KR20210121750A - Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof - Google Patents

Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof Download PDF

Info

Publication number
KR20210121750A
KR20210121750A KR1020200038982A KR20200038982A KR20210121750A KR 20210121750 A KR20210121750 A KR 20210121750A KR 1020200038982 A KR1020200038982 A KR 1020200038982A KR 20200038982 A KR20200038982 A KR 20200038982A KR 20210121750 A KR20210121750 A KR 20210121750A
Authority
KR
South Korea
Prior art keywords
titanium
electrode
ballast water
titanium dioxide
coating
Prior art date
Application number
KR1020200038982A
Other languages
Korean (ko)
Inventor
박석원
김성태
권경안
이상훈
조병원
하정훈
이화영
Original Assignee
주식회사 테크로스
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테크로스, 한국과학기술연구원 filed Critical 주식회사 테크로스
Priority to KR1020200038982A priority Critical patent/KR20210121750A/en
Publication of KR20210121750A publication Critical patent/KR20210121750A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The present invention relates to a method for manufacturing a catalyst electrode for ballast water electrolysis including a titanium dioxide coating layer and a metal oxide catalyst layer that are chemically stable in ballast water electrolysis, and a catalyst electrode for ballast water electrolysis manufactured by the method.

Description

선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극 및 이의 제조방법{TITANIUM DIOXIDE COATED CATALYTIC ELECTRODE FOR ELECTROLYSIS OF BALLAST WATER AND PREPARATION METHOD THEREOF}Titanium dioxide-coated catalyst electrode for ballast water electrolysis and manufacturing method thereof

본 발명은 선박평형수 전기분해에서 화학적으로 매우 안정한 이산화티타늄 코팅층을 포함하는 선박평형수 전기분해용 금속산화물 촉매 전극의 제조 방법 및 상기 방법으로 제조된 금속산화물 촉매 전극에 관한 것이다.The present invention relates to a method for manufacturing a metal oxide catalyst electrode for ballast water electrolysis comprising a titanium dioxide coating layer that is chemically very stable in ballast water electrolysis, and a metal oxide catalyst electrode manufactured by the method.

선박평형수는 선박의 무게 중심을 낮추어 균형을 잡기 위해 선박내 탱크에 담는 해수 또는 담수를 의미한다. 선박평형수는 밸러스팅 작업을 통해 한 항구에서 채워져서 다른 항구로 이송되고, 디밸러스팅 작업을 통해 새로운 항구 내로 배출된다. 특히 세계 각국을 이동하는 국제 항해용 선박의 평형수로 사용되는 해수는 연간 약 100억 톤에 달하는데, 해수에 포함된 약 7,000여 종의 해양 생물이 함께 이동함에 따라 생태계 교란의 문제가 발생하고 있다. Ballast water refers to seawater or fresh water stored in a tank in a ship to balance the ship by lowering the center of gravity. Ballast water is filled in one port through ballasting work, transferred to another port, and discharged into the new port through deballasting work. In particular, the amount of seawater used as ballast water for international sailing ships moving around the world amounts to about 10 billion tons per year. .

이에 해양환경 보호를 위한 움직임이 나타나고 있는데, 예를 들어 국제해사기구(IMO, International Maritime Organization)는 선박평형수 배출로 인한 해양 생태계 교란을 막기 위하여, 2004년 선박평형수 관리협약을 만들고, 선박평형수 처리장치 설치를 의무화하는 환경규제를 공표했다.Accordingly, there is a movement to protect the marine environment. For example, the International Maritime Organization (IMO) made the Ballast Water Management Convention in 2004 to prevent disturbance of the marine ecosystem due to the discharge of ballast water, and Environmental regulations that mandate the installation of water treatment systems have been announced.

상기한 생태계 교란 문제를 해결하기 위하여 선박평형수는 해양 생물을 사멸 처리해야 한다. 이러한 선박평형수 처리의 예로는 오존 살균처리, 과산화수소를 이용한 소독 처리, 전기분해 방식을 이용한 처리 등이 있다.In order to solve the above-mentioned ecological disturbance problem, ballast water must be treated to kill marine organisms. Examples of such ballast water treatment include ozone sterilization treatment, disinfection treatment using hydrogen peroxide, treatment using an electrolysis method, and the like.

이 중 오존 살균처리 방식은 혼탁한 물에서는 살균 효율이 떨어지고 오존 생성에 필요한 UV 램프의 수명이 짧기 때문에 장시간 작동시키기에는 문제가 있다. 과산화수소를 이용한 소독 처리의 경우에는 살균력이 강하고 저렴하다는 장점이 있지만 잔류 과산화수소가 배출될 가능성이 있어 실제 사용에 어려움이 있다.Among them, the ozone sterilization method has a problem in operating for a long time because the sterilization efficiency is low in turbid water and the life of the UV lamp required for ozone generation is short. Disinfection treatment using hydrogen peroxide has the advantage of strong sterilization power and low cost, but there is a possibility of residual hydrogen peroxide being discharged, which makes practical use difficult.

한편, 선박평형수의 전기분해 방식의 처리 기술은 선박평형수를 주입 또는 배출할 때 전기분해조에 일정한 전류의 인가하여 해수로부터 잔류산화제(Total Residual Oxidant)를 생성하여 해양 생물 살균에 필요한 기술로서, 실시간으로 살균에 필요한 잔류산화제 농도를 제어할 수 있다는 장점이 있다.On the other hand, the electrolysis treatment technology of ballast water is a technology necessary for sterilizing marine organisms by applying a constant current to the electrolysis tank when injecting or discharging ballast water to generate a total residual oxidant from seawater, It has the advantage of being able to control the concentration of residual oxidizing agent required for sterilization in real time.

하지만, 해수 전기분해에 사용되는 촉매 전극은 귀금속 (Ruthenium, Palladium, Iridium etc.)을 재료로 사용하여 제조되기 때문에 비싼 가격과 희소성 등의 문제로 인하여 대량으로 사용하기 어렵다. 이러한 이유로 고효율 귀금속 저감 촉매의 개발이 필요하다.However, since the catalyst electrode used for seawater electrolysis is manufactured using precious metals (Ruthenium, Palladium, Iridium, etc.) as a material, it is difficult to use in large quantities due to problems such as high price and scarcity. For this reason, it is necessary to develop a high-efficiency noble metal reduction catalyst.

특히, 종래 해수 전기분해조에 사용된 금속산화물 촉매 전극의 경우, 루테늄 산화물(RuOx), 팔라듐 산화물(PdOx)이 주촉매로 사용되어 100% 귀금속 함량을 가진 촉매 전극을 사용하여야 연속적인 전기분해 반응에서 전극 간 산화 환원반응을 안정화시켜 효율을 높이고 긴 작동 수명을 유지할 수 있기 때문에 귀금속 저감 촉매에 대한 연구가 미비한 상태이다.In particular, in the case of a metal oxide catalyst electrode used in a conventional seawater electrolysis tank, ruthenium oxide (RuO x ) and palladium oxide (PdO x ) are used as main catalysts, so a catalyst electrode with 100% noble metal content must be used for continuous electrolysis In the reaction, research on noble metal reduction catalysts is insufficient because it is possible to increase the efficiency and maintain a long operating life by stabilizing the redox reaction between electrodes.

특히, 상기 방법에서 사용되는 귀금속은 희귀 금속이기 때문에 가격이 비싸며, 팔라듐(Pd)의 경우 금(Au) 값보다 가격이 비싼 귀금속 중 하나이다. In particular, the precious metal used in the method is expensive because it is a rare metal, and palladium (Pd) is one of the precious metals that is more expensive than gold (Au).

따라서, 가격이 저렴하고 긴 수명을 갖는 선박평형수의 전기분해조를 개발하기 위해서는 촉매 전극의 주촉매인 귀금속(Ru, Pd)을 저감한 촉매 전극 개발이 요구된다.Therefore, in order to develop an electrolysis tank for ballast water that is inexpensive and has a long lifespan, it is required to develop a catalyst electrode in which noble metals (Ru, Pd), which are main catalysts of the catalyst electrode, are reduced.

전기분해조의 촉매 전극과 관련된 선행문헌으로서, 한국공개특허 제2004-0002809호에서는 Ti, Zr 등의 알콕사이드와 Ru, Ir 등의 염화물로 구성된 1성분 복합 또는 2성분 복합 또는 다성분 화합물을 알코올로 희석한 후 가수분해반응과 중축합반응을 거쳐 코팅 용액을 제조하고, 상기 코팅 용액으로 전처리된 전기분해용 전극의 제조방법을 개시하고 있다.As a prior document related to the catalytic electrode of an electrolysis tank, Korean Patent Application Laid-Open No. 2004-0002809 discloses a one-component or two-component complex or multi-component compound composed of an alkoxide such as Ti and Zr and a chloride such as Ru and Ir is diluted with alcohol. After the hydrolysis reaction and polycondensation reaction, a coating solution is prepared, and a method of manufacturing an electrode for electrolysis pretreated with the coating solution is disclosed.

또한, 한국등록특허 제10-0553364호에서는 금속 혼합 산화물 전극 및 그의 제조방법을 개시하면서, 전극 기판과; 이리듐(Ir)화합물, 루테늄(Ru)화합물, 주석(Sn)화합물, 망간(Mn)화합물, 티타늄(Ti)화합물, 몰리브덴(Mo)화합물, 탄탈륨(Ta)화합물 지르코늄(Zr)화합물 중 선택된 적어도 1종을 유기용매에 혼합한 코팅액을 상기 전극 기판에 도포 및 건조하여 1차로 열처리하는 과정을 4∼15회한 후에 2차 열처리하여 이루어진 코팅층으로 이루어진 전극을 개시하고 있다.In addition, Korean Patent No. 10-0553364 discloses a metal mixed oxide electrode and a method for manufacturing the same, comprising: an electrode substrate; At least one selected from an iridium (Ir) compound, a ruthenium (Ru) compound, a tin (Sn) compound, a manganese (Mn) compound, a titanium (Ti) compound, a molybdenum (Mo) compound, a tantalum (Ta) compound, and a zirconium (Zr) compound Disclosed is an electrode comprising a coating layer formed by applying and drying a coating solution in which a species is mixed with an organic solvent to the electrode substrate, performing a primary heat treatment process 4 to 15 times, and then performing a secondary heat treatment.

본 발명은, 화학적으로 안정한 이산화티타늄을 티타늄 전극 표면에 코팅한 전극을 금속산화물 촉매 전극의 집전체로 사용함으로써 값비싼 팔라듐 함량을 줄이면서 전기분해 성능이 확보된 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극을 제조하기 위한 것이다.The present invention is a titanium dioxide coating for ballast water electrolysis that secures electrolysis performance while reducing expensive palladium content by using an electrode coated with chemically stable titanium dioxide on the surface of a titanium electrode as a current collector for a metal oxide catalyst electrode It is for manufacturing a catalyst electrode.

이를 위해 본 발명은 티타늄 전극 표면에 이산화티타늄(TiO2)을 코팅하여 기존 상용 전극에서 사용되는 팔라듐의 함량을 줄일 수 있는 방법을 제공하는 것을 목적으로 한다.To this end, an object of the present invention is to provide a method capable of reducing the content of palladium used in conventional commercial electrodes by coating titanium dioxide (TiO 2 ) on the surface of a titanium electrode.

상기한 과제는, 티타늄 전극 표면에 이산화티타늄(TiO2)을 코팅하여 코팅층을 형성하는 단계; 및 상기 코팅층 위에 혼합 금속산화물 촉매층을 형성하는 단계를 포함하는, 선박평형수 전기분해용 이산화티타늄(TiO2) 코팅 촉매 전극의 제조 방법에 의해 달성된다.The above-described task, forming a coating layer by coating titanium dioxide (TiO 2 ) on the surface of the titanium electrode; And comprising the step of forming a mixed metal oxide catalyst layer on the coating layer, for ballast water electrolysis titanium dioxide (TiO 2 ) It is achieved by a method of manufacturing a catalyst electrode.

바람직하게는, 상기 코팅층 형성 단계는 진공 챔버에 아르곤과 산소의 혼합 가스를 퍼징하고 300℃ 내지 400℃의 온도에서 플라즈마를 이용하여 티타늄 타겟을 증발시켜 티타늄 전극 표면에 티타늄 산화물을 증착시켜 형성될 수 있다.Preferably, the coating layer forming step may be formed by purging a mixed gas of argon and oxygen in a vacuum chamber and evaporating the titanium target using plasma at a temperature of 300° C. to 400° C. to deposit titanium oxide on the surface of the titanium electrode. have.

또한 바람직하게는, 상기 혼합 금속산화물 촉매층 형성 단계는 루테늄(Ru), 팔라듐(Pd), 티타늄(Ti), 주석(Sn), 이리듐(Ir), 백금(Pt), 탄탈럼(Ta), 안티모니(Sb) 및 망간(Mn)으로 이루어진 군에서 선택된 2종 이상의 금속 이온, 유기용매 및 바인더 용액을 혼합한 코팅용액을 도포한 후, 열처리하는 단계를 포함할 수 있다.Also preferably, in the step of forming the mixed metal oxide catalyst layer, ruthenium (Ru), palladium (Pd), titanium (Ti), tin (Sn), iridium (Ir), platinum (Pt), tantalum (Ta), anti After applying a coating solution in which two or more kinds of metal ions selected from the group consisting of mono (Sb) and manganese (Mn), an organic solvent, and a binder solution, heat treatment may be included.

또한 바람직하게는, 상기 혼합 금속산화물 촉매층은 루테늄(Ru)과 팔라듐(Pd)이 1~10:1의 원자비로 포함될 수 있다.Also preferably, the mixed metal oxide catalyst layer may contain ruthenium (Ru) and palladium (Pd) in an atomic ratio of 1 to 10:1.

또한 바람직하게는, 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형일 수 있다.Also preferably, the titanium electrode may be of a general plate material, a regular perforated network, a perforated perforated network, an expanded wire mesh type or a mesh type.

또한 바람직하게는, 상기 바인더 용액은 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 프로폭사이드 및 티타늄 부톡사이드로 이루어진 군에서 선택될 수 있다.Also preferably, the binder solution may be selected from the group consisting of titanium methoxide, titanium ethoxide, titanium propoxide and titanium butoxide.

또한, 본 발명의 목적은 상기 방법으로 제조되고, 티타늄 전극, 상기 티타늄 전극 위에 형성된 이산화티타늄 코팅층 및 상기 코팅층 위에 형성된 혼합 금속산화물 촉매층으로 이루어진 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극에 의해 달성된다.In addition, an object of the present invention is achieved by a titanium dioxide coated catalyst electrode for ballast water electrolysis prepared by the above method and comprising a titanium electrode, a titanium dioxide coating layer formed on the titanium electrode, and a mixed metal oxide catalyst layer formed on the coating layer. .

본 발명의 방법에 따르면, 전이금속 산화물인 이산화티타늄(TiO2)을 초기 코팅전극에 얇게 코팅함으로써 촉매전극의 안정성을 높이고 값비싼 팔라듐(Pd) 함량을 줄여 전기분해 효율을 유지하는 안정한 촉매 전극을 제조함으로써 전기분해용 불용성 전극의 문제점인 가격 문제를 해결하고, 해수전기분해용 촉매산업에 이바지할 계기가 될 것으로 기대된다.According to the method of the present invention, titanium dioxide (TiO 2 ), a transition metal oxide, is thinly coated on the initial coating electrode to increase the stability of the catalyst electrode and reduce the expensive palladium (Pd) content to maintain the electrolysis efficiency. By manufacturing it, it is expected to solve the problem of price, which is a problem of insoluble electrodes for electrolysis, and to contribute to the catalyst industry for seawater electrolysis.

도 1은 본 발명에 따른 방법으로 제조된 촉매 전극 단면으로 표현한 그림이다.
도 2는 본 발명의 해수전기분해 작동시 음극(Cathode)과 양극(Anode)에서 발생하는 반응을 보여주는 모식도이다.
도 3은 실시예 1에서 티타늄 산화물을 코팅한 전극의 사진과 SEM 이미지와 원소 분석데이터이다.
도 4는 실시예 2에서 제조된 촉매 전극의 SEM 이미지와 원소 분석데이터이다.
도 5는 비교예 1에서 제조된 전극의 SEM 이미지와 원소 분석데이터이다.
도 6는 실시예 2 및 비교예 1의 촉매 전극을 전기분해조의 양극으로 적용하여 10시간 동안 실시된 해수전기분해 실험(전류밀도, 0.05A/cm2)에서의 전압 변화를 나타낸 그래프이다.
1 is a diagram illustrating a cross-section of a catalyst electrode manufactured by a method according to the present invention.
Figure 2 is a schematic diagram showing the reaction occurring at the cathode (Cathode) and the anode (Anode) during the seawater electrolysis operation of the present invention.
3 is a photograph, SEM image, and elemental analysis data of the electrode coated with titanium oxide in Example 1.
4 is an SEM image and elemental analysis data of the catalyst electrode prepared in Example 2.
5 is an SEM image and elemental analysis data of the electrode prepared in Comparative Example 1.
6 is a graph showing the voltage change in a seawater electrolysis experiment (current density, 0.05A/cm 2 ) conducted for 10 hours by applying the catalyst electrode of Example 2 and Comparative Example 1 as an anode of an electrolysis tank.

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다.All technical terms used in the present invention, unless otherwise defined, have the following definitions and have the meanings as commonly understood by one of ordinary skill in the art in the relevant field of the present invention. In addition, although preferred methods and samples are described herein, similar or equivalent ones are also included in the scope of the present invention.

용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.The term "about" refers to 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, means an amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length varying by 4, 3, 2 or 1%.

본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, unless the context requires otherwise, the terms "comprises" and "comprising" include the steps or elements presented, or groups of steps or elements, but any other step or element, or It is to be understood that a step or group of elements is not excluded.

본 발명은 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법 및 상기 방법으로 제조된 촉매 전극에 관한 것이다.The present invention relates to a method for manufacturing a titanium dioxide-coated catalyst electrode for ballast water electrolysis and a catalyst electrode manufactured by the method.

본 발명의 일실시 형태에 따르면, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극은 티타늄 전극 표면에 이산화티타늄(TiO2)을 코팅하여 코팅층을 형성하는 단계; 및 상기 코팅층 위에 혼합 금속산화물 촉매층을 형성하는 단계를 포함하는 방법으로 제조된다.According to an embodiment of the present invention, the titanium dioxide coating catalyst electrode for ballast water electrolysis is formed by coating titanium dioxide (TiO 2 ) on the surface of the titanium electrode to form a coating layer; and forming a mixed metal oxide catalyst layer on the coating layer.

상기 코팅층은 티타늄의 변형이 적은 온도 범위에서 빠른 시간 내에 증착이 가능한 플라즈마(plasma) 방식을 이용하여 박막 두께의 티타늄 산화물을 코팅할 수 있다.The coating layer may be coated with a thin film thickness of titanium oxide using a plasma method that can be deposited within a short time in a temperature range in which the deformation of titanium is small.

바람직하게는, 상기 티타늄 산화물의 코팅층은 진공 챔버에서 300℃ 내지 400℃의 온도에서 플라즈마를 이용하여 티타늄 타겟을 증발시켜 티타늄 전극 표면에 티타늄 산화물을 증착시켜 형성될 수 있다. 이때, 진공 챔버는 아르곤 및 산소(10 vol.%) 가스를 퍼징하는 것이 바람직하다.Preferably, the coating layer of titanium oxide may be formed by evaporating a titanium target using plasma at a temperature of 300° C. to 400° C. in a vacuum chamber to deposit titanium oxide on the surface of the titanium electrode. At this time, the vacuum chamber is preferably purged with argon and oxygen (10 vol.%) gas.

또한, 상기 티타늄 산화물의 코팅은 거친 표면의 상용 티타늄 전극이나 일반연마 또는 전해연마 처리한 티타늄 전극 표면에 코팅을 실시할 수 있다.In addition, the coating of the titanium oxide may be applied to a rough surface of a commercial titanium electrode or a surface of a titanium electrode subjected to general polishing or electrolytic polishing.

상기 티타늄 산화물(TiO2) 코팅은 아래 실시예 1의 방법을 따라서 형성될 수 있으며, 상용 티타늄계 전극 표면에 TiO2를 표면에 형성시킬 수 있다.The titanium oxide (TiO 2 ) coating may be formed according to the method of Example 1 below, and TiO 2 may be formed on the surface of a commercial titanium-based electrode.

상기 코팅은 티타늄의 변형이 일어나지 않는 낮은 온도에서 플라즈마(plasma)를 이용하여 표면에 코팅하는 것을 특징으로 한다. 바람직하게는 상기 온도는 300℃ 내지 400℃일 수 있고, 보다 바람직하게는 350℃이다. 티타늄 금속의 변형을 일으키지 않는 비교적 낮은 온도에서 열처리 공정을 함으로써 금속의 형태 및 성질이 변형되지 않으며 일반 열처리 표면 보다 경도(Hardness value)가 높다.The coating is characterized in that it is coated on the surface using plasma at a low temperature at which the deformation of titanium does not occur. Preferably, the temperature may be 300 °C to 400 °C, more preferably 350 °C. By performing the heat treatment process at a relatively low temperature that does not cause deformation of the titanium metal, the shape and properties of the metal are not deformed, and the hardness value is higher than that of the general heat treatment surface.

본 발명의 일 실시형태에 따른 티타늄 산화물(TiO2) 코팅은 99.99%의 고순도 티타늄 타겟과 O2가스(10 vol.% in Ar gas)를 이용하여 전극 표면에 TiO2층을 형성한다. Titanium oxide (TiO 2 ) coating according to an embodiment of the present invention by using a 99.99% high-purity titanium target and O 2 gas (10 vol.% in Ar gas) to form a TiO 2 layer on the electrode surface.

상기 혼합 금속산화물 촉매층 형성 단계는 루테늄(Ru), 팔라듐(Pd), 티타늄(Ti), 주석(Sn), 이리듐(Ir), 백금(Pt), 탄탈럼(Ta), 안티모니(Sb) 및 망간(Mn)으로 이루어진 군에서 선택된 2종 이상의 금속 이온, 유기용매 및 바인더 용액를 혼합한 코팅용액을 도포한 후, 열처리하는 단계를 포함한다.The mixed metal oxide catalyst layer forming step includes ruthenium (Ru), palladium (Pd), titanium (Ti), tin (Sn), iridium (Ir), platinum (Pt), tantalum (Ta), antimony (Sb) and and applying a coating solution in which two or more metal ions selected from the group consisting of manganese (Mn), an organic solvent, and a binder solution are mixed, followed by heat treatment.

바람직하게는, 상기 촉매층 형성 단계는 루테늄 화합물과 유기용매를 혼합한 제1 코팅용액을 제조하는 단계; 팔라듐 화합물 및 유기용매를 혼합한 제2 코팅용액을 제조하는 단계; 상기 제1 코팅용액, 제2 코팅용액, 유기용매, 바인더 용액, 카본을 혼합한 후 중탕하여 코팅 용액을 제조하는 단계; 상기 코팅 용액을 티타늄 전극 표면 위에 도포한 후 400℃ 내지 500℃로 열처리하는 단계(3분 내지 5분); 및 상기 촉매층이 형성된 전극을 추가로 600℃ 내지 700℃에서 소성하는 단계(1시간)를 포함할 수 있다.Preferably, the step of forming the catalyst layer comprises: preparing a first coating solution in which a ruthenium compound and an organic solvent are mixed; preparing a second coating solution in which a palladium compound and an organic solvent are mixed; preparing a coating solution by mixing the first coating solution, the second coating solution, an organic solvent, a binder solution, and carbon and then bathing; After the coating solution is applied on the surface of the titanium electrode, heat treatment at 400° C. to 500° C. (3 minutes to 5 minutes); and further sintering the electrode on which the catalyst layer is formed at 600° C. to 700° C. (1 hour).

상기 유기용매는 탄소수 1-4 개의 저급 알코올(예를 들면, 메탄올, 에탄올, 프로판올 및 부탄올), 염산으로 이루어진 군에서 선택된 것일 수 있다.The organic solvent may be selected from the group consisting of lower alcohols having 1 to 4 carbon atoms (eg, methanol, ethanol, propanol and butanol) and hydrochloric acid.

상기 바인더 용액은 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 프로폭사이드 및 티타늄 부톡사이드로 이루어진 군에서 선택된 티타늄 염일 수 있다.The binder solution may be a titanium salt selected from the group consisting of titanium methoxide, titanium ethoxide, titanium propoxide and titanium butoxide.

도 1은 본 발명의 방법으로 제조된 이산화티타늄 코팅 촉매 전극의 단면도이다. 1 is a cross-sectional view of a titanium dioxide coated catalyst electrode prepared by the method of the present invention.

도 1을 보면, 티타늄 전극(Ti) 표면 위에 티타늄 산화물 층과 혼합 금속산화물 촉매층(Mixed metal oxide(MOx))이 순차적으로 형성되어 있다. Referring to FIG. 1 , a titanium oxide layer and a mixed metal oxide catalyst layer (Mixed metal oxide (MOx)) are sequentially formed on a surface of a titanium electrode (Ti).

본 발명의 방법은 티타늄 전극 위에 티타늄 층을 형성함으로써, 귀금속인 루테늄(Ru)과 팔라듐(Pd)의 함량을 줄이고 해수 전기분해에 안정한 혼합 금속산화물 촉매 전극을 제조한다. The method of the present invention reduces the content of precious metals ruthenium (Ru) and palladium (Pd) by forming a titanium layer on the titanium electrode, and prepares a mixed metal oxide catalyst electrode stable for seawater electrolysis.

본 발명의 방법은 화학적으로 안정한 티타늄 산화물(TiO2)를 코팅한 전극을 이용함으로써 표면 촉매층의 팔라듐 함량을 획기적으로 줄이면서 안정한 전기분해 효율과 수명을 보이는 촉매 전극을 제조할 수 있다.The method of the present invention uses an electrode coated with chemically stable titanium oxide (TiO 2 ), thereby remarkably reducing the palladium content of the surface catalyst layer and producing a catalyst electrode showing stable electrolysis efficiency and lifespan.

티타늄 산화물 코팅은 티타늄의 변형이 적은 온도 범위에서 빠른 시간 내에 증착이 가능한 플라즈마(plasma) 방식을 이용하여 고경도의 티타늄 산화물을 코팅할 수 있다.Titanium oxide coating can be coated with high hardness titanium oxide using a plasma method that can be deposited in a short time in a temperature range in which the deformation of titanium is small.

상기에서 티타늄 전극은 바람직하게는 순도 100%의 티타늄 금속 또는 티타늄 합금을 포함할 수 있다. 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형일 수 있다. 또한, 상기 티타늄 전극은 바람직하게는 전기분해 반응시 반응면적을 넓히기 위하여 샌드 블라스트(sand blast) 등으로 처리된 거친 표면을 갖는 전극일 수 있다. In the above, the titanium electrode may include a titanium metal or a titanium alloy having a purity of 100%. The titanium electrode may be of a general plate material, a regular perforated network, a perforated perforated network, an expanded wire mesh type, or a mesh type. In addition, the titanium electrode may be an electrode having a rough surface treated with sand blast or the like in order to increase the reaction area during the electrolysis reaction.

본 발명에서 선박평형수는 선박의 균형을 잡아주기 위하여 내부에 저장하는 물로서 해수 또는 담수일 수 있으며, 보다 바람직하게는 해수이다.In the present invention, ballast water is water stored inside to balance the ship, and may be seawater or freshwater, and more preferably seawater.

선박평형수가 해수인 경우, 해수의 전기분해시 발생하는 반응은 아래의 식으로 설명 가능하다.When the ballast water is seawater, the reaction that occurs during electrolysis of seawater can be explained by the following equation.

[반응식 1][Scheme 1]

Anode(+극) : Anode(+pole) :

2OH- → H2O + 1/2O2↑ + 2e- 2OH - → H 2 O + 1/2O 2 ↑ + 2e -

NaCl → Na+ + Cl- NaCl → Na + + Cl -

2Cl- → Cl2↑ + 2e- (주반응)2Cl - → Cl 2 ↑ + 2e - (main reaction)

Cl2 + H2O → HClO(하이포염소산) + H+ + Cl- (부반응)Cl 2 + H 2 O → HClO (hypochlorous acid) + H + + Cl - (side reaction)

[반응식 2][Scheme 2]

Cathode(-극): Cathode (-pole):

2H2O +2e- → H2↑ + 2OH- (주반응)2H 2 O +2e - → H 2 ↑ + 2OH - (main reaction)

Na+ + OH- → NaOH (부반응)Na + + OH - → NaOH (side reaction)

Mg+2 + Ca+2 + 4OH- → Mg(OH)2 + Ca(OH)2 (부반응)Mg +2 + Ca +2 + 4OH - → Mg(OH) 2 + Ca(OH) 2 (side reaction)

상기 반응과 관계된 모식도를 도 2에 나타내었으며, 반응식 1에서와 같이 해수 전기분해시 상기 양극(Anode) 반응에서 생성되는 Cl2 가스와 O2 가스의 발생으로 인하여 촉매층이 밀도 있게 형성되지 않으면 촉매층에 크랙이나 파편이 발생할 수 있다. 또한, 상기반응이 잘 진행되기 위해서는 촉매가 전자를 받아 환원시키는 전도도가 높아야 해수 전기분해 효율의 감소를 방지할 수 있다.A schematic diagram related to the reaction is shown in FIG. 2, and as in Scheme 1, if the catalyst layer is not densely formed due to the generation of Cl 2 gas and O 2 gas generated in the anode reaction during seawater electrolysis, the catalyst layer Cracks or fragments may occur. In addition, in order for the reaction to proceed well, the reduction in seawater electrolysis efficiency can be prevented only when the conductivity of the catalyst to receive and reduce electrons is high.

따라서, 본 발명에서는 화학적으로 안정한 티타늄 산화물(TiO2)을 티타늄 전극 표면에 얇게 코팅해 줌으로써 집전체인 티타늄 금속의 부식을 방지하고 귀금속 촉매인 팔라듐 산화물(PdOx) 함량을 줄이더라도 부족한 촉매효율을 보강하여 전기분해 과정의 효율이 감소하는 것을 방지할 수 있다.Therefore, in the present invention, by thinly coating a chemically stable titanium oxide (TiO 2 ) on the surface of the titanium electrode, corrosion of the titanium metal as a current collector is prevented, and even if the content of palladium oxide (PdO x ), which is a noble metal catalyst, is reduced, insufficient catalytic efficiency is obtained. It can be reinforced to prevent a decrease in the efficiency of the electrolysis process.

본 발명의 방법에 따라 제작된 촉매 전극을 선박평형수 전해설비에서 사용하면, 값비싼 팔라듐의 양을 획기적으로 줄이지만, Cl2나 O2를 환원시키는 환원반응 효율의 저하를 방지되므로 선박평형수가 유입 또는 배출되는 연속적인 전기분해 반응에서도 에너지 효율 및 잔류산화제(TRO) 생성 효율의 감소 없이 장기간 사용이 가능하다. When the catalyst electrode manufactured according to the method of the present invention is used in a ballast water electrolysis facility, the amount of expensive palladium is remarkably reduced, but the reduction of the reduction reaction efficiency for reducing Cl 2 or O 2 is prevented, so that the ballast water It can be used for a long time without a decrease in energy efficiency and residual oxidizing agent (TRO) generation efficiency even in the continuous electrolysis reaction in or out.

이하에서, 실시예를 들어서 본 발명을 구체적으로 설명한다. 그러나 아래 실시예 및 첨부된 도면은 본 발명의 코팅 후의 상태를 보여주기 위하여 사용된 일례에 불과하며 상기 도면에 의해 본 발명의 전극 코팅 범위가 제한되는 것은 아니다.Hereinafter, the present invention will be specifically described with reference to Examples. However, the following examples and the accompanying drawings are only examples used to show the state after the coating of the present invention, and the scope of the electrode coating of the present invention is not limited by the drawings.

실시예 1 - 이산화티타늄(TiO2) 코팅 전극 Example 1 - Titanium Dioxide (TiO 2 ) Coated Electrode

메쉬형 티타늄계 전극을 준비하고 알코올과 아세톤을 사용하여 전극 표면의 불순물을 1차적으로 제거하였다. 1차 처리된 전극을 약 1x10-6 Torr의 고진공이 유지되는 진공 챔버에서 놓고, 고순도 티타늄 타겟을 준비하였다. 진공 챔버를 아르곤(Ar)가스와 10 vol.%의 산소를 퍼징한 후, 전극에 100kV 내지 150kV의 전압을 인가하고 약 350℃로 온도를 올려주면서 티타늄 타겟을 플라즈마(plasma)를 이용하여 증발시켰다. 이때 사용되는 티타늄 타겟은 99.99%의 고순도 티타늄 타겟을 사용하였으며, 플라즈마로 인해 증발된 티타늄은 이온화된 상태이며, 전압이 인가된 티타늄 전극 표면에 챔버 내부에 채워진 가스인 O2(10 vol.% in Ar)와 결합하여 전극의 표면에 증착된다. 상기에서 제조된 표면에 티타늄 산화물 코팅층을 갖는 전극 사진을 도 3에 나타냈으며 제조된 전극은 회색을 띄고 전극 표면에 티타늄과 산소 원소가 분석되는 것을 확인하였다.A mesh-type titanium-based electrode was prepared, and impurities on the electrode surface were primarily removed using alcohol and acetone. The primary treated electrode was placed in a vacuum chamber in which a high vacuum of about 1x10 -6 Torr was maintained, and a high-purity titanium target was prepared. After purging the vacuum chamber with argon (Ar) gas and 10 vol.% oxygen, a voltage of 100 kV to 150 kV was applied to the electrode and the temperature was raised to about 350 ° C. The titanium target was evaporated using plasma. . The titanium target used at this time was a high-purity titanium target of 99.99%, the titanium evaporated due to plasma is in an ionized state, and O 2 (10 vol.% in Ar) and deposited on the surface of the electrode. A photograph of an electrode having a titanium oxide coating layer on the surface prepared above is shown in FIG. 3 , and it was confirmed that the prepared electrode was gray and titanium and oxygen elements were analyzed on the electrode surface.

실시예 2 - 혼합 금속산화물 촉매 전극 Example 2 - Mixed Metal Oxide Catalyst Electrode

먼저 부탄올 10mL에 RuCl2 1g을 넣어 용액1을 제조하고, PdCl2 또는 PdCl3 1.66을 HCl 5mL에 녹여 용액2를 만들었다. 최종 코팅액으로는 부탄올 3 mL에 용액1 0.14mL, 티타늄 프로폭사이드 0.6mL, 카본 0.015g, 용액2 6.4mL를 혼합하고 2시간 중탕하여, 촉매 전극 코팅용액을 제조하였다. First, 1 g of RuCl 2 was added to 10 mL of butanol to prepare solution 1, and PdCl 2 or PdCl 3 1.66 was dissolved in 5 mL of HCl to prepare solution 2. As a final coating solution, 0.14 mL of solution 1, 0.6 mL of titanium propoxide, 0.015 g of carbon, and 6.4 mL of solution 2 were mixed in 3 mL of butanol, followed by boiling for 2 hours to prepare a catalyst electrode coating solution.

상기 촉매 전극 코팅용액을 실시예 1에서 제조된 이산화티타늄(TiO2) 코팅 전극에 건 스프레이(gun spray)를 이용하여 1mL/min의 속도로 코팅하여 건조한 후, 450℃로 3분 동안 열처리하였다. 이 과정을 5회에 걸쳐 진행한 후 650℃에서 1시간 동안 열처리하여 촉매 전극을 제조하였다.The catalyst electrode coating solution was coated on the titanium dioxide (TiO 2 ) coated electrode prepared in Example 1 at a rate of 1 mL/min using gun spray, dried, and then heat-treated at 450° C. for 3 minutes. After this process was performed 5 times, a catalyst electrode was prepared by heat treatment at 650° C. for 1 hour.

또한, 상기에서 제조된 촉매 전극의 표면은 도 4에 나타냈다. 또한, 제조된 촉매 전극을 전기분해조에서 양극(anode)으로 사용하고 동일한 소재인 티타늄 전극을 전처리 없이 음극(cathode)에 적용하여 10시간 동안 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 2회 이상 실시하였다. 해수전기분해시 전압 변화를 측정하여 도 6에 나타내었다.In addition, the surface of the prepared catalyst electrode is shown in FIG. 4 . In addition, the prepared catalyst electrode was used as an anode in the electrolysis tank and a titanium electrode, the same material, was applied to the cathode without pretreatment, followed by a continuous seawater electrolysis experiment (current density, 0.05A/cm) for 10 hours. 2 ) was performed twice or more. The voltage change during seawater electrolysis was measured and shown in FIG. 6 .

비교예 1 - 기존 상용 티타늄 전극 Comparative Example 1 - Conventional Commercial Titanium Electrode

먼저 부탄올 10mL에 RuCl2 1g을 넣어 용액1을 제조하고, PdCl2 또는 PdCl3 5g을 HCl 5mL에 녹인 용액2를 만들었다. 최종 코팅액으로는 부탄올 3 mL에 용액1 0.14mL, 티타늄 프로폭사이드 0.6mL, 카본 0.015g, 용액2 6.4mL을 혼합하고 2시간 중탕하여, 촉매 전극 코팅용액을 제조하였다.First, solution 1 was prepared by adding 1 g of RuCl 2 to 10 mL of butanol , and solution 2 was prepared by dissolving 5 g of PdCl 2 or PdCl 3 in 5 mL of HCl. As a final coating solution, 0.14 mL of solution 1, 0.6 mL of titanium propoxide, 0.015 g of carbon, and 6.4 mL of solution 2 were mixed with 3 mL of butanol, followed by boiling for 2 hours to prepare a catalyst electrode coating solution.

상기 촉매 전극 코팅용액을 메쉬형 티타늄 전극에 건 스프레이를 이용하여 1mL/min의 속도로 코팅하여 건조 후 450℃로 3분 동안 열처리하였다. 이 과정을 5회에 걸쳐 진행한 후 650℃에서 1시간 동안 열처리하여 촉매 전극을 제조하였다. The catalyst electrode coating solution was coated on a mesh-type titanium electrode using a gun spray at a rate of 1 mL/min, dried and then heat-treated at 450° C. for 3 minutes. After this process was performed 5 times, a catalyst electrode was prepared by heat treatment at 650° C. for 1 hour.

또한, 상기에서 제조된 촉매 전극의 표면은 도 5에 나타냈다. 또한, 제조된 촉매 전극을 전기분해조에서 양극(anode)으로 사용하고 동일한 소재인 티타늄 전극을 전처리 없이 음극(cathode)에 적용하여 10시간 동안 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 2회 이상 실시하였다. 해수전기분해시 전압변화를 도 6에 나타내었다.In addition, the surface of the prepared catalyst electrode is shown in FIG. 5 . In addition, the prepared catalyst electrode was used as an anode in the electrolysis tank and a titanium electrode, the same material, was applied to the cathode without pretreatment, followed by a continuous seawater electrolysis experiment (current density, 0.05A/cm) for 10 hours. 2 ) was performed twice or more. The voltage change during seawater electrolysis is shown in FIG. 6 .

도 3을 보면, 실시예 1에서 제조된 전극은, 티타늄 전극 표면에 이산화티타늄(TiO2)이 얇게 코팅되어 있어, 티타늄 집전체 표면과 비슷한 표면 형상을 보이며 불순물 없이 티타늄과 산소만 원소분석 결과에서 나타났다.3, the electrode manufactured in Example 1 is thinly coated with titanium dioxide (TiO 2 ) on the surface of the titanium electrode, and shows a surface shape similar to the surface of the titanium current collector, and only titanium and oxygen without impurities. appear.

도 4는 실시예 2에서 제조한 촉매 전극으로서, 실시예 1에서 제조한 이산화티타늄 코팅 전극에 루테늄과 팔라듐의 혼합 금속산화물 촉매를 코팅한 전극으로서, 표면에 이산화티타늄이 얇게 코팅되어 티타늄 집전체 표면형상 그대로 혼합 금속산화물 촉매 코팅층 또한 고르지 못한 표면 현상을 보인다. 원소분석결과, 팔라듐 함량은 루테늄 대비 약 1/3의 원자비를 보였다.4 is a catalyst electrode prepared in Example 2, an electrode coated with a mixed metal oxide catalyst of ruthenium and palladium on the titanium dioxide-coated electrode prepared in Example 1, titanium dioxide is thinly coated on the surface of the titanium current collector surface As it is, the mixed metal oxide catalyst coating layer also shows an uneven surface phenomenon. As a result of elemental analysis, the palladium content showed an atomic ratio of about 1/3 compared to that of ruthenium.

도 5는 비교예 1에서 제조한 촉매 전극으로서, 기존 상용 촉매 전극이다. 루테늄과 팔라듐 함량비(원자비)는 약 1:1로 100%의 귀금속으로 이루어진 촉매를 코팅한 혼합 금속산화물 촉매 전극이다.5 is a catalyst electrode prepared in Comparative Example 1, which is a conventional commercial catalyst electrode. The ruthenium and palladium content ratio (atomic ratio) is about 1:1, which is a mixed metal oxide catalyst electrode coated with a catalyst composed of 100% noble metal.

도 6은 실시예 2, 비교예 1의 촉매 전극을 양극으로 이용하여 10 시간씩 2회 이상의 실험을 연속적인 해수전기분해 실험(전류밀도, 0.05A/cm2)을 실시한 경우의 전압변화를 나타낸 그래프이다. 종래 촉매 전극(비교예 1)과 실시예 2에서 제작된 촉매 전극의 해수전기분해 초기 전압은 동일하였으며, 지속적인 전기분해 과정에서 비교예 1보다 과전압이 적게 걸리는 것을 확인하였다. 또한 해수전기분해 10시간 후 종료전압에서 실시예 2로 제작된 촉매 전극이 3.15 V로 비교예 1로 제작된 기존 사용 촉매전극보다 약 0.1 V 과전압이 적게 걸렸다.6 is a graph showing the voltage change when a continuous seawater electrolysis experiment (current density, 0.05A/cm 2 ) is performed two or more times for 10 hours using the catalyst electrode of Example 2 and Comparative Example 1 as an anode. It is a graph. The initial voltage of seawater electrolysis of the conventional catalyst electrode (Comparative Example 1) and the catalyst electrode prepared in Example 2 was the same, and it was confirmed that the overvoltage was less than that of Comparative Example 1 in the continuous electrolysis process. In addition, the catalytic electrode manufactured in Example 2 was 3.15 V at the termination voltage after 10 hours of seawater electrolysis, which was about 0.1 V less than the conventional catalyst electrode manufactured in Comparative Example 1.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. As described above in detail a specific part of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

티타늄 전극 표면에 이산화티타늄(TiO2)을 코팅하여 코팅층을 형성하는 단계; 및 상기 코팅층 위에 혼합 금속산화물 촉매층을 형성하는 단계를 포함하는, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법.Forming a coating layer by coating titanium dioxide (TiO 2 ) on the surface of the titanium electrode; and forming a mixed metal oxide catalyst layer on the coating layer, the method of manufacturing a titanium dioxide coated catalyst electrode for ballast water electrolysis. 제1항에 있어서, 상기 코팅층 형성 단계는 진공 챔버에 아르곤과 산소의 혼합 가스를 퍼징하고 300℃ 내지 400℃의 온도에서 플라즈마를 이용하여 티타늄 타겟을 증발시켜 티타늄 전극 표면에 티타늄 산화물을 증착시켜 형성하는 단계를 포함하는, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법.The method of claim 1, wherein the coating layer forming step is formed by purging a mixed gas of argon and oxygen in a vacuum chamber and evaporating the titanium target using plasma at a temperature of 300°C to 400°C to deposit titanium oxide on the surface of the titanium electrode. A method of manufacturing a titanium dioxide-coated catalyst electrode for ballast water electrolysis, comprising the step of: 제1항 있어서, 상기 혼합 금속산화물 촉매층 형성 단계는 루테늄(Ru), 팔라듐(Pd), 티타늄(Ti), 주석(Sn), 이리듐(Ir), 백금(Pt), 탄탈럼(Ta), 안티모니(Sb) 및 망간(Mn)으로 이루어진 군에서 선택된 2종 이상의 금속 이온, 유기용매 및 바인더 용액을 혼합한 코팅용액을 도포한 후, 열처리하는 단계를 포함하는 것인, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법.According to claim 1, wherein the step of forming the mixed metal oxide catalyst layer is ruthenium (Ru), palladium (Pd), titanium (Ti), tin (Sn), iridium (Ir), platinum (Pt), tantalum (Ta), anti After applying a coating solution in which two or more kinds of metal ions selected from the group consisting of mono (Sb) and manganese (Mn), an organic solvent and a binder solution are mixed, the method comprising the step of heat-treating, for ballast water electrolysis A method for manufacturing a titanium dioxide coated catalyst electrode. 제3항에 있어서, 상기 혼합 금속산화물 촉매층은 루테늄(Ru)과 팔라듐(Pd)이 1~10:1의 원자비로 포함된 것인, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법.[Claim 4] The method of claim 3, wherein the mixed metal oxide catalyst layer contains ruthenium (Ru) and palladium (Pd) in an atomic ratio of 1 to 10:1. . 제1항에 있어서, 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형인, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법.The method of claim 1, wherein the titanium electrode is a general plate, a regular perforated network, a perforated net, an expanded wire mesh or a mesh type, a method of manufacturing a titanium dioxide-coated catalyst electrode for ballast water electrolysis. 제 3항에 있어서, 상기 바인더 용액은 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 프로폭사이드 및 티타늄 부톡사이드로 이루어진 군에서 선택된 것인, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극의 제조 방법.The method of claim 3, wherein the binder solution is selected from the group consisting of titanium methoxide, titanium ethoxide, titanium propoxide and titanium butoxide. 제1항 내지 제6항 중 어느 한 항의 방법으로 제조되고, 티타늄 전극, 상기 티타늄 전극 위에 형성된 이산화티타늄 코팅층 및 상기 코팅층 위에 형성된 혼합 금속산화물 촉매층으로 이루어진, 선박평형수 전기분해용 이산화티타늄 코팅 촉매 전극.A titanium dioxide coating catalyst electrode for ballast water electrolysis, manufactured by the method of any one of claims 1 to 6, and comprising a titanium electrode, a titanium dioxide coating layer formed on the titanium electrode, and a mixed metal oxide catalyst layer formed on the coating layer .
KR1020200038982A 2020-03-31 2020-03-31 Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof KR20210121750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200038982A KR20210121750A (en) 2020-03-31 2020-03-31 Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200038982A KR20210121750A (en) 2020-03-31 2020-03-31 Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20210121750A true KR20210121750A (en) 2021-10-08

Family

ID=78610003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200038982A KR20210121750A (en) 2020-03-31 2020-03-31 Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20210121750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592218A (en) * 2022-02-25 2022-06-07 广州鸿葳科技股份有限公司 Titanium-based anode and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592218A (en) * 2022-02-25 2022-06-07 广州鸿葳科技股份有限公司 Titanium-based anode and preparation method and application thereof

Similar Documents

Publication Publication Date Title
AU2005325733B2 (en) High efficiency hypochlorite anode coating
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
EP2292811B1 (en) Cathode for hydrogen generation and method for producing the same
CN1888141A (en) Sea water pollution resisting oxide anode and its prepn
JP5307270B2 (en) Cathode for hydrogen generation used for salt electrolysis
Spasojević et al. Microstructure of new composite electrocatalyst and its anodic behavior for chlorine and oxygen evolution
JP2006104502A (en) Cathode for electrolysis
US20070261968A1 (en) High efficiency hypochlorite anode coating
KR20210121750A (en) Titanium dioxide coated catalytic electrode for electrolysis of ballast water and preparation method thereof
KR102331273B1 (en) Ruthenium-tin based titanium nitrate coated catalytic electrode for electrolysis of ballast water and preparation method thereof
JP2019119930A (en) Chlorine generating electrode
RU2379380C2 (en) High-efficiency anode coating for producing hypochlorite
WO2011102431A1 (en) Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
KR102295047B1 (en) Ruthenium-zirconium based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR20150009755A (en) Menufacture Method of Insoluble Electrode for Electrolysis of Ballast Water
KR102404420B1 (en) Transition metal coated catalytic electrode for electrolysis and preparation method thereof
KR20210121747A (en) Transition metal coated catalytic electrode for electrolysis of ballast water and preparation method thereof
KR102290288B1 (en) Ruthenium-tin based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR102392563B1 (en) Pyrochlore-type metal oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof
Rethinaraj et al. Anodes for the preparation of EMD and application of manganese dioxide coated anodes for electrochemicals
KR20210146017A (en) Electrode comprising pyrochlore-type catalyst for electrolysis and preparation method thereof
JPH11229170A (en) Activated cathode
KR20230094624A (en) Ruthenium-tin oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof
JPH10287991A (en) Oxygen generating electrode and its production
JP2020193371A (en) Ozone generating electrode

Legal Events

Date Code Title Description
E601 Decision to refuse application