KR20210052353A - Ferrocene derivatives, use thereof, and manufacturing method thereof - Google Patents

Ferrocene derivatives, use thereof, and manufacturing method thereof Download PDF

Info

Publication number
KR20210052353A
KR20210052353A KR1020200143183A KR20200143183A KR20210052353A KR 20210052353 A KR20210052353 A KR 20210052353A KR 1020200143183 A KR1020200143183 A KR 1020200143183A KR 20200143183 A KR20200143183 A KR 20200143183A KR 20210052353 A KR20210052353 A KR 20210052353A
Authority
KR
South Korea
Prior art keywords
formula
derivative
ferrocenyl
present
butyrate
Prior art date
Application number
KR1020200143183A
Other languages
Korean (ko)
Other versions
KR102479388B1 (en
Inventor
이학준
반재영
복미란
임민경
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of KR20210052353A publication Critical patent/KR20210052353A/en
Application granted granted Critical
Publication of KR102479388B1 publication Critical patent/KR102479388B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/04Catalyst added to fuel stream to improve a reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

The present invention relates to ferrocene derivatives, a composition for promoting combustion of a rocket propellant comprising the derivatives and a manufacturing method thereof, wherein the derivatives have the advantage of easy commercialization because there is no side reactions by using 4-ferrocenyl butyrate, and have an effect of stably increasing a combustion rate.

Description

페로신 유도체, 이의 용도 및 이의 제조방법 {Ferrocene derivatives, use thereof, and manufacturing method thereof}Ferrocene derivatives, use thereof, and manufacturing method thereof

본 발명은 페로신 유도체, 이의 용도 및 이의 제조방법에 관한 것이다.The present invention relates to a ferrocin derivative, its use and its preparation method.

성능이 우수한 로켓추진제의 개발을 위해 고분자 바인더와 연소첨가제의 개발이 중요한 요소 중 하나이다. 로켓추진제의 연소속도를 증가시키기 위하여 주로 전이금속 (Fe, Cr 등) 화합물들을 사용하여 왔다. 일반적으로 ferrocene 화합물들은 iron(Ⅲ) oxide와 같은 철 산화물에 비하여 연소속도 증가효과가 크며 연소압력지수 (burning rate pressure exponent)가 낮은 장점을 가지고 있어 매우 가능성 있는 연소촉매로 알려져 있다. The development of polymeric binders and combustion additives is one of the important factors for the development of rocket propellants with excellent performance. Transition metal (Fe, Cr, etc.) compounds have been mainly used to increase the combustion speed of rocket propellants. In general, ferrocene compounds are known to be very promising combustion catalysts because they have a greater combustion rate increase effect and low burning rate pressure exponent than iron oxides such as iron(III) oxide.

그러나 기존의 물질들은 주위 단열재를 향하여 이동하는 의도치 않은 이동성을 띄게 되면서 첨가해준 양이 시간이 지남에 따라 점차 감소하여 연소가 고르지 못하게 발생하는 문제가 있으며, 이로 인하여 안정성에서도 문제가 발생한다. 이러한 문제점을 개선하기 위하여 ferrocene에 Friedel-Crafts alkylation을 함으로써 분자량이 큰 alkyl group을 치환시키거나 바인더에 결합시켜 더 안정하고 고른 연소를 일으킬 수 있다. However, existing materials have an unintended mobility to move toward the surrounding insulation, and the amount added gradually decreases over time, resulting in uneven combustion, which causes problems in stability. In order to improve this problem, by performing Friedel-Crafts alkylation on ferrocene, an alkyl group having a large molecular weight is substituted or bonded to a binder to cause more stable and even combustion.

이중 3-(feroocenoyl)propionic acid에 Lithium aluminum hydride를 사용하여 4-ferrocenyl butanol를 생성하거나 lithium aluminum hydride의 위험성으로 인하여 esterification을 통하여 우회하는 반응이 존재한다. 하지만 이 방법은 위험하고 값이 매우 비싸며 취급에 상당한 주의가 필요하다. Among these, there is a reaction that generates 4-ferrocenyl butanol using lithium aluminum hydride in 3-(feroocenoyl)propionic acid or bypasses through esterification due to the risk of lithium aluminum hydride. However, this method is dangerous, very expensive, and requires great care in handling.

이에 상기 현상을 개선하기 위해, 4-ferrocenyl butanol을 합성하거나(국내등록특허 제1853565호 및 제1853566호), 4-ferrocenyl butanoic acid을 합성하여 응용해왔으나 (국내공개특허 10-2020-0067384), 4-ferrocenyl butanol의 경우, 고분자 바인더 copolymer에 친핵치환반응에 적용하였을 때 부반응으로 제거 생성물이 형성되어 상업화단계에서 어려움이 있었다. Thus, in order to improve the above phenomenon, 4-ferrocenyl butanol has been synthesized (Korean Patent Nos. 1853565 and 1853566) or 4-ferrocenyl butanoic acid has been synthesized and applied (Korean Patent Publication 10-2020-0067384), In the case of 4-ferrocenyl butanol, when applied to the nucleophilic substitution reaction in the polymer binder copolymer, the removal product was formed as a side reaction, causing difficulties in the commercialization step.

본 발명은 전술한 문제점을 해결하기 위한 것으로, 4-ferrocenyl butanoic acid를 이용하여 부반응이 없고 상업화단계에 적용할 수 있는 새로운 에너지바인더로서 poly(GA-ferrocenyl butyrate)ferrocene 유도체를 합성하였다. 이에 따라 상기 유도체를 포함하는 로켓추진제의 연소촉진용 조성물 및 이의 제조방법을 제공하고자 한다.The present invention is to solve the above-described problem, using 4-ferrocenyl butanoic acid to synthesize poly(GA-ferrocenyl butyrate)ferrocene derivatives as a new energy binder that has no side reaction and can be applied to the commercialization step. Accordingly, it is intended to provide a composition for accelerating combustion of a rocket propellant including the derivative and a method for producing the same.

상기 목적을 달성하기 위하여, 하기 화학식 1로 표시되는 페로신 유도체를 제공한다:In order to achieve the above object, a ferrocin derivative represented by the following formula (1) is provided:

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 x는 0.7 내지 0.9인 것임.Wherein x is 0.7 to 0.9.

본 발명의 일구현예로, 상기 화학식 1로 표시되는 화합물은 하기 화합물들로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 한다:In one embodiment of the present invention, the compound represented by Formula 1 is characterized in that it is any one selected from the group consisting of the following compounds:

[화학식 1-1][Formula 1-1]

Figure pat00002
Figure pat00002

[화학식 1-2][Formula 1-2]

Figure pat00003
Figure pat00003
And

[화학식 1-3][Formula 1-3]

Figure pat00004
.
Figure pat00004
.

본 발명의 다른 구현예로, 상기 유도체의 유리전이 온도는 -30 ℃ 이하이고, 열분해온도는 200,000℃ 이하인 것을 특징으로 한다.In another embodiment of the present invention, the glass transition temperature of the derivative is -30 °C or less, and the thermal decomposition temperature is 200,000 °C or less.

또한, 본 발명은 상기 페로신 유도체를 포함하는, 로켓추진제의 연소촉진용 조성물을 제공한다.In addition, the present invention provides a composition for promoting combustion of a rocket propellant, including the ferrocin derivative.

아울러, 본 발명은 하기 화학식 1로 표시되는 페로신 유도체의 제조방법으로서,In addition, the present invention is a method for preparing a ferrocin derivative represented by the following formula (1),

폴리에피클로로히드린, 소듐아자이드 및 포타슘 페로세닐 부티레이트를 혼합하여 교반하는 단계(S1); 및Mixing and stirring polyepichlorohydrin, sodium azide, and potassium ferrocenyl butyrate (S1); And

상기 교반이 완료되면, 80 내지 120 ℃로 승온하여 반응을 진행하는 단계(S2)를 포함하는, 하기 화학식 1로 표시되는 페로신 유도체의 제조방법을 제공한다.When the stirring is completed, it provides a method for producing a ferrocin derivative represented by the following formula (1), including the step (S2) of raising the temperature to 80 to 120°C to proceed with the reaction.

본 발명의 일 실시예에 따르면, GAP에 연소촉진제 기능을 하는 페로센 유도체인 4-ferrocenyl butanoic acid를 도입하여 새로운 poly(GA-ferrocenyl butyrate)를 합성하였다. 즉 아지드기를 포함하는 고에너지 고분자 바인더인 GAP에 연소촉진제 기능을 부여함으로써 로켓추진제에 적용할 수 있는 새로운 페로센 유도체를 합성한 것으로, 상기 유도체는 부반응없이 합성되어 상업화 단계에 적용하기에 용이한 장점이 있다. According to an embodiment of the present invention, a new poly(GA-ferrocenyl butyrate) was synthesized by introducing 4-ferrocenyl butanoic acid, a ferrocene derivative functioning as a combustion accelerator, to GAP. That is, a new ferrocene derivative that can be applied to rocket propellants is synthesized by giving a combustion accelerator function to GAP, a high-energy polymer binder containing an azide group, and the derivative is synthesized without side reactions and is easy to apply to the commercialization stage. There is this.

도 1은 화학식 1-1의 13C NMR 스펙트럼을 나타내는 도면이다.
도 2는 화학식 1-1의 IR 스펙트럼을 나타내는 도면이다.
도 3은 화학식 1-2의 13C NMR 스펙트럼을 나타내는 도면이다.
도 4는 화학식 1-2의 IR 스펙트럼을 나타내는 도면이다.
도 5는 화학식 1-3의 13C NMR 스펙트럼을 나타내는 도면이다.
도 6은 화학식 1-3의 IR 스펙트럼을 나타내는 도면이다.
1 is a diagram showing a 13 C NMR spectrum of Chemical Formula 1-1.
2 is a diagram showing an IR spectrum of Chemical Formula 1-1.
3 is a diagram showing a 13 C NMR spectrum of Chemical Formula 1-2.
4 is a diagram showing an IR spectrum of Formula 1-2.
5 is a diagram showing a 13 C NMR spectrum of Chemical Formula 1-3.
6 is a diagram showing an IR spectrum of Chemical Formula 1-3.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.In the present invention, various modifications may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.

본 발명에서, '포함한다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, terms such as'include' or'have' are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.

본 발명은 페로신 유도체와 이를 포함하는 로켓추진제의 연소촉진용 조성물 및 이의 제조방법에 관한 것으로, 보다 구체적으로, 로켓추진제의 성능을 향상시킬 수 있는 연소촉진제로서 새로운 에너지바인더 조성물인 화학식 1의 poly(GA-ferrocenyl butyrate)과 이를 합성하기 위한 방법에 관한 것이다.The present invention relates to a composition for accelerating combustion of a ferrosine derivative and a rocket propellant containing the same, and a method for producing the same, and more specifically, to a new energy binder composition, poly(1) as a combustion accelerator capable of improving the performance of a rocket propellant (GA-ferrocenyl butyrate) and a method for synthesizing it.

기존 로켓추진제의 연소 촉진제로 사용되었던 Hydroxy-terminated polybutadiene (HTPB)은 비에너지화 물질로서 첨가량 증가에 따라 추진력의 저하가 수반되며, 산화제인 ammonium perchlorate (AP)와 결합하면서 HCl을 생성하여 환경적인 문제가 발생하여 최근 GAP이나 PBAMO와 같은 아지드계 (-N3) 고에너지 고분자들로 대체되고 있다. 이러한 이유로 GAP(Glycidyl azide polymer)에 ferrocene 유도체를 도입하는 연구가 주목할 만하다. Hydroxy-terminated polybutadiene (HTPB), which has been used as a combustion accelerator for existing rocket propellants, is a non-energy substance, which causes a decrease in propulsion as the amount of addition increases. Has occurred and has recently been replaced with azide-based (-N 3 ) high energy polymers such as GAP and PBAMO. For this reason, the study of introducing ferrocene derivatives into GAP (Glycidyl azide polymer) is remarkable.

종래의 기술에서는 기본 바인더인 HTPB의 사용으로 환경적 문제가 발생되므로, 본 발명자들은 아지드계 (-N3) 고에너지 고분자인 GAP에 4-ferrocenyl butanoic acid를 도입하여 부반응이 없고 상업화단계에 적용할 수 있는 새로운 에너지바인더로 poly(GA-ferrocenyl butyrate)ferrocene 유도체가 합성될 수 있음을 확인하여, 본 발명을 완성한 것이다.In the conventional technology, environmental problems arise due to the use of HTPB, which is a basic binder, so the present inventors introduced 4-ferrocenyl butanoic acid to GAP, an azide-based (-N 3 ) high energy polymer, so that there is no side reaction and applied to the commercialization stage. The present invention was completed by confirming that poly(GA-ferrocenyl butyrate) ferrocene derivatives can be synthesized as a new energy binder capable of.

이에 본 발명은 하기 화학식 1로 표시되는 페로신 유도체를 제공할 수 있다.Accordingly, the present invention can provide a ferrocin derivative represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00005
Figure pat00005

상기 x는 0.7 내지 0.9인 것임.Wherein x is 0.7 to 0.9.

상기 화학식 1로 표시되는 화합물은 하기 화합물들로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는, 페로신 유도체.The compound represented by Chemical Formula 1 is any one selected from the group consisting of the following compounds.

[화학식 1-1][Formula 1-1]

Figure pat00006
Figure pat00006

[화학식 1-2][Formula 1-2]

Figure pat00007
Figure pat00007
And

[화학식 1-3][Formula 1-3]

Figure pat00008
.
Figure pat00008
.

상기 유도체의 유리전이 온도는 -30 ℃ 이하이고, 열분해온도는 150,000 ℃ 이상 200,000℃ 이하인 것으로, 이에 상기 유도체는 로켓추진제의 연소 촉진제로서 활용될 수 있다.The glass transition temperature of the derivative is -30°C or less, and the thermal decomposition temperature is 150,000°C or more and 200,000°C or less, and thus the derivative may be used as a combustion accelerator for a rocket propellant.

본 발명은 상기 유도체를 포함하는 로켓추진제의 연소촉진용 조성물을 제공할 수 있으며, 상기 조성물은 로켓추진제의 전체 함량 100 중량부에 대하여 1 내지 30 중량%로 포함되어 사용될 수 있으나, 이에 제한되지는 않는다. 일반적인 로켓추친제의 연소촉진제의 함량은 보통 20% 정도이다. The present invention may provide a composition for promoting combustion of a rocket propellant comprising the derivative, and the composition may be used in an amount of 1 to 30% by weight based on 100 parts by weight of the total content of the rocket propellant, but is not limited thereto. Does not. The content of combustion accelerators in general rocket chuchin agents is usually about 20%.

또한, 본 발명은 상기 페로신 유도체의 제조방법으로서,In addition, the present invention is a method for producing the ferrocin derivative,

폴리에피클로로히드린, 소듐아자이드 및 포타슘 페로세닐 부티레이트를 혼합하여 교반하는 단계(S1); 및Mixing and stirring polyepichlorohydrin, sodium azide, and potassium ferrocenyl butyrate (S1); And

상기 교반이 완료되면, 80 내지 120 ℃로 승온하여 반응을 진행하는 단계(S2)를 포함하는 제조방법을 제공할 수 있다.When the agitation is completed, it is possible to provide a manufacturing method including the step (S2) of raising the temperature to 80 to 120 °C to proceed with the reaction.

상기 S1 단계에서 교반은 디메틸설폭사이드 용매 하에서 50 내지 70℃의 온도 조건에서 수행될 수 있다.Stirring in step S1 may be performed under a dimethyl sulfoxide solvent at a temperature of 50 to 70°C.

전체적인 제조방법은 하기의 반응식 1, 2 및 3으로 나타낼 수 있다. 반응식 1 내지 3을 통해서 각각 화학식 1-1 내지 1-3을 합성하였다.The overall manufacturing method can be represented by the following Schemes 1, 2 and 3. Chemical Formulas 1-1 to 1-3 were synthesized through Reaction Schemes 1 to 3, respectively.

[반응식 1][Scheme 1]

Figure pat00009
Figure pat00009

[반응식 2][Scheme 2]

Figure pat00010
Figure pat00010

[반응식 3][Scheme 3]

Figure pat00011
Figure pat00011

상기 반응이 완료되면, 톨루엔, 물 및 브라인 용액을 이용하여 유기층을 추출하고, 추출된 용액 내부의 톨루엔을 감압증류를 통하여 제거한 후 진공 건조하여 생성물을 수득할 수 있다.When the reaction is completed, the organic layer is extracted using a solution of toluene, water, and brine, and the toluene in the extracted solution is removed through distillation under reduced pressure, and then vacuum-dried to obtain a product.

본 발명에서 제조된 유도체의 유리전이온도(Tg) 데이터와 열분해온도(Td)를 하기 표 1 및 표 2에 정리하였다.The glass transition temperature (T g ) data and thermal decomposition temperature (T d ) of the derivatives prepared in the present invention are summarized in Tables 1 and 2 below.

화학식Chemical formula 유리전이온도(Tg)Glass transition temperature (T g ) 1One -45 ℃-45 ℃ 22 -40 ℃-40 ℃ 33 -34 ℃-34 ℃

화학식Chemical formula 열분해온도(Td)Pyrolysis temperature (T d ) 1One 192, 296 ℃192, 296 ℃ 22 168, 303 ℃168, 303 ℃ 33 164, 324 ℃164, 324 ℃

이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail by examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following Examples and Experimental Examples.

<실시예><Example>

실시예 1. 화학식 1-1 Poly(GAExample 1. Formula 1-1 Poly(GA 0.90.9 -ferrocenyl butyrate-ferrocenyl butyrate 0.10.1 )의 제조) Of the manufacture

본 실시예 1에서는 하기 반응식 1에 따라 화학식 1-1의 Poly(GA0.9-ferrocenyl butyrate0.1)를 제조하였다. In Example 1, Poly(GA 0.9 -ferrocenyl butyrate 0.1 ) of Formula 1-1 was prepared according to the following Scheme 1.

[반응식 1][Scheme 1]

Figure pat00012
Figure pat00012

먼저, 2.0086 g, PECH ; 1.2961 g, Sodium azide ; 1.0036 g, Potassium ferrocenyl butyrate ; 과 dimethyl sulfoxide 30 mL를 함께 60 ℃에서 교반하였다.First, 2.0086 g, PECH; 1.2961 g, Sodium azide; 1.0036 g, Potassium ferrocenyl butyrate; And 30 mL of dimethyl sulfoxide were stirred together at 60 °C.

모든 reagent가 용해되면 환류 냉각기를 설치하여 온도를 90 ℃로 승온한 후 72시간 동안 반응을 진행하였다. 반응이 완료되면 Toluene, 물과 브라인 용액을 이용하여 유기층을 추출하고 Toluene는 감압증류를 통하여 제거한 후, 진공건조를 실시하여 생성물을 얻을 수 있다. 진공 건조한 후 갈색 액체인 화학식 1-1의 Poly(GA0.9-ferrocenyl butyrate0.1) 1.5694 g을 수득하였다.When all the reagents were dissolved, a reflux condenser was installed to raise the temperature to 90° C. and the reaction was carried out for 72 hours. When the reaction is completed, the organic layer is extracted using toluene, water and brine solution, and the toluene is removed through distillation under reduced pressure, followed by vacuum drying to obtain a product. After vacuum drying, 1.5694 g of Poly(GA 0.9 -ferrocenyl butyrate 0.1 ) of Formula 1-1 as a brown liquid was obtained.

제조된 화학식 1-1의 유도체의 13C NMR 분석 결과를 도 1에 나타내었고, IR 분석 결과를 도 2에 나타내었다. 상기 13C NMR 분석은 Bruker AV-400 (400MHz) spectrometer를 사용하여 수행되었고, IR 분석은 Bruker Alpha FT-IR spectrometer를 사용하여 수행되었다. 고분자물질로 1H NMR은 측정하지 않았으며 13C NMR의 탄소적분값으로 GAP의 CH2N3과 카르복실기의 비율을 확인하였다. The result of 13 C NMR analysis of the prepared derivative of Formula 1-1 is shown in FIG. 1, and the IR analysis result is shown in FIG. 2. The 13 C NMR analysis was performed using a Bruker AV-400 (400 MHz) spectrometer, and IR analysis was performed using a Bruker Alpha FT-IR spectrometer. 1 H NMR was not measured as a polymer material, and the ratio of CH 2 N 3 and carboxyl groups in GAP was confirmed by the carbon integral value of 13 C NMR.

13C NMR (100 MHz, CDCl3): δ 172.9, 88.4, 78.6, 78.4, 53.9, 51.6, 33.6, 28.7, 26.1. 13 C NMR (100 MHz, CDCl 3 ): δ 172.9, 88.4, 78.6, 78.4, 53.9, 51.6, 33.6, 28.7, 26.1.

실시예 2. 화학식 2 Poly(GAExample 2. Formula 2 Poly(GA 0.80.8 -ferrocenyl butyrate-ferrocenyl butyrate 0.20.2 )의 제조) Of the manufacture

본 실시예 1에서는 하기 반응식 2에 따라 화학식 1-2의 Poly(GA0.8-ferrocenyl butyrate0.2)를 제조하였다. In Example 1, Poly(GA 0.8 -ferrocenyl butyrate 0.2 ) of Formula 1-2 was prepared according to Reaction Scheme 2 below.

[반응식 2][Scheme 2]

Figure pat00013
Figure pat00013

먼저, 2.1484 g, PECH ; 1.2323 g, Sodium azide ; 2.1470 g, Potassium ferrocenyl butyrate ; 과 dimethyl sulfoxide 30 mL를 함께 60 ℃에서 교반하였다.First, 2.1484 g, PECH; 1.2323 g, Sodium azide; 2.1470 g, Potassium ferrocenyl butyrate; And 30 mL of dimethyl sulfoxide were stirred together at 60 °C.

모든 reagent가 용해되면 환류 냉각기를 설치하여 온도를 90 ℃로 승온한 후 72시간 동안 반응을 진행하였다. 반응이 완료되면 Toluene, 물과 브라인 용액을 이용하여 유기층을 추출하고 Toluene는 감압증류를 통하여 제거한 후, 진공건조를 실시하여 생성물을 수득하였다. 진공 건조한 후 갈색 액체인 Poly(GA0.8-ferrocenyl butyrate0.2) 1.9676 g을 수득하였다.When all the reagents were dissolved, a reflux condenser was installed to raise the temperature to 90° C. and the reaction was carried out for 72 hours. When the reaction was completed, the organic layer was extracted using toluene, water and brine solution, and the toluene was removed through distillation under reduced pressure, followed by vacuum drying to obtain a product. After vacuum drying, 1.9676 g of a brown liquid of Poly(GA 0.8 -ferrocenyl butyrate 0.2) was obtained.

제조된 화학식 1-2의 유도체의 13C NMR 분석 결과를 도 3에 나타내었고, IR 분석 결과를 도 4에 나타내었다. The result of 13C NMR analysis of the prepared derivative of Formula 1-2 is shown in FIG. 3, and the IR analysis result is shown in FIG. 4.

13C NMR (100 MHz, CDCl3) : δ 172.9, 137.8, 88.4, 78.6, 78.4, 53.9, 51.6, 33.6, 28.7, 26.1 13 C NMR (100 MHz, CDCl 3 ): δ 172.9, 137.8, 88.4, 78.6, 78.4, 53.9, 51.6, 33.6, 28.7, 26.1

실시예 3. 화학식 3 Poly(GAExample 3. Chemical Formula 3 Poly(GA 0.70.7 -ferrocenyl butyrate-ferrocenyl butyrate 0.30.3 )의 제조) Of the manufacture

본 실시예 1에서는 하기 반응식 3에 따라 화학식 1-3의 Poly(GA0.7-ferrocenyl butyrate0.3)를 제조하였다. In Example 1, Poly(GA 0.7 -ferrocenyl butyrate 0.3 ) of Chemical Formula 1-3 was prepared according to Reaction Scheme 3 below.

[반응식 3][Scheme 3]

Figure pat00014
Figure pat00014

먼저, 1.1593 g, PECH ; 0.5818 g, Sodium azide ; 1.7378 g, Potassium ferrocenyl butyrate ; 과 dimethyl sulfoxide 30 mL를 함께 60 ℃에서 교반하였다.First, 1.1593 g, PECH; 0.5818 g, Sodium azide; 1.7378 g, Potassium ferrocenyl butyrate; And 30 mL of dimethyl sulfoxide were stirred together at 60 °C.

모든 reagent가 용해되면 환류 냉각기를 설치하여 온도를 90 ℃로 승온한 후, 72시간 동안 반응을 진행하였다. 반응이 완료되면 Toluene, 물과 브라인 용액을 이용하여 유기층을 추출하고 Toluene는 감압증류를 통하여 제거한 후, 진공건조를 실시하여 생성물을 수득하였다.When all the reagents were dissolved, a reflux condenser was installed to raise the temperature to 90° C., and the reaction was carried out for 72 hours. When the reaction was completed, the organic layer was extracted using toluene, water and brine solution, and the toluene was removed through distillation under reduced pressure, followed by vacuum drying to obtain a product.

상기 진공 건조한 후 갈색 액체인 Poly(GA0.7-ferrocenyl butyrate0.3) 0.6254 g을 얻었다.After vacuum drying, 0.6254 g of a brown liquid of Poly(GA 0.7 -ferrocenyl butyrate 0.3) was obtained.

제조된 화학식 1-3의 유도체의 13C NMR 분석 결과를 도 5에 나타내었고, IR 분석 결과를 도 6에 나타내었다. The 13C NMR analysis results of the prepared derivatives of Formula 1-3 are shown in FIG. 5, and the IR analysis results are shown in FIG. 6.

13C NMR (100 MHz, CDCl3) : δ 173.0, 88.4, 78.6, 51.6, 33.6, 28.7, 26.1 13 C NMR (100 MHz, CDCl 3 ): δ 173.0, 88.4, 78.6, 51.6, 33.6, 28.7, 26.1

실시예 4. 화학식 1-1 내지 1-3의 특성 확인Example 4. Characterization of Chemical Formulas 1-1 to 1-3

본 실시예 4에서는 실시예 1 내지 3에서 합성한 물질의 유리전이온도와 열분해 온도를 분석하였다. 유리전이온도는 Differential scanning calorimetry (DSC)분석으로 TA instruments Q 1000의 제품을 사용하였으며 질소 분위기 하에 5 ℃/min의 조건으로 -90 ℃에서 100 ℃의 온도 범위에서 측정하였다. 열분해온도는 Gel permeation chromatography (GPC)분석으로 WATERS 515를 사용하였으며 THF 용매로 1.0 mL/min의 조건으로 측정하였다.In Example 4, the glass transition temperature and thermal decomposition temperature of the materials synthesized in Examples 1 to 3 were analyzed. The glass transition temperature was measured by differential scanning calorimetry (DSC) analysis, using a product of TA instruments Q 1000, and was measured in a temperature range of -90 °C to 100 °C under a condition of 5 °C/min under a nitrogen atmosphere. The thermal decomposition temperature was measured using WATERS 515 by gel permeation chromatography (GPC) analysis, and was measured under the conditions of 1.0 mL/min with a THF solvent.

합성한 물질들의 유리전이온도(Tg) 데이터와 열분해온도(Td)를 하기 표 3 및 표 4에 정리하였다.The glass transition temperature (T g ) data and thermal decomposition temperature (T d ) of the synthesized materials are summarized in Tables 3 and 4 below.

화학식Chemical formula 유리전이온도(Tg)Glass transition temperature (T g ) 1-11-1 -45 ℃-45 ℃ 1-21-2 -40 ℃-40 ℃ 1-31-3 -34 ℃-34 ℃

화학식Chemical formula 열분해온도(Td)Pyrolysis temperature (T d ) 1-11-1 192, 296 ℃192, 296 ℃ 1-21-2 168, 303 ℃168, 303 ℃ 1-31-3 164, 324 ℃164, 324 ℃

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, a specific part of the present invention has been described in detail, and for those of ordinary skill in the art, it is obvious that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Therefore, it will be said that the practical scope of the present invention is defined by the appended claims and their equivalents.

Claims (7)

하기 화학식 1로 표시되는 페로신 유도체:
[화학식 1]
Figure pat00015

상기 x는 0.7 내지 0.9인 것임.
Ferrosine derivatives represented by the following formula (1):
[Formula 1]
Figure pat00015

Wherein x is 0.7 to 0.9.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화합물들로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는, 페로신 유도체:
[화학식 1-1]
Figure pat00016

[화학식 1-2]
Figure pat00017

[화학식 1-3]
Figure pat00018
.
The method of claim 1,
The compound represented by Formula 1 is a ferrosine derivative, characterized in that it is any one selected from the group consisting of the following compounds:
[Formula 1-1]
Figure pat00016

[Formula 1-2]
Figure pat00017
And
[Formula 1-3]
Figure pat00018
.
제1항에 있어서,
상기 유도체의 유리전이 온도는 -30 ℃ 이하이고, 열분해온도는 200,000℃ 이하인 것을 특징으로 하는, 페로신 유도체.
The method of claim 1,
The glass transition temperature of the derivative is -30 ℃ or less, characterized in that the thermal decomposition temperature is 200,000 ℃ or less, ferrosine derivatives.
제1항의 페로신 유도체를 포함하는, 로켓추진제의 연소촉진용 조성물.
A composition for promoting combustion of a rocket propellant comprising the ferrocin derivative of claim 1.
하기 화학식 1로 표시되는 페로신 유도체의 제조방법으로서,
폴리에피클로로히드린, 소듐아자이드 및 포타슘 페로세닐 부티레이트를 혼합하여 교반하는 단계(S1); 및
상기 교반이 완료되면, 80 내지 120 ℃로 승온하여 반응을 진행하는 단계(S2)를 포함하는, 하기 화학식 1로 표시되는 페로신 유도체의 제조방법.
As a method for producing a ferrocin derivative represented by the following formula (1),
Mixing and stirring polyepichlorohydrin, sodium azide, and potassium ferrocenyl butyrate (S1); And
When the stirring is completed, the method for producing a ferrocin derivative represented by the following formula (1), comprising the step (S2) of raising the temperature to 80 to 120 °C to proceed with the reaction.
제5항에 있어서,
상기 S1 단계는 디메틸설폭사이드 용매 하에서 50 내지 70℃의 온도로 수행되는 것인, 페로신 유도체의 제조방법.
The method of claim 5,
The S1 step is to be carried out at a temperature of 50 to 70 ℃ in a dimethyl sulfoxide solvent, a method for producing a ferrosine derivative.
제5항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화합물들로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는, 페로신 유도체의 제조방법:
[화학식 1-1]
Figure pat00019

[화학식 1-2]
Figure pat00020

[화학식 1-3]
Figure pat00021
.
The method of claim 5,
The compound represented by Formula 1 is a method for producing a ferrocin derivative, characterized in that it is any one selected from the group consisting of the following compounds:
[Formula 1-1]
Figure pat00019

[Formula 1-2]
Figure pat00020
And
[Formula 1-3]
Figure pat00021
.
KR1020200143183A 2019-10-31 2020-10-30 Ferrocene derivatives, use thereof, and manufacturing method thereof KR102479388B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190138102 2019-10-31
KR20190138102 2019-10-31

Publications (2)

Publication Number Publication Date
KR20210052353A true KR20210052353A (en) 2021-05-10
KR102479388B1 KR102479388B1 (en) 2022-12-21

Family

ID=75917968

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200143183A KR102479388B1 (en) 2019-10-31 2020-10-30 Ferrocene derivatives, use thereof, and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102479388B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717122A (en) * 1995-05-05 1998-02-10 Chemische Betriebe Pluto Gmbh Ferrocene compounds
KR20130105836A (en) * 2010-09-16 2013-09-26 샤앙지 제이앤알 파이어 파이팅 캄파니 리미티드 Ferrocene-based fire extinguishing composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717122A (en) * 1995-05-05 1998-02-10 Chemische Betriebe Pluto Gmbh Ferrocene compounds
KR20130105836A (en) * 2010-09-16 2013-09-26 샤앙지 제이앤알 파이어 파이팅 캄파니 리미티드 Ferrocene-based fire extinguishing composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of the KIMST, Vol. 22, No. 1, pp. 35-41 *

Also Published As

Publication number Publication date
KR102479388B1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
Carlotti et al. Living/controlled anionic polymerization and copolymerization of epichlorohydrin with tetraoctylammonium bromide− triisobutylaluminum initiating systems
CN110294780B (en) Aromatic amine burning rate catalyst containing ferrocenyl methyl-1, 2, 3-triazole group and preparation method thereof
JPH0625194B2 (en) Novel epoxy resin manufacturing method
CN110385144B (en) Aliphatic ether burning rate catalyst containing ferrocenyl methyl-1, 2, 3-triazole group and preparation method thereof
CN112574335B (en) Modified hydroxyl-terminated polybutadiene and preparation method and application thereof
WO2024216917A1 (en) Preparation method for polyether having controllable molecular weight and molecular weight distribution
Yu et al. Synthesis of polyallenoates through copper-mediated cross-coupling of dialkynes and bis-α-diazoesters
KR102479388B1 (en) Ferrocene derivatives, use thereof, and manufacturing method thereof
KR20140124911A (en) Solid propellant binder and method of manufacturing the same
Cheng et al. Synthesis of three‐arm poly (ethylene glycol) by combination of controlled anionic polymerization and ‘click’chemistry
JP6080138B2 (en) Glycidyl-4-position-modified-1,2,3-triazole derivative polymer and synthesis method thereof
KR102201325B1 (en) Glycidyl azide polymer(gap)-copolyol, its manufacturing method and etpe binder
CN112939708B (en) Imidazole and pyrazole combustion rate catalyst containing ferrocenyl methyl-1, 2, 3-triazolyl group and preparation method thereof
CN113185373B (en) Casting type energetic adhesive base mixed explosive and preparation method thereof
CN114956916A (en) Polyazido glycidyl ether compound and preparation method thereof
CN114341114B (en) 1, 3-dipolar compounds comprising aromatic heterocyclic and imidazole rings
KR102237524B1 (en) Poly(bamo-carboxylate)-copolyol, its manufacturing method and etpe binder
CN109705344B (en) Method for preparing 1, 5-stereoregular polytriazole by catalysis of nickel complex
CN112778377A (en) Ferrocene burning-rate catalyst containing bis (imidazole or pyrazole-1, 2, 3-triazole) group and preparation method thereof
KR102190052B1 (en) Poly(bamo-1,2,3-triazole)-copolyol, its manufacturing method and etpe binder
CN113336666A (en) Universal cross-linking agent and synthesis method and application thereof
JPH06509592A (en) Branched energetic polyether elastomer
KR102386460B1 (en) An energetic prepolymer for solid propellant binder and manufacturing method thereof
JPH04306235A (en) Polysilane copolymer and production thereof
CN112028723B (en) High-mechanical-property solid propellant containing biological BTTN and preparation process thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right