KR20210067949A - 변성 공액디엔계 중합체 - Google Patents

변성 공액디엔계 중합체 Download PDF

Info

Publication number
KR20210067949A
KR20210067949A KR1020200163056A KR20200163056A KR20210067949A KR 20210067949 A KR20210067949 A KR 20210067949A KR 1020200163056 A KR1020200163056 A KR 1020200163056A KR 20200163056 A KR20200163056 A KR 20200163056A KR 20210067949 A KR20210067949 A KR 20210067949A
Authority
KR
South Korea
Prior art keywords
carbon atoms
group
formula
conjugated diene
based polymer
Prior art date
Application number
KR1020200163056A
Other languages
English (en)
Other versions
KR102509517B1 (ko
Inventor
백근승
이로미
이희승
문민식
김노마
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20210067949A publication Critical patent/KR20210067949A/ko
Application granted granted Critical
Publication of KR102509517B1 publication Critical patent/KR102509517B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 변성 공액디엔계 중합체에 관한 것으로, 보다 상세하게는 연속 중합에 의해 제조되어 특유의 고분자 구조와 분자량 분포도 및 그 형태를 갖게 됨으로써, 가공성이 뛰어나면서도, 분자량 분포가 좁아 물성이 우수한 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며, 일 말단에 화학식 1로 표시되는 변성제 유래 작용기를 포함하고, 다른 일 말단에 변성 개시제 유래 작용기를 포함하는 것인 변성 공액디엔계 중합체를 제공한다.

Description

변성 공액디엔계 중합체{MODIFIED CONJUGATED DIENE-BASED POLYMER}
본 발명은 가공성이 뛰어나면서도 인장특성 및 점탄성 특성이 우수한 변성 공액디엔계 중합체에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 회전저항이 적고, 내마모성, 인장 특성이 우수하며, 젖은 노면 저항성으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 회전저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ, 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 젖은 노면 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 중합체 또는 공중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액중합에 의한 SBR이 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우, 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로써 연료소모를 줄일 수 있다. 상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다. 예를 들어, 미국특허 제4,397,994호에는 일관능성 개시제인 알킬리튬을 이용하여 비극성 용매 하에서 스티렌-부타디엔을 중합하여 얻어진 중합체의 사슬 말단의 활성 음이온을 주석화합물과 같은 결합제를 사용하여 결합시킨 기술을 제시하였다.
한편, 상기 SBR 또는 BR의 중합은 회분식(batch) 또는 연속식 중합에 의해 실시될 수 있는데, 회분식 중합에 의하는 경우, 제조된 중합체의 분자량 분포가 좁아 물성 개선 측면에서 장점이 있으나, 생산성이 낮고, 가공성이 열악한 문제점이 있고, 연속식 중합에 의하는 경우, 중합이 연속적으로 이루어져 생산성이 뛰어나고, 가공성 개선 측면에서 장점이 있으나, 분자량 분포가 넓어 물성이 열악한 문제점이 있다. 이에, SBR 또는 BR 제조 시, 생산성, 가공성 및 물성을 모두 동시에 개선시키기 위한 연구가 지속적으로 요구되고 있는 실정이다.
US 4397994 A JP 1994-271706 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 연속식 중합에 의해 제조되어 가공성이 뛰어나면서도, 인장 특성 등의 물성이 우수하고, 점탄성 특성이 뛰어난 변성 공액디엔계 중합체를 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며, 일 말단에 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하고, 다른 일 말단에 변성 개시제 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공한다:
[화학식 1]
Figure pat00001
상기 화학식 1에서, R1 내지 R8은 각각 독립적으로 탄소수 1 내지 20의 알킬기이고; L1 및 L2는 각각 독립적으로 탄소수 1 내지 20의 알킬렌기이며; n은 2 내지 4의 정수이다.
본 발명에 따른 변성 공액디엔계 중합체는, 중합 전환율을 조절한 연속식 중합에 의하여 제조됨으로써 겔 투과 크로마토그래피에 의한 분자량 분포 곡선이 유니모달 형태를 가지면서 분자량 분포가 1.7 미만으로 좁아, 이에 가공성이 뛰어나면서도 인장특성 및 점탄성 특성이 뛰어난 효과가 있다.
또한, 본 발명에 따른 변성 공액디엔계 중합체는 일 말단에 변성 개시제 유래 작용기를 포함하고, 다른 일 말단에 변성제 유래 작용기를 포함함으로써 점탄성 특성이 더욱 향상될 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안된다.
도 1은, 본 발명의 일 실시예에 따른 실시예 1의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.
도 2는, 본 발명의 일 실시예에 따른 비교예 1의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.
도 3은, 본 발명의 일 실시예에 따른 비교예 10의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.
도 4는, 본 발명의 일 실시예에 따른 비교예 11의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
용어의 정의
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기; 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기; 및 환형의 포화 탄화수소, 또는 불포화 결합을 1개 또는 2개 이상 포함하는 환형의 불포화 탄화수소를 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '알킬렌기(alkylene group)'는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.
본 발명에서 용어 '유래 단위' 및 '유래 작용기'는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 의미할 수 있다.
본 발명에서 용어 '단일결합'은 별도의 원자 또는 분자단을 포함하지 않는 단일 공유 결합 자체를 의미할 수 있다.
측정방법
본 명세서에서 '중량평균분자량(Mw)', '분자량 분포(MWD)' 및 '유니모달 특성'은 GPC(Gel permeation chromatohraph)(PL GPC220, Agilent Technolodies)로 하기의 조건에서 중량평균분자량(Mw), 수평균분자량(Mn)은 측정하고, 분자량 분포 곡선을 얻었으며, 분자량 분포(PDI, MWD, Mw/Mn)는 측정된 상기 각 분자량으로부터 계산하여 얻었다.
- 컬럼: PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용
- 용매: 테트라하이드로퓨란에 2 중량%의 아민 화합물 혼합 사용
- 유속: 1 ml/min
- 시료농도: 1~2 mg/ml(THF에 희석)
- 주입량: 100 ㎕
- 컬럼온도: 40℃
- Detector: Refractive index
- Standard: Polystyrene (3차 함수로 보정)
본 명세서에서 무니응력 완화율은 Alpha Technologies 社 MV2000의 Large Rotor를 사용하여 100℃및 Rotor Speed 2±0.02rpm의 조건에서 측정하였다. 구체적으로는 중합체를 실온(23±5℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정한 것이다. 또한, 무니 응력 완화율은 상기 무니 점도를 측정한 후, 토크가 풀리면서 나타나는 무니점도 변화의 기울기 값을 측정하여 절대값으로 나타낸 것이다.
본 명세서에서 'Si 함량'은 ICP 분석 방법으로서 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정된 것으로, 상기 유도 결합 플라즈마 발광 분석기를 이용하여 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr);
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr);
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr);
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정하였다. 아울러, 상기 시료는 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 상태로서, 잔류 모노머 및 잔류 변성제 또한 제거한 상태인 것일 필요가 있으며, 오일이 첨가되어 있을 경우에는 오일 또한 추출을 통해 제거하여 측정된 것일 수 있다.
본 발명에서 'N 함량'은 NSX 분석 방법을 통해 측정된 것일 수 있고, 상기 NSX 분석 방법은 극미량 질소 정량분석기 (NSX-2100H)를 이용하여 측정된 것일 수 있다. 구체적으로, 극미량 질소 정량분석기(Auto sampler, Horizontal furnace, PMT & Nitrogen detector)를 켜고 Ar을 250 ml/min, O2를 350 ml/min, ozonizer 300 ml/min으로 캐리어 가스 유량을 설정하고, heater를 800℃로 설정한 후 약 3시간 동안 대기하여 분석기를 안정화시켰다. 분석기가 안정화된 후 Nitrogen standard(AccuStandard S-22750-01-5 ml)를 이용하여 검량선 범위 5 ppm, 10 ppm, 50 ppm, 100 ppm 및 500 ppm의 검량선을 작성하고 각 농도에 해당하는 Area를 얻은 후 농도 대 Area의 비율을 이용하여 직선을 작성하였다. 이후, 시료 20 mg가 담긴 세라믹 보트를 상기 분석기의 Auto sampler에 놓고 측정하여 area를 얻었다. 얻어진 시료의 area와 상기 검량선을 이용하여 질소 원자 함량을 계산하였다.
이 때 상기의 NSX 분석 방법에 사용되는 시료는 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 변성 공액 디엔계 중합체 시료로서, 잔류 모노머 및 잔류 변성제를 제거한 시료일 수 있다. 또한, 상기의 시료에 오일이 첨가되어 있다면, 오일이 추출(제거)된 후의 시료일 수 있다.
변성 공액디엔계 중합체
본 발명은 연속 중합에 의해 제조되어, 가공성이 뛰어나면서도, 분자량 분포가 좁아 물성이 우수한 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며, 일 말단에 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하고, 다른 일 말단에 변성 개시제 유래 작용기를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure pat00002
상기 화학식 1에서, R1 내지 R8은 각각 독립적으로 탄소수 1 내지 20의 알킬기이고; L1 및 L2는 각각 독립적으로 탄소수 1 내지 20의 알킬렌기이며; n은 2 내지 4의 정수이다.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위, 변성 개시제 유래 작용기 및 변성제 유래 작용기를 포함하는 것일 수 있다. 상기 공액디엔계 단량체 유래 반복 단위는 공액디엔계 단량체가 중합 시 이루는 반복 단위를 의미할 수 있고, 상기 변성 개시제 유래 작용기 및 변성제 유래 작용기는 각각 중합체 사슬의 말단에 존재하는 변성 개시제 또는 변성제로부터 유래된 작용기를 의미할 수 있다.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위, 방향족 비닐 단량체 유래 반복 단위, 변성 개시제 유래 작용기 및 변성제 유래 작용기를 포함하는 공중합체일 수 있다. 여기에서, 상기 방향족 비닐 단량체 유래 반복 단위는 방향족 비닐 단량체가 중합 시 이이루는 반복 단위를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌, 2-페닐-1,3-부타디엔 및 2-할로-1,3-부타디엔(할로는 할로겐 원자를 의미한다)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 방향족 비닐 단량체는 일례로 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-시클로헥실스티렌, 4-(p-메틸페닐)스티렌, 1-비닐-5-헥실나프탈렌, 3-(2-피롤리디노 에틸)스티렌(3-(2-pyrrolidino ethyl)styrene), 4-(2-피롤리디노 에틸)스티렌(4-(2-pyrrolidino ethyl)styrene) 및 3-(2-피롤리디노-1-메틸 에틸)-α-메틸스티렌(3-(2-pyrrolidino-1-methyl ethyl)-α-methylstyrene)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는, 상기 공액디엔계 단량체 유래 반복 단위와 함께 탄소수 1 내지 10의 디엔계 단량체 유래 반복 단위를 더 포함하는 공중합체일 수 있다. 상기 디엔계 단량체 유래 반복 단위는 상기 공액디엔계 단량체와는 상이한 디엔계 단량체로부터 유래된 반복 단위일 수 있고, 상기 공액디엔계 단량체와는 상이한 디엔계 단량체는 일례로 1,2-부타디엔일 수 있다. 상기 변성 공액디엔계 중합체가 디엔계 단량체를 더 포함하는 공중합체인 경우, 상기 변성 공액디엔계 중합체는 디엔계 단량체 유래 반복 단위를 0 초과 중량% 내지 1 중량%, 0 초과 중량% 내지 0.1 중량%, 0 초과 중량% 내지 0.01 중량%, 또는 0 초과 중량% 내지 0.001 중량%로 포함할 수 있고, 이 범위 내에서 겔 생성을 방지하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 공중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런스가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol, 10,000 g/mol 내지 1,000,000 g/mol, 또는 100,000 g/mol 내지 800,000 g/mol일 수 있고, 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol, 10,000 g/mol 내지 2,000,000 g/mol, 또는 100,000 g/mol 내지 2,000,000 g/mol일 수 있으며, 피크평균 분자량(Mp)이 1,000 g/mol 내지 3,000,000 g/mol, 10,000 g/mol 내지 2,000,000 g/mol, 또는 100,000 g/mol 내지 2,000,000 g/mol일 수 있다. 이 범위 내에서 회전저항 및 젖은 노면 저항성이 우수한 효과가 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비로서 분자량 분포(PDI; MWD; Mw/Mn)가 1.0 이상 1.7 미만, 특히 바람직하게는 1.1 이상 내지 1.7 미만일 수 있고, 이 범위 내에서 인장특성 및 점탄성 특성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.
이와 동시에, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖는 것으로, 이는 연속식 중합에 의해 중합된 중합체에서 나타나는 분자량 분포로써, 변성 공액디엔계 중합체가 균일한 특성을 갖는 것을 의미할 수 있다. 즉, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 연속식 중합에 의해 제조되어, 유니모달 형태의 분자량 분포 곡선을 가지면서도, 분자량 분포가 1.0 이상 1.7 미만인 것일 수 있다.
일반적으로, 공액디엔계 중합체를 회분식 중합방법으로 제조하고 변성반응을 시킬 경우 제조된 변성 공액디엔계 중합체의 분자량 분포 곡선은 바이모달(bimodal) 이상의 다봉의 분자량 분포곡선을 가진다. 구체적으로, 회분식 중합의 경우 원료들이 모두 투입된 이후에 중합 반응이 개시되어 다수의 개시제에 의해 발생되는 개시점으로부터 사슬의 성장이 동시에 일어날 수 있기 때문에 각 사슬의 성장이 대체로 균일할 수 있고, 이에 따라 제조된 중합체 사슬들의 분자량이 일정하여 분자량 분포가 상당히 좁은 유니모달 형태일 수 있다. 그러나, 변성제를 투입하여 변성반응을 시키는 경우에는 '변성이 되지 않는 경우'와 '변성 및 커플링 되는 경우', 2가지 경우의 수가 발생할 수 있고, 이에 따라 중합체 사슬들 사이에서 분자량의 차이가 큰 2개의 그룹이 형성될 수 있으며, 결국 분자량 분포 곡선의 피크가 2개 이상인 다봉의 분자량 분포 곡선을 형성하게 된다. 한편, 본 발명의 일 실시예에 따른 연속식 중합방법의 경우, 회분식 중합과 달리 반응의 개시와 원료의 투입이 연속적으로 수행되고, 반응이 개시되는 개시점이 생성되는 시점이 상이하며, 이에 따라 중합 개시가 반응 초기부터 시작된 것, 반응 중간에 시작된 것, 반응 말기에 시작된 것 등이 다양하기 때문에 중합 반응을 완료하였을 때에는 다양한 분자량을 갖는 중합체 사슬들이 제조된다. 이에 따라 분자량의 분포를 나타내는 곡선에서 특정 피크가 우세하게 나타나지 않아 단일한 피크로서 분자량 분포 곡선이 넓게 나타나며, 반응 말기에 중합이 개시된 사슬이 커플링되어도 반응 초기에 중합이 개시된 사슬의 분자량과 유사할 수 있어 분자량 분포의 다양성은 동일하게 유지될 수 있으므로 여전히 유니모달의 분포 곡선이 유지되는 것이 일반적인 경우다.
다만, 회분식 중합방법으로 중합체를 제조하고 변성하는 경우에도 유니모달의 형태를 가지도록 변성 조건을 조절할 수는 있으나, 이 경우에는 중합체 전체가 커플링되지 않은 것이거나, 중합체 전체가 커플링된 것이어야 하고, 그 이외의 경우에는 유니모달의 분자량 분포 곡선을 나타낼 수 없다.
또한, 전술한 것과 같이 회분식 중합방법으로 제조되었음에도 변성 공액디엔계 중합체의 분자량 분포 곡선이 유니모달의 분포를 나타내는 경우로서 중합체 전부가 커플링된 경우에는 모두 동등 수준의 분자량을 갖는 중합체들만 존재함으로써 가공성이 열악할 수 있고, 실리카 또는 카본블랙 등의 충진제와 상호작용할 수 있는 관능기가 커플링으로 인하여 감소함으로 인해 배합물성이 열악할 수 있으며, 반대의 경우로서, 중합체 전부가 커플링되지 않은 경우에는 실리카 또는 카본블랙 등의 충진제와 상호작용을 해야하는 중합체 말단의 관능기가 충진제 보다 중합체 말단 관능기 서로간 상호작용이 우세하게 되어 충진제와의 상호작용을 방해하는 현상이 발생될 수 있고 이에 가공성이 상당히 열악해질 수 있다. 결국 회분식 중합방법으로 중합체를 제조하면서 유니모달의 분자량 분포 곡선을 갖도록 조절하는 경우 제조된 변성 공액디엔계 중합체의 가공성 및 배합물성이 떨어지는 문제가 있을 수 있고, 특히 가공성이 현저하게 떨어질 수 있다.
한편, 변성 공액디엔계 중합체의 커플링 여부는 커플링 수(Coupling Number, C.N)로 확인할 수 있으며, 여기에서 커플링 수는 중합체의 변성 후, 변성제에 존재하는 중합체가 결합할 수 있는 관능기 수에 의존적인 수치이다. 즉, 중합체 사슬 간 커플링이 없고 말단 변성만 이루어진 중합체와 하나의 변성제에 다수의 중합체 사슬이 커플링된 중합체의 비율을 나타내는 것으로 1≤C.N≤F의 범위를 가질 수 있으며, 이 때 F는 변성제에서, 활성중합체 말단과 반응할 수 있는 관능기 수를 의미하는 것이다. 다시 말해, 커플링 수가 1인 변성 공액디엔계 중합체는 중합체 사슬 모두가 커플링되지 않은 것을 의미하고, 커플링 수가 F인 변성 공액디엔계 중합체는 중합체 사슬 모두가 커플링된 것을 의미한다.
따라서, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 분자량 분포 곡선이 유니모달 형태이면서도 커플링수가 1 보다는 크고 사용된 변성제의 관능기 수보다는 작은 것일 수 있다(1<C.N<F).
또 다른 예로, 상기 변성 공액디엔계 중합체는 Si 함량이 중량을 기준으로, 50 ppm 이상일 수 있고, 100 ppm 이상, 100 ppm 내지 10,000 ppm, 또는 100 ppm 내지 5,000 ppm일 수 있으며, 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 Si 함량은 상기 변성 공액디엔계 중합체 내에 존재하는 Si 원자의 함량을 의미할 수 있다. 한편, 상기 Si 원자는 변성제 유래 작용기로부터 유래된 것일 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는 총 중량을 기준으로 N 함량이 50 ppm 이상, 100 ppm 이상, 100 ppm 내지 10,000 ppm 또는 100 ppm 내지 5,000 ppm일 수 있고, 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 N 함량은 상기 변성 공액디엔계 중합체 내에 존재하는 N 원자의 함량을 의미할 수 있고, 이때 상기 N 원자는 변성제 유래 작용기로부터 유래된 것일 수 있다. 또한, 상기 N 원자는 경우에 따라서는 변성 개시제 유래 작용기로부터 유래된 것도 포함할 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는 100℃에서 측정된 무니응력 완화율이 0.7 이상, 0.7 이상 3.0 이하, 0.7 이상 2.5 이하, 또는 0.7 이상 2.0 이하인 것일 수 있다.
여기에서, 상기 무니응력 완화율은 동일 양의 변성(strain)에 대한 반응으로 나타나는 스트레스(stress)의 변화를 나타내는 것으로, 무니점도계를 사용하여 측정한 것일 수 있다.
한편, 무니응력 완화율은 해당 중합체의 분지구조의 지표로서 사용할 수 있으며, 예컨대 무니점도가 동등한 중합체를 비교하는 경우 분지가 많을수록 무니응력 완화율이 작아지기 때문에 분지도의 지표로서 사용할 수 있다.
또한, 상기 변성 공액디엔계 중합체는 무니점도(Mooney viscosity)가 100℃에서, 30 이상, 40 내지 150, 또는 40 내지 140일 수 있고, 이 범위 내에서 가공성 및 생산성이 우수한 효과가 있다.
또한, 상기 변성 공액디엔계 중합체는 비닐 함량이 5 중량% 이상, 10 중량% 이상, 또는 10 중량% 내지 60 중량%일 수 있다. 여기에서, 상기 비닐 함량은 비닐기를 갖는 단량체와 방향족 비닐계 단량체로 이루어진 공액디엔계 공중합체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 함량을 의미할 수 있다.
한편, 본 발명에 따른 변성제는 공액디엔계 중합체의 일 말단을 변성시키기 위한 변성제일 수 있고, 구체적인 예로 실리카 친화성 변성제일 수 있다. 상기 실리카 친화성 변성제는 변성제로 이용되는 화합물 내에 실리카 친화성 작용기를 함유하는 변성제를 의미하는 것일 수 있고, 상기 실리카 친화성 작용기는 충진제, 특히 실리카계 충진제와 친화성이 우수하여, 실리카계 충진제와 변성제 유래 작용기 간의 상호작용이 가능한 작용기를 의미하는 것일 수 있다.
본 발명의 일 실시예에 따른 변성제는, 충진제 친화성 작용기인 3차 아미노기를 용이하게 도입하여 변성시킬 수 있는 하기 화학식 1로 표시된다.
[화학식 1]
Figure pat00003
상기 화학식 1에서, R1 내지 R8은 각각 독립적으로 탄소수 1 내지 20의 알킬기이고; L1 및 L2는 각각 독립적으로 탄소수 1 내지 20의 알킬렌기이며; n은 2 내지 4의 정수이다.
구체적으로, 상기 화학식 1에서 R1 내지 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기일 수 있으며, 상기 R1 내지 R4가 치환되는 경우, 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 4 내지 10의 시클로알콕시기, 탄소수 6 내지 12의 아릴기, 탄소수 6 내지 12의 아릴옥시기, 탄소수 2 내지 12의 알카노일옥시기(alkanoyl, RaCOO-, 이때 Ra는 탄소수 1 내지 9의 알킬기임), 탄소수 7 내지 13의 아르알킬옥시기, 탄소수 7 내지 13의 아릴알킬기, 및 탄소수 7 내지 13의 알킬아릴기로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있다. 보다 구체적으로, 상기 R1 내지 R4는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기일 수 있으며, 더욱 구체적으로 상기 R1 내지 R4는 각각 독립적으로 치환 또는 비치환된, 탄소수 1 내지 6의 알킬기일 수 있다.
또, 상기 화학식 1에서 R5 내지 R8는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이며, 구체적으로는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 더욱 구체적으로는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기일 수 있으며, 치환되는 경우 앞서 R1 내지 R4에서 설명한 바와 같은 치환기들로 치환될 수 있다. 상기 R5 내지 R8이 알킬기가 아닌, 가수분해 가능한 기인 경우, N-R5R6 및 N-R7R8의 결합이 수분 존재 하에 N-H로 가수분해되어 중합체의 가공성에 악영향을 미칠 수 있다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 상기 화학식 1에서, R1 내지 R4는 메틸기 또는 에틸기이고, R5 내지 R8은 탄소수 1 내지 10의 알킬기인 것일 수 있다.
상기 화학식 1에 포함되는 아미노기, 즉 -NR5R6 및 -NR7R8은 3차 아미노기인 것이 바람직하다. 상기 3차 아미노기는 본 발명의 화합물이 변성제로 사용되었을 때 더욱 우수한 가공성을 갖도록 한다.
상기 R5 내지 R8이 아미노기를 보호하기 위한 보호기가 결합되거나 수소가 결합되는 경우에는 본 발명에 따른 효과의 구현이 어려울 수 있는데, 수소가 결합되는 경우, 변성 과정에서 음이온이 수소와 반응하여 반응성을 잃게 되어 변성 반응 자체가 불가능할 수 있고, 보호기가 결합되는 경우, 변성 반응이 수행되기는 하나, 중합체 말단에 결합된 상태에서 후가공시 가수분해로 인해 탈보호되어 1차 또는 2차 아미노기가 될 수 있으며, 탈보호된 1차 또는 2차 아미노기는 이후 배합시 배합물이 부스러지는 현상을 야기하여, 가공성 저하의 원인이 될 수 있다.
또한, 상기 화학식 1에서 L1 및 L2는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기일 수 있다. 보다 구체적으로는 L1 및 L2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있으며, 보다 더 구체적으로는 메틸렌기, 에틸렌기 또는 프로필렌기와 같은 탄소수 1 내지 6의 알킬렌기일 수 있다.
분자내 Si 원자와 N 원자 사이의 거리가 가까울수록 보다 우수한 효과를 나타내지만, Si가 N과 직접 결합할 경우 결합이 끊어질 가능성이 있다. 그 결과 후처리 공정 중 Si와 N 사이의 결합이 끊어지게 되고, 이때 발생한 2차 아미노기는 후처리중 물에 의해 유실될 가능성이 높으며, 또 최종 제조되는 변성 공액디엔계 중합체에서는 실리카 충진제와의 결합을 촉진하는 아미노기의 부재로 인해 실리카 충진제와의 결합이 어렵고, 그 결과 분산제의 분산 효과가 저하될 수 있다. 이와 같이 Si와 N 사이의 결합 길이에 따른 개선효과의 우수함을 고려할 때, 상기 L1 및 L2는 각각 독립적으로 메틸렌기, 에틸렌기 또는 프로필렌기와 같은 탄소수 1 내지 3의 알킬렌기가 더욱 바람직할 수 있으며, 보다 구체적으로는 프로필렌기일 수 있다. 또한 L1 및 L2는 앞서 R1 내지 R4에서 설명한 바와 같은 치환기들로 치환될 수 있다.
보다 더 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 1e 중 어느 하나로 표시되는 화합물일 수 있다:
[화학식 1a]
Figure pat00004
[화학식 1b]
Figure pat00005
[화학식 1c]
Figure pat00006
[화학식 1d]
Figure pat00007
[화학식 1e]
Figure pat00008
상기 화학식 1a 내지 화학식 1e에서, Me는 메틸기이고, Et는 에틸기이다.
본 발명의 변성제에 있어서, 상기 화학식 1로 표시되는 화합물은 알콕시실란 구조가 공액디엔계 중합체 활성화 말단과 결합하는 한편, Si-O-Si 구조 및 말단에 결합된 3개 이상의 아미노기가 실리카 등의 충진제에 대해 친화력을 나타냄으로써, 종래 분자내 1개의 아미노기를 포함하는 변성제와 비교하여 충진제와 변성 공액디엔계 중합체와의 결합을 촉진시킬 수 있다. 또한, 공액디엔계 중합체의 활성화 말단의 결합 정도가 균일하여 커플링 전 후에 분자량 분포의 변화 관찰시, 커플링 후에도 전에 비해 분자량 분포가 커지지 않고 일정하다. 그 결과, 변성 공액디엔계 중합체 자체의 물성 저하가 없고, 고무 조성물 내 충진제의 응집을 막아 충진제의 분산성을 높여 고무 조성물의 가공성을 향상시킬 수 있으며, 특히 타이어에서의 연비특성, 마모특성 및 제동특성을 균형 있게 개선시킬 수 있다.
상기 화학식 1로 표시되는 변성제는 하기 반응식 1로 표시되는 축합 반응을 통해 제조될 수 있다.
[반응식 1]
Figure pat00009
상기 반응식 1에서, R1 내지 R8, L1 내지 L2, 및 n은 상기 화학식 1에서 정의된 것과 같고, R' 및 R"은 상기 축합 반응에 영향을 미치지 않는 임의의 치환기이다. 예컨대, 상기 R' 및 R"은 각각 독립적으로 R1 내지 R4 중 어느 하나와 동일한 것일 수 있다.
상기 반응은 산 조건하에서 진행되며, 산은 일반적으로 축합 반응에 사용되는 것이라면 제한 없이 사용할 수 있다. 통상의 기술자는 상기 반응이 진행되는 반응기의 종류, 출발 물질, 반응 온도 등의 다양한 공정 변수에 맞추어 최적의 산을 선택할 수 있다.
한편, 본 발명의 일 실시예에 따른 변성 개시제는 하기 화학식 2a로 표시되는 화합물; 하기 화학식 2b 내지 화학식 2e로 표시되는 화합물 중에서 선택된 화합물과 유기금속 화합물과의 반응 생성물; 및 하기 화학식 2f로 표시되는 화합물;로 이루어진 군에서 선택된 1 이상의 화합물일 수 있다.
일례로, 하기 화학식 2a로 표시되는 화합물은 유기금속 화합물과의 반응 없이 변성 개시제로 적용할 수 있고, 다음과 같이 표시되는 화합물일 수 있다.
[화학식 2a]
Figure pat00010
상기 화학식 2a에서, Ra1 내지 Ra7은 서로 독립적으로 수소원자; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 탄소수 7 내지 20의 알킬아릴기; 또는 헤테로원자를 포함하는 탄소수 1 내지 20의 헤테로알킬기이고, m은 0 내지 3의 정수이다.
구체적으로, 상기 화학식 2a에서 Ra1 내지 Ra7은 서로 독립적으로 수소원자; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 탄소수 7 내지 20의 알킬아릴기; 탄소수 1 내지 20의 알콕시기; 탄소수 2 내지 20의 알콕시알킬기; 탄소수 6 내지 20의 아릴옥시기; 또는 탄소수 7 내지 20의 아릴옥시알킬기일 수 있다.
더욱 구체적으로, 상기 화학식 2a에서 Ra1은 탄소수 1 내지 10의 알킬기이고, 더 바람직하게는 탄소수 1 내지 5의 알킬기이며, Ra2 내지 Ra7은 서로 독립적으로 수소원자 또는 탄소수 1 내지 10의 알킬기, 바람직하게는 수소원자 또는 탄소수 1 내지 5의 알킬기일 수 있다.
보다 더 구체적으로, 상기 화학식 2a로 표시되는 변성 개시제는 하기 화학식 2aa로 표시되는 화합물일 수 있다.
[화학식 2aa]
Figure pat00011
상기 화학식 2aa에서, m은 0 내지 3의 정수이다.
다른 일례로, 하기 화학식 2b로 표시되는 화합물은 유기금속 화합물과의 반응을 통해 생성된 화합물의 형태로 적용할 수 있고, 다음과 같이 표시되는 화합물일 수 있다.
[화학식 2b]
Figure pat00012
기 화학식 2b에서, Xb1은 N 또는 O이고, Xb1이 O인 경우 Rb7 또는 Rb8은 존재하지 않고, Rb1 내지 Rb5는 서로 독립적으로 수소원자; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 또는 탄소수 7 내지 20의 알킬아릴기이거나; 서로 근접한 2개의 치환기가 연결되어 하나의 지방족 또는 방향족 고리를 형성할 수 있으며, Rb6은 단일결합; 또는 탄소수 1 내지 12의 알킬렌기이고, Rb7 및 Rb8은 서로 독립적으로 탄소수 1 내지 14의 알킬기 또는 탄소수 6 내지 14의 아릴기이다.
구체적으로, 상기 화학식 2b로 표시되는 화합물은, 화학식 2b에서 Xb1은 N 또는 O이고, Xb1이 O인 경우 Rb7 또는 Rb8은 존재하지 않고, Rb1 내지 Rb5는 서로 독립적으로 수소원자 또는 탄소수 1 내지 10의 알킬기이고, Rb6은 단일결합; 또는 탄소수 1 내지 6의 알킬렌기이고, Rb7 및 Rb8은 서로 독립적으로 탄소수 1 내지 10의 알킬기이다.
보다 더 구체적으로, 상기 화학식 2b로 표시되는 화합물은 하기 화학식 2ba 내지 화학식 2bd로 표시되는 화합물인 것일 수 있다.
[화학식 2ba]
Figure pat00013
[화학식 2bb]
Figure pat00014
[화학식 2bc]
Figure pat00015
[화학식 2bd]
Figure pat00016
다른 일례로, 하기 화학식 2c로 표시되는 화합물은 유기금속 화합물과의 반응을 통해 생성된 화합물의 형태로 적용할 수 있고, 다음과 같이 표시되는 화합물일 수 있다.
[화학식 2c]
Figure pat00017
상기 화학식 2c에서, Rc1 내지 Rc3는 서로 독립적으로 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기일 수 있다.
Rc4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기일 수 있다.
Rc5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 2c-1 또는 화학식 2c-2로 표시되는 작용기이며, k는 1 내지 5의 정수이고, Rc5 중 적어도 하나는 하기 화학식 2c-1 또는 화학식 2c-2로 표시되는 작용기이며, k가 2 내지 5의 정수인 경우 복수 개의 Rc5는 서로 동일하거나 상이할 수 있다.
[화학식 2c-1]
Figure pat00018
상기 화학식 2c-1에서, Rc6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, Rc7 및 Rc8은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, Rc9는 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, Xc1은 N, O 또는 S 원자이며, Xc1이 O 또는 S인 경우 Rc9는 존재하지 않는 것일 수 있다.
[화학식 2c-2]
Figure pat00019
상기 화학식 2c-2에서, Rc10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, Rc11 및 Rc12는 서로 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기일 수 있다.
구체적으로, 상기 화학식 2c로 표시되는 화합물은, 화학식 2c에서 Rc1 내지 Rc3는 서로 독립적으로 수소원자; 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 또는 탄소수 2 내지 10의 알카이닐기이고, Rc4는 단일결합; 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고, Rc5는 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 탄소수 2 내지 10의 알카이닐기; 또는 하기 화학식 2c-1 또는 화학식 2c-2로 표시되는 작용기이며, 상기 화학식 2c-1에서, Rc6은 비치환된 탄소수 1 내지 10의 알킬렌기이고, Rc7 및 Rc8은 서로 독립적으로 비치환된 탄소수 1 내지 10의 알킬렌기이고, Rc9는 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기이고, 상기 화학식 2c-2에서, Rc10은 비치환된 탄소수 1 내지 10의 알킬렌기이고, Rc11 및 Rc12는 서로 독립적으로 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기인 것일 수 있다.
보다 더 구체적으로, 상기 화학식 2c로 표시되는 화합물은 하기 화학식 2ca 내지 화학식 2cc으로 표시되는 화합물인 것일 수 있다.
[화학식 2ca]
Figure pat00020
[화학식 2cb]
Figure pat00021
[화학식 2cc]
Figure pat00022
다른 일례로, 하기 화학식 2d로 표시되는 화합물은 유기금속 화합물과의 반응을 통해 생성된 화합물의 형태로 적용할 수 있고, 다음과 같이 표시되는 화합물일 수 있다.
[화학식 2d]
Figure pat00023
상기 화학식 2d에서, Rd1 내지 Rd5는 서로 독립적으로 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며, Rd6은 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이고, Xd1은 하기 화학식 2d-1 또는 화학식 2d-2로 표시되는 작용기일 수 있다.
[화학식 2d-1]
Figure pat00024
상기 화학식 2d-1에서, Rd7 및 Rd8은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, Rd9는 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, Xd2는 N, O 또는 S 원자이며, Xd2가 O 또는 S인 경우 Rd9는 존재하지 않는 것일 수 있다.
[화학식 2d-2]
Figure pat00025
상기 화학식 2d-2에서, Rd11 및 Rd12는 서로 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기일 수 있다.
구체적으로, 상기 화학식 2d로 표시되는 화합물은, 화학식 2d에서 Rd1 내지 Rd5는 서로 독립적으로 수소원자; 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 또는 탄소수 2 내지 10의 알카이닐기이고, Rd6는 비치환된 탄소수 1 내지 10의 알킬렌기이고, Xd1은 화학식 2d-1 또는 화학식 2d-2로 표시되는 작용기이며, 상기 화학식 2d-1에서, Rd7 및 Rd8은 서로 독립적으로 비치환된 탄소수 1 내지 10의 알킬렌기이고, Rd9는 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기이고, Xd2는 N이며, 상기 화학식 2d-2에서, Rd11 및 Rd12는 서로 독립적으로 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기인 것일 수 있다.
보다 더 구체적으로, 상기 화학식 2d로 표시되는 화합물은 하기 화학식 2da 또는 화학식 2db로 표시되는 화합물인 것일 수 있다.
[화학식 2da]
Figure pat00026
[화학식 2db]
Figure pat00027
상기 화학식 2b 내지 화학식 2d로 표시되는 화합물이 선택되는 경우에는 유기금속 화합물과 반응하는 전처리가 필요할 수 있고, 여기서 유기금속 화합물은 유기리튬 화합물, 유기나트륨 화합물, 유기칼륨 화합물, 유기루비듐 화합물 및 유기세슘 화합물 중에서 선택된 1종 이상인 것일 수 있다. 구체적으로, 상기 유기금속 화합물은 메틸리튬, 에틸리튬, 이소프로필리튬, n-부틸리튬, sec-부틸리튬, tert-부틸리튬, n-데실리튬, tert-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코리튬, 4-부틸페닐리튬, 4-톨릴리튬, 시클로헥실리튬, 3,5-디-n-헵틸시클로헥실리튬 및 4-시클로펜틸리튬 중에서 선택된 1종 이상인 것일 수 있다.
다른 일례로, 하기 화학식 2e로 표시되는 화합물은 유기금속 화합물과의 반응을 통해 생성된 화합물의 형태로 적용할 수 있고, 다음과 같이 표시되는 화합물일 수 있다.
[화학식 2e]
Figure pat00028
상기 화학식 2e에서,
Re1은 탄소수 2 내지 10의 알케닐기이다.
구체적으로, 상기 화학식 2e로 표시되는 화합물은 하기 화학식 2ea로 표시되는 화합물, 즉 1-비닐이미다졸(1-vinyl imidazole; 1-vinyl-1H-imidazole)일 수 있다.
[화학식 2ea]
Figure pat00029
일례로, 하기 화학식 2f로 표시되는 화합물은 유기금속 화합물과의 반응 없이 변성 개시제로 적용할 수 있고, 다음과 같이 표시되는 화합물일 수 있다.
[화학식 2f]
Figure pat00030
상기 화학식 2f에서, Rf1, Rf2 및 Rf5는 서로 독립적으로 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 또는 탄소수 7 내지 20의 알킬아릴기이고, Rf3 및 Rf4는 서로 독립적으로 탄소수 1 내지 20의 알킬렌기 또는 탄소수 6 내지 20의 아릴렌기이며, p는 1 내지 5의 정수이다.
구체적으로, 상기 화학식 2f에서 Rf1, Rf2 및 Rf5는 서로 독립적으로 탄소수 1 내지 10의 알킬기; 탄소수 3 내지 10의 시클로알킬기; 탄소수 6 내지 10의 아릴기; 탄소수 7 내지 10의 아릴알킬기; 또는 탄소수 7 내지 10의 알킬아릴기이고, Rf3 및 Rf4는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기 또는 탄소수 6 내지 10의 아릴렌기이며, n은 1 내지 3의 정수일 수 있다.
더 구체적으로, 상기 화학식 2f에서 Rf1, Rf2 및 Rf5는 서로 독립적으로 탄소수 1 내지 6의 알킬기이고, Rf3 및 Rf4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기이며, n은 1 내지 3의 정수일 수 있다.
보다 더 구체적으로, 상기 화학식 2f로 표시되는 변성 개시제는 하기 화학식 2fa로 표시되는 화합물일 수 있다.
[화학식 2fa]
Figure pat00031
전술한 것과 같이, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는, 중합체가 특정 구조를 가지며, 특유의 분자량 분포도 및 형태를 가질 수 있다. 이러한 중합체의 구조는 무니응력 완화율, 커플링 수와 같은 물성으로 표현될 수 있으며, 상기 분자량 분포도와 그 형태는 PDI 값과 분자량 분포 곡선의 형태, 그리고 커플링 수로 발현될 수 있고, 변성제와 변성 개시제에 의한 양말단 변성은 구조 및 분자량 분포도와 그 형태에 영향을 줄 수 있다. 이러한 중합체의 구조를 표현해 주는 파라미터들과 분자량 분포와 관련된 특징은 후술하는 제조방법에 따라 만족될 수 있으며, 이러한 제조방법을 통해 제조되는 것이 상기한 특징을 만족시키는 데에 바람직하지만, 상기한 특징을 모두 만족하는 경우에는, 본 발명에서 구현하고자 하는 효과를 달성할 수 있다.
변성 공액디엔계 중합체의 제조방법
또한, 본 발명은 상기 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체 제조방법은 탄화수소 용매 중에서, 변성 개시제 존재 하에 공액디엔계 단량체 또는 공액디엔계 단량체 및 방향족 비닐 단량체를 중합하여 상기 변성 개시제 유래 작용기가 도입된 활성 중합체를 제조하는 단계(S1); 및 상기 (S1) 단계에서 제조된 활성 중합체와 하기 화학식 1로 표시되는 변성제를 반응 또는 커플링시키는 단계(S2)를 포함하고, 상기 (S1) 단계는 2기 이상의 중합 반응기에서 연속적으로 실시되며, 상기 중합 반응기 중 제1 반응기에서의 중합 전환율은 50% 이하인 것일 수 있다.
[화학식 1]
Figure pat00032
상기 화학식 1에서, 각 치환기 및 지수는 앞서 정의한 바와 같다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 시클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
또한, 상기 공액디엔계 단량체 및 방향족 비닐 단량체는 앞서 정의한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 변성 개시제는 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol, 0.05 mmol 내지 5 mmol, 0.1 mmol 내지 2 mmol, 0.1 mmol 내지 1 mmol, 또는 0.15 내지 0.8 mmol로 사용할 수 있다.
상기 (S1) 단계의 중합은 일례로 음이온 중합일 수 있고, 구체적인 예로 음이온에 의한 성장 중합 반응에 의해 중합 말단에 음이온 활성 부위를 갖는 리빙 음이온 중합일 수 있다. 또한, 상기 (S1) 단계의 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있고, 상기 정온 중합은 변성 개시제를 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 의미할 수 있고, 상기 승온 중합은 상기 변성 개시제를 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 의미할 수 있으며, 상기 등온 중합은 상기 변성 개시제를 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 의미할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 중합은 상기 공액디엔계 단량체 이외에 탄소수 1 내지 10의 디엔계 화합물을 더 포함하여 실시될 수 있고, 이 경우 장시간 운전 시 반응기 벽면에 겔이 형성되는 것을 방지하는 효과가 있다. 상기 디엔계 화합물 일례로 1,2-부타디엔일 수 있다.
상기 (S1) 단계의 중합은 일례로 80℃이하, -20℃ 내지 80℃, 0℃ 내지 80℃, 0℃ 내지 70℃ 또는 10℃ 내지 70℃의 온도범위에서 실시될 수 있고, 이 범위 내에서 중합체의 분자량 분포를 좁게 조절하여, 물성 개선이 뛰어난 효과가 있다.
상기 (S1) 단계에 의해 제조된 활성 중합체는 중합체 음이온과 유기 금속 양이온이 결합된 중합체를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체 제조방법은 2기 이상의 중합 반응기 및 변성 반응기를 포함하는 복수의 반응기에서 연속식 중합방법에 의해 실시될 수 있다. 구체적인 예로, 상기 (S1) 단계는 제1 반응기를 포함하여 2기 이상의 중합 반응기에서 연속적으로 실시될 수 있고, 상기 중합 반응기의 수는 반응 조건 및 환경에 따라 탄력적으로 결정될 수 있다. 상기 연속식 중합방법은 반응기에 반응물을 연속적으로 공급하고, 생성된 반응 생성물을 연속적으로 배출하는 반응 공정을 의미할 수 있다. 상기 연속식 중합방법에 의하는 경우, 생산성 및 가공성이 우수하고, 제조되는 중합체의 균일성이 뛰어난 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 중합 반응기에서 연속적으로 활성 중합체 제조 시, 제1 반응기에서의 중합 전환율은 50% 이하, 10% 내지 50%, 또는 20% 내지 50% 일 수 있고, 이 범위 내에서 중합 반응기 개시된 후, 중합체가 형성되면서 발생되는 부반응을 억제하여 중합 시, 선형(linear) 구조의 중합체를 유도할 수 있으며, 이에 따라 중합체의 분자량 분포를 좁게 조절하는 것이 가능하여, 물성 개선이 뛰어난 효과가 있다.
이때, 상기 중합 전환율은 반응온도, 반응기 체류시간 등에 따라 조절될 수 있다.
상기 중합 전환율은 일례로 중합체의 중합 시, 중합체를 포함하는 중합체 용액 상의 고체 농도를 측정하여 결정될 수 있고, 구체적인 예로, 상기 중합체 용액을 확보하기 위해 각 중합 반응기의 출구에 실린더형 용기를 장착하여 일정양의 중합체 용액을 실린더형 용기에 채우고, 상기 실린더형 용기를 반응기로부터 분리하여 중합체 용액이 충진되어 있는 실린더의 무게(A)를 측정한 후, 실린더형 용기에 충진되어 있는 중합체 용액을 알루미늄 용기, 일례로 알루미늄 디쉬에 옮기고 중합체 용액이 제거된 실린더형 용기의 무게(B)를 측정하고, 중합체 용액이 담긴 알루미늄 용기를 140℃의 오븐에서 30분 간 건조시키고, 건조된 중합체의 무게(C)를 측정한 뒤, 하기 수학식 1에 따라 계산한 것일 수 있다.
[수학식 1]
Figure pat00033
한편, 상기 제1 반응기에서 중합된 중합물은 변성 반응기 전의 중합 반응기까지 순차적으로 이송되어 최종적으로 중합 전환율이 95% 이상이 될 때까지 중합이 진행될 수 있고, 제1 반응기에서 중합된 이후, 제2 반응기, 또는 제2 반응기 내지 변성 반응기 전의 중합 반응기까지 각 반응기별 중합 전환율은 분자량 분포의 조절을 위해 각 반응기 별로 적절히 조절하여 실시될 수 있다.
한편, 상기 (S1) 단계에서, 활성 중합체 제조 시, 제1 반응기에서의 중합물 체류 시간은 1분 내지 40분, 1분 내지 30분, 또는 5분 내지 30분일 수 있고, 이 범위 내에서, 중합 전환율의 조절이 용이하고, 이에 따라 중합체의 분자량 분포를 좁게 조절하는 것이 가능하고, 이에 따라, 물성 개선이 뛰어난 효과가 있다.
본 발명에서 용어 '중합물'은 (S1) 단계 또는 (S2) 단계가 완료되어, 활성 중합체, 또는 변성 공액디엔계 중합체를 수득하기에 앞서, (S1) 단계 실시 중, 각 반응기 내에서 중합이 실시되고 있는 중합체 형태의 중간체를 의미할 수 있고, 반응기 내에서 중합이 실시되고 있는 중합 전환율 95% 미만의 중합체를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계에서 제조된 활성 중합체의 분자량 분포(PDI, polydispersed index; MWD, molecular weight distribution; Mw/Mn)는 1.5 미만, 1.0 이상 내지 1.5 미만, 또는 1.1 이상 내지 1.5 미만일 수 있고, 이 범위 내에서 변성제와의 변성 반응 또는 커플링을 통해 제조되는 변성 공액디엔계 중합체의 분자량 분포가 좁아, 물성 개선이 뛰어난 효과가 있다.
한편, 상기 (S1) 단계의 중합은 극성 첨가제를 포함하여 실시될 수 있고, 상기 극성 첨가제는 단량체 총 100g을 기준으로 0.001g 내지 50g, 0.001g 내지 10g, 또는 0.005g 내지 0.1g의 비율로 첨가할 수 있다. 또 다른 예로, 상기 극성첨가제는 변성 개시제 총 1 mmol을 기준으로 0.001g 내지 10g, 0.005g 내지 5g, 0.005g 내지 4g의 비율로 첨가할 수 있다.
상기 극성 첨가제는 일례로 테트라하이드로퓨란, 2,2-디(2-테트라하이드로퓨릴)프로판, 디에틸에테르, 시클로펜틸에테르, 디프로필에테르, 에틸렌메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민, N,N,N',N'-테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 및 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether) 로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 2,2-디(2-테트라하이드로퓨릴)프로판, 트리에틸아민, 테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 또는 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether)일 수 있으며, 상기 극성 첨가제를 포함하는 경우 공액디엔계 단량체, 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계의 반응 또는 커플링은 변성 반응기에서 실시될 수 있고, 이 때, 상기 변성제는 단량체 총 100g을 기준으로 0.01 mmol 내지 10 mmol의 양으로 사용할 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계의 변성 개시제 1몰을 기준으로, 1:0.1 내지 10, 1: 0.1 내지 5, 또는 1:0.1 내지 1:3의 몰비로 사용할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 변성제는 변성 반응기에 투입될 수 있고, 상기 (S2) 단계는 변성 반응기에서 실시될 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계에서 제조된 활성 중합체를 (S2) 단계를 실시하기 위한 변성 반응기로 이송하기 위한 이송부에 투입될 수 있고, 상기 이송부 내에서 활성 중합체와 변성제의 혼합에 의해 반응 또는 커플링이 진행될 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은, 전술한 변성 공액디엔계 중합체의 특성을 만족시킬 수 있는 방법이며, 상기한 것과 같이 본 발명에서 달성하고자 하는 효과는 위 특징을 만족하였을 경우 달성될 수 있지만, 적어도 상기 제조방법에 있어서 연속식 공정 하에서 제1 반응기에서 제2 반응기로 이송할 때의 중합 전환율은 만족할 필요가 있고, 이 외의 중합 조건들의 경우 다양하게 제어됨으로써, 본 발명에 따른 변성 공액디엔계 중합체가 갖는 물성을 구현할 수 있다.
고무 조성물
아울러, 본 발명은 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물을 제공한다.
상기 고무 조성물은 상기 변성 공액디엔계 중합체를 10 중량% 이상, 10 중량% 내지 100 중량%, 또는 20 중량% 내지 90 중량%의 양으로 포함하는 것일 수 있고, 이 범위 내에서 인장 강도, 내마모성 등의 기계적 물성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있고, 이 때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적인 예로 상기 다른 고무 성분은 상기 변성 공액디엔계 중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 일례로 천연고무 또는 합성고무일 수 있으며, 구체적인 예로 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 고무 조성물은 일례로 본 발명의 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부, 또는 10 중량부 내지 120 중량부의 충진제를 포함하는 것일 수 있다. 상기 충진제는 일례로 실리카계 충진제일 수 있고, 구체적인 예로 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있으며, 바람직하게는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 뛰어난 습식 실리카일 수 있다. 또한, 상기 고무 조성물은 필요에 따라 카본계 충진제를 더 포함할 수 있다.
또 다른 예로, 상기 충전제로 실리카가 사용되는 경우 보강성 및 저발열성 개선을 위한 실란 커플링제가 함께 사용될 수 있고, 구체적인 예로 상기 실란 커플링제는 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 바람직하게는 보강성 개선 효과를 고려할 때 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은, 고무 성분으로서 활성 부위에 실리카와의 친화성이 높은 작용기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있고, 이에 따라, 상기 실란 커플링제는 실리카 100 중량부에 대하여 1 중량부 내지 20 중량부, 또는 5 중량부 내지 15 중량부로 사용될 수 있으며, 이 범위 내에서 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지하는 효과가 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 황 가교성일 수 있고, 가황제를 더 포함할 수 있다. 상기 가황제는 구체적으로 황 분말일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있으며, 이 범위 내에서 가황 고무 조성물의 필요한 탄성률 및 강도를 확보함과 동시에 저연비성이 뛰어난 효과가 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 산화방지제, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 일례로 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
상기 공정유는 고무 조성물 내에서 연화제로서 작용하는 것으로, 일례로 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있고, 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 일례로 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있고, 이 범위 내에서 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지하는 효과가 있다.
상기 산화방지제는 일례로 2,6-디-t-부틸파라크레졸, 디부틸히드록시톨루엔일, 2,6-비스((도데실티오)메틸)-4-노닐페놀(2,6-bis((dodecylthio)methyl)-4-nonylphenol) 또는 2-메틸-4,6-비스((옥틸티오)메틸)페놀(2-methyl-4,6-bis((octylthio)methyl)phenol)일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
상기 노화방지제는 일례로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있고, 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예 1
(1) 화학식 2aa-1로 표시되는 화합물의 제조
N-메틸아닐린(N-methylaniline) 10.11 ml(91.46 mmol)을 284 ml MTBE(메틸 t-부틸 에테르)에 녹이고 온도를 -20℃로 낮춘 후 n-부틸리튬 헥산 용액 42.83 ml(23 wt%, 105.18 mmol)을 천천히 첨가하였다. 온도를 천천히 상온으로 올리면서 180분 정도 교반하였다. 반응용액이 연한 노란색으로 변하면 다시 온도를 -20℃로 낮추고, 이산화탄소를 20분 가량 투입하고 온도를 상온으로 올리면서 한시간 정도 교반하여 흰색 슬러리 상태의 반응물을 제조하였다. 온도를 다시 -20℃로 낮추고 THF(테트라하이드로퓨란) 9.27 ml(114.33 mmol)와 t-부틸리튬 펜탄 용액 62.4 ml(18 wt%, 114.33 mmol)을 연속적으로 넣어주면서 반응시켜 짙은 노란색 슬러리의 반응물을 제조하였다. 이후 -10℃에서 2시간 정도 교반한 후, 용매를 제거하고 아르곤 분위기 하에서 헥산으로 3회 정도 세척하여 노란색 고체 상태의 하기 화학식 2aa-1로 표시되는 화합물 14.9 g(수율 99% 이상)을 제조하였다. 제조된 화학식 2aa-1로 표시되는 화합물 20 mg 을 HCl 수용액/헥산(1 ml/1 ml) 혼합 용매에 주입하고 탈보호화(deprotection)반응을 진행한 후 NMR을 측정하여 제조되었음을 확인하였다.
[화학식 2aa-1]
Figure pat00034
1H NMR(500 MHz, Pyridine): δ 7.51 (m, 1H), 7.19 (m, 1H), 6.99 (m, 1H), 3.33 (s, 3H).
(2) 화학식 2aa-2로 표시되는 화합물의 제조
이어서 폐쇄형 시스템(cloased system)이면서 고온/고압에서 반응을 수행할 수 있는 오토클레이브(autoclave) 반응기에 상기 제조된 화학식 2aa-1로 표시되는 화합물 1.49 g(9.15 mmol)을 넣고 시클로헥산 용매 하에서 이소프렌 1.56 g(22.87 mmol)과 디테트라하이드로퓨릴프로판(DTHFP) 2.11 g(11.43 mmol)을 투입하여 8 bar, 100℃에서 24시간 동안 반응을 진행하였다. 반응 종류 후, 진공농축으로 용매를 제거하고 헥산으로 여과하여 미반응한 화학식 2aa-1로 표시되는 화합물을 제거하고 여과액에 녹아있는 하기 화학식 2aa-2로 표시되는 화합물을 얻었다. 화학식 2aa-2로 표시되는 화합물 20 mg 을 HCl 수용액/헥산(1 ml/1 ml) 혼합 용매에 주입하고 탈보호화(deprotection)반응을 진행한 후 NMR을 측정하여 학식 2aa-2로 표시되는 화합물이 제조되었음을 확인하였다.
[화학식 2aa-2]
Figure pat00035
1H NMR(500 MHz, CDCl3): δ 7.07-7.01 (m, 2H), 6.65-6.63 (m, 2H), 5.75 (m, 1H), 5.20 (m, 1H), 4.0 (s, 1H), 3.21 (d, 2H), 3.09 (s, 1H), 2.00 (m, 4H), 1.82 (s, 6H), 1.70 (s, 3H).
제조예 2
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 516 g, 하기 화학식 2bd로 표시되는 화합물 217.6 g 및 테트라메틸에틸렌디아민 108 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력용기에 2.5 M n-부틸리튬 258 g 및 시클로헥산 472 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 2bd로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력용기의 압력은 4bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 25℃로 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 2 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하여 변성 개시제를 제조하였다. 반응 종료 후, 가스 크로마토그래피로 분석하여 화학식 2bd로 표시되는 화합물이 99% 이상 전환된 것을 확인하여 변성 개시제가 제조되었음을 확인하였다.
[화학식 2bd]
Figure pat00036
제조예 3
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 6,922 g, 하기 화학식 2ca로 표시되는 화합물 120 g 및 테트라메틸에틸렌디아민 60 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력용기에 2.0 M n-부틸리튬 180 g 및 시클로헥산 6,926 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 2ca로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력용기의 압력은 7bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 -10℃로 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 3 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하여 변성 개시제를 제조하였다. 반응 종료 후, 가스 크로마토그래피로 분석하여 화학식 2ca로 표시되는 화합물이 99% 이상 전환된 것을 확인하여 변성 개시제가 제조되었음을 확인하였다.
[화학식 2ca]
Figure pat00037
제조예 4
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 516 g, 하기 화학식 2db로 표시되는 화합물 100 g 및 테트라메틸에틸렌디아민 105 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력용기에 2.5 M n-부틸리튬 248 g 및 시클로헥산 472 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 2db로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력용기의 압력은 4bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 0℃로 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 2 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하여 변성 개시제를 제조하였다. 반응 종료 후, 가스 크로마토그래피로 분석하여 화학식 2db로 표시되는 화합물이 99% 이상 전환된 것을 확인하여 변성 개시제가 제조되었음을 확인하였다.
[화학식 2db]
Figure pat00038
제조예 5
진공 건조시킨 2L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 6,922 g, 하기 화학식 2ea로 표시되는 화합물 52.2 g 및 테트라메틸에틸렌디아민 60 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력용기에 2.0 M n-부틸리튬 180 g 및 시클로헥산 6,926 g을 투입하여 제2 반응 용액을 제조하였다. 이때, 화학식 2ea로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이었다. 각 압력용기의 압력은 7bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입속도로, 제2 연속식 채널로 제2 반응 용액을 1.0 g/min의 주입속도로 각각 주입하였다. 이때, 연속식 반응기의 온도는 -10℃로 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 3 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하여 변성 개시제를 제조하였다. 반응 종료 후, 가스 크로마토그래피로 분석하여 화학식 2bd로 표시되는 화합물이 99% 이상 전환된 것을 확인하여 변성 개시제가 제조되었음을 확인하였다.
[화학식 2ea]
Figure pat00039
제조예 6
플라스크에 시클로헥산 60 g, N,N'-디메틸프로판-1,3-디아민 2.04 g(0.02 mol)과 1-브로모-3-클로로프로판 6.93 g(0.044 mol)을 넣고 60℃에서 4시간 동안 교반하여 반응시켰다. 여기에, Li 1.39 g(0.2 mol)을 첨가하여 40℃에서 12시간 동안 교반한 후 미반응 물질을 제거하고, 이소프렌 2.72 g(0.04 mol)을 첨가한 후 40℃에서 1시간 동안 교반하여 하기 화학식 2fa로 표시되는 화합물을 제조하였다. 제조된 화합물은 디페닐아세트산을 이용한 적정법을 통하여 활성 Li 농도를 측정하였으며, 측정된 활성 Li 농도는 0.55 M(이론 활성 Li 농도(0.66 M) 대비 83% 수준)이었다.
[화학식 2fa]
Figure pat00040
실시예 1
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1기 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 1.92 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 11.80 kg/h, n-헥산 47.73 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-(디(2-테트라하이드로퓨릴)프로판)이 10 중량%로 용해된 용액을 53 g/h, 변성 개시제로 n-헥산에 상기 제조예 1에서 제조된 화학식 2aa-2로 표시되는 화합물이 10 중량%로 용해된 용액을 185.0 g/h의 속도로 주입하였다. 이 때, 제1기 반응기의 온도는 50℃가 되도록 유지하였으며, 중합 전환율이 39%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 2.95 kg/h의 속도로 주입하였다. 이때, 제2기 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.
상기 제2 반응기에서 제3 반응기로 중합물 이송하여, 변성제로 하기 화학식 1a로 표시되는 화합물이 20 중량%로 용해된 용액을 연속적으로 제3 반응기에 투입하였다([변성제]:[act. Li]=1:1 몰비). 제3 반응기의 온도는 70℃가 되도록 유지하였다.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 167 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 양말단 변성 공액디엔계 중합체를 제조하였다.
[화학식 1a]
Figure pat00041
실시예 2
실시예 1에 있어서, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 하기 화학식 1b로 표시되는 화합물이 이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 1b]
Figure pat00042
실시예 3
실시예 1에 있어서, 중합 전환율이 40%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 하기 화학식 1c로 표시되는 화합물이이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 1c]
Figure pat00043
실시예 4
실시예 1에 있어서, 중합 전환율이 40%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 하기 화학식 1d로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 1d]
Figure pat00044
실시예 5
실시예 1에 있어서, 변성 개시제로 n-헥산에 제조예 2에서 제조된 변성 개시제가 10 중량%로 용해된 용액을 165 g/h로 로 주입한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다.
실시예 6
실시예 1에 있어서, 변성 개시제로 n-헥산에 제조예 3에서 제조된 변성 개시제가 10 중량% 용해된 용액을 185 g/h로 주입한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다.
실시예 7
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1기 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.58 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 10.47 kg/h, n-헥산 47.59 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-(디-2(테트라하이드로퓨릴)프로판이 10 중량%로 용해된 용액을 127 g/h, 변성 개시제로 n-헥산에 제조예 4에서 제조된 변성 개시제가 10 중량%로 용해된 용액을 130 g/h로 주입하였다. 이 때, 제1기 반응기의 온도는 50℃가 되도록 유지하였으며, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 2.62 kg/h의 속도로 주입하였다. 이때, 제2기 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.
상기 제2 반응기에서 제3 반응기로 중합물 이송하여, 변성제로 하기 화학식 1a로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 투입하였다([변성제]:[act,. Li]=1:1 몰비). 제3 반응기의 온도는 70℃가 되도록 유지하였다.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 167 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 양말단 변성 공액디엔계 중합체를 제조하였다.
[화학식 1a]
Figure pat00045
실시예 8
실시예 7에 있어서, 중합 전환율이 43%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 하기 화학식 1b로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 1b]
Figure pat00046
실시예 9
실시예 7에 있어서, 변성제로 n-헥산에 화학식 1c로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 1c]
Figure pat00047
실시예 10
실시예 7에 있어서, 변성제로 n-헥산에 하기 화학식 1e로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 1e]
Figure pat00048
실시예 11
실시예 7에 있어서, 변성 개시제로 n-헥산에 제조예 5에서 제조된 변성 개시제가 10 중량%로 용해된 용액을 121 g/h로 주입한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다.
실시예 12
실시예 1에 있어서, 변성 개시제로 n-헥산에 제조예 6에서 제조된 화학식 2fa로 표시되는 화합물이 10 중량%로 용해된 용액을 265.0 g/h로 주입하고, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고 한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다.
비교예 1
20 L 오토클레이브 반응기에 스티렌 100 g, 1,3-부타디엔 880 g, n-헥산 5000 g 및 극성첨가제로 2,2-디(2-테트라하이드로퓨릴)프로판 0.89 g을 넣은 후 반응기 내부 온도를 50℃로 승온하였다. 반응기 내부 온도가 50℃에 도달했을 때, 변성 개시제로 제조예 1에서 제조된 화학식 2aa-2로 표시되는 화합물 5.5 mmol을 투입하여 단열 승온 반응을 진행시켰다. 20 여분 경과 후 1,3-부타디엔 20 g을 투입하여 중합체 사슬 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후, 변성제로 화학식 1a로 표시되는 화합물 5.5 mmol을 투입하여 15분 간 반응시켰다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 IR1520(BASF社)가 n-헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 양말단 변성 공액디엔계 중합체를 제조하였다.
비교예 2
실시예 4에 있어서, 변성 개시제 대신 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 75.0 g/h의 속도로 주입하고, 제1기 반응기의 온도는 55℃가 되도록 유지하고, 중합 전환율이 45%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송한 것을 제외하고는 상기 실시예 4와 동일하게 실시하여 단말단 변성 공액디엔계 중합체를 제조하였다.
비교예 3
실시예 1에 있어서, 반응온도를 제1 반응기에서는 75℃, 제2 반응기에서는 80℃, 제3 반응기에서는 80℃로 유지하고, 제1 반응기에서 중합 전환율이 68%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하여 중합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다.
비교예 4
실시예 1에 있어서, 중합 전환율이 42%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 제3 반응기에 변성제를 투입하지 않고 반응시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 단말단 변성 공액디엔계 중합체를 제조하였다.
비교예 5
실시예 1에 있어서, 변성 개시제로서 제조예 1의 화합물 대신에 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 75.0 g/h의 속도로 제1 반응기에 연속적으로 투입하고, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 단말단 변성 공액 디엔계 중합체를 제조하였다.
비교예 6
실시예 9에 있어서, 변성 개시제로서 제조예 3에서 제조된 화합물 대신에 n-헥산에 부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 75.0 g/h의 속도로 제1 반응기에 연속적으로 투입하고, 제1기 반응기의 온도는 55℃가 되도록 유지하고, 중합 전환율이 49%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였으며, 변성제로 n-헥산에 화학식 1d로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 투입한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 단말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
비교예 7
실시예 5에 있어서, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 하기 화학식 i로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 5와 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 i]
Figure pat00049
상기 화학식 i에서, Me는 메틸기이다.
비교예 8
실시예 6에 있어서, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 하기 화학식 ii로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 ii]
Figure pat00050
상기 화학식 ii에서, TMS는 트리메틸실릴기이고, Me는 메틸기이다.
비교예 9
실시예 5에 있어서, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성 개시제로 n-헥산에 상기 제조예 4에서 제조된 변성 개시제가 10 중량%로 용해된 용액을 130 g/h로 주입하고, 변성제로 n-헥산에 하기 화학식 iii로 표시되는 화합물이 20 중량%로 용해된 용액을 제3 반응기에 연속적으로 공급한 것을 제외하고는 상기 실시예 5와 동일하게 실시하여, 양말단 변성 공액디엔계 중합체를 제조하였다([변성제]:[act. Li]=1:1 몰비).
[화학식 iii]
Figure pat00051
상기 화학식 iii에서, TMS는 트리메틸실릴기이고, Me는 메틸기이다.
비교예 10
비교예 1에 있어서, 변성제로 3-(디메톡시(메틸)실릴)-N,N-디에틸프로판-1-아민을 28 mmol을 투입한 것을 제외하고는 비교예 1과 동일하게 실시하여 양말단 변성 공액디엔계 중합체를 제조하였다.
비교예 11
비교예 1에 있어서, 변성제로 3-(디메톡시(메틸)실릴)-N,N-디에틸프로판-1-아민을 1.6 mmol을 투입한 것을 제외하고는 비교예 1과 동일하게 실시하여 양말단 변성 공액디엔계 중합체를 제조하였다.
실험예 1
상기 실시예, 비교예에서 제조된 각 양말단 또는 단말단 변성 공액디엔계 중합체에 대하여 하기 물성들을 측정하여, 그 결과를 하기 표 1 및 표 2에 나타내었다.
1) 스티렌 단위 및 비닐 함량(중량%)
상기 각 중합체 내 스티렌 단위(SM) 및 비닐(Vinyl) 함량은 Varian VNMRS 500 MHz NMR을 이용하여 측정 및 분석하였다.
NMR 측정 시 용매는 1,1,2,2-테트라클로로에탄을 사용하였으며, solvent peak는 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐, 5.1~4.5 ppm은 1,2-비닐의 피크로 하여 스티렌 단위 및 비닐 함량을 계산하였다. 시료는 1 mL의 1,1,2,2-테트라클로로에탄에 중합체 10 ㎎을 용해시켜 준비하였다.
2) 중량평균분자량(Mw, X10 3 g/mol), 수평균분자량(Mn, X10 3 g/mol), 최대피크 분자량(Mp, X10 3 g/mol), 커플링 수(C.N.) 및 분자량 분포(PDI, MWD)
GPC(Gel permeation chromatohraph)(PL GPC220, Agilent Technolodies)를 통하여 하기의 조건에서 상기 중량평균분자량(Mw), 수평균분자량(Mn), 최대피크 분자량(Mp)을 측정하였으며, 분자량 분포 곡선을 얻었다. 또한, 분자량 분포(PDI, MWD, Mw/Mn)는 측정된 상기 각 분자량으로부터 계산하여 얻었다. 이때, 얻어진 분자량 분포 곡선은 도 1 내지 도 4에 나타내었다.
- 컬럼: PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용
- 용매: 테트라하이드로퓨란에 2 중량%의 아민 화합물 혼합 사용
- 유속: 1 ml/min
- 시료농도: 1~2 mg/ml(THF에 희석)
- 주입량: 100 ㎕
- 컬럼온도: 40℃
- Detector: Refractive index
- Standard: Polystyrene (3차 함수로 보정)
또한, 커플링 수는 각 실시예 및 비교예에서 변성제 또는 커플링제를 투입하기 전에 일부 중합물을 채취하여 중합체의 피크 분자량(Mp1)을 얻고, 이후 각 변성 공액디엔계 중합체의 피크 분자량(Mp2)을 얻어, 하기와 수학식 2로 계산하였다.
[수학식 2]
커플링 수(C.N)=Mp2/Mp1
3) 무니점도 및 무니응력 완화율
상기 무니점도(MV, (ML1+4, @100℃ MU)는 MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여 측정하였으며, 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다.
무니점도 측정 후, 토크가 풀리면서 나타나는 무니점도 변화의 기울기 값을 측정하여 무니응력 완화율을 얻었다.
4) Si 함량
상기 Si 함량은 ICP 분석 방법으로 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정하였다. 구체적으로, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr)
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr)
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정하였다.
5) N 함량
N 함량은 NSX 분석 방법으로, 극미량 질소 정량분석기 (NSX-2100H)를 이용하여 측정하였다. 구체적으로, 극미량 질소 정량분석기(Auto sampler, Horizontal furnace, PMT & Nitrogen detector)를 켜고 Ar을 250 ml/min, O2를 350 ml/min, ozonizer 300 ml/min으로 캐리어 가스 유량을 설정하고, heater를 800℃로 설정한 후 약 3시간 동안 대기하여 분석기를 안정화시켰다. 분석기가 안정화된 후 Nitrogen standard(AccuStandard S-22750-01-5 ml)를 이용하여 검량선 범위 5 ppm, 10 ppm, 50 ppm, 100 ppm 및 500 ppm의 검량선을 작성하고 각 농도에 해당하는 Area를 얻은 후 농도 대 Area의 비율을 이용하여 직선을 작성하였다. 이후, 시료 20 mg가 담긴 세라믹 보트를 상기 분석기의 Auto sampler에 놓고 측정하여 area를 얻었다. 얻어진 시료의 area와 상기 검량선을 이용하여 N 함량을 계산하였다.
Figure pat00052
Figure pat00053
상기 표 1 및 표 2에서, PI는 개시제를, M은 변성제 또는 커플링제를 의미하며, 개시제, 변성제 및 커플링제의 구체적인 물질은 하기 표 3과 같다.
Figure pat00054
상기 표 1 및 2를 참조하면, 본 발명의 일 실시예에 따라 제조된 실시예 1 내지 12의 변성 공액디엔계 중합체는 요구하는 물성들의 범위를 모두 충족하고 있음을 확인할 수 있다. 구체적으로, 분자량 분포 곡선은 유니모달 형태임과 동시에 PDI 값이 1.7 미만으로서 가공성이 상당히 우수하면서도 배합 물성까지 우수하다는 것을 예측할 수 있고, 무니완화율이 모두 0.7 이상, 바람직하게는 모두 0.8 이상으로서 선형성이 우수함을 예측할 수 있다.
반면에, 제1 반응기에서 제2 반응기로 이송할 때의 중합 전환율을 제어하지 않은 비교예 3은 PDI 값이 높게 나왔으며, 무니응력 완화율이 특정 값 이하로 평가되어, 물성간 균형이나 선형성에서 만족스럽지 못한 결과가 나왔음을 확인할 수 있다.
아울러, 배치 중합을 적용한 경우 일반적인 변성 공액디엔계 중합체는 비교예 1과 같이 PDI 값이 1.7 미만으로 작지만 바이모달 형태의 분자량 분포 곡선을 가지기 때문에 가공성이 열악하다는 것을 예측할 수 있고, 배치 중합의 결과 중 비교예 10 및 11과 같이 유니모달의 분자량 분포 곡선 형태가 나타날 수 있지만, 이는 커플링 수가 최소 값이거나 최대 값인 극단적인 경우에 해당하며, 이러한 배치 중합의 변성 공액디엔계 중합체는 배합 물성의 열화로 이어진다는 점은 전술한 설명 내용 및 후술하는 평가 결과로부터 알 수 있다.
도 1 내지 4는 실시예 1, 비교예 1, 비교예 10 및 11의 분자량 분포 곡선을 나타낸 것이며, 각각의 분자량 분포 곡선의 형태가 전술한 것과 같이 나타나고 있음을 확인할 수 있다.
실험예 2
상기 실시예 및 비교예에서 제조된 각 양말단 또는 단말단 변성 공액디엔계 공중합체를 포함하는 고무 조성물 및 이로부터 제조된 성형품의 물성을 비교분석하기 위하여, 인장특성, 점탄성 특성을 각각 측정하여 그 결과를 하기 표 5 및 표 6에 나타내었다.
1) 고무 시편의 제조
실시예 및 비교예의 각 변성 공액디엔계 중합체를 원료 고무로 하여 하기 표 4에 나타낸 배합 조건으로 배합하였다. 표 4 내의 원료의 함량은 원료 고무 100 중량부 기준에 대한 각 중량부이다.
Figure pat00055
구체적으로 상기 고무시편은 제1단 혼련 및 제2단 혼련을 통해 혼련된다. 제1단 혼련에서는 온도제어장치를 부속한 반바리 믹서를 사용하여 원료 고무, 실리카(충진제), 유기실란 커플링제(X50S, Evonik), 공정유(TDAE oil), 아연화제(ZnO), 스테아르산, 산화 방지제(TMQ(RD)(2,2,4-트리메틸-1,2-디하이트로퀴놀린 폴리머)), 노화 방지제(6PPD((디메틸부틸)-N-페닐-페닐렌디아민)) 및 왁스(Microcrystaline Wax)를 혼련하였다. 이때, 혼련기의 초기 온도를 70℃로 제어하고, 배합 완료 후 145℃ 내지 155℃의 배출온도에서 1차 배합물을 얻었다. 제2단 혼련에서는 상기 1차 배합물을 실온까지 냉각한 후, 혼련기에 1차 배합물, 황, 고무촉진제(DPG(디페닐구아니딘)) 및 가황촉진제(CZ(N-시클로헥실-2-벤조티아질술펜아미드))를 가하고, 100℃이하의 온도에서 믹싱하여 2차 배합물을 얻었다. 이후, 160℃에서 20분간 큐어링 공정을 거쳐 고무시편을 제조하였다.
2) 인장특성
인장특성은 ASTM 412의 인장 시험법에 준하여 각 시험편을 제조하고 상기 시험편의 절단시의 인장강도 및 300% 신장시의 인장응력(300% 모듈러스)를 측정하였다. 구체적으로, 인장특성은 Universal Test Machin 4204(Instron 社) 인장 시험기를 이용하여 실온에서 50 cm/min의 속도로 측정하였다.
3) 점탄성 특성
점탄성 특성은 동적 기계 분석기(GABO 社)를 이용하여 Film Tension 모드로 주파수 10 Hz, 각 측정온도(-60℃~60℃)에서 동적 변형에 대한 점탄성 거동을 측정하여 tan δ값을 확인하였다. 결과값에서 저온 0℃ tan δ 값이 높은 것일 수록 젖은 노면저항성이 우수하고, 고온 60℃ tan δ 값이 낮은 것일 수록 히스테리시스 손실이 적고, 회전저항성(연비성)이 우수함을 나타낸다.
4) 가공성 특성
상기 1) 고무 시편 제조 시 얻어진 2차 배합물의 무니 점도(MV, (ML1+4, @100℃ MU)를 측정하여 각 중합체의 가공성 특성을 비교분석하였으며, 이때 무니점도 측정값이 낮은 것일수록 가공성 특성이 우수함을 나타낸다.
구체적으로, MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여, 각 2차 배합물은 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다.
Figure pat00056
상기 표 5에서, 실시예 1 내지 6, 실시예 12, 비교예 1 내지 4 및 비교예 7 내지 11의 점탄성 특성 결과값은 비교예 5의 측정값을 기준으로 지수화(%)하여 나타내었으며, 높을수록 우수한 것을 의미한다.
상기 표 5를 참조하면, 상기 실험예 1에서 중합체의 측정 물성을 통해서 예측한 것과 같이, 실시예 1 내지 6 및 12의 경우 인장강도 및 모듈러스가 상당히 우수하게 나타났음을 확인할 수 있고, 점탄성 특성에서 저온에서의 tan δ값은 다소 상승한 수준을 유지하면서도 고온에서의 tan δ값이 크게 향상되었음이 확인되는바, 젖은 노면저항성의 손실 없이 연비 특성이 크게 향상되었다는 점을 확인할 수 있다.
나아가, 상기 비교예 10 및 11에서와 같이 배치 중합을 통해 제조된 중합체가 유니모달 형태의 분자량 분포 곡선을 갖게 되는 경우에는, 배치 중합 고유의 열악한 가공성은 그대로 갖고 있으면서도 배치 중합에서 장점으로 구현할 수 있는 우수한 배합 물성도 구현하지 못한다는 것을 확인하였다. 한편, 배치 중합 고유의 열악한 가공성은 본 발명에 따른 실시예들과 커플링 수를 동등 범위로 적용한 비교예 1에서 확인할 수 있다.
또한, 비교예 3의 경우, 본 발명의 제조방법에 따르지 않은 결과로 전술한 것과 같이 PDI 값과 무니응력 완화율의 범위를 만족하지 못하였을뿐더러, 점탄성 특성에서 실시예 대비 열악함이 눈에 띄고 있음을 알 수 있다. 그리고 본 발명에 따른 변성제 및/또는 변성개시제를 적용하지 않은 비교예 2, 4, 5 및 7 내지 9의 경우, 마찬가지로 점탄성 특성의 열악하거나 또는 가공성 특성이 열악함이 확인되었다.
Figure pat00057
상기 표 6에서, 실시예 7 내지 11의 점탄성 특성 결과값은 상기 비교예 6의 측정값을 기준으로 지수화(%)하여 나타내었으며, 높을수록 우수한 것을 의미한다.
상기 표 6은, 공단량체의 함량을 표 5의 세트와 달리하여 평가한 결과 세트이며, 단량체들의 함량을 달리한다고 하여 그 효과가 변화되지 않음은 상기 표 6으로부터 확인할 수 있으며, 표 5에서 확인한 물성 향상 결과와 동일한 결과가 나타났음을 알 수 있다.

Claims (10)

  1. 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고,
    분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며,
    일 말단에 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하고,
    다른 일 말단에 변성 개시제 유래 작용기를 포함하는 것인 변성 공액디엔계 중합체:
    [화학식 1]
    Figure pat00058

    상기 화학식 1에서,
    R1 내지 R8은 각각 독립적으로 탄소수 1 내지 20의 알킬기이고;
    L1 및 L2는 각각 독립적으로 탄소수 1 내지 20의 알킬렌기이며;
    n은 2 내지 4의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서, R1 내지 R8은 각각 독립적으로 탄소수 1 내지 10의 알킬기인 것인 변성 공액디엔계 중합체.
  3. 청구항 1에 있어서,
    상기 화학식 1에서, R1 내지 R8은 각각 독립적으로 탄소수 1 내지 6의 알킬기인 것인 변성 공액디엔계 중합체.
  4. 청구항 1에 있어서,
    상기 화학식 1에서, R1 내지 R4는 메틸기 또는 에틸기이고, R5 내지 R8은 탄소수 1 내지 10의 알킬기인 것인 변성 공액디엔계 중합체.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 변성제는 하기 화학식 1a 내지 화학식 1e로 표시되는 화합물로 이루어진 군에서 선택된 1이상인 것인 변성 공액디엔계 중합체:
    [화학식 1a]
    Figure pat00059

    [화학식 1b]
    Figure pat00060

    [화학식 1c]
    Figure pat00061

    [화학식 1d]
    Figure pat00062

    [화학식 1e]
    Figure pat00063

    상기 화학식 1a 내지 화학식 1e에서, Me는 메틸기이고, Et는 에틸기이다.
  6. 청구항 1에 있어서,
    상기 변성 개시제는,
    하기 화학식 2a로 표시되는 화합물;
    하기 화학식 2b 내지 화학식 2e로 표시되는 화합물 중에서 선택된 화합물과 유기금속 화합물과의 반응 생성물; 및
    하기 화학식 2f로 표시되는 화합물;로 이루어진 군에서 선택된 1 이상의 화합물인 것인 변성 공액디엔계 중합체:
    [화학식 2a]
    Figure pat00064

    상기 화학식 2a에서,
    Ra1 내지 Ra7은 서로 독립적으로 수소원자; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 탄소수 7 내지 20의 알킬아릴기; 또는 헤테로원자를 포함하는 탄소수 1 내지 20의 알킬기이고,
    m은 0 내지 3의 정수이고,
    [화학식 2b]
    Figure pat00065

    상기 화학식 2b에서,
    Xb1은 N 또는 O이고, Xb1가 O인 경우 Rb7 또는 Rb8은 존재하지 않고,
    Rb1 내지 Rb5는 서로 독립적으로 수소원자; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 또는 탄소수 7 내지 20의 알킬아릴기이거나; 서로 근접한 2개의 치환기가 연결되어 하나의 지방족 또는 방향족 고리를 형성할 수 있으며,
    Rb6은 단일결합; 또는 탄소수 1 내지 12의 알킬렌기이고,
    Rb7 및 Rb8은 서로 독립적으로 탄소수 1 내지 14의 알킬기 또는 탄소수 6 내지 14의 아릴기이고,
    [화학식 2c]
    Figure pat00066

    상기 화학식 2c에서,
    Rc1 내지 Rc3는 서로 독립적으로 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며,
    Rc4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,
    Rc5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 2c-1 또는 화학식 2c-2로 표시되는 작용기이며,
    k는 1 내지 5의 정수이고, Rc5 중 적어도 하나는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, k가 2 내지 5의 정수인 경우 복수 개의 Rc5는 서로 동일하거나 상이할 수 있고,
    [화학식 2c-1]
    Figure pat00067

    상기 화학식 2c-1에서,
    Rc6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,
    Rc7 및 Rc8은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며,
    Rc9는 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고,
    Xc1은 N, O 또는 S 원자이며, Xc1이 O 또는 S인 경우 Rc9는 존재하지 않으며,
    [화학식 2c-2]
    Figure pat00068

    상기 화학식 2c-2에서,
    Rc10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,
    Rc11 및 Rc12는 서로 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이며,
    [화학식 2d]
    Figure pat00069

    상기 화학식 2d에서,
    Rd1 내지 Rd5는 서로 독립적으로 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며,
    Rd6은 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이고,
    Xd1은 하기 화학식 2d-1 또는 화학식 2d-2로 표시되는 작용기이며,
    [화학식 2d-1]
    Figure pat00070

    상기 화학식 2d-1에서,
    Rd7 및 Rd8은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며,
    Rd9는 수소원자; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고,
    Xd2는 N, O 또는 S 원자이며, Xd2가 O 또는 S인 경우 Rd9는 존재하지 않으며,
    [화학식 2d-2]
    Figure pat00071

    상기 화학식 2d-2에서,
    Rd11 및 Rd12는 서로 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이며,
    [화학식 2e]
    Figure pat00072

    상기 화학식 2e에서,
    Re1은 탄소수 2 내지 10의 알케닐기이고,
    [화학식 2f]
    Figure pat00073

    상기 화학식 2f에서,
    Rf1, Rf2 및 Rf5는 서로 독립적으로 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알킬기; 또는 탄소수 7 내지 20의 알킬아릴기이고,
    Rf3 및 Rf4는 서로 독립적으로 탄소수 1 내지 20의 알킬렌기 또는 탄소수 6 내지 20의 아릴렌기이며,
    p는 1 내지 5의 정수이다.
  7. 청구항 1에 있어서,
    상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol이고, 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol인 변성 공액디엔계 중합체.
  8. 청구항 1에 있어서,
    상기 변성 공액디엔계 중합체는 Si 함량 및 N 함량이 각각 중량을 기준으로 50 ppm 이상인 것인 변성 공액디엔계 중합체.
  9. 청구항 1에 있어서,
    상기 변성 공액디엔계 중합체는 100℃에서 측정된 무니응력 완화율이 0.7 내지 3.0 인 것인 변성 공액디엔계 중합체.
  10. 청구항 1에 있어서,
    상기 변성 공액디엔계 중합체는 커플링 수(Coupling Number, C.N)가 1 < C.N < F이고, 여기서 F는 상기 변성제의 관능기 수인 것인 변성 공액디엔계 중합체.
KR1020200163056A 2019-11-29 2020-11-27 변성 공액디엔계 중합체 KR102509517B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190157390 2019-11-29
KR1020190157390 2019-11-29

Publications (2)

Publication Number Publication Date
KR20210067949A true KR20210067949A (ko) 2021-06-08
KR102509517B1 KR102509517B1 (ko) 2023-03-16

Family

ID=76129934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200163056A KR102509517B1 (ko) 2019-11-29 2020-11-27 변성 공액디엔계 중합체

Country Status (9)

Country Link
US (1) US12018108B2 (ko)
EP (1) EP3925985A4 (ko)
JP (1) JP7199777B2 (ko)
KR (1) KR102509517B1 (ko)
CN (1) CN113574078B (ko)
BR (1) BR112021022864A2 (ko)
SG (1) SG11202110479QA (ko)
TW (1) TW202134291A (ko)
WO (1) WO2021107717A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023174392A (ja) * 2022-05-27 2023-12-07 株式会社ブリヂストン ゴム組成物の製造方法、ゴム組成物及びタイヤ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
JPH06271706A (ja) 1993-03-22 1994-09-27 Bridgestone Corp トレッドゴム組成物
JP2008208376A (ja) * 2002-04-12 2008-09-11 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
KR20190066566A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066569A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066570A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066568A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066564A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734060B1 (en) 2004-04-05 2013-03-06 Bridgestone Corporation Modified conjugated diene polymer, polymerization initiator, processes for producing these, and rubber composition
WO2009113546A1 (ja) * 2008-03-10 2009-09-17 株式会社ブリヂストン 変性共役ジエン(共)重合体の製造方法、変性共役ジエン(共)重合体、並びにそれを用いたゴム組成物及びタイヤ
JP5595699B2 (ja) * 2009-09-09 2014-09-24 株式会社ブリヂストン 変性剤、変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物及び空気入りタイヤ
US20120220716A1 (en) * 2009-09-09 2012-08-30 Bridgestone Corporation Modifying agent, method for producing modified conjugated diene polymer using modifying agent, and modified conjugated diene polymer
US20110077325A1 (en) 2009-09-30 2011-03-31 Bridgestone Corporation Functionalized polymers and methods for their manufacture
JP5961382B2 (ja) * 2012-01-10 2016-08-02 株式会社ブリヂストン タイヤ用ゴム組成物、タイヤ用加硫ゴム組成物及びそれらを用いたタイヤ
KR20160079323A (ko) 2014-12-26 2016-07-06 한화토탈 주식회사 변성 공액디엔계 중합체 및 그를 포함하는 조성물
KR101910146B1 (ko) 2015-09-17 2018-10-19 주식회사 엘지화학 미세 채널을 이용한 연속 공정식 음이온 중합개시제의 제조방법과 제조장치 및 이로부터 제조되는 음이온 중합개시제
KR101923160B1 (ko) * 2015-12-24 2018-11-29 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
JP6679398B2 (ja) 2016-04-25 2020-04-15 株式会社ブリヂストン 変性ポリマーの製造方法、変性ポリマー、ゴム組成物及びタイヤ
KR102167591B1 (ko) 2016-09-09 2020-10-19 주식회사 엘지화학 변성 개시제, 이의 제조방법 및 이를 포함하는 변성 공액디엔계 중합체
KR102159608B1 (ko) 2016-12-22 2020-09-25 주식회사 엘지화학 변성 개시제 제조방법 및 제조장치
KR102034454B1 (ko) 2017-01-04 2019-10-21 주식회사 엘지화학 중합개시제 조성물, 이의 제조방법 및 이를 이용한 중합체의 제조방법
KR102111118B1 (ko) 2017-03-24 2020-05-14 주식회사 엘지화학 연속식 마이크로 반응기를 이용한 음이온 중합 개시제의 제조방법
KR102179487B1 (ko) 2017-12-05 2020-11-16 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
RU2675525C1 (ru) 2017-12-12 2018-12-19 Публичное акционерное общество "СИБУР Холдинг" Сополимеры сопряженных диенов и винилароматических мономеров и способ их получения. Резиновые смеси на основе указанных сополимеров
RU2680501C1 (ru) 2017-12-12 2019-02-21 Публичное акционерное общество "СИБУР Холдинг" Способ получения функционализированных сополимеров на основе сопряженных диенов, сополимеры, полученные этим способом, резиновые смеси на основе данных сополимеров
JP6968292B2 (ja) 2018-05-08 2021-11-17 エルジー・ケム・リミテッド 変性共役ジエン系重合体およびそれを含むゴム組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
JPH06271706A (ja) 1993-03-22 1994-09-27 Bridgestone Corp トレッドゴム組成物
JP2008208376A (ja) * 2002-04-12 2008-09-11 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
KR20190066566A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066569A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066570A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066568A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190066564A (ko) * 2017-12-05 2019-06-13 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Also Published As

Publication number Publication date
CN113574078A (zh) 2021-10-29
CN113574078B (zh) 2023-09-26
US20220185932A1 (en) 2022-06-16
BR112021022864A2 (pt) 2022-01-04
KR102509517B1 (ko) 2023-03-16
TW202134291A (zh) 2021-09-16
SG11202110479QA (en) 2021-10-28
EP3925985A4 (en) 2022-04-13
US12018108B2 (en) 2024-06-25
EP3925985A1 (en) 2021-12-22
WO2021107717A1 (ko) 2021-06-03
JP7199777B2 (ja) 2023-01-06
JP2022521596A (ja) 2022-04-11

Similar Documents

Publication Publication Date Title
KR102179487B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102034812B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102323810B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
JP6964184B2 (ja) 変性共役ジエン系重合体およびそれを含むゴム組成物
KR20190128583A (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102527753B1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
KR102665727B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102608185B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102509517B1 (ko) 변성 공액디엔계 중합체
KR102617334B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102617161B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102608593B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102617158B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190128584A (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR20190128599A (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102661831B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102434828B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102622327B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102617162B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102622326B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102666892B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102622328B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102617160B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102627378B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102617159B1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right