019/0067525호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 3은 미국 등록특허공보 제US5,376,580호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 4 내지 도 7은 미국 등록특허공보 제US7,067,340호에 제시된 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면,
도 8 내지 도 11은 본 개시에 따라 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면,
도 12는 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 13은 미국 등록특허공보 제9,466,768호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 14는 일본 공개특허공보 제2006-120913호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 15는 미국 등록특허공보 제9,748,446호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 16은 미국 등록특허공보 제9,236,524호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 17은 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면,
도 18은 도 17에 제시된 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면,
도 19는 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 20은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 21은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면,
도 22는 도 21에 제시된 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면,
도 23은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 24 및 도 25는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 26은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 나타내는 도면,
도 27은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 28은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면.
1 is a view showing an example of a semiconductor light emitting structure presented in US Patent Publication No. US2019/0067255,
2 is a view showing an example of a semiconductor light emitting device presented in US Patent Publication No. US2019/0067525,
3 is a view showing an example of a semiconductor light emitting device presented in US Patent Publication No. US5,376,580;
4 to 7 are views showing an example of a method for manufacturing a semiconductor light emitting device presented in US Patent Publication No. US7,067,340;
8 to 11 are views showing an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;
12 is a view showing an example of a semiconductor light emitting device presented in US Patent No. 7,262,436;
13 is a view showing an example of a semiconductor light emitting device presented in US Patent No. 9,466,768;
14 is a view showing an example of a semiconductor light emitting device disclosed in Japanese Patent Application Laid-Open No. 2006-120913;
15 is a view showing an example of a semiconductor light emitting device presented in US Patent No. 9,748,446;
16 is a view showing an example of a semiconductor light emitting device presented in US Patent No. 9,236,524;
17 is a view showing an example of a semiconductor light emitting device according to the present disclosure;
18 is a view showing an example of a method of manufacturing the semiconductor light emitting device shown in FIG. 17;
19 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
20 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
21 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
22 is a view showing an example of a method of manufacturing the semiconductor light emitting device shown in FIG. 21;
23 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
24 and 25 are views showing another example of a semiconductor light emitting device according to the present disclosure;
26 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
27 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
28 is a view showing another example of a semiconductor light emitting device according to the present disclosure;

이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings (The present disclosure will now be described in detail with reference to the accompanying drawing(s)).

도 8 내지 도 11은 본 개시에 따라 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면이다.8 to 11 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.

먼저, 도 8(a)에 도시된 바와 같이, 성장 기판(10)에 순차로 제1 반도체 영역(30; 예: N형 반도체 영역), 활성 영역(40; 예: MQWs) 및 제2 반도체 영역(50: P형 반도체 영역)을 성장시킨다. 제1 반도체 영역(30), 활성 영역(40) 및 제2 반도체 영역(50) 각각이 단층 또는 다층으로 이루어질 수 있으며, 버퍼 영역(20)과 같은 필요한 층들이 추가될 수 있음은 물론이다. 적색을 발광하는 반도체 발광소자의 경우에 GaAs 기판과 AlGaInP(As)계 반도체가 이용될 수 있으며, 녹색, 청색, 자외선을 발광하는 반도체 발광소자의 경우에, 사파이어 기판과 AlGaInN계 반도체가 이용될 수 있다. 예를 들어, 버퍼 영역(20)은 스트레스 완화와 박막 품질 개선을 위해 씨앗층(22; Nucleation layer)과 도핑되지 않은 반도체 영역(23; un-doped semiconductor region)을 포함하여 통상 4㎛ 전후의 두께로 구성될 수 있다. 제1 반도체 영역(30)이 2.5㎛의 두께를 가질 수 있고, 활성 영역(40)이 수십 nm의 가질 수 있으며, 제2 반도체 영역(50)이 수십 nm에서 수 ㎛의 두께를 가질 수 있으며, 전체적으로 통상 6㎛~10㎛ 정도의 두께를 가질 수 있다. 레이저 어블레이션이 이용되는 경우에, 씨앗층(22)과 도핑되지 않은 반도체 영역(23) 사이에는 희생층(미도시)이 구비될 수 있으며, 씨앗층(22)이 희생층으로 기능할 수도 있다.First, as shown in FIG. 8A , a first semiconductor region 30 (eg, an N-type semiconductor region), an active region 40 (eg, MQWs) and a second semiconductor region are sequentially formed on the growth substrate 10 . (50: P-type semiconductor region) is grown. Each of the first semiconductor region 30 , the active region 40 , and the second semiconductor region 50 may be formed of a single layer or multiple layers, and of course, necessary layers such as the buffer region 20 may be added. In the case of a semiconductor light emitting device that emits red light, a GaAs substrate and an AlGaInP(As) based semiconductor may be used, and in the case of a semiconductor light emitting device that emits green, blue, and ultraviolet light, a sapphire substrate and an AlGaInN based semiconductor may be used. have. For example, the buffer region 20 includes a seed layer 22 and an un-doped semiconductor region 23 in order to relieve stress and improve the quality of the thin film, and generally have a thickness of about 4 μm. can be composed of The first semiconductor region 30 may have a thickness of 2.5 μm, the active region 40 may have a thickness of several tens of nm, and the second semiconductor region 50 may have a thickness of several tens of nm to several μm, In general, it may have a thickness of about 6 μm to 10 μm overall. When laser ablation is used, a sacrificial layer (not shown) may be provided between the seed layer 22 and the undoped semiconductor region 23 , and the seed layer 22 may function as a sacrificial layer .

다음으로, 도 8(b)에 도시된 바와 같이, 제2 반도체 영역(50) 위에 보호층(60)을 형성한다. 보호층(60)은 에칭 공정을 포함한 후속 공정에서 반도체 영역(30,40,50)을 보호하기 위하여 SiO2, SiNx과 같은 유전성 물질로 된 보호층(60)을 형성하는 것이 바람직하다.Next, as shown in FIG. 8B , a protective layer 60 is formed on the second semiconductor region 50 . The protective layer 60 is preferably formed of a dielectric material such as SiO 2 , SiN x to protect the semiconductor regions 30 , 40 , and 50 in a subsequent process including an etching process.

다음으로, 도 8(c) 및 도 8(d)에 도시된 바와 같이, 제1 투광성 기판(70)을 준비하고, 제1 투광성 기판(70)과 반도체 영역(30,40,50)을 결합한다. 제1 투광성 기판(70)과 반도체 영역(30,40,50)의 결합에는 BCB와 Silicone 같은 유기물로 된 접착제(adhesives)를 이용하는 종래기술과 달리, 강력한 결합력을 가지며 건식 및 습식 식각(dry & wet etching) 포함 후속 공정에서 반도체 영역 물성 변화 및 공정 중 기계적 손상(크랙, 깨짐)을 발생하지 않도록 금속결합(예: 유텍틱) 공정을 이용한다. 금속결합층(71)이 제1 투광성 기판(70) 측 및 반도체 영역(30,40,50) 측 중의 적어도 일 측, 바람직하게는 양측에 구비된다. 또한, 이후 제1 투광성 기판(70)을 레이저 어블레이션(Laser Ablation)을 이용하여 제거하기 위해 제1 투광성 기판(70)에는 희생층(72)이 반드시 구비되어 있다. 결합 과정에서 반도체 영역(30,40,50)의 크랙 및 깨짐을 방지하는 것이 중요한데, 성장 기판(10)과 열팽창계수의 차이가 크지 않으며, 투광성을 가지는 사파이어를 제1 투광성 기판(70)으로 이용하는 것이 바람직하다. 통상 금속결합을 하는 유텍틱(Eutectic) 물질은 온도별로 사용 용도를 구분할 수 있는데, 본 개시에서는 250℃ 이상 350℃ 이하 공정온도를 갖는 물질로 국한하는데, AuSn(300℃), AuIn(275℃), NiSn(300℃), CuSn(270℃) 등이 바람직하다. 반면에 BCB 유기 접착제 경우는 250℃ 이하에서 본딩하는 것이 바람직하다. 참고로, BCB 유기 접착제 물질 이외에 웨이퍼 본딩용 유기 접착제로 널리 알려진 것들이 많은데, Polyimide(160℃), SU-8(90℃), Parylene(230℃), Epoxy(150℃) 등이 대표적이다. 희생층(72)은 제1 투광성 기판(70) 후면을 통해 입사되는 레이저 빛(Laser Photon)을 강하게 흡수(Absorption)하여 순간적인 광-열화학 분해 반응(Photon-Thermochemical Decomposition Interaction)을 용이하게 일으킬 수 있는 6.2eV 이하의 에너지 밴드갭을 갖는 동시에 단결정 또는 다결정 구조를 갖는 화합물(Epitaxial or Polycrystalline Compounds), 특히 산화물(Oxide)과 질화물(Nitride) 반도체가 대표 화합물인데 산화물 반도체(Oxide Semiconductor)로는 In2O3, SnO2, ITO, ZnO, CdO, PbO, PZT, 이들의 합금 화합물이 바람직하며, 또한 질화물 반도체(Nitride Semiconductor)로는 InN, GaN, AlN, 이들의 합금 화합물이 최적이다.Next, as shown in FIGS. 8( c ) and 8 ( d ), a first light-transmitting substrate 70 is prepared, and the first light-transmitting substrate 70 and the semiconductor regions 30 , 40 , and 50 are combined. do. Unlike the prior art using organic adhesives such as BCB and silicone for bonding the first light-transmitting substrate 70 and the semiconductor regions 30 , 40 , 50 , it has strong bonding strength and is etched by dry and wet etching (dry & wet). In subsequent processes including etching), a metal bonding (eg, eutechnic) process is used to prevent changes in the properties of the semiconductor area and mechanical damage (cracks, cracks) during the process. The metal bonding layer 71 is provided on at least one side, preferably on both sides, of the side of the first light-transmitting substrate 70 and the side of the semiconductor regions 30 , 40 , and 50 . In addition, the sacrificial layer 72 is always provided on the first light-transmitting substrate 70 in order to remove the first light-transmitting substrate 70 using laser ablation. It is important to prevent cracks and cracks in the semiconductor regions 30 , 40 , and 50 during the bonding process, the difference between the growth substrate 10 and the coefficient of thermal expansion is not large, and sapphire having light transmitting properties is used as the first light transmitting substrate 70 . it is preferable In general, eutectic materials with metal bonding can be classified according to temperature, and the present disclosure is limited to materials having a process temperature of 250 ° C or more and 350 ° C or less, AuSn (300 ° C), AuIn (275 ° C) , NiSn (300° C.), CuSn (270° C.), and the like are preferable. On the other hand, in the case of BCB organic adhesive, bonding at 250° C. or lower is preferable. For reference, there are many well-known organic adhesives for wafer bonding other than the BCB organic adhesive material. Polyimide (160℃), SU-8 (90℃), Parylene (230℃), and Epoxy (150℃) are representative. The sacrificial layer 72 strongly absorbs laser light incident through the rear surface of the first light-transmitting substrate 70 to easily cause an instantaneous photo-thermochemical decomposition interaction. Compounds (Epitaxial or Polycrystalline Compounds) that have an energy band gap of less than 6.2 eV and a single crystal or polycrystalline structure, especially oxide and nitride semiconductors, are representative compounds. Oxide semiconductors include In 2 O 3 , SnO 2 , ITO, ZnO, CdO, PbO, PZT, and alloy compounds thereof are preferable, and as a nitride semiconductor, InN, GaN, AlN, and alloy compounds thereof are optimal.

제1 투광성 기판(70) 물질은 성장 기판(GaAs, Sapphire)과 열팽창계수 차이가 2ppm 이하이면서 광학적 투명성을 갖는 물질이면 국한되지 않는다. 일 예로 적색을 발광하는 반도체 발광소자를 위한 GaAs(5.7ppm) 성장 기판의 경우는 열팽창계수가 3.7-7.7ppm이고 광학적으로 투명한 물질이 이용되며, 청색, 녹색, 자외선을 발광하는 반도체 발광소자를 위한 사파이어(Sapphire; 단결정 Al2O3, 6.5ppm) 기판의 경우는 4.5-8.5ppm 이고 광학적으로 투명한 물질이 이용될 수 있다. 이를 모두 만족시키는 대표적 물질은 성장 기판과 동일한 사파이어(단결정 Al2O3) 이외에, E glass(5.5ppm), AlN(4.5ppm), SiC(4.8ppm), Borosilicate glass(4.6ppm) 등이 있다.The material of the first light-transmitting substrate 70 is not limited as long as it has a difference in thermal expansion coefficient of 2 ppm or less from the growth substrate (GaAs, Sapphire) and has optical transparency. For example, in the case of a GaAs (5.7ppm) growth substrate for a semiconductor light emitting device that emits red light, a thermal expansion coefficient of 3.7-7.7 ppm and an optically transparent material are used, and for a semiconductor light emitting device that emits blue, green, and ultraviolet rays In the case of a sapphire (single crystal Al 2 O 3 , 6.5 ppm) substrate, it is 4.5-8.5 ppm and an optically transparent material may be used. Representative materials that satisfy all of these include E glass (5.5ppm), AlN (4.5ppm), SiC (4.8ppm), and borosilicate glass (4.6ppm), in addition to sapphire (single crystal Al 2 O 3 ) identical to the growth substrate.

다음으로, 도 8(e)에 도시된 바와 같이, 성장 기판(10)을 제거한다. GaAs 기판의 경우에, 습식 식각(wet etching)이 이용되며, 사파이어 기판의 경우에, 레이저 어블레이션(Laser Ablation)이 이용될 수 있다. 제1 투광성 기판(70)과 반도체 영역(30,40,50)의 결합에 금속결합을 이용하고, 반도체 영역(30,40,50)에 보호층(60)을 구비하여, 건식 및 습식 식각 또는 레이저 어블레이션의 과정에서 금속결합층(71)과 반도체 영역(30,40,50)이 견딜 수 있게 된다. 바람직하게는 제2 투광성 기판(80; 도 9 참조)과 반도체 영역(30,40,50)을 부착하기에 앞서, 발광소자의 스트레스 완화 및 성능(광출력,동작전압) 개선, 그리고 패시베이션층 형성 등의 용이한 후속 공정을 위해 도핑되지 않은 반도체 영역(23)의 일부 또는 전부를 제거(예: 식각)하는 공정을 수행한다.Next, as shown in FIG. 8( e ), the growth substrate 10 is removed. In the case of a GaAs substrate, wet etching may be used, and in the case of a sapphire substrate, laser ablation may be used. A metal bond is used for bonding the first light-transmitting substrate 70 and the semiconductor regions 30 , 40 , and 50 , and a protective layer 60 is provided on the semiconductor regions 30 , 40 and 50 , so that dry and wet etching or In the process of laser ablation, the metal bonding layer 71 and the semiconductor regions 30 , 40 , and 50 can withstand it. Preferably, prior to attaching the second light-transmitting substrate 80 (refer to FIG. 9) and the semiconductor regions 30, 40, 50, stress relief and performance (optical output, operating voltage) improvement of the light emitting device, and the formation of a passivation layer A process of removing (eg, etching) a part or all of the undoped semiconductor region 23 is performed for an easy subsequent process.

다음으로, 도 9(a)에 도시된 바와 같이, 제2 투광성 기판(80)을 준비하고, 제2 투광성 기판(80) 측 및 반도체 영역(30,40,50) 측 중의 적어도 일 측, 바람직하게는 양측에 접착층(81)을 구비한다. 접착층(81)은 종래와 마찬가지로 BCB 수지와 같은 투광성을 가지는 물질로 형성될 수 있다. 접착층(81)으로 이용될 수 있는 물질은 BCB 유기 접착제 물질 이외에 웨이퍼 본딩용 유기 접착제로 널리 알려진 것들이 많은데, Polyimide(160℃), SU-8(90℃), Parylene(230℃), Epoxy(150℃), Silicone(100-300℃) 등이 대표적이다.Next, as shown in FIG. 9A , a second light-transmitting substrate 80 is prepared, and at least one side of the second light-transmitting substrate 80 side and the semiconductor region 30, 40, 50 side, preferably Preferably, an adhesive layer 81 is provided on both sides. The adhesive layer 81 may be formed of a light-transmitting material, such as BCB resin, as in the prior art. Materials that can be used as the adhesive layer 81 include many well-known organic adhesives for wafer bonding other than the BCB organic adhesive material, Polyimide (160°C), SU-8 (90°C), Parylene (230°C), and Epoxy (150). ℃), silicone (100-300℃), etc.

다음으로, 도 9(b)에 도시된 바와 같이, 제2 투광성 기판(80)과 반도체 영역(30,40,50)을 부착한다. 접착의 과정에 열(상기 사용된 유기 접착제 물질 공정온도)이 발생하지만, 제1 투광성 기판(70)과 반도체 영역(30,40,50)은 금속결합을 통해 강력한 결합력을 가지므로, 이들의 결합이 유지되는데 문제가 없다. 한편, 제1 투광성 기판(70)과 제2 투광성 기판(80)을 동일한 열팽창계수를 가지는 물질(예: 사파이어)로 형성함으로써, 접착층(81)을 강하게 압착하여 제2 투광성 기판(80)과 반도체 영역(30,40,50)을 접착하는데 깨짐을 포함한 손상 등의 문제가 전혀 없다.Next, as shown in FIG. 9B , the second light-transmitting substrate 80 and the semiconductor regions 30 , 40 , and 50 are attached. Although heat (the organic adhesive material process temperature used above) is generated during the bonding process, the first light-transmitting substrate 70 and the semiconductor regions 30, 40, 50 have strong bonding force through metal bonding, so their bonding There is no problem with maintaining this. On the other hand, by forming the first light-transmitting substrate 70 and the second light-transmitting substrate 80 with a material having the same coefficient of thermal expansion (eg, sapphire), the adhesive layer 81 is strongly compressed to form the second light-transmitting substrate 80 and the semiconductor There is no problem of damage including cracking in bonding the regions 30 , 40 , and 50 .

다음으로, 도 9(c)에 도시된 바와 같이, 레이저 어블레이션(Laser Ablation)을 이용하여 제1 투광성 기판(70)이 반도체 영역(30,40,50)과 분리되도록 제거한다. 레이저 어블레이션(Laser Ablation)을 이용함으로써, 제1 투광성 기판(70)의 분리 과정에서 접착층(81)의 손상을 방지할 수 있게 된다.Next, as shown in FIG. 9C , the first light-transmitting substrate 70 is removed to be separated from the semiconductor regions 30 , 40 , and 50 using laser ablation. By using laser ablation, it is possible to prevent damage to the adhesive layer 81 in the separation process of the first light-transmitting substrate 70 .

다음으로, 도 10(a) 및 도 10(b)에 도시된 바와 같이, 금속결합층(71) 및 보호층(60)을 순차로 제거하여, P-side up 플립칩으로 만들 준비를 완료한다. 이러한 과정에 이르기까지 접착층(81)의 손상을 방지하는 한편, 포토리소그라피 공정을 사용하지 않았으며, 전극의 형성이나 발광소자의 핵심인 반도체 영역(30,40,50)의 식각 공정도 없이, 처음부터 웨이퍼 레벨에서 작업을 진행함으로써, 2회의 웨이퍼 본딩 공정을 행함에도 불구하고, 반도체 영역(30,40,50)의 크랙 및 깨짐을 최소화할 수 있게 된다. 또한 성장 기판(10) 제거 후에 연속하여 도핑되지 않은 반도체 영역(23) 일부 또는 전부를 식각하여 최종적으로 제작된 발광소자의 성능과 품질을 한층 더 개선할 수 있는 이점이 있다. 이러한 과정에서, 보호층(60)의 형성, 금속결합층(71)의 사용, 레이저 어블레이션을 이용한 제1 투광성 기판(70)의 제거, 및 제1 투광성 기판(70)과 제2 투광성 기판(80)의 열팽창계수 차의 최소화(통상 이종물질 간 웨이퍼 본딩 시, 깨짐을 방지하기 위한 최대 열팽창계수 차 ≤ 2ppm)가 중요하다 하겠다.Next, as shown in FIGS. 10(a) and 10(b), the metal bonding layer 71 and the protective layer 60 are sequentially removed to prepare a P-side up flip chip. . Until this process, the adhesive layer 81 is prevented from being damaged, and the photolithography process is not used, and without the formation of electrodes or the etching process of the semiconductor regions 30 , 40 , 50 which are the core of the light emitting device, the first Since the operation is performed at the wafer level, it is possible to minimize cracks and cracks in the semiconductor regions 30 , 40 , and 50 despite performing the wafer bonding process twice. In addition, there is an advantage in that the performance and quality of the finally fabricated light emitting device can be further improved by continuously etching some or all of the undoped semiconductor region 23 after the growth substrate 10 is removed. In this process, the formation of the protective layer 60, the use of the metal bonding layer 71, the removal of the first light-transmitting substrate 70 using laser ablation, and the first light-transmitting substrate 70 and the second light-transmitting substrate ( 80), it is important to minimize the difference in the thermal expansion coefficient (normally, the difference in the maximum thermal expansion coefficient ≤ 2ppm to prevent cracking during wafer bonding between dissimilar materials).

다음으로, 도 11(a) 및 도 11(b)에 도시된 바와 같이, 제2 반도체 영역(50)과 활성 영역(40)의 일부를 제거하여 제1 반도체 영역(30)을 노출시킨다.Next, as shown in FIGS. 11A and 11B , the second semiconductor region 50 and a portion of the active region 40 are removed to expose the first semiconductor region 30 .

다음으로, 도 11(c)에 도시된 바와 같이, 투광성 전극(91), 제1 전극(92), 제2 전극(93)을 형성한다. 투광성 전극(91)은 전류 확산이 좋지 않은 제2 반도체 영역(50)의 전류 확산을 원활히 하는 기능을 하며, 주로 투광성 전도 산화막(TCO)으로 이루어지고, 대표적으로 ITO로 이루어진다. 제1 전극(92)과 제2 전극(93)은 제1 반도체 영역(30)과 제2 반도체 영역(50) 각각에 전기적으로 연결되며, 도 7에 제시된 전극(316,318,320,322)과 동일한 구성을 가져 반사기로 기능할 수 있다.Next, as shown in FIG. 11C , a light-transmitting electrode 91 , a first electrode 92 , and a second electrode 93 are formed. The light-transmitting electrode 91 functions to smoothly spread the current in the second semiconductor region 50 having poor current diffusion, and is mainly made of a transmissive conductive oxide film (TCO), typically made of ITO. The first electrode 92 and the second electrode 93 are electrically connected to the first semiconductor region 30 and the second semiconductor region 50, respectively, and have the same configuration as the electrodes 316, 318, 320, and 322 shown in FIG. can function as

다음으로, 도 11(d)에 도시된 바와 같이, 웨이퍼 상태의 반도체 발광소자가 개별의 칩으로 아이솔레이션된다. 이때, 접착층(81)도 제거하여 제2 투광성 기판(80)이 노출되도록 함으로써, 이후 제2 투광성 기판(80)의 스크라이빙&브레이킹 공정을 용이하게 할 수 있다.Next, as shown in Fig. 11(d), the semiconductor light emitting device in a wafer state is isolated as an individual chip. At this time, by removing the adhesive layer 81 to expose the second light-transmitting substrate 80 , it is possible to facilitate the scribing & breaking process of the second light-transmitting substrate 80 .

마지막으로, 도 11(e)에 도시된 바와 같이, 패시베이션층(94; 예: SiO2, Al2O3, SiNx)을 형성하여 소자를 보호한다. 한편, 도시된 바와 같이, 전극(93)의 크기를 줄이고, 패시베이션층(94) 내에 유전체 반사기(DBR 반사기)를 구비함으로써, 전극(93) 대신에 반사기로 기능하도록 할 수 있다. 이러한 유전체 반사기의 일 예가 미국 등록특허공보 제US9,236,524호에 잘 제시되어 있다. 패시베이션층(94)은 기본적으로 유전체 물질(예: SiO2,Al2O3,SiNx)로 반도체 영역(30,40,50)의 상부와 측면을 덮은 후에 높은 반사도를 갖는 금속 물질(예: Ag, Al, Au, Cu, Pt, Cr, Ti, TiW)을 연속적으로 증착 형성하는 다층 구조도 가능하다.Finally, as shown in FIG. 11E , a passivation layer 94 (eg , SiO 2 , Al 2 O 3 , SiN x ) is formed to protect the device. Meanwhile, as shown, by reducing the size of the electrode 93 and providing a dielectric reflector (DBR reflector) in the passivation layer 94 , it can function as a reflector instead of the electrode 93 . An example of such a dielectric reflector is well presented in US Pat. No. 9,236,524. The passivation layer 94 is basically a dielectric material (eg , SiO 2 , Al 2 O 3 , SiN x ) after covering the top and sides of the semiconductor regions 30 , 40 , 50 with a high reflectivity metal material (eg, A multilayer structure in which Ag, Al, Au, Cu, Pt, Cr, Ti, TiW) is continuously deposited and formed is also possible.

도 11(b) 내지 도 11(e)에 제시된 공정의 순서가 바뀔 수 있음은 물론이다. 미니 또는 마이크로 LED 칩의 경우, 사이즈가 기존의 칩(한변의 길이가 일반적으로 300um 이상)에 비해서 아이솔레이션(Isolation) 공정과 메사(MESA) 공정의 사이드월(Side-wall)의 면적이 발광면적에 비해서 큰 영역을 차지하기 때문에 아이솔레이션과 메사의 사이드월을 통한 전기적 흐름을 방지(전기적 부동태화; Passivation)하는 것이 광 밝기와 신뢰성 관점에서 매우 중요하다. 그래서 아이솔레이션과 메사 공정 후에 공정 간에 장시간 대기에 노출되지 않도록 아이솔레이션과 메사 공정 후에 즉시 전기적 부동태화(Passivation) 공정을 시행하는 것이 바람직하다. It goes without saying that the order of the processes shown in FIGS. 11(b) to 11(e) may be changed. In the case of a mini or micro LED chip, the area of the sidewall of the isolation process and the MESA process is smaller than the light emitting area compared to the size of the conventional chip (the length of one side is generally 300um or more). Since it occupies a large area compared to that, it is very important from the viewpoint of light brightness and reliability to isolate and prevent electrical flow through the mesa sidewall (electrical passivation). Therefore, it is desirable to perform an electrical passivation process immediately after the isolation and mesa processes so as not to be exposed to the atmosphere for a long time between processes after the isolation and mesa processes.

도 17은 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 투광성 기판(1), 제1 반도체 영역(2), 활성 영역(3), 제2 반도체 영역(4), 절연층(5), 전류 확산 전극(6), 제1 전극(7) 및 제2 전극(8)을 포함한다.17 is a view illustrating an example of a semiconductor light emitting device according to the present disclosure, wherein the semiconductor light emitting device includes a light-transmitting substrate 1 , a first semiconductor region 2 , an active region 3 , a second semiconductor region 4 , an insulating layer (5), a current spreading electrode (6), a first electrode (7) and a second electrode (8).

투광성 기판(1)은 성장 기판(예: 사파이어, SiC)이거나, 성장 기판이 제거된 상태에서 반도체 영역(2,3,4)에 부착된 투광성 기판일 수 있다. 이 투광성 기판 또한 사파이어, SiC와 같은 물질로 이루어질 수 있으며, 이러한 기판의 예가 도 4 내지 도 11에 제시되어 있다. 투광성 기판(1)은 성장 기판이거나, 도 11에 도시된 바와 같은 제2 투광성 기판(80)으로 이루어질 수 있다.The light-transmitting substrate 1 may be a growth substrate (eg, sapphire, SiC) or a light-transmitting substrate attached to the semiconductor regions 2 , 3 and 4 in a state in which the growth substrate is removed. The light-transmitting substrate may also be made of a material such as sapphire or SiC, and examples of such a substrate are shown in FIGS. 4 to 11 . The light-transmitting substrate 1 may be a growth substrate or may be formed of a second light-transmitting substrate 80 as shown in FIG. 11 .

제1 반도체 영역(2), 활성 영역(3), 제2 반도체 영역(4)은 n형 GaN, InGaN/(In)GaN MQWs, p형 GaN으로 이루어질 수 있으며, 자외선, 청색, 녹색을 발광하는 경우에 AlGaInN계 반도체로 이루어질 수 있고, 적색을 발광하는 경우에, AlGaInP(As)계 반도체로 이루어질 수 있다. 각각의 영역은 단층 또는 다층으로 이루어질 수 있고, 도전성은 서로 바뀔 수 있다. 투광성 기판(1)이 성장 기판인 경우에 제1 반도체 영역(2)과 투광성 기판(1) 사이에 버퍼 영역(20; 도 8 참조)이 구비되는 것이 바람직하다. 더 나아가서는 반도체 발광소자를 직접 발광으로 마이크로 엘이디 디스플레이에 사용되기 위해 전기 주입을 통해 빛의 밝기를 조절하는 패널(다수의 박막 트랜지스터가 정렬 형성된 유리기판, PCB) 상부로 전사되어 전기적으로 연결될 때, 투광성 기판(1)이 제거되고 제1 반도체 영역(2), 활성 영역(3), 제2 반도체 영역(4), 절연층(5), 전류 확산 전극(6), 제1 전극(7) 및 제2 전극(8)으로 구성된 반도체 발광소자도 가능하다.The first semiconductor region 2 , the active region 3 , and the second semiconductor region 4 may be formed of n-type GaN, InGaN/(In)GaN MQWs, or p-type GaN, and emit ultraviolet, blue, and green light. In this case, it may be made of an AlGaInN-based semiconductor, and in the case of emitting red light, it may be made of an AlGaInP(As)-based semiconductor. Each region may consist of a single layer or multiple layers, and the conductivity may be interchanged. When the light-transmitting substrate 1 is a growth substrate, it is preferable that a buffer region 20 (refer to FIG. 8 ) is provided between the first semiconductor region 2 and the light-transmitting substrate 1 . Furthermore, when the semiconductor light emitting device is transferred to the upper part of a panel (a glass substrate in which a plurality of thin film transistors are aligned, PCB) that controls the brightness of light through electric injection to be used in a micro LED display by direct light emission and electrically connected, The light-transmitting substrate 1 is removed and the first semiconductor region 2 , the active region 3 , the second semiconductor region 4 , the insulating layer 5 , the current spreading electrode 6 , the first electrode 7 and A semiconductor light emitting device composed of the second electrode 8 is also possible.

절연층(5)은 패시베이션 역할을 하며, 유전체 물질(예: SiO2, Al2O3, SiNx)로 이루어져서 전류의 흐름을 차단하는 한편, 빛의 흡수를 최소화한다.The insulating layer 5 serves as a passivation and is made of a dielectric material (eg , SiO 2 , Al 2 O 3 , SiN x ) to block the flow of current and minimize light absorption.

전류 확산 전극(6)은 제2 전극(8)으로부터 제2 반도체 영역(5)으로 전류를 공급하고, 오믹접촉을 제공하는 역할을 하며, 투광성 도전막(예: ITO), 반사성이 우수한 금속(예: Ag, Au, Al, Ag/Ni/Au), 비도전성 반사막(예: DBR) 및 이들의 조합(예: ITO, ITO/Ag, ITO/DBR)으로 이루어질 수 있다. 비도전성 반사막을 포함하는 경우에, 도 2에 제시된 바와 같이, 제2 전극(8)과 전류 확산 전극(6)의 전기적 연통을 위해, 전기적 연결(94)이 구비된다. 식각되어 노출된 제1 반도체 영역(2) 위의 절연층(5) 상부에도 비도전성 반사막이 구비될 수 있음은 물론이다.The current spreading electrode 6 supplies a current from the second electrode 8 to the second semiconductor region 5 and serves to provide an ohmic contact, a light-transmitting conductive film (eg, ITO), a metal having excellent reflectivity ( Examples: Ag, Au, Al, Ag/Ni/Au), a non-conductive reflective film (eg DBR), and a combination thereof (eg, ITO, ITO/Ag, ITO/DBR). In the case of including the non-conductive reflective film, as shown in FIG. 2 , an electrical connection 94 is provided for electrical communication between the second electrode 8 and the current spreading electrode 6 . It goes without saying that a non-conductive reflective layer may also be provided on the insulating layer 5 on the first semiconductor region 2 exposed by etching.

제1 전극(7)과 제2 전극(8)은 동일한 공정 내에서 형성될 수 있고, 본딩 패드로 역할하며, 예를 들어, Ti/Ni/Au와 같은 구성을 가질 수 있다.The first electrode 7 and the second electrode 8 may be formed in the same process, serve as a bonding pad, and may have, for example, a configuration such as Ti/Ni/Au.

바람직하게는 제1 전극(7)의 아래에 오믹접촉 전극(9; 예: Cr/Al/Ni/Au, Ti/Al/Ni/Au)을 구비함으로써, 구동전압을 낮추고, 제1 전극(7) 및 제2 전극(8) 간의 구조적 기울어짐(높이차)을 줄이는데 역할할 수 있다.Preferably, by providing an ohmic contact electrode 9 (eg, Cr/Al/Ni/Au, Ti/Al/Ni/Au) under the first electrode 7 , the driving voltage is lowered and the first electrode 7 is ) and the second electrode 8 may serve to reduce the structural inclination (height difference).

도시된 바와 같이, 제1 전극(7)이 놓이는 영역뿐만이 아니라 제2 전극(8)이 놓이는 영역에서도, 제2 반도체 영역(4), 활성 영역(3) 및 제1 반도체 영역(2)의 일부를 제거하고, 이들을 형성함으로써, 제1 전극(7)과 제2 전극(8) 간의 높이차를 줄이는 것이 가능해지고, 본딩시 반도체 발광소자가 기울어지므로 인해 발생하는 문제점을 해소할 수 있게 된다. 미니 엘이디, 마이크로 엘이디의 경우에, 크기가 작아 플립칩 본딩시에 동일한 본딩 물질량을 사용하기 때문에, 전기적 쇼트(Short)를 포함하여 품질 리스크 야기될 가능성이 크고, 특히 투광성 기판(1)이 없는 플립칩의 경우(투광성 기판(1)이 제거되면, 반도체 발광소자의 전체의 두께가 150~200㎛에서 10㎛ 이하 정도로 매우 얇아진다.)는 앞선 이슈에 더하여, 크랙 발생률이 한층 높아질 수 있다. 무엇보다도 디스플레이 광원으로 사용할 경우, 발광 패턴이 찌그러지는 현상으로 인해 색편차 및 혼색 야기 가능성이 높고, 구조적인 불균형(Structural Unbalance)으로 인하여 플립 본딩 및 전사 공정시에 플립칩의 틀어짐으로 인해 전기적 및 광학적 품질 이슈가 야기될 수 있다.As shown, the second semiconductor region 4 , the active region 3 and a part of the first semiconductor region 2 not only in the region in which the first electrode 7 is placed but also in the region in which the second electrode 8 is placed By removing and forming them, it is possible to reduce the height difference between the first electrode 7 and the second electrode 8, and it is possible to solve the problem caused by the inclination of the semiconductor light emitting device during bonding. In the case of mini LED and micro LED, since the size is small and the same amount of bonding material is used when bonding the flip chip, there is a high possibility of causing quality risks including electrical short, and especially the flip without the light-transmitting substrate 1 In the case of a chip (when the light-transmitting substrate 1 is removed, the overall thickness of the semiconductor light emitting device becomes very thin from 150 to 200 μm to 10 μm or less), in addition to the above issues, the crack occurrence rate may be further increased. Above all, when used as a display light source, there is a high possibility of causing color deviation and color mixing due to the distortion of the light emitting pattern, and electrical and optical Quality issues may arise.

도 18은 도 17에 제시된 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면으로서, 먼저, 도 18(a)에 도시된 바와 같이, 투광성 기판(1)에 제1 반도체 영역(2), 활성 영역(3) 및 제2 반도체 영역(4)을 준비한다. 다음으로, 도 18(b)에 도시된 바와 같이, 제1 전극(7)과 제2 전극(8)이 형성될 위치(A,B)에서 제2 반도체 영역(4), 활성 영역(3) 및 제1 반도체 영역(2)의 일부를 식각(예: ICP))을 통해 제거한다. 다음으로, 도 18(c)에 도시된 바와 같이, 절연층(5)을 형성하고, 포토리소그라피 공정을 통해 절연층(5)의 일부를 제거한다. 이때 제1 전극(7)이 놓일 위치(C)의 절연층(5)은 개방하고, 제2 전극(2)이 놓일 위치(D)의 절연층(5)은 그대로 두며, 전류 확산 전극(6)이 제2 반도체 영역(4)과 전기적으로 연통할 수 있는 영역(E)을 확보하도록 절연층(5)을 제거하여, 제2 반도체 영역(4)의 일부가 노출되도록 한다. 다음으로, 도 18(d)에 도시된 바와 같이, 전류 확산 전극(6)과 오믹접촉 전극(9)을 형성한다. 다음으로, 도 18(e)에 도시된 바와 같이, 제1 전극(7)과 제2 전극(8)을 형성한다. 바람직하게는, 도 11(e)에 도시된 바와 같이, 페이베이션층(94)이 추가된다.18 is a view showing an example of a method of manufacturing the semiconductor light emitting device shown in FIG. 17. First, as shown in FIG. 18(a), the first semiconductor region 2 on the light-transmitting substrate 1, the active A region 3 and a second semiconductor region 4 are prepared. Next, as shown in FIG. 18( b ), the second semiconductor region 4 and the active region 3 at positions A and B where the first electrode 7 and the second electrode 8 are to be formed. and a portion of the first semiconductor region 2 is removed through etching (eg, ICP). Next, as shown in FIG. 18C , an insulating layer 5 is formed, and a part of the insulating layer 5 is removed through a photolithography process. At this time, the insulating layer 5 at the position (C) where the first electrode 7 is to be placed is opened, and the insulating layer 5 at the position (D) where the second electrode 2 is to be placed is left as it is, and the current spreading electrode 6 ) removes the insulating layer 5 to secure a region E capable of electrically communicating with the second semiconductor region 4 , so that a portion of the second semiconductor region 4 is exposed. Next, as shown in FIG. 18(d), the current spreading electrode 6 and the ohmic contact electrode 9 are formed. Next, as shown in FIG. 18E , the first electrode 7 and the second electrode 8 are formed. Preferably, as shown in Fig. 11(e), a passivation layer 94 is added.

도 19는 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 도 17에 제시된 반도체 발광소자와 비교할 때, ① 제2 전극(8)이 반도체층(2,3,4)의 식각 없이 제2 반도체 영역(4) 위에 형성된 점, ② 제1 전극(1)이 식각되어 노출된 제1 반도체 영역(2; F)으로부터 제2 반도체 영역(4; G)으로 이어져 있는 점, ③ 절연층(5)과 전류 확산 전극(6)의 형성 순서가 바뀐 점에서 차이를 가진다. 이러한 구성을 통해 제1 전극(7)과 제2 전극(8)의 높이차를 줄일 수 있게 된다. 제1 전극(7) 및 오믹접촉 전극(9)의 폭이 반도체 발광소자의 폭(W) 전체에 걸치거나 거의 대부분에 이르도록 형성함으로써, 제2 전극(8)으로부터 영역(G)로의 전류 공급이 차단되어 영역(G)는 활성 영역(4)이 있음에도 불구하고 비발광 영역이 된다. 즉, 도 19에 제시된 반도체 발광소자는 제1 전극(1)을 식각되어 노출된 제1 반도체 영역(2; F)으로부터 비발광 영역(G; 제1 전극(7) 및 오믹접촉 전극(9)을 반도체 발광소자의 폭(W)을 따라 적어도 50%이상 길게 형성하여 제2 전극(8)으로부터의 전류 공급을 차단하는 한편, 영역(G)에서 제1 전극(7)의 아래 절연층(5)이 위치하므로 전류의 공급이 차단됨)인 제2 반도체 영역(4) 위로 이어지도록 구성함으로써, 제1 전극(7)과 제2 전극(8)의 높이차를 해소하는 것이다. 참고로 평면도에서 절연층(5)을 표시하지 않았다.19 is a view showing another example of the semiconductor light emitting device according to the present disclosure. Compared with the semiconductor light emitting device shown in FIG. 17 , ① the second electrode 8 is etched into the semiconductor layers 2 , 3 and 4 . A point formed on the second semiconductor region 4 without the presence of a second semiconductor region 4, ② a point connected from the first semiconductor region 2 (F) exposed by etching the first electrode 1 to the second semiconductor region 4; G, ③ insulation The difference is that the formation order of the layer 5 and the current spreading electrode 6 is reversed. Through this configuration, the height difference between the first electrode 7 and the second electrode 8 can be reduced. By forming the width of the first electrode 7 and the ohmic contact electrode 9 to span the entire width W of the semiconductor light emitting device or to almost reach most of it, current is supplied from the second electrode 8 to the region G This blocked area (G) becomes a non-light-emitting area despite the presence of the active area (4). That is, in the semiconductor light emitting device shown in FIG. 19 , the non-emission region G; the first electrode 7 and the ohmic contact electrode 9 from the first semiconductor region 2 (F) exposed by etching the first electrode 1 . is formed to be at least 50% longer along the width (W) of the semiconductor light emitting device to block the current supply from the second electrode (8), while the insulating layer (5) under the first electrode (7) in the region (G) ) is positioned so that the supply of current is cut off), thereby resolving the height difference between the first electrode 7 and the second electrode 8 by configuring it to extend over the second semiconductor region 4 . For reference, the insulating layer 5 is not shown in the plan view.

도 20은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타내는 도면으로서, 도 19에 제시된 반도체 발광소자와 비교할 때, ① 제1 전극(7) 전체를 제2 반도체 영역(5) 위에 형성한 점, ② 제1 전극(7)과 오믹접촉 전극(9)의 전기적 연통을 위해 절연층(5)에 비아홀(H)을 통해 전기적 연결(11)을 형성한 점에서 차이를 가진다. 이 경우에도, 비아홀(H)을 기준으로 제2 전극(8)의 반대측 영역(I)이 비발광 영역이며, 따라서, 제1 전극(7)을 비발광 영역(G)에 형성함으로써, 제1 전극(7)과 제2 전극(8)의 높이차를 줄이게 된다. 참고로 평면도에서 절연층(5)을 표시하지 않았다.20 is a view showing another example of the semiconductor light emitting device according to the present disclosure. Compared with the semiconductor light emitting device shown in FIG. 19 , ① the entire first electrode 7 is formed on the second semiconductor region 5 . Point, ② It has a difference in that the electrical connection 11 is formed through the via hole H in the insulating layer 5 for electrical communication between the first electrode 7 and the ohmic contact electrode 9 . Even in this case, the region I opposite the second electrode 8 with respect to the via hole H is a non-light-emitting region, and therefore, by forming the first electrode 7 in the non-light-emitting region G, the first The height difference between the electrode 7 and the second electrode 8 is reduced. For reference, the insulating layer 5 is not shown in the plan view.

도 21은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 절연층(5)이 반도체층(2,3,4)의 전체 외관을 따라 형성된 것이 아니라, 반도체층(2,3,4), 전류 확산 전극(6) 및 오믹접촉 전극(9)을 덮으면서 전체적으로 평평하게 형성된다는 점에서 차이를 가진다. 이러한 구성을 통해, 제1 전극(7) 측의 메사 식각 영역(J)의 형태에 관계 없이 제1 전극(7)의 높이를 제2 전극(8)에 맞추는 것이 가능해진다. 이러한 구성은 액상의 절연층(5; 예: BCB, SU-8, Acrylate, SOG와 같은 열경화성 플라스틱)을 이용함으로써 가능해진다. 다른 관점에서 절연층(5)을 기존의 증착법(예: CVD, PVD)이 다른 방법(예: 스핀 코팅)을 이용함으로써, 가능해진다.21 is a view showing another example of a semiconductor light emitting device according to the present disclosure, wherein the insulating layer 5 is not formed along the entire exterior of the semiconductor layers 2, 3, and 4, but the semiconductor layers 2, 3, 4), the current spreading electrode 6 and the ohmic contact electrode 9 are covered with a difference in that they are formed flat as a whole. Through this configuration, it is possible to match the height of the first electrode 7 to the second electrode 8 regardless of the shape of the mesa-etched region J on the side of the first electrode 7 . This configuration is made possible by using a liquid insulating layer (5; thermosetting plastics such as BCB, SU-8, Acrylate, SOG). From a different point of view, the insulating layer 5 is made possible by using a method (eg, spin coating) other than the conventional deposition method (eg, CVD, PVD).

도 22는 도 21에 제시된 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면으로서, 먼저, 도 22(a)에 도시된 바와 같이, 투광성 기판(1)에 제1 반도체 영역(2), 활성 영역(3) 및 제2 반도체 영역(4)을 준비한다. 다음으로, 도 22(b)에 도시된 바와 같이, 제1 전극(7)이 위치하는 영역(J)을 형성한다. 다음으로, 도 22(c)에 도시된 바와 같이, 전류 확산 전극(6)과 오믹접촉 전극(9)을 형성한다. 전류 확산 전극(6) 및/또는 오믹접촉 전극(9)이 반사막 구조(반사성이 우수한 금속 또는 DBR)을 가지는 것이 바람직하며, 후속하여 형성되는 절연층(5)의 광 변색(빛에 의해 광 열화 현상)을 방지하기 위해 금속 반사막을 이용하는 것이 특히 바람직하다. 다음으로 도 22(d)에 도시된 바와 같이, 반도체 영역(2,3,4)을 아이솔레이션하여 투광성 기판(1)을 노출시킨다. 이러한 공정은 도 22(b) 및 도 22(c)에 도시된 공정 이전에 행해질 수 있음은 물론이다. 다음으로 도 11(e)에 도시된 바와 같이, 발광소자의 신뢰성을 향상시키기 위해 PVD 또는 CVD(예: 스퍼터링, PECVD)를 이용하여 절연층(5-1; 예: SiO2)을 형성하는 것이 바람직하다. 다음으로 도 22(f)에 도시된 바와 같이, 절연층(5)을 형성한다. 절연층(5)은 스핀 코팅을 통해 형성될 수 있다. 평탄성을 높이기 위해 필요에 따라 2~3회 걸친 스핀 코팅(Spin Coating)이 사용될 수 있다. 다음으로, 도 22(g)에 도시된 바와 같이, 절연층(5)에 홀을 형성한 후, 제1 전극(7)과 제2 전극(8)을 형성한다. 필요에 따라, 도 22(h)에 도시된 바와 같이, 제1 전극(7)과 제2 전극(8)이 위치한 곳을 제외한 영역의 절연층(5)을 제거(예: 산소(O2) 성분이 포함된 플라즈마 식각)하고, 전극(7,9)의 아래에만 절연층(5)이 형성된 것을 제외하면, 형태적으로 도 9에 제시된 반도체 발광소자와 크게 구분되지 않는 반도체 발광소자를 제공할 수 있게 된다.22 is a view showing an example of a method of manufacturing the semiconductor light emitting device shown in FIG. 21. First, as shown in FIG. 22(a), the first semiconductor region 2 on the light-transmitting substrate 1, the active A region 3 and a second semiconductor region 4 are prepared. Next, as shown in FIG. 22(b) , a region J in which the first electrode 7 is located is formed. Next, as shown in FIG. 22(c), the current spreading electrode 6 and the ohmic contact electrode 9 are formed. It is preferable that the current spreading electrode 6 and/or the ohmic contact electrode 9 have a reflective film structure (metal or DBR having excellent reflectivity), and photodiscoloration (photodegradation by light) of the insulating layer 5 formed subsequently It is particularly preferable to use a metal reflective film to prevent development). Next, as shown in FIG. 22( d ), the semiconductor regions 2 , 3 and 4 are isolated to expose the light-transmitting substrate 1 . Of course, this process may be performed before the process shown in FIGS. 22(b) and 22(c). Next, as shown in FIG. 11(e), in order to improve the reliability of the light emitting device, the insulating layer 5-1 (eg, SiO 2 ) is formed using PVD or CVD (eg, sputtering, PECVD). desirable. Next, as shown in FIG. 22(f), an insulating layer 5 is formed. The insulating layer 5 may be formed through spin coating. In order to increase the flatness, spin coating 2 to 3 times may be used as needed. Next, as shown in FIG. 22( g ), after holes are formed in the insulating layer 5 , the first electrode 7 and the second electrode 8 are formed. If necessary, as shown in FIG. 22(h), the insulating layer 5 is removed in the region except where the first electrode 7 and the second electrode 8 are located (eg, oxygen (O 2 ) Plasma etching containing components), except that the insulating layer 5 is formed only under the electrodes 7 and 9, to provide a semiconductor light emitting device that is not significantly different from the semiconductor light emitting device shown in FIG. be able to

도 23은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 도 11(e)에 제시된 반도체 발광소자와 대동소이하다. 도 7에 제시된 반도체 발광소자의 경우에, 연성을 가지며 투명한 접착층(312)에 의해 투광성 기판(314)과 반도체 영역(302,304,306)을 결합하고 있으므로, 결합력이 뛰지나지 못하다. N형 반도체 영역(302)의 거친 표면을 도입함으로써, 투명한 접착층(312)과 N형 반도체 영역(302)의 접합 면적을 널릴 수 있지만, 이것으로 부족하다. 도 2에 제시된 반도체 발광소자의 경우에도, P형 전류확산층(118; 예: ITO)과 투명 접착층(130)을 매개로 투명 지지 기판(102)과 반도체 영역(104 to 112)의 결합이 이루어지므로 양자의 결합 유지에 문제가 있다. 즉, 1회 또는 2회의 웨이퍼 본딩을 거쳐서, 연성을 가지며 투명한 접착제(312; BCB와 같은 유기 접착제)로 투광성 기판(314) 위에 반도체 영역(302,304,306)이 지지될 때, 반도체 영역(302,304,306)과 투광성 기판(314)의 열팽창계수의 차이로 인해, SMT 공정 중에 또는 공정 후에 Thermo-mechanical Stress로 인해 접착력이 약한 투명한 접착제(312) 상하 경계면에서 박리가 발생할 수 있으며, 특히, 적색 미니 엘이디는 성장 기판이 아닌 투명한 이종기판에 접합하는 구조로서 가장 약한 부분인 유기 접착제 접합 영역에서 박리가 발생할 가능성이 매우 크다. 도 11에 제시된 반도체 발광소자와 마찬가지로, 반도체 발광소자는 투광성 기판(80), 접착층(81), 제1 반도체 영역(30), 활성 영역(40), 제2 반도체 영역(50), 제1 전극(92), 제2 전극(93) 그리고 패시베이션층(94)을 포함한다. 도 11에 제시된 반도체 발광소자와 달리 패시베이션층(94)이 제1 전극(92)과 제2 전극(93)이 형성되기에 앞서 형성되었으나, 반대 순서로 형성되는 것도 가능하다. 바람직하게는 투광성 전극(91)을 포함하며, 도 12 내지 도 22에 제시된 다양한 형태의 전극 구성이 가능하다. 도 7에 도시된 것과 마찬가지로, 제1 반도체 영역(30) 및/또는 투광성 기판(80) 영역에 거친 표면(S,S)을 형성하여, 접착층(81)의 접촉면적을 넓히고, 광추출 효율을 높이는 것이 가능하다. 도 23에 제시된 예에서, 패시베이션층(94)이 제2 반도체 영역(50), 활성 영역(40), 제1 반도체 영역(30) 및 접착층(80)이 제거되어 노출된 투광성 기판(80)으로 이어져 있다. 따라서 패시베이션층(94)이 투광성 기판(80)과 결합하게 되며, 이 결합력을 통해, 접착층(80)이 제1 반도체 영역(30) 및/또는 투광성 기판(80)과 분리되는 것을 확실히 방지할 수 있게 된다. 패시베이션층(94)은 단층 또는 복합층(예: ODR, DBR)으로 이루어질 수 있으며, SiO2, SiNx, TiO2, Al2O3 등의 물질로 이루어질 수 있다. 예를 들어, 패시베이션층(94)을 1㎛ 이상의 두께로 형성함으로써, 박리 방지를 이룰 수 있게 된다. 패시베이션층(94)은 기본적으로 유전체 물질(예: SiO2,Al2O3,SiNx)로 반도체 영역(30,40,50)의 상부와 측면을 덮은 후에, 높은 반사도를 갖는 금속 물질(예: Ag, Al, Au, Cu, Pt, Cr, Ti, TiW)을 연속적으로 증착 형성하는 다층 구조도 바람직하다. 접착층(81)은 앞서 언급한 물질을 포함하여, BCB, Silicone, SU-8, SOG, Acrylate, Urethane 등일 수 있다. 23 is a view showing another example of the semiconductor light emitting device according to the present disclosure, and is substantially the same as the semiconductor light emitting device shown in FIG. 11(e). In the case of the semiconductor light emitting device shown in FIG. 7 , since the light-transmitting substrate 314 and the semiconductor regions 302 , 304 , and 306 are bonded by the flexible and transparent adhesive layer 312 , the bonding strength is not excellent. By introducing a rough surface of the n-type semiconductor region 302, the bonding area of the transparent adhesive layer 312 and the n-type semiconductor region 302 can be spread, but this is insufficient. Even in the case of the semiconductor light emitting device shown in FIG. 2 , the transparent support substrate 102 and the semiconductor regions 104 to 112 are coupled through the P-type current diffusion layer 118 (eg, ITO) and the transparent adhesive layer 130 as a medium. There is a problem in maintaining the bond between the two. That is, when the semiconductor regions 302, 304, and 306 are supported on the light-transmitting substrate 314 with the flexible and transparent adhesive 312 (organic adhesive such as BCB) through one or two wafer bonding, the semiconductor regions 302, 304, and 306 and the light-transmitting adhesive Due to the difference in the coefficient of thermal expansion of the substrate 314, peeling may occur at the upper and lower interfaces of the transparent adhesive 312 with weak adhesion due to thermo-mechanical stress during or after the SMT process. It is a structure that bonds to a non-transparent dissimilar substrate, and the possibility of peeling is very high in the organic adhesive bonding area, which is the weakest part. Like the semiconductor light emitting device shown in FIG. 11 , the semiconductor light emitting device includes a light-transmitting substrate 80 , an adhesive layer 81 , a first semiconductor region 30 , an active region 40 , a second semiconductor region 50 , and a first electrode. 92 , a second electrode 93 , and a passivation layer 94 . Unlike the semiconductor light emitting device shown in FIG. 11 , the passivation layer 94 is formed before the first electrode 92 and the second electrode 93 are formed, but may be formed in the reverse order. Preferably, the light-transmitting electrode 91 is included, and various types of electrode configurations shown in FIGS. 12 to 22 are possible. 7, by forming rough surfaces S and S in the first semiconductor region 30 and/or the light-transmitting substrate 80 region, the contact area of the adhesive layer 81 is widened, and the light extraction efficiency is increased. It is possible to raise In the example shown in FIG. 23 , the passivation layer 94 is removed from the second semiconductor region 50 , the active region 40 , the first semiconductor region 30 , and the adhesive layer 80 to the transparent substrate 80 exposed. is connected Accordingly, the passivation layer 94 is bonded to the light-transmitting substrate 80 , and through this bonding force, the adhesive layer 80 can be reliably prevented from being separated from the first semiconductor region 30 and/or the light-transmitting substrate 80 . there will be The passivation layer 94 may be formed of a single layer or a composite layer (eg, ODR, DBR), and may be formed of a material such as SiO 2 , SiN x , TiO 2 , Al 2 O 3 . For example, by forming the passivation layer 94 to a thickness of 1 μm or more, it is possible to prevent peeling. The passivation layer 94 is basically a dielectric material (eg , SiO 2 , Al 2 O 3 , SiN x ) to cover the top and sides of the semiconductor regions 30 , 40 , and 50 , and then a metal material having high reflectivity (eg, : Ag, Al, Au, Cu, Pt, Cr, Ti, TiW) is also preferred to form a multilayer structure by deposition continuously. The adhesive layer 81 may be BCB, Silicone, SU-8, SOG, Acrylate, Urethane, or the like, including the aforementioned materials.

도 24 및 도 25는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 도 23과 달리 제1 전극(92) 및 제2 전극(93)이 패시베이션층(94)을 거쳐 투광성 기판(80) 위로 이어져 있다. 이러한 구성(적어도 반도체 영역(30,40,40)과 접착층(81)을 덮고 있는 패시베이션층(94)과 그 위에서 투광성 기판(80)으로 이어진 제1 전극(92) 및 제2 전극(93))을 통해 접착층(81) 양측에서의 박리를 막을 수 있게 된다. 이러한 경우에, 패시베이션층(94)은 투광성 기판(80) 위로 이어져도 좋고, 접착층(81)과 투광성 기판(80)의 계면까지만 형성되어도 좋다. 추가적으로, 투광성 기판(80) 위에 형성된 제1 전극(92)과 제2 전극(93) 각각에, 제1 전극 포스트(92P)와 제2 전극 포스트(93P)가 구비될 수 있다. 제1 전극 포스트(92P)와 제2 전극 포스트(93P)를 구비함으로써, 반도체 발광소자는 도 25에 도시된 바와 같은 형태로, 외부 전원 공급부(98; 서브마운트, 인터포저, 배선기판, 디스플레이 픽셀 등)에 전기적 및 기계적으로 연결될 수 있다. 제1 전극 포스트(92P)와 제2 전극 포스트(93P)는 반도체 영역(30,40,50)의 높이(대략 4~5㎛)보다 높고, 10㎛보다 낮은 높이로 형성될 수 있다. 바람직하게는, 제1 전극 포스트(92P)와 제2 전극 포스트(93P)가 형성되지 않는 공간을 봉지제(99; 예: white silicone)로 채워서(예: 스크린 프린팅), 제1 전극 포스트(92P)와 제2 전극 포스트(93P)를 지지하는 한편, 반도체 발광소자가 전체적으로 하나의 패키지를 이루도록 하는 것이 가능하다. 제1 전극 포스트(92P)와 제2 전극 포스트(93P)는 구리 도금을 통해 형성하는 것이 가능하다. 필요에 따라, 접착층(81)의 반대측 투광성 기판(80)의 면(U)에 광산란을 위한 거친 표면을 형성하거나, Carbon 포함 Epoxy 코팅 등을 할 수 있다.24 and 25 are views showing another example of the semiconductor light emitting device according to the present disclosure, in which, unlike FIG. 23 , the first electrode 92 and the second electrode 93 pass through the passivation layer 94 to the light-transmitting substrate ( 80) continues upwards. This configuration (at least the passivation layer 94 covering the semiconductor regions 30, 40, 40 and the adhesive layer 81, and the first electrode 92 and the second electrode 93 connected thereon to the light-transmitting substrate 80) Through this, it is possible to prevent peeling from both sides of the adhesive layer 81 . In this case, the passivation layer 94 may extend over the light-transmitting substrate 80 , or may be formed only up to the interface between the adhesive layer 81 and the light-transmitting substrate 80 . Additionally, a first electrode post 92P and a second electrode post 93P may be provided on each of the first electrode 92 and the second electrode 93 formed on the light-transmitting substrate 80 . By having the first electrode post 92P and the second electrode post 93P, the semiconductor light emitting device has a shape as shown in FIG. 25 , and an external power supply 98 (submount, interposer, wiring board, display pixel). etc.) can be electrically and mechanically connected. The first electrode post 92P and the second electrode post 93P may be formed to have a height higher than the height of the semiconductor regions 30 , 40 , and 50 (about 4 to 5 μm) and less than 10 μm. Preferably, the space in which the first electrode post 92P and the second electrode post 93P are not formed is filled with an encapsulant 99 (eg, white silicone) (eg, screen printing), and the first electrode post 92P ) and the second electrode post 93P, while supporting the semiconductor light emitting device as a whole, it is possible to form a single package. The first electrode post 92P and the second electrode post 93P may be formed through copper plating. If necessary, a rough surface for light scattering may be formed on the surface U of the light-transmitting substrate 80 on the opposite side of the adhesive layer 81 , or a carbon-containing epoxy coating may be applied.

도 26은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 나타내는 도면으로서, 도 26(a)에는 제1 전극 포스트(92P) 및 제2 전극 포스트(93P)가 반도체 영역(30,40,50) 위에 형성된 제1 전극(92)과 제2 전극(93)과 겹치도록 형성된 예를 제시하고 있으며, 도 26(b)에는 도금이 아닌 PVD(예; 스퍼터링, 이빔 증착기)를 통해 형성된 제1 전극 보강부(92T)와 제2 전극 보강부(93T)가 반도체 영역(30,40,50) 위에 형성된 제1 전극(92)과 제2 전극(93)과 겹치도록 형성(제1 전극 보강부(92T)와 제2 전극 보강부(93T)가 반도체 영역(30,40,50)의 전체적인 형상을 따르도록 형성)되어 있다. 이러한 구성을 통해, 접착층(81) 양측의 박리를 한층 방지할 수 있게 된다.26 is a view showing still other examples of the semiconductor light emitting device according to the present disclosure. In FIG. 26(a), the first electrode post 92P and the second electrode post 93P are formed in semiconductor regions 30, 40, and 50. An example formed to overlap the first electrode 92 and the second electrode 93 formed on the above is presented, and in FIG. 26(b), the first electrode formed through PVD (eg, sputtering, e-beam evaporator) rather than plating is reinforced. The portion 92T and the second electrode reinforcement portion 93T are formed to overlap the first electrode 92 and the second electrode 93 formed on the semiconductor regions 30, 40, and 50 (the first electrode reinforcement portion 92T) ) and the second electrode reinforcement 93T are formed to conform to the overall shape of the semiconductor regions 30 , 40 , and 50 ). Through this configuration, it is possible to further prevent peeling of both sides of the adhesive layer 81 .

도 27은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 하나의 투광성 기판(80) 위에 두 개의 반도체 발광소자 칩(AA,BB)이 접착층(81,81)을 통해 구비되어 있다. 도 24에 제시된 방법과 동일한 방법으로 제1 전극 포스트(92P), 제2 전극 포스트(93PA) 및 제2 전극 포스트(93PB)가 형성된다. 제1 전극 포스트(92P)는 반도체 발광소자 칩(AA)의 제1 전극(92A)과 반도체 발광소자 칩(BB)의 제1 전극(92B)에 연결되어 공통전극으로 기능한다. 제1 전극(92A)과 제1 전극(92B)은 일체로 형성될 수도 있고, 별도로 형성될 수도 있다. 제2 전극 포스트(93PA)는 반도체 발광소자 칩(AA)의 제2 전극(93A)에 연결되어 있고, 제2 전극 포스트(93PB)는 반도체 발광소자 칩(BB)의 제2 전극(93B)에 연결되어 있다. 이러한 구성을 통해, 복수개의 반도체 발광소자 칩이 하나의 패키지로 되어, 도 25에 도시된 외부 전원 공급부(98; 서브마운트, 인터포저, 배선기판, 디스플레이 픽셀 등)에 결합될 수 있다. 이러한 구성을 통해, 반도체 발광소자 칩(AA,BB)이 마이크로 엘이디 칩인 경우에, 각 패널(픽셀)에 구비된 반도체 발광소자 칩 각각을 검수하고 고장시 교체하는 것이 아니라, 패키지 레벨에서 검사를 수행한 후, 패널(픽셀)에 고정하고, 이후 고장시에도 패키지 단위로 교체를 하는 이점을 가지게 된다. 두개의 반도체 발광소자 칩(AA,BB)이 동일한 색을 발광하는 경우에, 이들은 하나의 성장 기판에서 성장되어 앞서 설명한 공정들을 통해 형성될 수 있으며, 두개의 반도체 발광소자 칩(AA,BB)이 다른 색을 발광하는 경우에, 각각의 반도체 발광소자 칩(AA,BB)은 앞선 예들과 달리, 다양한 전사(transfer) 공정 기술(예: 기계적으로 칩을 이동 배열하는 Pick & Place, 점착성 물질(예: 실리콘계 PDMS)로 패터닝된 스탬프(Stamp) 구조물을 만들어 칩을 이동 배열하는 Stamp, 정전기력(Electrostatic force) 또는 전자기력(Electromagnetic force) 구조물을 이용한 칩을 이동 배열하는 방법, 소정의 균일한 점성(Viscosity)을 갖는 유체와 전자기력 구조물을 결합하여 칩을 이동 배열하는 Self-assembly, 레이저 광원과 폭발성 접착 물질을 결합하여 칩을 이동 배열하는 Laser-induced forward transfer)을 사용하여 투광성 기판(80) 위로 접착층(81,81)을 매개로 하여 옮겨질 수 있다. 각각의 반도체 발광소자 칩(AA,BB)은 도 11(e), 도 12 내지 22에 제시된 형태로 만들어진 상태에서 성장 기판(1,10), 지지 기판 또는 투광성 기판(80)이 제거된 상태(바람직하게는 도 11(e) 및 도 23에 제시된 바와 같이, 성장 기판(10)이 제거된 상태에서 반도체 영역(30,40,50)의 상면과 측면에 페시베이션층(94)이 형성되고, 또한 전극(91,92,93)이 형성된 상태)에서 투광성 기판(80) 위로 옮겨진다. 이렇게 접착층(81)을 매개로 투광성 기판(80)에 옮겨진 상태에서, 접착층(81)으로부터 반도체 발광소자 칩(AA,BB) 및/또는 투광성 기판(80)이 박리되는 것을 방지하기 위하여, 패시베이션층(94A)이 도입되며, 그 위에서 제1 전극(92A,92B) 및 제2 전극(93A,93B)이 투광성 기판(80) 위로 이어지며, 그 위에 제1 전극 포스트(92P) 및 제2 전극 포스트(93PA,93PB)가 형성된다. 접착층(81,81)의 물질은 BCB(250℃) 유기 접착제 물질 이외에 웨이퍼 본딩용 유기 접착제로 널리 알려진 것들이 많은데, Polyimide(160℃), SU-8(90℃), Parylene(230℃), Epoxy(150℃), Silicone(100-300℃), SOG(spin on glass) 등이 대표적이다.27 is a view showing another example of a semiconductor light emitting device according to the present disclosure, in which two semiconductor light emitting device chips AA and BB are provided on one light-transmitting substrate 80 through adhesive layers 81 and 81 . . The first electrode post 92P, the second electrode post 93PA, and the second electrode post 93PB are formed by the same method as the method shown in FIG. 24 . The first electrode post 92P is connected to the first electrode 92A of the semiconductor light emitting device chip AA and the first electrode 92B of the semiconductor light emitting device chip BB to function as a common electrode. The first electrode 92A and the first electrode 92B may be formed integrally or separately. The second electrode post 93PA is connected to the second electrode 93A of the semiconductor light emitting device chip AA, and the second electrode post 93PB is connected to the second electrode 93B of the semiconductor light emitting device chip BB. connected. Through this configuration, a plurality of semiconductor light emitting device chips may be combined into one package, and may be coupled to the external power supply unit 98 (submount, interposer, wiring board, display pixel, etc.) shown in FIG. 25 . Through this configuration, when the semiconductor light emitting device chips AA and BB are micro LED chips, each of the semiconductor light emitting device chips provided in each panel (pixel) is inspected and not replaced in case of failure, but is inspected at the package level. After that, it is fixed to the panel (pixel), and thereafter, even in case of failure, it has the advantage of replacing it in a package unit. When the two semiconductor light emitting device chips AA and BB emit the same color, they can be grown on one growth substrate and formed through the above-described processes, and the two semiconductor light emitting device chips AA and BB are In the case of emitting different colors, each semiconductor light emitting device chip (AA, BB), unlike the previous examples, uses various transfer process technologies (eg, pick & place that mechanically moves and arranges the chip, adhesive material (eg, : A stamp that moves and arranges chips by making a stamp structure patterned with silicon-based PDMS), a method of moving and arranging chips using an electrostatic force or electromagnetic force structure, and a predetermined uniform viscosity The adhesive layer 81 over the light-transmitting substrate 80 using self-assembly, which moves the chip by combining a fluid with an electromagnetic force structure, and laser-induced forward transfer, which moves the chip by combining a laser light source and an explosive adhesive material. , 81) as a medium. Each of the semiconductor light emitting device chips AA and BB is in a state in which the growth substrates 1 and 10, the support substrate or the light-transmitting substrate 80 are removed in the state shown in FIGS. 11 (e) and 12 to 22 ( Preferably, as shown in FIGS. 11(e) and 23, a passivation layer 94 is formed on the upper surface and side surfaces of the semiconductor regions 30, 40, 50 in a state in which the growth substrate 10 is removed, Also, in the state in which the electrodes 91, 92 and 93 are formed), they are transferred onto the light-transmitting substrate 80 . In order to prevent the semiconductor light emitting device chips AA and BB and/or the light-transmitting substrate 80 from being separated from the adhesive layer 81 while being transferred to the light-transmitting substrate 80 via the adhesive layer 81 in this way, a passivation layer 94A is introduced, on which first electrodes 92A, 92B and second electrodes 93A, 93B run over a light-transmitting substrate 80, on which a first electrode post 92P and a second electrode post (93PA, 93PB) is formed. Materials of the adhesive layers 81 and 81 are widely known as organic adhesives for wafer bonding other than BCB (250℃) organic adhesive materials. Polyimide (160℃), SU-8 (90℃), Parylene (230℃), Epoxy (150℃), Silicone (100-300℃), SOG (spin on glass), etc. are representative.

도 28은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 하나의 투광성 기판(80) 위에 3개의 반도체 발광소자 칩(AA,BB,CC; 예: RGB 엘이디)이 구비되어 있다. 이들이 투광성 기판(80)으로 옮겨지는 방식에 대해서는 도 27에서 이미 기술한 바 있다. 반도체 발광소자는 제1 전극 포스트(92PA), 제2 전극 포스트(93PA), 제2 전극 포스트(93PB) 그리고 제2 전극 포스트(93PC)를 구비한다. 3개의 반도체 발광소자 칩(AA,BB,CC) 각각에는 제1 전극(92A,92B,92C)과 제2 전극(93A), 제2 전극(93B), 제2 전극(93C)이 형성되어 있으며, 제1 전극(92A,92B,92C)은 일체로 서로 연결된 형태를 가질 수 있다. 제1 전극(92A,92B,92C)이 별도로 형성되고, 제2 전극(93A,93B,93C)이 일체로 서로 연결된 형태를 가질 수 있음은 물론이다. 제1 전극 포스트(92PA)는 제1 전극(92A,92B,92C)에 연결되어 공통전극으로 기능하며, 3개의 반도체 발광소자 칩(AA,BB,CC) 각각에 형성된 제2 전극(93A,93B,93C)의 각각에 제2 전극 포스트(93PA,93PB,93PC)가 형성되어 있다. 전술한 바와 같이, 투광성 기판(80)에 접착층(81; 도 27 참조)을 이용하여 3개의 반도체 발광소자 칩(AA,BB,CC) 각각을 부착한 다음, 패시베이션층(94A; 도 27 참조)을 형성하고, 다음으로, 제1 전극(92A,92B,92C)과 제2 전극(93A,93B,93C)을 투광성 기판(80) 위로 이어지도록 형성한 다음, 제1 전극 포스트(92PA)와 제2 전극 포스트(93PA,93PB,93PC)를 형성(예: 도금)한다. 바람직하게는 도 27에 도시된 것과 같이, 봉지제(99)로 제1 전극 포스트(92PA)와 제2 전극 포스트(93PA,93PB,93PC) 사이의 공간을 채운다.28 is a view showing another example of a semiconductor light emitting device according to the present disclosure, in which three semiconductor light emitting device chips (AA, BB, CC; eg, RGB LED) are provided on one light-transmitting substrate 80 . The manner in which they are transferred to the light-transmitting substrate 80 has already been described in FIG. 27 . The semiconductor light emitting device includes a first electrode post 92PA, a second electrode post 93PA, a second electrode post 93PB, and a second electrode post 93PC. A first electrode 92A, 92B, 92C, a second electrode 93A, a second electrode 93B, and a second electrode 93C are formed on each of the three semiconductor light emitting device chips AA, BB, and CC. , the first electrodes 92A, 92B, and 92C may be integrally connected to each other. Of course, the first electrodes 92A, 92B, and 92C may be formed separately, and the second electrodes 93A, 93B, and 93C may be integrally connected to each other. The first electrode post 92PA is connected to the first electrodes 92A, 92B, and 92C to function as a common electrode, and the second electrodes 93A and 93B formed on the three semiconductor light emitting device chips AA, BB, and CC, respectively. , 93C), second electrode posts 93PA, 93PB, and 93PC are formed. As described above, each of the three semiconductor light emitting device chips AA, BB, and CC is attached to the light-transmitting substrate 80 using an adhesive layer 81 (refer to FIG. 27), and then the passivation layer 94A (refer to FIG. 27). Next, the first electrodes 92A, 92B, and 92C and the second electrodes 93A, 93B, and 93C are formed so as to be connected to the light-transmitting substrate 80, and then, the first electrode post 92PA and the second electrode post 92PA 2 Electrode posts 93PA, 93PB, and 93PC are formed (eg, plated). Preferably, as shown in FIG. 27 , a space between the first electrode post 92PA and the second electrode post 93PA, 93PB, and 93PC is filled with an encapsulant 99 .

① 이러한 구성을 통해, 충분한 두께를 가지는 윈도우(투광성 기판(80))를 가지는 미니 또는 마이크로 엘이디를 제작할 수 있게 된다.① Through this configuration, it is possible to manufacture a mini or micro LED having a window (transmissive substrate 80) having a sufficient thickness.

② 이러한 구성을 통해, 미니 또는 마이크로 엘이디를 칩 상태로 패널(픽셀)에 투입하는 것이 아니라, 패키지 형태로 패널(픽셀)에 투입함으로써, 작업을 간소화하고, 검증 및 교체를 용이하게 할 수 있게 된다.② Through this configuration, the mini or micro LED is not put into the panel (pixel) as a chip, but is put into the panel (pixel) in the form of a package, thereby simplifying the operation and facilitating verification and replacement. .

③ 이러한 구성(RGB 엘이디 칩 모두를 p-side up 플립칩으로 구성)을 통해, n-side up 플립칩을 사용할 때의 문제점(칩의 크기가 초소형화됨에 따라, N형 불균일한 전류 흐름 등에 의해 과다한 열이 발생)을 해소할 수 있게 된다.③ Through this configuration (all RGB LED chips are composed of p-side up flip chips), the problem of using n-side up flip chips (as the size of the chip is miniaturized, N-type non-uniform current flow, etc.) excess heat) can be eliminated.

④ 이러한 구성(패시베이션층(94) 및/또는 제1 전극(92A,92B,92C)과 제2 전극(93A,93B,93C)이, 접착층(81)이 제거 또는 없는 투광성 기판(80)으로 이어짐)을 통해, 신뢰성이 높은 (접착층(81) 양측의 박리 가능성을 줄인) 미니 또는 마이크로 엘이디를 제작할 수 있게 된다④ This configuration (passivation layer 94 and/or first electrodes 92A, 92B, 92C and second electrodes 93A, 93B, 93C) leads to light-transmitting substrate 80 with or without adhesive layer 81 ), it is possible to manufacture mini or micro LEDs with high reliability (reducing the possibility of peeling of both sides of the adhesive layer 81).

⑤ 상기한 구성을 통해, RGB 칩 모두를 p-side up 플립칩으로 구성한 미니 또는 마이크로 엘이디용 패키지를 소자의 신뢰성을 확보하면서 제조할 수 있게 된다. 이때, 적색 엘이디 칩은 2번의 웨이퍼 본딩을 거침으로써 p-side up 플립칩이 될 수 있으며, 녹색 및 청색 엘이디 칩은 0번 또는 2번의 웨이퍼 본딩을 거침으로써 p-side up 플립칩이 될 수 있다. 필요에 따라 4번의 웨이퍼 본딩을 이용하는 것도 가능하다.⑤ Through the above configuration, it is possible to manufacture a package for mini or micro LED in which all of the RGB chips are p-side up flip chips while ensuring device reliability. At this time, the red LED chip may become a p-side up flip chip by going through wafer bonding 2 times, and the green and blue LED chips may become a p-side up flip chip by going through wafer bonding 0 or 2 times. . It is also possible to use 4 wafer bonding steps if necessary.

이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.

(1) 플립칩인 반도체 발광소자를 제조하는 방법에 있어서, N형을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 통해 빛을 생성하는 활성 영역, P형을 가지는 제2 반도체 영역이 순차로 형성된 성장 기판을 제공하는 단계; 제2 반도체 영역 측에 제1 투광성 기판을 본딩하는 단계; 성장 기판을 제1 반도체 영역 측으로부터 제거하는 단계; 성장 기판이 제거된 제1 반도체 영역 측에 접착층을 이용하여 제2 투광성 기판을 부착하는 단계; 제1 투광성 기판을 제2 반도체 영역 측으로부터 레이저 어블레이션하는 단계; 제2 반도체 영역과 활성 영역의 일부를 제거하여 제1 반도체 영역의 일부를 노출하는 단계; 그리고, 노출된 제1 반도체 영역과 제2 반도체 영역 각각의 위에 플립칩의 제1 전극과 플립칩의 제2 전극을 형성하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법.(1) In the method of manufacturing a semiconductor light emitting device that is a flip chip, a first semiconductor region having an N-type, an active region generating light through recombination of electrons and holes, and a second semiconductor region having a P-type are sequentially formed providing a formed growth substrate; bonding the first light-transmitting substrate to the side of the second semiconductor region; removing the growth substrate from the first semiconductor region side; attaching a second light-transmitting substrate to the side of the first semiconductor region from which the growth substrate is removed using an adhesive layer; laser ablating the first light-transmitting substrate from the second semiconductor region side; removing a portion of the second semiconductor region and the active region to expose a portion of the first semiconductor region; and forming a first electrode of a flip chip and a second electrode of a flip chip on the exposed first semiconductor region and the second semiconductor region, respectively.

(2) 제1 투광성 기판을 본딩하는 단계에 앞서, 제2 반도체 영역에 보호층을 형성하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법.(2) prior to bonding the first light-transmitting substrate, forming a protective layer in the second semiconductor region; a method of manufacturing a semiconductor light emitting device comprising a.

(3) 제1 투광성 기판은 희생층을 구비하며, 희생층과 보호층이 금속결합층에 의해 본딩되는 반도체 발광소자를 제조하는 방법.(3) A method of manufacturing a semiconductor light emitting device in which the first light-transmitting substrate includes a sacrificial layer, and the sacrificial layer and the protective layer are bonded by a metal bonding layer.

(4) 제1 투광성 기판을 제거하는 단계 후에, 제1 반도체 영역의 일부를 노출하는 단계에 앞서, 금속결합층과 보호층이 순차로 제거되는 반도체 발광소자를 제조하는 방법.(4) A method of manufacturing a semiconductor light emitting device in which the metal bonding layer and the protective layer are sequentially removed after the step of removing the first light-transmitting substrate and before the step of exposing a portion of the first semiconductor region.

(5) 금속결합층과 보호층을 순차로 제거하는 단계 이후에, 접착층의 일부를 제2 투광성 기판이 노출되도록 제거하는 반도체 발광소자를 제조하는 방법.(5) A method of manufacturing a semiconductor light emitting device in which a portion of the adhesive layer is removed to expose the second light-transmitting substrate after the step of sequentially removing the metal bonding layer and the protective layer.

(6) 금속결합층과 보호층을 순차로 제거하는 단계 이후에, 제2 반도체 영역에 투광성 전극을 형성하는 단계를 포함하는 반도체 발광소자를 제조하는 방법.(6) A method of manufacturing a semiconductor light emitting device comprising the step of sequentially removing the metal bonding layer and the protective layer, and then forming a light-transmitting electrode in the second semiconductor region.

(7) 제공하는 단계에서, 제1 반도체 영역의 아래에 도핑되지 않은 반도체 영역이 형성되며, 부착하는 단계에 앞서, 도핑되지 않은 반도체 영역을 적어도 일부가 제거되는 반도체 발광소자를 제조하는 방법.(7) In the providing step, an undoped semiconductor region is formed under the first semiconductor region, and prior to the attaching step, at least a part of the undoped semiconductor region is removed. A method of manufacturing a semiconductor light emitting device.

(8) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체 영역; 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역; 제1 반도체 영역과 제2 반도체 영역 사이에 개재되며, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역; 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역에 위치하며, 제1 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제1 전극; 그리고, 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 다른 제1 반도체 영역에 위치하며, 절연층을 개재하여 제1 반도체 영역과 절연되며, 제2 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제2 전극;을 포함하는 반도체 발광소자.(8) A semiconductor light emitting device comprising: a first semiconductor region having a first conductivity; a second semiconductor region having a second conductivity different from the first conductivity; an active region interposed between the first semiconductor region and the second semiconductor region and generating light by recombination of electrons and holes; a first electrode positioned in the first semiconductor region exposed by removing a portion of the first semiconductor region, the active region, and the second semiconductor region, in electrical communication with the first semiconductor region, and functioning as a flip-chip bonding pad; In addition, a portion of the first semiconductor region, the active region, and the second semiconductor region are removed and located in another first semiconductor region exposed, insulated from the first semiconductor region through an insulating layer, and electrically connected to the second semiconductor region A semiconductor light emitting device comprising a; a second electrode communicating and functioning as a flip-chip bonding pad.

(9) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체 영역; 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역; 제1 반도체 영역과 제2 반도체 영역 사이에 개재되며, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역; 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역에 위치하며, 제1 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제1 전극; 그리고, 제2 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제2 전극;을 포함하며, 제1 전극은 비발광 영역인 제2 반도체 영역 위로 이어져 있는 반도체 발광소자.(9) A semiconductor light emitting device comprising: a first semiconductor region having a first conductivity; a second semiconductor region having a second conductivity different from the first conductivity; an active region interposed between the first semiconductor region and the second semiconductor region and generating light by recombination of electrons and holes; a first electrode positioned in the first semiconductor region exposed by removing a portion of the first semiconductor region, the active region, and the second semiconductor region, in electrical communication with the first semiconductor region, and functioning as a flip-chip bonding pad; and a second electrode in electrical communication with the second semiconductor region and functioning as a flip-chip bonding pad, wherein the first electrode extends over the second semiconductor region, which is a non-emission region.

(10) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체 영역; 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역; 제1 반도체 영역과 제2 반도체 영역 사이에 개재되며, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역; 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제1 전극; 제2 반도체 영역과 전기적으로 연통하고, 플립칩 본딩 패드로 기능하는 제2 전극; 그리고, 제1 반도체 영역의 일부, 활성 영역 및 제2 반도체 영역이 제거되어 노출되는 제1 반도체 영역을 메우며(filling), 제1 전극과 제2 전극의 아래에 놓이는 절연층;을 포함하는 반도체 발광소자.(10) A semiconductor light emitting device comprising: a first semiconductor region having a first conductivity; a second semiconductor region having a second conductivity different from the first conductivity; an active region interposed between the first semiconductor region and the second semiconductor region and generating light by recombination of electrons and holes; a first electrode in electrical communication with the first semiconductor region exposed by removing a portion of the first semiconductor region, the active region, and the second semiconductor region, and functioning as a flip-chip bonding pad; a second electrode in electrical communication with the second semiconductor region and functioning as a flip-chip bonding pad; In addition, a portion of the first semiconductor region, the active region, and the second semiconductor region are removed to fill the exposed first semiconductor region, and an insulating layer disposed under the first electrode and the second electrode; device.

(11) 추가의 절연층;을 포함하며, 추가의 절연층은 제1 전극과 제2 전극의 아래 영역을 제외한 영역에서 절연층이 제거되어 노출되어 있는 반도체 발광소자.(11) an additional insulating layer; wherein the additional insulating layer is exposed by removing the insulating layer in a region excluding the region below the first electrode and the second electrode.

(12) 반도체 발광소자에 있어서,투광성 기판; 순차로 성장된, 제1 도전성을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역, 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역을 구비하는 반도체 발광소자 칩;으로서, 제1 반도체 영역과 전기적으로 연결되는 제1 전극과 제2 반도체 영역과 전기적으로 연결되어 있는 제2 전극을 구비하는 제1 반도체 발광소자 칩; 투광성 기판과 제1 반도체 발광소자 칩의 제1 반도체 영역 측을 결합하는 접착층; 그리고 적어도 제1 반도체 발광소자 칩과 접착층을 덮는 패시베이션층;을 포함하는 반도체 발광소자.(12) A semiconductor light emitting device comprising: a light-transmitting substrate; A semiconductor light emitting comprising a first semiconductor region having a first conductivity, an active region generating light by using recombination of electrons and holes, and a second semiconductor region having a second conductivity different from the first conductivity, which are sequentially grown A device chip; comprising: a first semiconductor light emitting device chip having a first electrode electrically connected to a first semiconductor region and a second electrode electrically connected to a second semiconductor region; an adhesive layer bonding the light transmitting substrate and the first semiconductor region side of the first semiconductor light emitting device chip; and a passivation layer covering at least the first semiconductor light emitting device chip and the adhesive layer.

(13) 패시베이션층은 접착층 없이 노출된 투광성 기판 위로 이어져 있는 반도체 발광소자.(13) A semiconductor light emitting device in which the passivation layer is continued on an exposed light-transmitting substrate without an adhesive layer.

(14) 제1 전극과 제2 전극은 패시베이션층 위로 형성되어 접착층 없이 노출된 투광성 기판 위로 이어져 있는 반도체 발광소자.(14) A semiconductor light emitting device in which the first electrode and the second electrode are formed on the passivation layer and are continued on the exposed light-transmitting substrate without the adhesive layer.

(15) 투광성 기판 위에 이어진 제1 전극과 제2 전극 각각의 위에서 제1 반도체 발광소자 칩의 높이보다 높게 형성된 제1 전극 포스트;와 제2 전극 포스트;를 포함하는 반도체 발광소자.(15) A semiconductor light emitting device comprising: a first electrode post formed higher than a height of the first semiconductor light emitting device chip on each of the first electrode and the second electrode connected on the light-transmitting substrate; and a second electrode post.

(16) 제1 반도체 발광소자 칩을 덮으며, 제1 전극 포스트와 제2 전극 포스트를 지지하는 봉지제;를 포함하는 반도체 발광소자.(16) A semiconductor light emitting device comprising a; encapsulant covering the first semiconductor light emitting device chip and supporting the first electrode post and the second electrode post.

(17) 투광성 기판에 구비되며, 제2 반도체 발광소자 칩;을 포함하며, 제2 반도체 발광소자 칩은 순차로 성장된, 제1 도전성을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역, 제1 반도체 영역과 전기적으로 연결되며 투광성 기판 위로 이어져 있는 제1 전극, 제2 반도체 영역과 전기적으로 연결되며 투광성 기판 위로 이어져 있는 제2 전극, 투광성 기판 위에 이어진 제1 전극과 제2 전극 각각의 위에서 제2 반도체 발광소자 칩의 높이보다 높게 형성된 제1 전극 포스트와 제2 전극 포스트를 구비하며, 제1 반도체 발광소자 칩의 제1 전극 포스트와 제2 반도체 발광소자 칩의 제1 전극 포스트, 그리고 제1 반도체 발광소자 칩의 제2 전극 포스트와 제2 반도체 발광소자 칩의 제2 전극 포스트 중의 하나는 공통전극으로 일체로 형성되어 있는 반도체 발광소자.(17) provided on a light-transmitting substrate, a second semiconductor light emitting device chip; including, wherein the second semiconductor light emitting device chip is sequentially grown using a first semiconductor region having a first conductivity and recombination of electrons and holes An active region generating light, a second semiconductor region having a second conductivity different from the first conductivity, a first electrode electrically connected to the first semiconductor region and extending over the light-transmitting substrate, and a second semiconductor region electrically connected to the light-transmitting region A second electrode connected to the substrate, and a first electrode post and a second electrode post formed higher than a height of a second semiconductor light emitting device chip on each of the first electrode and the second electrode connected on the light-transmitting substrate, the first semiconductor light emitting device comprising: One of the first electrode post of the device chip, the first electrode post of the second semiconductor light emitting device chip, and the second electrode post of the first semiconductor light emitting device chip and the second electrode post of the second semiconductor light emitting device chip is a common electrode. A semiconductor light emitting device that is integrally formed.

(18) 제1 반도체 발광소자 칩과 제2 반도체 발광소자 칩을 덮으며, 제1 반도체 발광소자 칩의 제1 전극 포스트와 제1 반도체 발광소자 칩의 제2 전극 포스트, 그리고 제2 반도체 발광소자 칩의 제1 전극 포스트와 제2 반도체 발광소자 칩의 제2 전극 포스트를 지지하는 봉지제;를 포함하는 반도체 발광소자.(18) covering the first semiconductor light emitting device chip and the second semiconductor light emitting device chip, the first electrode post of the first semiconductor light emitting device chip, the second electrode post of the first semiconductor light emitting device chip, and the second semiconductor light emitting device A semiconductor light emitting device comprising a; encapsulant for supporting the first electrode post of the chip and the second electrode post of the second semiconductor light emitting device chip.

(19) 패시베이션층이 제1 반도체 발광소자 칩 및 제2 반도체 발광소자 칩를 덮고 있는 반도체 발광소자.(19) A semiconductor light emitting device in which a passivation layer covers the first semiconductor light emitting device chip and the second semiconductor light emitting device chip.

(20) 투광성 기판에 구비되며, 제3 반도체 발광소자 칩;을 포함하며, 제3 반도체 발광소자 칩은 순차로 성장된, 제1 도전성을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성 영역, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체 영역, 제1 반도체 영역과 전기적으로 연결되며 투광성 기판 위로 이어져 있는 제1 전극, 제2 반도체 영역과 전기적으로 연결되며 투광성 기판 위로 이어져 있는 제2 전극, 투광성 기판 위에 이어진 제1 전극과 제2 전극 각각의 위에서 제3 반도체 발광소자 칩의 높이보다 높게 형성된 제1 전극 포스트와 제2 전극 포스트를 구비하며, 제1 반도체 발광소자 칩의 제1 전극 포스트, 제2 반도체 발광소자 칩의 제1 전극 포스트와 제3 반도체 발광소자 칩의 제1 전극 포스트, 그리고 제1 반도체 발광소자 칩의 제2 전극 포스트, 제2 반도체 발광소자 칩의 제2 전극 포스트와 제3 반도체 발광소자 칩의 제2 전극 포스트 중의 하나는 공통전극으로 일체로 형성되어 있는 반도체 발광소자.(20) provided on the light-transmitting substrate, a third semiconductor light emitting device chip; including, wherein the third semiconductor light emitting device chip is sequentially grown using a first semiconductor region having a first conductivity and recombination of electrons and holes An active region generating light, a second semiconductor region having a second conductivity different from the first conductivity, a first electrode electrically connected to the first semiconductor region and extending over the light-transmitting substrate, and a second semiconductor region electrically connected to the light-transmitting region A second electrode connected to the substrate, and a first electrode post and a second electrode post formed higher than a height of a third semiconductor light emitting device chip on each of the first electrode and the second electrode connected on the light-transmitting substrate, the first semiconductor light emitting device comprising: The first electrode post of the device chip, the first electrode post of the second semiconductor light emitting device chip and the first electrode post of the third semiconductor light emitting device chip, and the second electrode post of the first semiconductor light emitting device chip, the second semiconductor light emitting device A semiconductor light emitting device in which one of the second electrode post of the chip and the second electrode post of the third semiconductor light emitting device chip is integrally formed as a common electrode.

(21) 제1 반도체 발광소자 칩, 제2 반도체 발광소자 칩과 제3 반도체 발광소자 칩을 덮으며, 제1 반도체 발광소자 칩의 제1 전극 포스트와 제1 반도체 발광소자 칩의 제2 전극 포스트, 제2 반도체 발광소자 칩의 제1 전극 포스트와 제2 반도체 발광소자 칩의 제2 전극 포스트, 그리고 제3 반도체 발광소자 칩의 제1 전극 포스트와 제3 반도체 발광소자 칩의 제2 전극 포스트를 지지하는 봉지제;를 포함하는 반도체 발광소자.(21) covering the first semiconductor light emitting device chip, the second semiconductor light emitting device chip, and the third semiconductor light emitting device chip, the first electrode post of the first semiconductor light emitting device chip and the second electrode post of the first semiconductor light emitting device chip , the first electrode post of the second semiconductor light emitting device chip, the second electrode post of the second semiconductor light emitting device chip, and the first electrode post of the third semiconductor light emitting device chip and the second electrode post of the third semiconductor light emitting device chip A semiconductor light emitting device comprising a; encapsulant for supporting.

(22) 제1 반도체 발광소자 칩의 제2 반도체 영역, 제2 반도체 발광소자 칩의 제2 반도체 영역 및 제3 반도체 발광소자 칩의 제2 반도체 영역이 각각의 활성 영역을 기준으로 투광성 기판의 반대 측에 구비되는 반도체 발광소자.(22) The second semiconductor region of the first semiconductor light emitting device chip, the second semiconductor region of the second semiconductor light emitting device chip, and the second semiconductor region of the third semiconductor light emitting device chip are opposite to the light-transmitting substrate with respect to each active region A semiconductor light emitting device provided on the side.

(23) 패시베이션층이 제1 반도체 발광소자 칩, 제2 반도체 발광소자 칩 및 제3 반도체 발광소자를 덮고 있는 반도체 발광소자.(23) A semiconductor light emitting device in which the passivation layer covers the first semiconductor light emitting device chip, the second semiconductor light emitting device chip, and the third semiconductor light emitting device.

본 개시에 따른 반도체 발광소자를 제조하는 방법에 의하면, 수율과 신뢰성이 한층 개선되어 양산성을 높인 플립칩 반도체 발광소자를 제공할 수 있게 된다. 특히, 미니 엘이디 또는 마이크로 엘이디에 적용시 그 양산성을 현저히 높일 수 있게 된다.According to the method of manufacturing a semiconductor light emitting device according to the present disclosure, it is possible to provide a flip chip semiconductor light emitting device with improved mass productivity by further improving yield and reliability. In particular, when applied to a mini LED or a micro LED, the mass productivity thereof can be significantly increased.

본 개시에 따른 반도체 발광소자에 의하면, 플립칩의 본딩 패드로 기능하는 제1 전극과 제2 전극의 구조적 기울어짐(높이차)을 줄일 수 있게 된다. 이로 인해서 반도체 발광소자에서 방출된 빛의 방향을 균일하게 조절할 수 있어 최종적으로 디스플레이 및 조명 등의 응용 제품에서의 광 품질을 개선할 수 있다.According to the semiconductor light emitting device according to the present disclosure, it is possible to reduce the structural inclination (height difference) between the first electrode and the second electrode functioning as a bonding pad of a flip chip. As a result, the direction of light emitted from the semiconductor light emitting device can be uniformly controlled, and finally, light quality in applications such as displays and lighting can be improved.

본 개시에 따른 반도체 발광소자에 의하면, RGB 칩 모두를 p-side up 플립칩으로 구성한 미니 또는 마이크로 엘이디용 패키지를 소자의 신뢰성을 확보하면서 제조할 수 있게 된다.According to the semiconductor light emitting device according to the present disclosure, it is possible to manufacture a package for a mini or micro LED in which all of the RGB chips are p-side up flip chips while securing the reliability of the device.

본 개시에 따른 반도체 발광소자에 의하면, 기존에 투명 봉지제가 아닌, 플레이트 형태의 투광성 기판(예: 사파이어, 쿼츠, 유리)으로 윈도우(광 방출부)로 사용하는 미니 또는 마이크로 엘이디 패키지(소위, 인터포저)를 제공할 수 있게 된다.According to the semiconductor light emitting device according to the present disclosure, a mini or micro LED package (so-called, inter ) used as a window (light emitting part) with a plate-shaped light-transmitting substrate (eg, sapphire, quartz, glass) rather than a transparent encapsulant in the prior art. poser) can be provided.

1: 투광성 기판, 2: 제1 반도체 영역, 3: 활성 영역, 4: 제2 반도체 영역, 5: 절연층, 6: 전류 확산 전극, 7: 제1 전극, 8: 제2 전극, 20: 성장 기판, 30: 제1 반도체 영역, 40: 활성 영역, 50: 제2 반도체 영역, 60: 보호층, 70: 제1 투광성 기판, 80: 제2 투광성 기판, 92: 제1 전극, 93: 제2 전극1: light-transmitting substrate, 2: first semiconductor region, 3: active region, 4: second semiconductor region, 5: insulating layer, 6: current diffusion electrode, 7: first electrode, 8: second electrode, 20: growth Substrate 30: first semiconductor region, 40: active region, 50: second semiconductor region, 60: protective layer, 70: first light-transmitting substrate, 80: second light-transmitting substrate, 92: first electrode, 93: second electrode

Claims (6)

플립칩인 반도체 발광소자를 제조하는 방법에 있어서,
N형을 가지는 제1 반도체 영역, 전자와 정공의 재결합을 통해 빛을 생성하는 활성 영역, P형을 가지는 제2 반도체 영역이 순차로 형성된 성장 기판을 제공하는 단계; 제2 반도체 영역 측에 제1 투광성 기판을 본딩하는 단계;
성장 기판을 제1 반도체 영역 측으로부터 제거하는 단계; 성장 기판이 제거된 제1 반도체 영역 측에 접착층을 이용하여 제2 투광성 기판을 부착하는 단계;
제1 투광성 기판을 제2 반도체 영역 측으로부터 레이저 어블레이션(Laser Ablation)하는 단계; 제2 반도체 영역과 활성 영역의 일부를 제거하여 제1 반도체 영역의 일부를 노출하는 단계; 그리고,
노출된 제1 반도체 영역과 제2 반도체 영역 각각의 위에 플립칩의 제1 전극과 플립칩의 제2 전극을 형성하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법.
A method for manufacturing a flip chip semiconductor light emitting device, comprising:
providing a growth substrate in which a first semiconductor region having an N-type, an active region generating light through recombination of electrons and holes, and a second semiconductor region having a P-type are sequentially formed; bonding the first light-transmitting substrate to the side of the second semiconductor region;
removing the growth substrate from the first semiconductor region side; attaching a second light-transmitting substrate to the side of the first semiconductor region from which the growth substrate is removed using an adhesive layer;
laser ablation of the first light-transmitting substrate from the side of the second semiconductor region; removing a portion of the second semiconductor region and the active region to expose a portion of the first semiconductor region; And,
A method of manufacturing a semiconductor light emitting device comprising: forming a first electrode of a flip chip and a second electrode of a flip chip on the exposed first semiconductor region and the second semiconductor region, respectively.
청구항 1에 있어서,
제1 투광성 기판을 본딩하는 단계에 앞서, 제2 반도체층에 보호층을 형성하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법.
The method according to claim 1,
Prior to bonding the first light-transmitting substrate, forming a protective layer on the second semiconductor layer; Method of manufacturing a semiconductor light emitting device comprising a.
청구항 2에 있어서,
제1 투광성 기판은 희생층을 구비하며,
희생층과 보호층이 금속결합층에 의해 본딩되는 반도체 발광소자를 제조하는 방법.
3. The method according to claim 2,
The first light-transmitting substrate has a sacrificial layer,
A method of manufacturing a semiconductor light emitting device in which a sacrificial layer and a protective layer are bonded by a metal bonding layer.
청구항 3에 있어서,
제1 투광성 기판을 제거하는 단계 후에, 제1 반도체층의 일부를 노출하는 단계에 앞서, 금속결합층과 보호층이 순차로 제거되는 반도체 발광소자를 제조하는 방법.
4. The method according to claim 3,
After removing the first light-transmitting substrate, before exposing a portion of the first semiconductor layer, a method of manufacturing a semiconductor light emitting device in which the metal bonding layer and the protective layer are sequentially removed.
청구항 4에 있어서,
금속결합층과 보호층을 순차로 제거하는 단계 이후에, 접착층의 일부를 제2 투광성 기판이 노출되도록 제거하는 반도체 발광소자를 제조하는 방법.
5. The method according to claim 4,
After the step of sequentially removing the metal bonding layer and the protective layer, a method of manufacturing a semiconductor light emitting device that removes a portion of the adhesive layer to expose the second light-transmitting substrate.
청구항 4에 있어서,
금속결합층과 보호층을 순차로 제거하는 단계 이후에, 제2 반도체층에 투광성 전극을 형성하는 단계를 포함하는 반도체 발광소자를 제조하는 방법.
5. The method according to claim 4,
A method of manufacturing a semiconductor light emitting device comprising the step of sequentially removing the metal bonding layer and the protective layer, and then forming a light-transmitting electrode on the second semiconductor layer.
KR1020190161050A 2019-12-05 2019-12-05 Method of manufacturing a light emitting device KR102301879B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190161050A KR102301879B1 (en) 2019-12-05 2019-12-05 Method of manufacturing a light emitting device
PCT/KR2020/017767 WO2021112648A1 (en) 2019-12-05 2020-12-07 Method for manufacturing semiconductor light-emitting device
US17/781,398 US20230069883A1 (en) 2019-12-05 2020-12-07 Method for manufacturing semiconductor light-emitting device
CN202080083219.6A CN114762133A (en) 2019-12-05 2020-12-07 Method for manufacturing semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190161050A KR102301879B1 (en) 2019-12-05 2019-12-05 Method of manufacturing a light emitting device

Publications (2)

Publication Number Publication Date
KR20210070833A true KR20210070833A (en) 2021-06-15
KR102301879B1 KR102301879B1 (en) 2021-09-15

Family

ID=76412094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190161050A KR102301879B1 (en) 2019-12-05 2019-12-05 Method of manufacturing a light emitting device

Country Status (1)

Country Link
KR (1) KR102301879B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615808B1 (en) * 2022-07-07 2023-12-20 웨이브로드 주식회사 Gruop 3 nitride semiconductor template manufacturing method and manufactured semiconductor template thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067340B1 (en) * 2005-02-05 2006-06-27 Epistar Corporation Flip-chip light emitting diode and fabricating method thereof
KR20110021569A (en) * 2009-08-26 2011-03-04 서울옵토디바이스주식회사 Method of fabricating light emitting diode using laser lift-off technique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067340B1 (en) * 2005-02-05 2006-06-27 Epistar Corporation Flip-chip light emitting diode and fabricating method thereof
KR20110021569A (en) * 2009-08-26 2011-03-04 서울옵토디바이스주식회사 Method of fabricating light emitting diode using laser lift-off technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615808B1 (en) * 2022-07-07 2023-12-20 웨이브로드 주식회사 Gruop 3 nitride semiconductor template manufacturing method and manufactured semiconductor template thereof

Also Published As

Publication number Publication date
KR102301879B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
KR102465730B1 (en) Light emitting device and method of manufacturing the same
EP1724848B1 (en) Method of manufacturing a light emitting device package
KR102360514B1 (en) Light emitting device
JP5100301B2 (en) Light emitting device
KR101974353B1 (en) Light emittind device and light emitting device package
KR102570676B1 (en) Method of manufacturing light emitting device
JP2014195064A (en) Light-emitting device and process of manufacturing the same
US20230069883A1 (en) Method for manufacturing semiconductor light-emitting device
KR20210131274A (en) Light emitting device and method of manufacturing the same
KR100953662B1 (en) Light emitting diode device having improved color uniformity and preparation method thereof
KR20220066230A (en) Light emitting device
KR102301879B1 (en) Method of manufacturing a light emitting device
KR102437637B1 (en) Method of manufacturing light emitting device
KR102325791B1 (en) Light emitting device
KR102403425B1 (en) Method of manufacturing micro led display
KR102301877B1 (en) Light emitting device
KR102464597B1 (en) Light emitting device and method of manufacturing the same
KR102315912B1 (en) Method of manufacturing light emitting device
KR102378115B1 (en) Method of transferring light emitting device chip
KR102373099B1 (en) Light emitting device and method of manufacturing the same
KR102357759B1 (en) Light emitting device and method of manufacturing the same
KR102373098B1 (en) Light emitting device
KR102338185B1 (en) Method of manufacturing semiconductor light emitting device
KR20240023080A (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant