KR20210064729A - Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof - Google Patents

Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof Download PDF

Info

Publication number
KR20210064729A
KR20210064729A KR1020190153275A KR20190153275A KR20210064729A KR 20210064729 A KR20210064729 A KR 20210064729A KR 1020190153275 A KR1020190153275 A KR 1020190153275A KR 20190153275 A KR20190153275 A KR 20190153275A KR 20210064729 A KR20210064729 A KR 20210064729A
Authority
KR
South Korea
Prior art keywords
electrode
ruthenium
tin
titanium
ballast water
Prior art date
Application number
KR1020190153275A
Other languages
Korean (ko)
Other versions
KR102290288B1 (en
Inventor
박규원
박석원
김성태
권경안
이상훈
조병원
하정훈
Original Assignee
(주) 테크로스
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크로스, 한국과학기술연구원 filed Critical (주) 테크로스
Priority to KR1020190153275A priority Critical patent/KR102290288B1/en
Publication of KR20210064729A publication Critical patent/KR20210064729A/en
Application granted granted Critical
Publication of KR102290288B1 publication Critical patent/KR102290288B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport

Abstract

The present invention relates to a ruthenium-tin-based catalyst electrode having stable efficiency for ballast water electrolysis and a manufacturing method thereof. Specifically, the present invention provides a ruthenium-tin-based catalyst electrode for ballast water electrolysis, including a titanium electrode and a catalyst layer formed on the titanium electrode and including ruthenium, tin and palladium.

Description

선박평형수 전기분해용 루테늄-주석계 촉매 전극 및 이의 제조방법{RUTHENIUM-TIN BASED CATALYTIC ELECTRODE FOR ELECTROLYSIS OF BALLAST WATER AND PREPARATION METHOD THEREOF}RUTHENIUM-TIN BASED CATALYTIC ELECTRODE FOR ELECTROLYSIS OF BALLAST WATER AND PREPARATION METHOD THEREOF

본 발명은 선박평형수 전기분해에 안정된 효율을 가지는 루테늄-주석계 촉매 전극 및 이의 제조 방법에 관한 것이다.The present invention relates to a ruthenium-tin-based catalyst electrode having stable efficiency for ballast water electrolysis and a method for manufacturing the same.

선박평형수는 선박의 무게 중심을 낮추어 균형을 잡기 위해 선박내 탱크에 담는 해수 또는 담수를 의미한다. 선박평형수는 밸러스팅 작업을 통해 한 항구에서 채워져서 다른 항구로 이송되고, 디밸러스팅 작업을 통해 새로운 항구 내로 배출된다. 특히 세계 각국을 이동하는 국제 항해용 선박의 평형수로 사용되는 해수는 연간 약 100억 톤에 달하는데, 해수에 포함된 약 7,000여 종의 해양 생물이 함께 이동함에 따라 생태계 교란의 문제가 발생하고 있다. Ballast water refers to seawater or fresh water stored in a tank in a ship to balance the ship by lowering the center of gravity. Ballast water is filled in one port through ballasting work, transferred to another port, and discharged into the new port through deballasting work. In particular, the amount of seawater used as ballast water for international sailing ships moving around the world amounts to about 10 billion tons per year, and as about 7,000 types of marine life included in seawater move together, there is a problem of ecosystem disturbance. .

이에 해양환경 보호를 위한 움직임이 나타나고 있는데, 예를 들어 국제해사기구(IMO, International Maritime Organization)는 선박평형수 배출로 인한 해양 생태계 교란을 막기 위하여, 2004년 선박평형수 관리협약을 만들고, 선박평형수 처리장치 설치를 의무화하는 환경규제를 공표했다.Accordingly, there is a movement to protect the marine environment. For example, the International Maritime Organization (IMO) made the Ballast Water Management Convention in 2004 to prevent disturbance of the marine ecosystem due to the discharge of ballast water, and Environmental regulations that mandate the installation of water treatment systems have been announced.

상기한 생태계 교란 문제를 해결하기 위하여 선박평형수는 해양 생물을 사멸 처리해야 한다. 이러한 선박평형수 처리의 예로는 오존 살균처리, 과산화수소를 이용한 소독 처리, 전기분해 방식을 이용한 처리 등이 있다.In order to solve the above-mentioned ecological disturbance problem, ballast water must be treated to kill marine organisms. Examples of such ballast water treatment include ozone sterilization treatment, disinfection treatment using hydrogen peroxide, treatment using an electrolysis method, and the like.

이 중 오존 살균처리 방식은 혼탁한 물에서는 살균 효율이 떨어지고 오존 생성에 필요한 UV 램프의 수명이 짧기 때문에 장시간 작동시키기에는 문제가 있다. 과산화수소를 이용한 소독 처리의 경우에는 살균력이 강하고 저렴하다는 장점이 있지만 잔류 과산화수소가 배출될 가능성이 있어 실제 사용에 어려움이 있다.Among them, the ozone sterilization method has a problem in operating for a long time because the sterilization efficiency is low in turbid water and the life of the UV lamp required for ozone generation is short. Disinfection treatment using hydrogen peroxide has the advantage of strong sterilization power and low cost, but there is a possibility of residual hydrogen peroxide being discharged, which makes practical use difficult.

한편, 선박평형수의 전기분해 방식의 처리 기술은 선박평형수를 주입 또는 배출할 때 전기분해조에 일정한 전류의 인가하여 해수로부터 잔류산화제(Total Residual Oxidant)를 생성하여 해양 생물 살균에 필요한 기술로서, 실시간으로 살균에 필요한 잔류산화제 농도를 제어할 수 있다는 장점이 있다.On the other hand, the ballast water electrolysis treatment technology is a technology necessary for sterilizing marine organisms by applying a constant current to the electrolysis tank when injecting or discharging ballast water to generate a total residual oxidant from seawater, It has the advantage of being able to control the concentration of residual oxidizing agent required for sterilization in real time.

하지만, 해수 전기분해에 사용되는 촉매 전극의 재료로 귀금속 (Ruthenium, Palladium, Iridium etc.)을 재료로 사용하여 제조되기 때문에 비싼 가격과 희소성 등의 문제로 인하여 대량으로 사용하기 어렵다. 이러한 이유로 고효율 귀금속 저감 촉매의 개발이 필요하다.However, since it is manufactured using precious metals (Ruthenium, Palladium, Iridium, etc.) as a material for a catalyst electrode used in seawater electrolysis, it is difficult to use in large quantities due to problems such as high price and scarcity. For this reason, it is necessary to develop a high-efficiency noble metal reduction catalyst.

특히, 종래 해수 전기분해조에 사용된 금속산화물 촉매 전극의 경우, 루테늄 산화물(RuOx), 팔라듐 산화물(PdOx)이 주촉매로 사용되어 100% 귀금속 함량을 가진 촉매 전극을 사용하여야 연속적인 전기분해 반응에서 전극 간 산화 환원반응을 안정화시켜 효율을 높이고 긴 작동 수명을 유지할 수 있다. 이 때문에 비귀금속과의 혼합촉매에 대한 연구가 미비한 상태이다.In particular, in the case of a metal oxide catalyst electrode used in a conventional seawater electrolysis tank, ruthenium oxide (RuOx) and palladium oxide (PdOx) are used as main catalysts, so a catalyst electrode with 100% noble metal content must be used in the continuous electrolysis reaction. By stabilizing the redox reaction between the electrodes, the efficiency can be increased and the long operating life can be maintained. For this reason, research on mixed catalysts with non-noble metals is insufficient.

특히, 상기 방법에서 사용되는 귀금속은 희귀 금속이기 때문에 가격이 비싸며, 팔라듐의 경우 금값과 비슷하거나 그 이상의 가격이 매겨질 정도로 비싼 귀금속 중 하나이다. In particular, the precious metal used in the method is expensive because it is a rare metal, and palladium is one of the precious metals that is expensive enough to be priced similar to or higher than the price of gold.

따라서, 가격이 저렴하고 긴 수명을 갖는 선박평형수의 전기분해조를 개발하기 위해서는 촉매 전극의 주촉매인 귀금속(Ru, Pd)을 저감한 촉매 전극 개발이 요구된다.Therefore, in order to develop an electrolysis tank for ballast water that is inexpensive and has a long lifespan, it is required to develop a catalyst electrode in which noble metals (Ru, Pd), which are main catalysts of the catalyst electrode, are reduced.

전기분해조의 촉매 전극과 관련된 선행문헌으로서, 한국공개특허 제2004-0002809호에서는 Ti, Zr 등의 알콕사이드와 Ru, Ir 등의 염화물로 구성된 1성분 복합 또는 2성분 복합 또는 다성분 화합물을 알코올로 희석한 후 가수분해반응과 중축합반응을 거쳐 코팅 용액을 제조하고, 상기 코팅 용액으로 전처리된 전기분해용 전극의 제조방법을 개시하고 있다.As a prior document related to the catalytic electrode of an electrolysis tank, Korean Patent Application Laid-Open No. 2004-0002809 discloses a one-component or two-component complex or multi-component compound composed of an alkoxide such as Ti and Zr and a chloride such as Ru and Ir is diluted with alcohol. After the hydrolysis reaction and polycondensation reaction, a coating solution is prepared, and a method of manufacturing an electrode for electrolysis pretreated with the coating solution is disclosed.

또한, 한국등록특허 제10-0553364호에서는 금속 혼합 산화물 전극 및 그의 제조방법을 개시하면서, 전극 기판과; 이리듐(Ir)화합물 루테늄(Ru)화합물 주석(Sn)화합물과 망간(Mn)화합물 티타늄(Ti)화합물 몰리브덴(Mo)화합물 탄탈륨(Ta)화합물 지르코늄(Zr)화합물 중 선택된 적어도 1종을 유기용제에 혼합한 코팅액을 상기 전극 기판에 도포 및 건조하여 1차로 열처리하는 과정을 4~15회한 후에 2차 열처리하여 이루어진 코팅층으로 이루어진 전극을 개시하고 있다.In addition, Korean Patent No. 10-0553364 discloses a metal mixed oxide electrode and a method for manufacturing the same, comprising: an electrode substrate; Iridium (Ir) compound Ruthenium (Ru) compound Tin (Sn) compound and manganese (Mn) compound Titanium (Ti) compound Molybdenum (Mo) compound Tantalum (Ta) compound At least one selected from zirconium (Zr) compound in an organic solvent Disclosed is an electrode comprising a coating layer formed by applying and drying a mixed coating solution to the electrode substrate, performing a first heat treatment process 4 to 15 times, and then performing a second heat treatment.

본 발명은, 비귀금속인 주석(Sn)을 혼합촉매 재료로 사용함으로써, 값비싼 귀금속인 루테늄(Ru)과 팔라듐(Pd)의 함량을 줄이고 전기분해 성능이 확보된 선박평형수 전기분해용 루테늄-주석계 촉매 전극 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention uses tin (Sn), a non-noble metal, as a mixed catalyst material, thereby reducing the content of expensive noble metals ruthenium (Ru) and palladium (Pd) and securing electrolysis performance for ballast water ruthenium- An object of the present invention is to provide a tin-based catalyst electrode and a method for manufacturing the same.

이를 위해 본 발명은 루테늄과 주석과의 혼합전극이 아닌 팔라듐 산화물을 소량 첨가하여 3상의 안정된 촉매 전극을 제조할 수 있는 방법을 제공하는 것을 목적으로 한다.To this end, an object of the present invention is to provide a method capable of manufacturing a three-phase stable catalyst electrode by adding a small amount of palladium oxide rather than a mixed electrode of ruthenium and tin.

상기한 과제는, 티타늄 전극, 및 그 위에 형성된 루테늄, 주석 및 팔라듐을 포함하는 촉매층을 포함하는, 선박평형수 전기분해용 루테늄-주석계 촉매 전극에 의해 달성된다.The above object is achieved by a ruthenium-tin-based catalyst electrode for ballast water electrolysis, comprising a titanium electrode and a catalyst layer comprising ruthenium, tin and palladium formed thereon.

바람직하게는, 상기 루테늄, 주석 및 팔라듐은 1:1~2:0.1~0.5의 원자비로 포함될 수 있다.Preferably, the ruthenium, tin and palladium may be included in an atomic ratio of 1:1 to 2:0.1 to 0.5.

또한 바람직하게는, 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형일 수 있다.Also preferably, the titanium electrode may be of a general plate material, a regular perforated network, a perforated perforated network, an expanded wire mesh type or a mesh type.

또한, 상기한 관제는 루테늄 화합물 및 주석 화합물과 유기용매를 혼합한 제1 코팅용액을 제조하는 단계; 팔라듐 화합물 및 유기용매를 혼합한 제2 코팅용액을 제조하는 단계; 상기 제1 코팅용액, 제2 코팅용액 및 바인더 용액을 혼합한 혼합용액을 티타늄 전극 표면 위에 도포한 후 400℃ 내지 500℃로 열처리하여 촉매층을 형성하는 단계; 및 상기 촉매층이 형성된 전극을 추가로 600℃ 내지 700℃에서 소성하는 단계를 포함하는 선박평형수 전기분해용 루테늄-주석계 촉매 전극의 제조 방법에 의해 달성된다.In addition, the above control comprises the steps of preparing a first coating solution in which a ruthenium compound and a tin compound and an organic solvent are mixed; preparing a second coating solution in which a palladium compound and an organic solvent are mixed; forming a catalyst layer by applying a mixed solution of the first coating solution, the second coating solution, and the binder solution on the surface of the titanium electrode and then heat-treating it at 400° C. to 500° C.; And it is achieved by the method for producing a ruthenium-tin-based catalyst electrode for ballast water electrolysis comprising the step of further sintering the electrode formed with the catalyst layer at 600 ℃ to 700 ℃.

바람직하게는, 상기 촉매층을 형성하는 단계는 4 내지 6회 실시할 수 있다.Preferably, the step of forming the catalyst layer may be performed 4 to 6 times.

또한 바람직하게는, 상기 유기용매는 탄소수 1-4 개의 저급 알코올, 염산 및 부틸카비톨로 이루어진 군에서 선택된 것이고, 상기 바인더 용액은 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 이소프로폭사이드 및 티타늄 부톡사이드로 이루어진 군에서 선택된 것일 수 있다.Also preferably, the organic solvent is selected from the group consisting of a lower alcohol having 1 to 4 carbon atoms, hydrochloric acid and butylcarbitol, and the binder solution is titanium methoxide, titanium ethoxide, titanium isopropoxide and titanium butoxide. It may be selected from the group consisting of.

본 발명의 방법에 따르면, 값비싼 귀금속(Ru, Pd)대신 저렴한 비귀금속(Sn)의 함량을 높인 촉매 전극을 개발함으로써 전기분해용 불용성 전극의 문제점으로 지적되어온 가격 문제도 동시에 해결할 단서를 제공하고 해수전기분해용 촉매산업에 이바지할 계기가 될 것으로 기대된다. According to the method of the present invention, by developing a catalyst electrode with an increased content of inexpensive non-noble metals (Sn) instead of expensive noble metals (Ru, Pd), the price problem that has been pointed out as a problem of insoluble electrodes for electrolysis is also provided a clue to solve at the same time. It is expected to contribute to the catalyst industry for seawater electrolysis.

도 1은 본 발명에 따른 방법으로 제조된 촉매 전극 단면으로 표현한 그림이다.
도 2는 본 발명의 해수전기분해 작동시 음극(Cathode)과 양극(Anode)에서 발생하는 반응을 보여주는 모식도이다.
도 3은 실시예 1에서 제조된 전극의 SEM 이미지와 원소 분석데이터이다.
도 4는 실시예 2에서 제조된 전극의 SEM 이미지와 원소 분석데이터이다.
도 5는 비교예 1에서 제조된 기존 전극의 SEM 이미지와 원소 분석데이터이
도 6은 실시예 1, 실시예 2, 비교예 1의 촉매 전극을 전기분해조의 양극으로 적용하여 10시간씩 3회에 걸쳐 실시된 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)에서의 전압변화를 나타낸 그래프이다.
1 is a diagram illustrating a cross-section of a catalyst electrode manufactured by a method according to the present invention.
Figure 2 is a schematic diagram showing the reaction occurring at the cathode (Cathode) and the anode (Anode) during the seawater electrolysis operation of the present invention.
3 is an SEM image and elemental analysis data of the electrode prepared in Example 1.
4 is an SEM image and elemental analysis data of the electrode prepared in Example 2.
5 is an SEM image and elemental analysis data of the conventional electrode prepared in Comparative Example 1.
6 is a continuous seawater electrolysis experiment (current density, 0.05A/cm 2 ) conducted 3 times for 10 hours by applying the catalyst electrode of Examples 1, 2, and Comparative Example 1 as the anode of the electrolysis tank. It is a graph showing the voltage change in

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다.All technical terms used in the present invention, unless otherwise defined, have the following definitions and have the meanings as commonly understood by one of ordinary skill in the art of the present invention. In addition, although preferred methods and samples are described herein, similar or equivalent ones are also included in the scope of the present invention.

용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.The term "about" refers to 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, means an amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length varying by 4, 3, 2 or 1%.

본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, unless the context requires otherwise, the terms "comprises" and "comprising" include the steps or elements presented, or groups of steps or elements, but any other step or element, or It is to be understood that a step or group of elements is not excluded.

본 발명은 선박평형수 전기분해용 루테늄-주석계 촉매 전극 및 상기 촉매 전극의 제조 방법에 관한 것이다.The present invention relates to a ruthenium-tin-based catalyst electrode for ballast water electrolysis and a method for manufacturing the catalyst electrode.

본 발명에 따른 선박평형수 전기분해용 루테늄-주석계 촉매 전극은 티타늄 전극, 및 그 위에 형성된 루테늄, 주석 및 팔라듐을 포함하는 촉매층을 포함한다. A ruthenium-tin-based catalyst electrode for ballast water electrolysis according to the present invention includes a titanium electrode and a catalyst layer comprising ruthenium, tin and palladium formed thereon.

도 1은 본 발명의 촉매층(Mixed metal oxide(MOx))이 형성된 촉매 전극의 단면도이다. 도 1을 보면, 티타늄 전극(Ti) 표면 위에 촉매층(Mixed metal oxide(MOx))이 형성되어 있다. 촉매층은 루테늄, 주석 및 팔라듐을 1:1~2:0.1~0.5의 원자비로 포함하는 것이 바람직하다. 1 is a cross-sectional view of a catalyst electrode on which a catalyst layer (Mixed metal oxide (MOx)) of the present invention is formed. Referring to FIG. 1 , a catalyst layer (Mixed metal oxide (MOx)) is formed on the surface of a titanium electrode (Ti). The catalyst layer preferably contains ruthenium, tin and palladium in an atomic ratio of 1:1 to 2:0.1 to 0.5.

상기에서 촉매 전극에 사용되는 티타늄 전극은 바람직하게는 순도 100%의 티타늄 금속 또는 티타늄 합금을 포함할 수 있다. 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형일 수 있다. 또한, 상기 티타늄 전극은 바람직하게는 전기분해 반응시 반응면적을 넓히기 위하여 샌드 블라스트(sand blast) 등으로 처리된 거친 표면을 갖는 전극일 수 있다. The titanium electrode used for the catalyst electrode may include a titanium metal or a titanium alloy having a purity of 100%. The titanium electrode may be of a general plate material, a regular perforated network, a perforated net, an expanded wire mesh or a mesh type. In addition, the titanium electrode may be an electrode having a rough surface treated with sand blast or the like in order to increase the reaction area during the electrolysis reaction.

본 발명의 일 실시형태에 따르면, 귀금속인 루테늄과 팔라듐의 함량을 줄이고 비귀금속인 주석을 포함하는 해수 전기분해에 안정한 혼합촉매 전극을 제조하는 방법을 제공한다. According to one embodiment of the present invention, there is provided a method for producing a stable mixed catalyst electrode in seawater electrolysis containing tin, which is a non-noble metal, by reducing the contents of ruthenium and palladium, which are noble metals.

상기 방법은 루테늄 화합물 및 주석 화합물과 유기용매를 혼합한 제1 코팅용액을 제조하는 단계; 팔라듐 화합물 및 유기용매를 혼합한 제2 코팅용액을 제조하는 단계; 상기 제1 코팅용액 및 제2 코팅용액을 혼합한 혼합용액을 티타늄 전극 표면 위에 도포한 후 400℃ 내지 500℃로 열처리(3분 내지 5분)하여 촉매층을 형성하는 단계; 및 상기 촉매층이 형성된 전극을 추가로 600℃ 내지 700℃에서 소성하는 단계(1시간)를 포함한다. The method comprises the steps of preparing a first coating solution in which a ruthenium compound, a tin compound, and an organic solvent are mixed; preparing a second coating solution in which a palladium compound and an organic solvent are mixed; forming a catalyst layer by applying a mixed solution in which the first coating solution and the second coating solution are mixed on the surface of the titanium electrode and then heat-treating it at 400° C. to 500° C. (3 minutes to 5 minutes); and further sintering the electrode on which the catalyst layer is formed at 600° C. to 700° C. (1 hour).

상기에서, 촉매층을 형성하는 단계는 4 내지 6회 실시하는 것이 바람직하다. In the above, the step of forming the catalyst layer is preferably performed 4 to 6 times.

상기 유기용매는 탄소수 1-4 개의 저급 알코올(예를 들면, 메탄올, 에탄올, 프로판올 및 부탄올), 염산 및 부틸카비톨로 이루어진 군에서 선택된 것일 수 있다.The organic solvent may be selected from the group consisting of lower alcohols having 1 to 4 carbon atoms (eg, methanol, ethanol, propanol and butanol), hydrochloric acid and butylcarbitol.

상기 바인더 용액은 티타늄 알콕사이드를 사용할 수 있으며, 바람직하게는 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 이소프로폭사이드 및 티타늄 부톡사이드로 이루어진 군에서 선택된 것일 수 있다.The binder solution may use titanium alkoxide, preferably titanium methoxide, titanium ethoxide, titanium isopropoxide, and titanium butoxide.

본 발명에서 선박평형수는 선박의 균형을 잡아주기 위하여 내부에 저장하는 물로서 해수 또는 담수일 수 있으며, 보다 바람직하게는 해수이다.In the present invention, ballast water is water stored inside to balance the ship, and may be seawater or freshwater, and more preferably seawater.

선박평형수가 해수인 경우, 해수의 전기분해시 발생하는 반응은 아래의 식으로 설명 가능하다.When the ballast water is seawater, the reaction that occurs during electrolysis of seawater can be explained by the following equation.

[반응식 1][Scheme 1]

Anode(+극) : Anode(+pole) :

2OH- → H2O + 1/2O2↑ + 2e- 2OH - → H 2 O + 1/2O 2 ↑ + 2e -

NaCl → Na+ + Cl- NaCl → Na + + Cl -

2Cl- → Cl2↑ + 2e- (주반응)2Cl - → Cl 2 ↑ + 2e - (main reaction)

Cl2 + H2O → HClO(하이포염소산) + H+ + Cl- (부반응)Cl 2 + H 2 O → HClO (hypochlorous acid) + H + + Cl - (side reaction)

[반응식 2][Scheme 2]

Cathode(-극): Cathode (-pole):

2H2O +2e- → H2↑ + 2OH- (주반응)2H 2 O +2e - → H 2 ↑ + 2OH - (main reaction)

Na+ + OH- → NaOH (부반응)Na + + OH - → NaOH (side reaction)

Mg+2 + Ca+2 + 4OH- → Mg(OH)2 + Ca(OH)2 (부반응)Mg +2 + Ca +2 + 4OH - → Mg(OH) 2 + Ca(OH) 2 (Side reaction)

Total reaction : Cl2 + 2NaOH → 2NaOCl + H2↑2H2O +2e- → H2↑ + 2OH- Total reaction : Cl 2 + 2NaOH → 2NaOCl + H 2 ↑2H 2 O +2e - → H 2 ↑ + 2OH -

상기 반응과 관계된 모식도를 도 2에 나타내었으며, 반응식 1에서와 같이 해수 전기분해시 상기 양극(Anode) 반응에서 생성되는 Cl2 가스와 O2 가스의 발생으로 인하여 촉매층이 밀도 있게 형성되지 않으면 촉매층에 크랙이나 파편이 발생할 수 있다. 또한, 상기반응이 잘 진행되기 위해서는 촉매가 전자를 받아 환원시키는 전도도가 높아야 해수 전기분해 효율의 감소를 방지할 수 있다.A schematic diagram related to the reaction is shown in FIG. 2, and as in Scheme 1, if the catalyst layer is not densely formed due to the generation of Cl 2 gas and O 2 gas generated in the anode reaction during seawater electrolysis, the catalyst layer Cracks or fragments may occur. In addition, in order for the reaction to proceed well, the reduction in seawater electrolysis efficiency can be prevented only when the conductivity of the catalyst to receive and reduce electrons is high.

본 발명의 일 실시형태에 따르면, 본 발명의 귀금속저감 촉매 전극은 비귀금속촉매 중 촉매효율이 높은 주석산화물(SnOx)을 이용한다.According to one embodiment of the present invention, the noble metal reduction catalyst electrode of the present invention uses tin oxide (SnOx) having high catalytic efficiency among non-noble metal catalysts.

바람직하게는 루테늄 산화물과 주석 산화물은 1:1 또는 1:2의 원자비로 혼합될 수 있다. 또한 바람직하게는 상기 혼합촉매 제조 방식은 소량의 팔라듐 산화물을 포함할 수 있다. 일 실시형태에 따르면, 촉매층은 루테늄, 주석 및 팔라듐을 1:1~2:0.1~0.5의 원자비로 포함하는 것이 바람직하다. Preferably, ruthenium oxide and tin oxide may be mixed in an atomic ratio of 1:1 or 1:2. Also preferably, the method for preparing the mixed catalyst may include a small amount of palladium oxide. According to one embodiment, the catalyst layer preferably includes ruthenium, tin and palladium in an atomic ratio of 1:1 to 2:0.1 to 0.5.

본 발명의 방법에 따라 제작된 촉매 전극을 선박평형수 전해설비에서 사용하면, 전자를 받아 Cl2나 O2를 환원시키는 환원반응 효율의 저하를 방지되므로 선박평형수가 유입 또는 배출되는 연속적인 전기분해 반응에서도 에너지 효율 및 잔류산화제(TRO) 생성 효율의 감소 없이 장기간 사용이 가능하다. When the catalyst electrode manufactured according to the method of the present invention is used in a ballast water electrolysis facility, the reduction in the reduction reaction efficiency of receiving electrons to reduce Cl 2 or O 2 is prevented, so that continuous electrolysis in which ballast water is introduced or discharged is prevented. Even in the reaction, it can be used for a long time without reduction in energy efficiency and TRO generation efficiency.

이하에서, 실시예를 들어서 본 발명을 상세히 설명하지만, 이들 실시예에 의해 본 발명의 권리범위가 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by these Examples.

실시예 1 - Ru:Sn:Pd(원자비 1:1:0.25) 촉매 전극 Example 1 - Ru:Sn:Pd (atomic ratio 1:1:0.25) catalyst electrode

먼저 부탄올 10mL에 RuCl2 1g과 SnCl2 0.92g을 넣어 용액1을 제조하고, PdCl2 1.2g을 HCl(6N) 5mL에 녹인 용액2를 만들었다. 최종 코팅액으로는 부탄올 3 mL에 용액1 0.14mL, 바인더 용액으로서 티타늄 이소프로폭사이드 0.6mL, 카본 0.015g, 용액2 6.4mL과 부틸 카비톨 3mL를 혼합하고 초음파로 2시간 중탕하여, 촉매 전극 코팅용액을 제조하였다.First, solution 1 was prepared by adding 1 g of RuCl 2 and 0.92 g of SnCl 2 to 10 mL of butanol, and solution 2 was prepared by dissolving 1.2 g of PdCl 2 in 5 mL of HCl (6N). As a final coating solution, 0.14 mL of solution 1 in 3 mL of butanol, 0.6 mL of titanium isopropoxide as a binder solution, 0.015 g of carbon, 6.4 mL of solution 2 and 3 mL of butyl carbitol were mixed, followed by ultrasonic bathing for 2 hours to coat the catalyst electrode. A solution was prepared.

상기 촉매 전극 코팅용액을 티타늄 전극에 건 스프레이(gun spray)를 이용하여 1mL/min의 속도로 코팅하여 건조한 후, 450℃로 3분 동안 열처리하였다. 이 과정을 5회에 걸쳐 진행한 후 650℃에서 1시간 동안 열처리하여 촉매 전극을 제조하였다. The catalyst electrode coating solution was coated on the titanium electrode using gun spray at a rate of 1 mL/min, dried, and then heat-treated at 450° C. for 3 minutes. After this process was performed 5 times, a catalyst electrode was prepared by heat treatment at 650° C. for 1 hour.

상기에서 제조된 촉매 전극의 표면은 도 3에 나타냈다. 또한, 제조된 촉매 전극을 전기분해조에서 양극(anode)으로 사용하였고, 동일한 소재인 티타늄 전극을 전처리 없이 음극(cathode)에 적용하여, 10시간 동안 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 3회 실시하여 해수전기분해시 전압변화를 도 6에 나타내었다.The surface of the prepared catalyst electrode is shown in FIG. 3 . In addition, the prepared catalyst electrode was used as an anode in the electrolysis tank, and a titanium electrode of the same material was applied to the cathode without pretreatment, and a continuous seawater electrolysis experiment (current density, 0.05A) for 10 hours /cm 2 ) was performed three times to show the voltage change during seawater electrolysis in FIG. 6 .

실시예 2 - Ru:Sn:Pd(원자비 1:2:0.25) 촉매 전극 Example 2 - Ru:Sn:Pd (atomic ratio 1:2:0.25) catalyst electrode

먼저 부탄올 10mL에 RuCl2 1g과 SnCl2 1.84g을 넣어 용액1을 제조하고, PdCl2 1.2g을 HCl(6N) 5mL에 녹여 용액2를 만들었다. 최종 코팅액으로는 부탄올 3 mL에 용액1 0.14mL, 티타늄 이소프로폭사이드 0.6mL, 카본 0.015g, 용액2 6.4mL과 부틸 카비톨 3mL 혼합하고 초음파로 2시간 중탕하여, 촉매 전극 코팅용액을 제조하였다. First, 1 g of RuCl 2 and 1.84 g of SnCl 2 were added to 10 mL of butanol to prepare solution 1, and 1.2 g of PdCl 2 was dissolved in 5 mL of HCl (6N) to prepare solution 2. As the final coating solution, 0.14 mL of solution 1, 0.6 mL of titanium isopropoxide, 0.015 g of carbon, 6.4 mL of solution 2, and 3 mL of butyl carbitol were mixed in 3 mL of butanol, followed by ultrasonic bathing for 2 hours to prepare a catalyst electrode coating solution. .

상기 촉매 전극 코팅용액을 티타늄 전극에 건 스프레이를 이용하여 1mL/min의 속도로 코팅하여 건조 후 450℃로 3분 동안 열처리하였으며, 이 과정을 5회에 걸쳐 진행한 후 650℃도에서 1시간 동안 열처리하여 촉매 전극을 제조하였다. The catalyst electrode coating solution was coated on a titanium electrode at a rate of 1 mL/min using a gun spray, dried and then heat-treated at 450° C. for 3 minutes. This process was performed 5 times and then at 650° C. for 1 hour. A catalyst electrode was prepared by heat treatment.

상기에서 제조된 촉매 전극의 표면은 도 4에 나타냈다. 또한, 제조된 촉매 전극을 양극(anode)으로 사용하였고, 동일한 소재인 티타늄 전극을 전처리 없이 음극(cathode)에 적용하여, 10시간 동안 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 3회 실시하여 해수전기분해시 전압변화를 도 6에 나타내었다.The surface of the catalyst electrode prepared above is shown in FIG. 4 . In addition, the prepared catalyst electrode was used as an anode, and a titanium electrode of the same material was applied to the cathode without pretreatment, and a continuous seawater electrolysis experiment for 10 hours (current density, 0.05A/cm 2 ) The voltage change during seawater electrolysis by performing 3 times is shown in FIG. 6 .

비교예 1 - Ru:Pd(원자비 1:1) 촉매 전극 Comparative Example 1 - Ru:Pd (atomic ratio 1:1) catalyst electrode

먼저 부탄올 10mL에 RuCl2 1g을 넣어 용액1을 제조하고, PdCl2 5g을 HCl(6N) 5mL에 녹여 용액2를 만들었다. 최종 코팅액으로는 부탄올 3 mL에 용액1 0.14mL 티타늄 이소프로폭사이드 0.6mL, 카본 0.015g 그리고 용액1을 6.4mL과 부틸 카비톨 3mL 혼합하고 초음파로 2시간 중탕하여 촉매 전극 코팅용액을 제조하였다.First, solution 1 was prepared by adding 1 g of RuCl 2 to 10 mL of butanol , and 5 g of PdCl 2 was dissolved in 5 mL of HCl (6N) to prepare solution 2. As a final coating solution, a catalyst electrode coating solution was prepared by mixing 0.14 mL of solution 1 in 3 mL of butanol, 0.6 mL of titanium isopropoxide, 0.015 g of carbon, and 6.4 mL of solution 1 and 3 mL of butyl carbitol, followed by ultrasonic bathing for 2 hours.

상기 촉매 전극 코팅용액을 티타늄 전극에 건 스프레이를 이용하여 1mL/min의 속도로 코팅하여 건조 후 450℃로 3분 동안 열처리하였으며, 이 과정을 5회에 걸쳐 진행한 후 650℃에서 1시간 동안 열처리하여 촉매 전극을 제조하였다.The catalyst electrode coating solution was coated on a titanium electrode at a rate of 1 mL/min using a gun spray, dried and then heat-treated at 450° C. for 3 minutes. After performing this process 5 times, heat treatment at 650° C. for 1 hour Thus, a catalyst electrode was prepared.

상기에서 제조된 촉매 전극의 표면은 도 5에 나타냈다. 또한, 제조된 촉매 전극을 전기분해조에서 양극(anode)으로 사용하였고, 동일한 소재인 티타늄 전극을 전처리 없이 음극(cathode)에 적용하여, 10시간 동안 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 3회 실시하여 해수전기분해시 전압변화를 도 6에 나타내었다.The surface of the prepared catalyst electrode is shown in FIG. 5 . In addition, the prepared catalyst electrode was used as an anode in the electrolysis tank, and a titanium electrode of the same material was applied to the cathode without pretreatment, and a continuous seawater electrolysis experiment (current density, 0.05A) for 10 hours /cm 2 ) was performed three times to show the voltage change during seawater electrolysis in FIG. 6 .

도 3을 보면, 실시예 1에서 제조된 촉매 전극은 Ru:Sn:Pd(원자비 1:1:0.25)의 비율과 귀금속 함량 약 55%인 촉매 전극으로서, 표면의 틈은 비교예 1에서 제조된 도 5보다 적은 틈 간격을 보이므로 높은 밀도로 촉매층을 형성하였음을 알 수 있다.Referring to FIG. 3 , the catalyst electrode prepared in Example 1 was a catalyst electrode having a ratio of Ru:Sn:Pd (atomic ratio 1:1:0.25) and a noble metal content of about 55%, and the surface gap was prepared in Comparative Example 1 It can be seen that the catalyst layer was formed with a high density because the gap gap was smaller than that of FIG.

도 4는 실시예 2에서 제조된 Ru:Sn:Pd(원자비 1:2:0.25)의 비율과 귀금속 함량 38%인 촉매 전극으로서, 도 3의 촉매 전극과 비슷한 표면형상을 보이기 때문에 촉매층이 밀도 있게 형성되었음을 알 수 있다. 4 is a catalyst electrode having a ratio of Ru:Sn:Pd (atomic ratio 1:2:0.25) and a noble metal content of 38% prepared in Example 2, and since it shows a surface shape similar to that of the catalyst electrode of FIG. 3, the density of the catalyst layer It can be seen that it was formed with

도 5의 경우, 기존 촉매 전극 제조방법인 비교예 1의 방법에 따라 제조되었으며, Ru:Pd(원자비 1:1)의 비율과 100%의 귀금속만이 촉매로 사용되었음을 알 수 있다.In the case of FIG. 5, it can be seen that the catalyst was prepared according to the method of Comparative Example 1, which is a conventional method for preparing a catalyst electrode, and only a ratio of Ru:Pd (atomic ratio 1:1) and 100% of noble metal was used as a catalyst.

도 6은 실시예 1, 실시예 2, 비교예 1의 촉매 전극을 양극으로 이용하여 10시간씩 3회에 걸쳐 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 실시한 경우의 전압변화를 나타낸 그래프이다. 종래 촉매 전극(비교예 1)은 해수 전기분해실험이 진행되면서 20시간(72,000s)까지는 낮아지는 것으로 보였지만, 10시간씩(36,000s, 72,000s) 전기분해실험 후 재가동시 초기 저항으로 인하여 전기분해 전압이 상승하였다가 내려오는 현상을 보였다. 하지만, 실시예 1의 경우 초기 전기분해시 과전압이 발생하지만 이후 1차(36,000s), 2차(72,000s) 재가동시 혼합 촉매 전극이 활성화되어 과전압이 발생하지 않고 안정적인 해수전기분해 전압상태를 보여주었다.6 is a voltage when a continuous seawater electrolysis experiment (current density, 0.05A/cm 2 ) is performed three times for 10 hours each using the catalyst electrode of Examples 1, 2, and Comparative Example 1 as an anode; This is a graph showing the change. The conventional catalyst electrode (Comparative Example 1) seemed to decrease up to 20 hours (72,000 s) as the seawater electrolysis experiment proceeded, but electrolysis due to initial resistance upon restarting after 10 hours (36,000 s, 72,000 s) electrolysis experiment The voltage rises and then falls. However, in the case of Example 1, an overvoltage occurs during the initial electrolysis, but after the first (36,000s) and the second (72,000s) restart, the mixed catalyst electrode is activated, so that overvoltage does not occur and a stable seawater electrolysis voltage state is shown gave.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. As described above in detail a specific part of the present invention, for those of ordinary skill in the art, these specific descriptions are only preferred embodiments, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

티타늄 전극, 및 그 위에 형성된 루테늄, 주석 및 팔라듐을 포함하는 촉매층을 포함하는, 선박평형수 전기분해용 루테늄-주석계 촉매 전극.A ruthenium-tin-based catalyst electrode for ballast water electrolysis, comprising a titanium electrode, and a catalyst layer comprising ruthenium, tin and palladium formed thereon. 제1항에 있어서, 상기 루테늄, 주석 및 팔라듐은 1:1~2:0.1~0.5의 원자비로 포함된 것인, 선박평형수 전기분해용 루테늄-주석계 촉매 전극.The ruthenium-tin-based catalyst electrode for ballast water electrolysis according to claim 1, wherein the ruthenium, tin and palladium are included in an atomic ratio of 1:1 to 2:0.1 to 0.5. 제1항에 있어서, 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형인, 선박평형수 전기분해용 루테늄-주석계 촉매 전극.The ruthenium-tin-based catalyst electrode for ballast water electrolysis according to claim 1, wherein the titanium electrode is a general plate material, a regular perforated network, a perforated net, an expanded wire mesh or a mesh type. 루테늄 화합물 및 주석 화합물과 유기용매를 혼합한 제1 코팅용액을 제조하는 단계;
팔라듐 화합물 및 유기용매를 혼합한 제2 코팅용액을 제조하는 단계;
상기 제1 코팅용액, 제2 코팅용액 및 바인더 용액을 혼합한 혼합용액을 티타늄 전극 표면 위에 도포한 후 400℃ 내지 500℃로 열처리하여 촉매층을 형성하는 단계; 및
상기 촉매층이 형성된 전극을 추가로 600℃ 내지 700℃에서 소성하는 단계를 포함하는 선박평형수 전기분해용 루테늄-주석계 촉매 전극의 제조 방법.
preparing a first coating solution in which a ruthenium compound and a tin compound are mixed with an organic solvent;
preparing a second coating solution in which a palladium compound and an organic solvent are mixed;
forming a catalyst layer by applying a mixed solution of the first coating solution, the second coating solution, and the binder solution on the surface of the titanium electrode and then heat-treating it at 400° C. to 500° C.; and
A method for producing a ruthenium-tin-based catalyst electrode for ballast water electrolysis, comprising further sintering the electrode on which the catalyst layer is formed at 600° C. to 700° C.
제4항에 있어서, 상기 촉매층을 형성하는 단계는 4 내지 6회 실시하는 것인, 선박평형수 전기분해용 루테늄-주석계 촉매 전극의 제조 방법. [Claim 5] The method of claim 4, wherein the step of forming the catalyst layer is performed 4 to 6 times, ruthenium-tin-based catalyst electrode for ballast water electrolysis. 제4항에 있어서, 상기 유기용매는 탄소수 1-4 개의 저급 알코올, 염산 및 부틸카비톨로 이루어진 군에서 선택된 것인, 선박평형수 전기분해용 루테늄-주석계 촉매 전극의 제조 방법. [Claim 5] The method of claim 4, wherein the organic solvent is selected from the group consisting of lower alcohols having 1-4 carbon atoms, hydrochloric acid and butylcarbitol. 제4항에 있어서, 상기 바인더 용액은 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 이소프로폭사이드 및 티타늄 부톡사이드로 이루어진 군에서 선택된 것인, 선박평형수 전기분해용 루테늄-주석계 촉매 전극의 제조 방법.The method of claim 4, wherein the binder solution is selected from the group consisting of titanium methoxide, titanium ethoxide, titanium isopropoxide and titanium butoxide. .
KR1020190153275A 2019-11-26 2019-11-26 Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof KR102290288B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190153275A KR102290288B1 (en) 2019-11-26 2019-11-26 Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190153275A KR102290288B1 (en) 2019-11-26 2019-11-26 Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20210064729A true KR20210064729A (en) 2021-06-03
KR102290288B1 KR102290288B1 (en) 2021-08-19

Family

ID=76396919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190153275A KR102290288B1 (en) 2019-11-26 2019-11-26 Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102290288B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075528A (en) * 2015-12-23 2017-07-03 희성금속 주식회사 Insoluble electrode for water treatment and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075528A (en) * 2015-12-23 2017-07-03 희성금속 주식회사 Insoluble electrode for water treatment and preparation method thereof

Also Published As

Publication number Publication date
KR102290288B1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
EP1841901B1 (en) High efficiency hypochlorite anode coating
CN101525755B (en) Cathode for hydrogen generation
EP2292811A1 (en) Cathode for hydrogen generation and method for producing the same
JP5307270B2 (en) Cathode for hydrogen generation used for salt electrolysis
KR20170075528A (en) Insoluble electrode for water treatment and preparation method thereof
JP2006104502A (en) Cathode for electrolysis
US20070261968A1 (en) High efficiency hypochlorite anode coating
KR102331273B1 (en) Ruthenium-tin based titanium nitrate coated catalytic electrode for electrolysis of ballast water and preparation method thereof
KR102290288B1 (en) Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof
JP2024010240A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
KR20210121750A (en) Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof
WO2011102431A1 (en) Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
KR102295047B1 (en) Ruthenium-zirconium based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR102392563B1 (en) Pyrochlore-type metal oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR102404420B1 (en) Transition metal coated catalytic electrode for electrolysis and preparation method thereof
KR20230094624A (en) Ruthenium-tin oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR20210121747A (en) Transition metal coated catalytic electrode for electrolysis of ballast water and preparation method thereof
KR20210146017A (en) Electrode comprising pyrochlore-type catalyst for electrolysis and preparation method thereof
CN110054259B (en) Oxidation electrode, method for manufacturing same, and electrolysis device comprising same
JP3724096B2 (en) Oxygen generating electrode and manufacturing method thereof
JPH11229170A (en) Activated cathode
JP2020193371A (en) Ozone generating electrode
KR102648323B1 (en) Pt-Ru-Ti catalyst electrode for ballast water electrolysis
CN115125562B (en) Composite electrode for generating hypochlorous acid through electrolysis and preparation and application thereof
KR20240066699A (en) Ruthenium and tin oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant