KR20210052111A - Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation - Google Patents

Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation Download PDF

Info

Publication number
KR20210052111A
KR20210052111A KR1020190138235A KR20190138235A KR20210052111A KR 20210052111 A KR20210052111 A KR 20210052111A KR 1020190138235 A KR1020190138235 A KR 1020190138235A KR 20190138235 A KR20190138235 A KR 20190138235A KR 20210052111 A KR20210052111 A KR 20210052111A
Authority
KR
South Korea
Prior art keywords
pdxk
gene
strain
pdxy
aromatic amino
Prior art date
Application number
KR1020190138235A
Other languages
Korean (ko)
Other versions
KR102269642B1 (en
Inventor
신원주
조영일
이선희
김현영
김용수
양철민
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020190138235A priority Critical patent/KR102269642B1/en
Publication of KR20210052111A publication Critical patent/KR20210052111A/en
Application granted granted Critical
Publication of KR102269642B1 publication Critical patent/KR102269642B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01035Pyridoxal kinase (2.7.1.35)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a mutant strain with improved aromatic amino acid production capacity by weakening or inactivating the activity of pyridoxal kinase expressed by pyridoxal kinase K (pdxK) or pyridoxal kinase Y (pdxY) gene.

Description

피리독살 키나아제 유전자 불활성화에 의해 아미노산 생산능력이 향상된 균주{Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation}Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation {Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation}

본 발명은 피리독살 키나아제 유전자 불활성화에 의해 아미노산 생산능력이 향상된 균주에 관한 것이다.The present invention relates to a strain having improved amino acid production capacity by inactivation of a pyridoxal kinase gene.

방향족 아미노산, 특히 L-트립토판과 L-페닐알라닌은 사료용 아미노산의 핵심품목으로서 전 세계에서 연간 3000억 달러 규모의 시장을 형성하고 있는 고부가가치 산업이다.Aromatic amino acids, especially L-tryptophan and L-phenylalanine, are key products of feed amino acids and are a high value-added industry with an annual market of $300 billion worldwide.

방향족 아미노산은 재조합 균주를 이용해 생산하고 있으며, 이의 생산량을 늘리기 위한 연구가 활발히 이루어지고 있다. 코리스미산(Chorismate)은 방향족 아미노산 생합성 경로에서 필요한 전구체로서, 이를 생산하기 위해서는 PEP(phosphoenolpyruvate), E4P(erythrose-4-phosphate), 부기질인 PRPP(phosphoribosyl pyrophosphate), 세린(Serine), 글루타민(Glutamine) 등이 필요하다. 따라서, 기존에는 L-트립토판 생산능력을 향상시키기 위해 E4P, PEP, 또는 PRPP의 생합성 경로를 강화하기 위한 연구가 진행되었다. Aromatic amino acids are produced using recombinant strains, and research is being actively conducted to increase their production. Chorismate is a precursor necessary for the biosynthetic pathway of aromatic amino acids. To produce it, phosphoenolpyruvate (PEP), erythrose-4-phosphate (E4P), phosphoribosyl pyrophosphate (PRPP), serine, glutamine ), etc. are required. Therefore, in the past, studies have been conducted to enhance the biosynthetic pathway of E4P, PEP, or PRPP in order to improve L-tryptophan production capacity.

그러나, 균주의 피리독살 키나아제를 불활성화시켜 방향족 아미노산의 생산이 증가되었다고 보고된 바는 없다. However, it has not been reported that the production of aromatic amino acids is increased by inactivating the pyridoxal kinase of the strain.

대한민국 등록공보 제10-1830002호(2018.02.09)Republic of Korea Registration Gazette No. 10-1830002 (2018.02.09)

일 구체예에 따르면, 피리독살 키나아제 유전자의 발현을 억제시킴으로써 방향족 아미노산의 생산능력이 향상된 균주를 제공한다.According to one embodiment, by inhibiting the expression of the pyridoxal kinase gene provides a strain having improved production capacity of aromatic amino acids.

일 양상은 pdxK(pyridoxal kinase K) 또는 pdxY(pyridoxal kinase Y) 유전자에 의해 발현되는 피리독살 키나아제(pyridoxal kinase)의 활성이 약화 또는 불활성화됨으로써 방향족 아미노산 생산능이 향상된 변이 균주를 제공한다. One aspect is that the activity of the pyridoxal kinase (pyridoxal kinase) expressed by the pdxK (pyridoxal kinase K) or pdxY (pyridoxal kinase Y) gene is weakened or inactivated, thereby providing a mutant strain with improved aromatic amino acid production ability.

상기 변이 균주는 pdxK(pyridoxal kinase K) 및 pdxY(pyridoxal kinase Y) 유전자에 의해 발현되는 피리독살 키나아제(pyridoxal kinase)의 활성이 모두 약화 또는 불활성화된 것일 수 있다. The mutant strain may have both attenuated or inactivated activities of pyridoxal kinase expressed by pdxK (pyridoxal kinase K) and pdxY (pyridoxal kinase Y) genes.

상기 pdxK 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있다.The pdxK gene may be composed of the nucleotide sequence of SEQ ID NO: 1.

상기 pdxY 유전자는 서열번호 10의 염기서열로 이루어진 것일 수 있다.The pdxY gene may be composed of the nucleotide sequence of SEQ ID NO: 10.

본 발명자는 pdxK(pyridoxal kinase K) 및/또는 pdxY(pyridoxal kinase Y) 유전자의 발현을 저하시킴으로서 피리독살 키나아제 활성을 억제한 결과, 피리독살 인산(pyridoxal phosphate, PLP) 생산에 사용되는 에너지가 감소하고, 대신 방향족 아미노산 생산성을 향상시킬 수 있음을 발견하였다.The present inventors suppressed the pyridoxal kinase activity by lowering the expression of the pdxK (pyridoxal kinase K) and/or pdxY (pyridoxal kinase Y) genes.As a result, the energy used for the production of pyridoxal phosphate (PLP) decreased. Instead, it was found that the productivity of aromatic amino acids could be improved.

본 명세서에서 사용되는 용어 "활성이 약화"는 객체인 유전자의 발현량이 본래의 발현량보다 감소되는 것을 의미한다. 이러한 활성의 약화는 유전자를 암호화하는 뉴클레오티드 치환, 삽입, 결실 또는 이들의 조합을 통하여 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함한다.The term "reduced activity" as used herein means that the expression level of a gene, which is an object, is decreased compared to the original expression level. This attenuation of activity is when the activity of the enzyme itself is decreased compared to the activity of the enzyme of the original microorganism through nucleotide substitution, insertion, deletion, or a combination of nucleotide encoding the gene, and inhibition of expression or translation of the gene encoding it. In the case where the overall degree of enzyme activity in the cell is lower than that of the natural strain or the strain before modification, a combination thereof is also included.

본 명세서에서 사용되는 용어 "불활성화"는 효소 등 단백질을 암호화하는 유전자의 발현이 천연형 균주 또는 변형전의 균주에 비하여 전혀 발현이 되지 않는 경우 및 발현이 되더라도 그 활성이 없는 경우를 의미한다.As used herein, the term "inactivation" refers to a case in which the expression of a gene encoding a protein such as an enzyme is not expressed at all compared to a natural strain or a strain before modification, and when there is no activity even if it is expressed.

본 명세서에서 사용되는 용어 "발현이 증가"는 객체인 유전자의 발현량이 본래의 발현량보다 증가되는 것을 의미한다. 변이 전 균주에 발현을 증가시키고자 하는 유전자가 존재하지 않는 경우에는 하나 이상의 유전자를 상기 균주의 염색체에 도입하여 발현을 증가시킬 수 있고, 변이 전 균주에 발현을 증가시키고자 하는 유전자가 존재하는 경우에는 하나 이상의 유전자를 상기 균주에 추가로 도입하거나 기존 유전자의 발현량이 증가하도록 유전공학적으로 조작할 수 있다.The term "increased expression" as used herein means that the expression level of a gene, which is an object, is increased compared to the original expression level. When a gene for increasing expression does not exist in the pre-mutation strain, one or more genes can be introduced into the chromosome of the strain to increase expression, and when a gene for increasing expression is present in the pre-mutation strain In the above, one or more genes may be additionally introduced into the strain or genetically engineered to increase the expression level of an existing gene.

본 발명에서, 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 핵산 서열에 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 프로모터로 교체하는 등의 방법으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다.In the present invention, the method of modifying the expression control sequence is performed by inducing a mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution or a combination thereof in the nucleic acid sequence of the expression control sequence, or by using a weaker promoter. It can be carried out by a method such as replacement. The expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation.

아울러, 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성이 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있다.In addition, the method of modifying the gene sequence on the chromosome is performed by inducing a mutation in the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination of the gene sequence so that the activity of the enzyme is further weakened, or a weaker activity is achieved. It can be carried out by replacing with a gene sequence that has been improved to have or a gene sequence that has been improved so that there is no activity.

일 구체예에 따르면, 상기 방향족 아미노산은 L-티로신(L-tyrosine), L-트립토판(L-tryptophan, 및 L-페닐알라닌(L-phenylalanine)일 수 있다.According to one embodiment, the aromatic amino acid may be L-tyrosine, L-tryptophan, and L-phenylalanine.

일 구체예에 따르면, 상기 변이 균주는 pdxK 유전자 및 pdxY 유전자 중에서 어느 하나 또는 전부의 서열의 전부 또는 일부가 삽입, 치환, 또는 결실되어 이루어진 것일 수 있다. According to one embodiment, the mutant strain may be formed by insertion, substitution, or deletion of all or part of the sequence of any one or all of the pdxK gene and the pdxY gene.

일 구체예에 따르면, 상기 변이 균주는 에스케리키아(Escherichia)속 균주일 수 있다. According to one embodiment, the mutant strain may be a strain of Escherichia genus.

일 구체예에 따르면, 상기 에스케리키아 속 균주는 대장균(Escherichia coli)일 수 있고, 예를 들면 KFCC11660P 및 KCCM10016 기탁 균주일 수 있다. According to one embodiment, the strain of the genus Escherichia may be Escherichia coli, for example, KFCC11660P and KCCM10016 deposited strains.

다른 양상에 따르면, 상기 변이 균주를 배지에서 배양하는 단계, 및 상기 배양된 균주 및 배양 배지에서 방향족 아미노산을 회수하는 단계를 포함하는 방향족 아미노산의 제조 방법을 제공한다. According to another aspect, there is provided a method for producing an aromatic amino acid comprising culturing the mutant strain in a medium, and recovering the aromatic amino acid from the cultured strain and the culture medium.

본 발명에 이용되는 균주는 당업계에 공지된 배양 방법을 통해 배양될 수 있다. 배지로는 천연배지 또는 합성배지를 사용할 수 있다. 배지의 탄소원으로는 예를 들어 글루코오스, 수크로오스, 덱스트린, 글리세롤, 녹말 등이 사용될 수 있고, 질소원으로는 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 대두 케이크, 우레아, 티오우레아, 암모늄염, 나이트레이트 및 기타 유기 또는 무기 질소-함유 화합물이 사용될 수 있으나, 이러한 성분에 한정되는 것은 아니다.The strain used in the present invention may be cultured through a culture method known in the art. As a medium, natural or synthetic medium may be used. As the carbon source of the medium, for example, glucose, sucrose, dextrin, glycerol, starch, etc. may be used, and as the nitrogen source, peptone, meat extract, yeast extract, dried yeast, soybean cake, urea, thiourea, ammonium salt, nitrate And other organic or inorganic nitrogen-containing compounds may be used, but are not limited to these components.

배지에 포함되는 무기염으로는 마그네슘, 망간, 포타슘, 칼슘, 철 등의 포스페이트, 나이트레이트, 카보네이트, 클로라이드 등이 사용될 수 있으나, 이들에 한정되는 것은 아니다. 상기 탄소원, 질소원 및 무기염의 성분 이외에 아미노산, 비타민, 핵산 및 그와 관련된 화합물들이 배지에 첨가 될 수 있다.Inorganic salts contained in the medium may include phosphates such as magnesium, manganese, potassium, calcium, iron, etc., nitrates, carbonates, chlorides, etc., but are not limited thereto. In addition to the components of the carbon source, nitrogen source and inorganic salt, amino acids, vitamins, nucleic acids and related compounds may be added to the medium.

배양물의 온도는 27 내지 40℃ 보다 바람직하게는 30내지 37℃일 수 있으나, 이에 한정되는 것은 아니다. 배양 기간은 유용 물질의 원하는 생성량이 수득될 때까지 계속될 수 있으며, 바람직하게는 10 내지 100 시간일 수 있으나, 이에 한정되는 것은 아니다. The temperature of the culture may be 27 to 40 ℃ more preferably 30 to 37 ℃, but is not limited thereto. The cultivation period may be continued until the desired production amount of the useful substance is obtained, and preferably may be 10 to 100 hours, but is not limited thereto.

방향족 아미노산을 회수하는 단계는 본 발명의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 회수할 수 있으며, 상기 회수 단계는 정제 공정을 포함할 수 있다.In the step of recovering the aromatic amino acid, the desired amino acid can be recovered from the culture medium using a suitable method known in the art according to the method of culturing the microorganism of the present invention, for example, a batch, continuous, or fed-batch culture method. , The recovery step may include a purification process.

일 구체예에 따르면, 상기 배지는 피리독살 5'-인산염(Pyridoxal 5'-phosphate)를 첨가한 배지일 수 있다. According to one embodiment, the medium may be a medium to which pyridoxal 5'-phosphate is added.

일 구체예에 따르면, 상기 방향족 아미노산은 L-트립토판 및 L-페닐알라닌일 수 있다.According to one embodiment, the aromatic amino acid may be L-tryptophan and L-phenylalanine.

일 구체예에 따르면, 균주의 pdxK 및/또는 pdxY 유전자를 약화 또는 불활성화 시킴으로써 균주의 방향족 아미노산의 생산량이 증가할 수 있다.According to one embodiment, the production of aromatic amino acids of the strain may be increased by weakening or inactivating the pdxK and/or pdxY genes of the strain.

이하 하나 이상의 구체예를 실시예를 통해 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

실시예 1-2: pdxK 유전자가 결실된 변이주 제조Example 1-2: Preparation of a mutant strain in which the pdxK gene was deleted

모균주(수탁번호: KFCC11660P 및 KCCM10016)에 원스텝 불활성화 방법(One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Datsenko KA, Wanner BL., Proc Natl Acad Sci USA. 2000 Jun 6;97(12):6640-5)을 이용하여 pdxK 유전자가 불활성화된 변이 균주를 제작하였다.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Datsenko KA, Wanner BL., Proc Natl Acad Sci USA. 2000 Jun 6 to parent strains (accession numbers: KFCC11660P and KCCM10016); 97(12):6640-5) was used to construct a mutant strain in which the pdxK gene was inactivated.

KFCC11660P 균주 및 KCCM10016 균주는 대장균(Escherichia coli) 균주로서, 제 4 단편의 상동재조합을 위해 Red recombinase 플라스미드인 pKD46(GenBank 접근번호 AY048746)를 도입하고, pCP20 도입 전에는 pKD46을 제거한다.KFCC11660P strain and KCCM10016 strain are Escherichia coli strains, and pKD46 (GenBank accession number AY048746), a red recombinase plasmid, is introduced for homologous recombination of the fourth fragment, and pKD46 is removed prior to introduction of pCP20.

pdxK 유전자 및 항생제 유전자가 포함된 DNA 단편을 상동재조합시켜 pdxK 유전자를 결실시키고, 다시 재조합된 DNA 단편으로부터 항생제 내성 유전자를 제거하는 과정을 거침으로써 pdxK 유전자를 불활성화시켰다. 구체적인 과정은 다음과 같다. The pdxK gene was deleted by homologous recombination of the DNA fragment containing the pdxK gene and the antibiotic gene, and the pdxK gene was inactivated by undergoing a process of removing the antibiotic resistance gene from the recombined DNA fragment. The specific process is as follows.

(1) 제 1 단편 제작(1) Production of the first short

하기 표 1에서의 pdxK 유전자 일부 서열과 pKD13 플라스미드 일부 서열을 가지는 pdxK_PF, pdxK_PR 프라이머 쌍과 pKD13 플라스미드(Genbank 접근번호 AY048744)를 이용하여 PCR 반응(총 부피 50 ㎕, 95℃ 5분 1사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 2분, 총 30 사이클 이후 72℃에서 5분 및 12℃에서 10분)을 수행하여 약 1.4kb 의 증폭된 제 1 단편을 얻었다. 제 1 단편은 pKD13 플라스미드에서 유래한 카나마이신 내성 유전자를 포함하고 있다.PCR reaction using pdxK_PF, pdxK_PR primer pair and pKD13 plasmid (Genbank accession number AY048744) having a partial sequence of the pdxK gene and a partial sequence of the pKD13 plasmid in Table 1 (total volume 50 μl, 95° C. 5 minutes after 1 cycle, 95 C for 30 seconds, 58° C. for 30 seconds, 72° C. for 2 minutes, after a total of 30 cycles, 72° C. for 5 minutes and 12° C. for 10 minutes), an amplified first fragment of about 1.4 kb was obtained. The first fragment contains a kanamycin resistance gene derived from the pKD13 plasmid.

프라이머primer 서열번호Sequence number 염기서열 (5’-3’)Base sequence (5’-3’) pdxKpdxK 1One

Figure pat00001
Figure pat00001
pdxK_HF1pdxK_HF1 22 GTTACGGGTATTGCCGAGCTGTTACGGGTATTGCCGAGCT pdxK_HR1pdxK_HR1 33 TTAATTTTTTCTCCTTGCCGTTAATTTTTTCTCCTTGCCG pdxK_PFpdxK_PF 44 CGGCAAGGAGAAAAAATTAAgtgtaggctggagctgcttcCGGCAAGGAGAAAAAATTAAgtgtaggctggagctgcttc pdxK_PRpdxK_PR 55 CGCCCATCGGCGCCATTTTTctgtcaaacatgagaattaaCGCCCATCGGCGCCATTTTTctgtcaaacatgagaattaa pdxK_HF2pdxK_HF2 66 AAAAATGGCGCCGATGGGCGAAAAATGGCGCCGATGGGCG pdxK_HR2pdxK_HR2 77 GGCGTTGAACTGTTCGTCCAGGCGTTGAACTGTTCGTCCA pdxK_CFpdxK_CF 88 GCTCTTACCGGGGATCTTCAGCTCTTACCGGGGATCTTCA pdxK_CRpdxK_CR 99 GCTATCAAACCAACGGGTAAGCTATCAAACCAACGGGTAA

(2) 제 2 단편 제작(2) Production of the second short

pdxK 유전자의 앞쪽 단편을 얻기 위해 대장균 MG1655의 지노믹(genomic) DNA를 주형으로 하고 표 1의 프라이머 pdxK_HF1 및 pdxK_HR1를 이용하여 PCR (총 부피 50 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 30초, 총 30사이클 이후 72℃에서 5분 및 12℃에서 10분)을 수행하여 약 0.3 kb 증폭된 제 2 단편을 얻었다.To obtain the front fragment of the pdxK gene, use the genomic DNA of E. coli MG1655 as a template, and PCR using the primers pdxK_HF1 and pdxK_HR1 in Table 1 (total volume 50 μl, 95° C. 5 minutes 1 cycle, 95° C. 30 Second, 58°C for 30 seconds, 72°C for 30 seconds, after a total of 30 cycles, 72°C for 5 minutes and 12°C for 10 minutes) to obtain a second fragment amplified by about 0.3 kb.

(3) 제 3 단편 제작(3) Production of the 3rd short film

또한 pdxK 유전자의 뒤쪽 단편을 얻기 위해 대장균 MG1655의 지노믹 DNA를 주형으로 하여 표 1의 프라이머 pdxK_HF2와 pdxK_HR2를 이용하여 PCR 반응(총부피 50 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 30초, 총 30 사이클 이후 72℃분 및 12℃에서 10분)을 수행하여 약 0.3 kb 의 증폭된 제 3 단편을 얻었다.In addition, in order to obtain the rear fragment of the pdxK gene, PCR reaction using the primers pdxK_HF2 and pdxK_HR2 in Table 1 using the genomic DNA of E. coli MG1655 as a template (total volume 50 µl, 95°C for 5 minutes 1 cycle, 95°C for 30 seconds. , 58°C for 30 seconds, 72°C for 30 seconds, 72°C for a total of 30 cycles, and 12°C for 10 minutes) to obtain an amplified third fragment of about 0.3 kb.

(4) 제 4 단편 제작(4) Production of the 4th short film

위 실험에서 증폭된 각각의 제 1 단편, 제 2 단편, 및 제 3 단편은 증폭시 프라이머의 상보적 서열로 인하여 하나의 단편으로 연결될 수 있다. 이 단편들을 프라이머를 제외하고 총 부피 50 ㎕, 95℃ 5분 1사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃ 2분 30초, 총 30사이클 이후 72℃에서 5분 및 12℃ 에서 10분 조건으로 PCR을 수행하여 약 2 kb 크기를 가지는 하나의 증폭된 제 4 단편을 얻었다. 제 4 단편은 pdxK 유전자 일부와 kanamycin 항생제 저항 유전자를 포함하고 있으며, 구체적으로 pdxK 유전자의 5' 방향의 일부 단편, kanamycin 항생제 저항 유전자, 그리고 pdxK 유전자의 3' 방향의 일부 단편으로 구성되어 있다. Each of the first fragment, the second fragment, and the third fragment amplified in the above experiment may be linked into one fragment due to the complementary sequence of the primer during amplification. These fragments were subjected to a total volume of 50 µl excluding primers, 95°C for 5 minutes, 1 cycle, 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 2 minutes and 30 seconds, and a total of 30 cycles at 72°C for 5 minutes and 12 PCR was performed under conditions of 10 minutes at °C to obtain one amplified fourth fragment having a size of about 2 kb. The fourth fragment includes a part of the pdxK gene and a kanamycin antibiotic resistance gene. Specifically, it is composed of a part of the pdxK gene in the 5'direction, a kanamycin antibiotic resistance gene, and a part of the pdxK gene in the 3'direction.

(5) 제 4 단편 주입 및 pdxK 결실(5) injection of the fourth fragment and deletion of pdxK

Red recombinase 플라스미드인 pKD46(GenBank 접근번호 AY048746)을 포함하고 있는 에스케리치아 콜라이(Escherichia coli) 균주인 KFCC11660P 와 KCCM10016 균주에 각각 획득한 제 4 단편을 전기천공법(electroporation)으로 주입하였다. 제 4 단편은 람다 레드 재조합 시스템(Lambda Red recombination)에 의해 pdxK와 상동재조합으로 교체됨으로써 pdxK가 결실된다.The fourth fragment obtained from each of the Escherichia coli strains KFCC11660P and KCCM10016 strains containing the red recombinase plasmid pKD46 (GenBank accession number AY048746) was injected by electroporation. The fourth fragment is replaced by a homologous recombination with pdxK by Lambda Red recombination, whereby pdxK is deleted.

이후 카나마이신(kanamycin) 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 pdxK 유전자의 결실 여부를 확인하였다. 반응은 표 1의 pdxK_CF 및 pdxK_CR 프라이머를 이용하여 총 부피 20 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 55℃에서 30초, 72℃에서 3분, 총 30 사이클 이후 72℃에서 5분 및 12℃에서 10분 조건으로 PCR을 수행하였다. 원래 pdxK 유전자가 있을 경우 약 1.6 kb(결실 전)가 생성되는 것과 비교하여 염색체 내에 단편이 삽입된 경우 길이가 더 증가한 약 2.2 kb(항생제 유전자 포함)가 생성됨을 확인하였다. Subsequently, a PCR reaction was performed on a cell line exhibiting kanamycin resistance to confirm the deletion of the pdxK gene. The reaction was performed using the pdxK_CF and pdxK_CR primers in Table 1 in a total volume of 20 µl, 95°C for 5 minutes and 1 cycle, 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 3 minutes, and a total of 30 cycles at 72°C. PCR was performed under conditions of 5 minutes and 10 minutes at 12°C. Compared with the original pdxK gene, about 1.6 kb (before deletion), when the fragment is inserted into the chromosome, about 2.2 kb (including the antibiotic gene) is generated.

(6) 항생제 저항 유전자 제거 및 선별(6) Antibiotic resistance gene removal and selection

pdxK 유전자 결실이 확인된 균주로부터 항생제 내성 표식 유전자를 제거하기 위해 pCP20 플라스미드를 도입하여 FLP 재조합을 유도하였다. 이후 항생제 첨가 혹은 무첨가 LB 평판배지에서 pdxK 결실 균주를 배양하여 항생제 내성 표식 유전자가 제거된 것을 확인하였다.In order to remove the antibiotic resistance marker gene from the strain in which the pdxK gene was deleted, the pCP20 plasmid was introduced to induce FLP recombination. After that, it was confirmed that the antibiotic resistance marker gene was removed by culturing the pdxK deletion strain in LB plate medium with or without antibiotics.

실시예 1-2: pdxK 유전자가 결실 균주의 방향족 아미노산 생산량 평가Example 1-2: Evaluation of the production of aromatic amino acids in strains in which the pdxK gene was deleted

상기 실시예 1-1의 방법으로 제작된 대장균 KFCC11660PΔpdxK 및 KFCC11660P을 하기 표 2의 트립토판 생산용 배지에서 배양하였다. E. coli KFCC11660PΔpdxK and KFCC11660P prepared by the method of Example 1-1 were cultured in the tryptophan production medium shown in Table 2 below.

또한 상기 실시예 1-1의 방법으로 제작된 대장균 KCCM10016ΔpdxK 및 KCCM10016을 하기 표 2의 페닐알라닌 생산용 배지에서 배양하였다. In addition, E. coli KCCM10016ΔpdxK and KCCM10016 prepared by the method of Example 1-1 were cultured in the medium for phenylalanine production of Table 2 below.

배양은 하기 표 2와 같은 조성의 트립토판 생산용 배지 또는 페닐 알라닌 생산용 배지가 각각 10 mL이 담긴 플라스크에 상기 KFCC11660PΔpdxK, KFCC11660P KCCM10016ΔpdxK, KCCM10016 균주를 각각 부피를 기준으로 1%씩 접종하여 37℃에서 200 rpm으로 70시간 동안 진탕 배양하고, 그로부터 수득한 L-아미노산의 농도를 비교하였다.The culture was performed by inoculating 1% of each of the KFCC11660PΔpdxK, KFCC11660P KCCM10016ΔpdxK, and KCCM10016 strains in a flask containing 10 mL of tryptophan production medium or phenylalanine production medium each having the composition shown in Table 2 below and inoculate 200 at 37°C. Shaking culture was performed at rpm for 70 hours, and the concentrations of L-amino acids obtained therefrom were compared.

Figure pat00002
Figure pat00002

실험 결과, pdxK 유전자를 불활성화 시킨 경우 배양시간이 길어졌으나 하기 표 3에 나타난 바와 같이 트립토판과 페닐알라닌의 생산량이 증가함을 확인하였다. 하기 표 3에 따르면 KFCC11660P 균주는 pdxK 유전자가 불활성화되면 L-트립토판의 생산량이 4% 이상 향상되었으며, KCCM10016 균주는 pdxK 유전자가 불활성화되면 L-페닐알라닌의 생산량이 5% 이상 향상됨을 확인하였다(하기 표 3의 A 참조). As a result of the experiment, when the pdxK gene was inactivated, the incubation time was lengthened, but it was confirmed that the production of tryptophan and phenylalanine increased as shown in Table 3 below. According to Table 3 below, it was confirmed that the KFCC11660P strain improved the production of L-tryptophan by more than 4% when the pdxK gene was inactivated, and the KCCM10016 strain showed that when the pdxK gene was inactivated, the production of L-phenylalanine was improved by more than 5% (below. See Table 3 A).

또한 배지에 Pyridoxal 5′-phosphate를 첨가하여 배양한 결과, 배양시간이 감소함과 동시에 방향족 아미노산 생산량이 증가하는 것을 확인하였다(하기 표 3의 B 참조).In addition, as a result of culturing by adding Pyridoxal 5′-phosphate to the medium, it was confirmed that the cultivation time decreased and the amount of aromatic amino acid production increased (see Table 3 B).

Figure pat00003
Figure pat00003

실시예 2-1: Example 2-1: pdxY 유전자가 결실된 변이주 제조Manufacture of mutant strain in which the pdxY gene is deleted

pdxK 대신 pdxY를 불활성화하는 것을 제외하고는 상기 실시예 1-1과 같은 방법으로 pdxY 유전자가 결실된 변이 균주를 제작하였다. A mutant strain in which the pdxY gene was deleted was prepared in the same manner as in Example 1-1, except that pdxY was inactivated instead of pdxK.

pdxY 유전자 및 항생제 유전자가 포함된 DNA 단편을 상동재조합시켜 pdxY 유전자를 결실시키고, 다시 재조합된 DNA 단편으로부터 항생제 내성 유전자를 제거하는 과정을 거침으로써 pdxY 유전자를 불활성화시켰다.The pdxY gene and the DNA fragment containing the antibiotic gene were homologously recombined to delete the pdxY gene, and the antibiotic resistance gene was removed from the recombined DNA fragment, thereby inactivating the pdxY gene.

pdxY 결실 균주 제작에는 하기 표 4의 프라이머를 이용하였다.In the preparation of the pdxY deletion strain, the primers shown in Table 4 were used.

프라이머primer 서열번호Sequence number 염기서열 (5’-3’)Base sequence (5’-3’) pdxYpdxY 1010

Figure pat00004
Figure pat00004
pdxY_HF1pdxY_HF1 1111 GTACCGATGGTTGAGATGGAGTACCGATGGTTGAGATGGA pdxY_HR1pdxY_HR1 1212 GTTCCCTGTATAAAAACCAGGGGGGTTCCCTGTATAAAAACCAGGGGG pdxY_PFpdxY_PF 1313 CTGGTTTTTATACAGGGAACgtgtaggctggagctgcttcCTGGTTTTTATACAGGGAACgtgtaggctggagctgcttc pdxY_PRpdxY_PR 1414 GTGGGCCGAAATGAGATATTctgtcaaacatgagaattaaGTGGGCCGAAATGAGATATTctgtcaaacatgagaattaa pdxY_HF2pdxY_HF2 1515 AATATCTCATTTCGGCCCACAACGAATATCTCATTTCGGCCCACAACG pdxY_HR2pdxY_HR2 1616 GGAAGAGTACAAACCGACAGGGAAGAGTACAAACCGACAG pdxY_CFpdxY_CF 1717 CAGGTGACTCGTCTGGTTCACAGGTGACTCGTCTGGTTCA pdxY_CRpdxY_CR 1818 ATGCAGTATCTTGCCGACAGATGCAGTATCTTGCCGACAG

실시예 2-2: pdxY 유전자가 결실 균주의 방향족 아미노산 생산량 평가Example 2-2: Evaluation of the amount of aromatic amino acid production of the strain in which the pdxY gene was deleted

상기 실시예 1-2 방법과 배지와 배양조건을 동일하게 배양하고, 방향족 아미노산 생산량을 평가하였다.The method of Example 1-2, culture medium and culture conditions were the same, and the production of aromatic amino acids was evaluated.

실험 결과, pdxY 유전자를 불활성화 시킨 경우 배양시간이 길어졌으나 하기 표 5에 나타난 바와 같이 트립토판과 페닐알라닌의 생산량이 증가함을 확인하였다. 하기 표 5에 따르면 KFCC11660P 균주는 pdxY 유전자가 불활성화되면 L-트립토판의 생산량이 약 10% 향상되었으며, KCCM10016 균주는 pdxY 유전자가 불활성화되면 L-페닐알라닌의 생산량이 약 10% 향상됨을 확인하였다(하기 표 5의 A 참조). As a result of the experiment, when the pdxY gene was inactivated, the incubation time was lengthened, but it was confirmed that the production of tryptophan and phenylalanine increased as shown in Table 5 below. According to Table 5 below, it was confirmed that the KFCC11660P strain improved the production of L-tryptophan by about 10% when the pdxY gene was inactivated, and the KCCM10016 strain was confirmed that the production of L-phenylalanine was improved by about 10% when the pdxY gene was inactivated. See Table 5 A).

또한 배지에 Pyridoxal 5′-phosphate를 첨가하여 배양한 결과, 배양시간이 감소함과 동시에 방향족 아미노산 생산량이 증가하는 것을 확인하였다(하기 표 5의 B 참조).In addition, as a result of culturing by adding Pyridoxal 5′-phosphate to the medium, it was confirmed that the cultivation time decreased and the amount of aromatic amino acid production increased (see Table 5 B).

Figure pat00005
Figure pat00005

실시예 3-1: pdxK와 pdxY 유전자가 동시에 결실된 균주 제조Example 3-1: Preparation of strains in which pdxK and pdxY genes are deleted at the same time

상기 실시예 1-1 및 실시예 2-1의 방법과 동일하게, pdxK 유전자를 불활성화 시킨 후, pdxY 유전자를 불활성화시킴으로써 pdxK 및 pdxY가 모두 결실된 변이 균주를 제작하였다. In the same manner as in Examples 1-1 and 2-1, the pdxK gene was inactivated, and then the pdxY gene was inactivated to prepare a mutant strain in which both pdxK and pdxY were deleted.

pdxK 및 pdxY 유전자를 항생제 유전자가 포함된 DNA 단편과 순차적으로 상동재조합시켜 pdxK 및 pdxY 유전자를 결실시키고, 다시 재조합된 DNA 단편으로부터 항생제 내성 유전자를 제거하는 과정을 거침으로써 pdxK 및 pdxY 유전자를 불활성화시켰다.The pdxK and pdxY genes were sequentially homologously recombined with the DNA fragment containing the antibiotic gene to delete the pdxK and pdxY genes, and the antibiotic resistance gene was removed from the recombined DNA fragment, thereby inactivating the pdxK and pdxY genes. .

pdxK 및 pdxY 결실 균주 제작에 사용된 프라이머는 앞선 실시예 1-1 및 실시예 2-1에 사용된 프라이머와 동일하다. The primers used to prepare pdxK and pdxY deletion strains were the same as those used in Examples 1-1 and 2-1.

실시예 3-2: pdxK와 pdxY 유전자가 동시 결실된 균주의 방향족 아미노산 생산량 평가Example 3-2: Evaluation of the production of aromatic amino acids in strains in which the pdxK and pdxY genes were simultaneously deleted

상기 실시예 1-2 및 실시예 2-2의 방법과 배지 및 배양조건을 동일하게 배양하고, 방향족 아미노산 생산량을 평가하였다.The methods of Examples 1-2 and 2-2, the medium and culture conditions were cultured in the same manner, and the production of aromatic amino acids was evaluated.

실험 결과, pdxK 및 pdxY 유전자를 불활성화 시킨 경우 배양시간이 지연되었으나 하기 표 6에 나타난 바와 같이 트립토판과 페닐알라닌의 생산량이 증가함을 확인하였다. 하기 표 6에 따르면 KFCC11660P 균주는 pdxK 및 pdxY 유전자가 동시에 불활성화되면 L-트립토판의 생산량이 약 13% 향상되었으며, KCCM10016 균주는 pdxK 및 pdxY 유전자가 동시에 불활성화되면 L-페닐알라닌의 생산량이 약 12% 향상됨을 확인하였다(하기 표 6의 A 참조). As a result of the experiment, it was confirmed that the incubation time was delayed when the pdxK and pdxY genes were inactivated, but the production of tryptophan and phenylalanine increased as shown in Table 6 below. According to Table 6 below, when the pdxK and pdxY genes are inactivated at the same time, the production of L-tryptophan is improved by about 13% in the KFCC11660P strain, and when the pdxK and pdxY genes are simultaneously inactivated, the KCCM10016 strain produces about 12% of L-phenylalanine It was confirmed that it is improved (see A in Table 6 below).

또한 배지에 Pyridoxal 5′-phosphate를 첨가하여 배양한 결과, 배양시간이 감소함과 동시에 방향족 아미노산 생산량이 더욱 증가하는 것을 확인하였다(하기 표 6의 B 참조).In addition, as a result of culturing by adding Pyridoxal 5′-phosphate to the medium, it was confirmed that the cultivation time decreased and the production of aromatic amino acids further increased (see Table 6 B).

Figure pat00006
Figure pat00006

<110> Daesang Corporation <120> Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation <130> PN190274 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 852 <212> DNA <213> Artificial Sequence <220> <223> pdxK "PDXK-MONOMER" (complement(2536386..2537237)) Escherichia coli K-12 substr. MG1655 <400> 1 atgagtagtt tgttgttgtt taacgataag agtagggcac tgcaggcgga tatcgtcgcc 60 gtgcagtcgc aggtggttta cggcagcgtg ggcaacagca ttgccgtgcc tgctatcaaa 120 cagaacggcc tgaatgtctt tgccgtgccg acggtattgc tgagcaatac gccgcattat 180 gacactttct acggtggtgc gattccggac gaatggttta gcggctattt gcgtgcgctt 240 caggagcgtg atgcgctgcg ccaacttcgt gctgtaacca cgggctatat gggaacggca 300 tcgcaaatca aaatccttgc cgagtggctg actgcgctac gcaaagacca tcctgaccta 360 ttgatcatgg tcgatccggt gattggcgat attgatagcg gaatttatgt caaacctgac 420 cttcccgaag cgtatcgaca atatttactg ccgctggcgc agggaattac ccccaatatc 480 tttgagttgg aaatcctgac cggtaaaaat tgccgcgatc tcgacagtgc cattgctgcc 540 gcaaaaagtc tgctttcaga cacattaaaa tgggtggtgg ttaccagcgc ctccggtaat 600 gaagaaaatc aggagatgca ggttgtggtg gtcactgccg acagcgtgaa tgtcatttcc 660 cattcacggg taaaaaccga cctgaaaggg actggcgacc tgttttgtgc tcagctcatc 720 agtggcttgc tgaaagggaa ggcgttaacc gatgcagtgc accgagcggg gttgcgcgta 780 ctggaagtga tgcgctacac ccagcagcat gagagcgatg aattgatttt gccgccgctg 840 gcggaagcat aa 852 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HF1 <400> 2 gttacgggta ttgccgagct 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HR1 <400> 3 ttaatttttt ctccttgccg 20 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxK_PF <400> 4 cggcaaggag aaaaaattaa gtgtaggctg gagctgcttc 40 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxK_PR <400> 5 cgcccatcgg cgccattttt ctgtcaaaca tgagaattaa 40 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HF2 <400> 6 aaaaatggcg ccgatgggcg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HR2 <400> 7 ggcgttgaac tgttcgtcca 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_CF <400> 8 gctcttaccg gggatcttca 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_CR <400> 9 gctatcaaac caacgggtaa 20 <210> 10 <211> 864 <212> DNA <213> Artificial Sequence <220> <223> pdxY "PDXY-MONOMER" (complement(1715026..1715889)) Escherichia coli K-12 substr. MG1655 <400> 10 atgatgaaaa atattctcgc tatccagtct cacgttgttt atggtcatgc gggtaacagt 60 gcggcagagt ttccgatgcg ccgcctgggc gcgaacgtct ggccgctgaa caccgttcaa 120 ttttctaatc acacccaata cggcaaatgg actggctgcg tgatgccgcc cagccattta 180 accgaaattg tgcaaggcat tgccgccatt gataaattac acacctgtga tgccgtatta 240 agtggctatc tgggatcggc ggagcagggt gaacatatcc tcggtatcgt ccgtcaggtg 300 aaagccgcga atccgcaggc gaaatatttt tgcgatccgg taatgggtca tccggaaaaa 360 ggctgtatcg ttgcaccggg tgtcgcagag tttcatgtgc ggcacggttt gcctgccagc 420 gatatcattg cgccaaatct ggttgagctg gaaatactct gtgagcatgc ggtaaataac 480 gtcgaagaag cggttctggc agcgcgcgaa ctcattgcgc aagggccaca aattgtgttg 540 gttaaacacc tggcgcgagc tggctacagc cgtgaccgtt ttgaaatgct gctggtcacc 600 gccgatgaag cctggcatat cagccgtccg ctggtggatt ttggtatgcg ccagccggta 660 ggtgttggtg atgtgacgag cggtttactg ctggtgaaac tgcttcaggg ggcaacgctg 720 caggaggcgc tggaacatgt gaccgctgca gtctacgaaa tcatggtgac caccaaagca 780 atgcaggaat atgagctgca agtggtggct gctcaggatc gtattgccaa accagaacat 840 tacttcagcg caacaaagct ctga 864 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HF1 <400> 11 gtaccgatgg ttgagatgga 20 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HR1 <400> 12 gttccctgta taaaaaccag gggg 24 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxY_PF <400> 13 ctggttttta tacagggaac gtgtaggctg gagctgcttc 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxY_PR <400> 14 gtgggccgaa atgagatatt ctgtcaaaca tgagaattaa 40 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HF2 <400> 15 aatatctcat ttcggcccac aacg 24 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HR2 <400> 16 ggaagagtac aaaccgacag 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_CF <400> 17 caggtgactc gtctggttca 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_CR <400> 18 atgcagtatc ttgccgacag 20 <110> Daesang Corporation <120> Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation <130> PN190274 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 852 <212> DNA <213> Artificial Sequence <220> <223> pdxK "PDXK-MONOMER" (complement(2536386..2537237)) Escherichia coli K-12 substr. MG1655 <400> 1 atgagtagtt tgttgttgtt taacgataag agtagggcac tgcaggcgga tatcgtcgcc 60 gtgcagtcgc aggtggttta cggcagcgtg ggcaacagca ttgccgtgcc tgctatcaaa 120 cagaacggcc tgaatgtctt tgccgtgccg acggtattgc tgagcaatac gccgcattat 180 gacactttct acggtggtgc gattccggac gaatggttta gcggctattt gcgtgcgctt 240 caggagcgtg atgcgctgcg ccaacttcgt gctgtaacca cgggctatat gggaacggca 300 tcgcaaatca aaatccttgc cgagtggctg actgcgctac gcaaagacca tcctgaccta 360 ttgatcatgg tcgatccggt gattggcgat attgatagcg gaatttatgt caaacctgac 420 cttcccgaag cgtatcgaca atatttactg ccgctggcgc agggaattac ccccaatatc 480 tttgagttgg aaatcctgac cggtaaaaat tgccgcgatc tcgacagtgc cattgctgcc 540 gcaaaaagtc tgctttcaga cacattaaaa tgggtggtgg ttaccagcgc ctccggtaat 600 gaagaaaatc aggagatgca ggttgtggtg gtcactgccg acagcgtgaa tgtcatttcc 660 cattcacggg taaaaaccga cctgaaaggg actggcgacc tgttttgtgc tcagctcatc 720 agtggcttgc tgaaagggaa ggcgttaacc gatgcagtgc accgagcggg gttgcgcgta 780 ctggaagtga tgcgctacac ccagcagcat gagagcgatg aattgatttt gccgccgctg 840 gcggaagcat aa 852 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HF1 <400> 2 gttacgggta ttgccgagct 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HR1 <400> 3 ttaatttttt ctccttgccg 20 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxK_PF <400> 4 cggcaaggag aaaaaattaa gtgtaggctg gagctgcttc 40 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxK_PR <400> 5 cgcccatcgg cgccattttt ctgtcaaaca tgagaattaa 40 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HF2 <400> 6 aaaaatggcg ccgatgggcg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_HR2 <400> 7 ggcgttgaac tgttcgtcca 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_CF <400> 8 gctcttaccg gggatcttca 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxK_CR <400> 9 gctatcaaac caacgggtaa 20 <210> 10 <211> 864 <212> DNA <213> Artificial Sequence <220> <223> pdxY "PDXY-MONOMER" (complement(1715026..1715889)) Escherichia coli K-12 substr. MG1655 <400> 10 atgatgaaaa atattctcgc tatccagtct cacgttgttt atggtcatgc gggtaacagt 60 gcggcagagt ttccgatgcg ccgcctgggc gcgaacgtct ggccgctgaa caccgttcaa 120 ttttctaatc acacccaata cggcaaatgg actggctgcg tgatgccgcc cagccattta 180 accgaaattg tgcaaggcat tgccgccatt gataaattac acacctgtga tgccgtatta 240 agtggctatc tgggatcggc ggagcagggt gaacatatcc tcggtatcgt ccgtcaggtg 300 aaagccgcga atccgcaggc gaaatatttt tgcgatccgg taatgggtca tccggaaaaa 360 ggctgtatcg ttgcaccggg tgtcgcagag tttcatgtgc ggcacggttt gcctgccagc 420 gatatcattg cgccaaatct ggttgagctg gaaatactct gtgagcatgc ggtaaataac 480 gtcgaagaag cggttctggc agcgcgcgaa ctcattgcgc aagggccaca aattgtgttg 540 gttaaacacc tggcgcgagc tggctacagc cgtgaccgtt ttgaaatgct gctggtcacc 600 gccgatgaag cctggcatat cagccgtccg ctggtggatt ttggtatgcg ccagccggta 660 ggtgttggtg atgtgacgag cggtttactg ctggtgaaac tgcttcaggg ggcaacgctg 720 caggaggcgc tggaacatgt gaccgctgca gtctacgaaa tcatggtgac caccaaagca 780 atgcaggaat atgagctgca agtggtggct gctcaggatc gtattgccaa accagaacat 840 tacttcagcg caacaaagct ctga 864 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HF1 <400> 11 gtaccgatgg ttgagatgga 20 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HR1 <400> 12 gttccctgta taaaaaccag gggg 24 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxY_PF <400> 13 ctggttttta tacagggaac gtgtaggctg gagctgcttc 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pdxY_PR <400> 14 gtgggccgaa atgagatatt ctgtcaaaca tgagaattaa 40 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HF2 <400> 15 aatatctcat ttcggcccac aacg 24 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_HR2 <400> 16 ggaagagtac aaaccgacag 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_CF <400> 17 caggtgactc gtctggttca 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pdxY_CR <400> 18 atgcagtatc ttgccgacag 20

Claims (10)

pdxK(pyridoxal kinase K) 또는 pdxY(pyridoxal kinase Y) 유전자에 의해 발현되는 피리독살 키나아제(pyridoxal kinase)의 활성이 약화 또는 불활성화됨으로써 방향족 아미노산 생산능이 향상된 변이 균주.A mutant strain with improved aromatic amino acid production ability by weakening or inactivating the activity of pyridoxal kinase expressed by pdxK (pyridoxal kinase K) or pdxY (pyridoxal kinase Y) gene. 제 1 항에 있어서,
상기 pdxK 유전자는 서열번호 1의 염기서열로 이루어진 것이고,
상기 pdxY 유전자는 서열번호 10의 염기서열로 이루어진 것인,
변이 균주.
The method of claim 1,
The pdxK gene is composed of the nucleotide sequence of SEQ ID NO: 1,
The pdxY gene is composed of the nucleotide sequence of SEQ ID NO: 10,
Mutant strain.
제 1 항에 있어서,
상기 변이 균주는 pdxK 및 pdxY 유전자에 의해 발현되는 피리독살 키나아제의 활성이 모두 약화 또는 불활성화된 것인,
변이 균주.
The method of claim 1,
The mutant strain is that all of the activities of the pyridoxal kinase expressed by the pdxK and pdxY genes are weakened or inactivated,
Mutant strain.
제 1 항에 있어서,
상기 방향족 아미노산은 L-트립토판 및 L-페닐알라닌인,
변이 균주.
The method of claim 1,
The aromatic amino acids are L-tryptophan and L-phenylalanine,
Mutant strain.
제 1항에 있어서,
상기 피리독살 키나아제의 활성은 pdxK 유전자 및 pdxY 유전자 중에서 하나 또는 모두의 서열의 전부 또는 일부가 삽입, 치환, 또는 결실되어 이루어진 것인,
변이 균주.
The method of claim 1,
The activity of the pyridoxal kinase is that all or part of the sequence of one or both of the pdxK gene and the pdxY gene is inserted, substituted, or deleted.
Mutant strain.
제 1항에 있어서,
상기 변이 균주는 에스케리키아(Escherichia)속 균주인,
변이 균주.
The method of claim 1,
The mutant strain is a strain of the genus Escherichia,
Mutant strain.
제 6 항에 있어서,
상기 에스케리키아속 균주는 대장균(Escherichia coli)인,
변이 균주.
The method of claim 6,
The Escherichia strain is Escherichia coli,
Mutant strain.
제 1 항의 변이 균주를 배지에서 배양하는 단계; 및
상기 배양된 변이 균주 및 배양 배지에서 방향족 아미노산을 회수하는 단계를 포함하는,
방향족 아미노산의 제조 방법.
Culturing the mutant strain of claim 1 in a medium; And
Comprising the step of recovering the aromatic amino acid from the cultured mutant strain and the culture medium,
A method for producing aromatic amino acids.
제 8 항에 있어서,
상기 배지는 피리독살 5'-인산염(Pyridoxal 5'-phosphate)를 첨가한 배지인,
방향족 아미노산의 제조 방법.
The method of claim 8,
The medium is a medium to which pyridoxal 5'-phosphate is added,
A method for producing aromatic amino acids.
제 8 항에 있어서,
상기 방향족 아미노산은 L-트립토판 및 L-페닐알라닌인,
방향족 아미노산의 제조 방법.

The method of claim 8,
The aromatic amino acids are L-tryptophan and L-phenylalanine,
A method for producing aromatic amino acids.

KR1020190138235A 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation KR102269642B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190138235A KR102269642B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190138235A KR102269642B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation

Publications (2)

Publication Number Publication Date
KR20210052111A true KR20210052111A (en) 2021-05-10
KR102269642B1 KR102269642B1 (en) 2021-06-25

Family

ID=75917974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190138235A KR102269642B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation

Country Status (1)

Country Link
KR (1) KR102269642B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128568A1 (en) * 2021-12-31 2023-07-06 씨제이제일제당 (주) O-phosphoserine-producing microorganism, and method for producing o-phosphoserine or l-cysteine by using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134996A (en) * 2014-05-23 2015-12-02 씨제이제일제당 (주) Microorganisms with enhanced intracellular ATP level and method for production of L-amino acids using the same
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134996A (en) * 2014-05-23 2015-12-02 씨제이제일제당 (주) Microorganisms with enhanced intracellular ATP level and method for production of L-amino acids using the same
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128568A1 (en) * 2021-12-31 2023-07-06 씨제이제일제당 (주) O-phosphoserine-producing microorganism, and method for producing o-phosphoserine or l-cysteine by using same

Also Published As

Publication number Publication date
KR102269642B1 (en) 2021-06-25

Similar Documents

Publication Publication Date Title
JP6860565B2 (en) Corynebacterium microorganisms capable of producing L-lysine and L-lysine production methods using them
KR102269634B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by ansB Gene Inactivation
KR101830001B1 (en) Strain overexpressing l-tryptophan by improving prpp synthesis pathway and process for producing l-tryptophan using the same
KR102269642B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation
KR102283626B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by glsB Gene Inactivation
KR20180111680A (en) Method of Preparing Corynebacterium Variant Based on CRISPR/Cas System, Recombinase, and ssODN
KR101751967B1 (en) Mutant Strain with improved isoleucine production having reduced by-product
CN114630896B (en) Strains with improved aromatic amino acid production due to YEEO gene inactivation
KR102251947B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation
KR102251948B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by mdfA Gene Inactivation and yicL Gene Introduction
KR102283628B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection
KR101887821B1 (en) Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme
US20240043885A1 (en) Strain with improved aromatic amino acid production capacity by ansb gene inactivation
KR102668767B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR101233666B1 (en) Production of Isoleucine Using Mutant Bacteria
KR101821401B1 (en) Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme
CN116783290A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
CN116745412A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
CN116802283A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
CN116829705A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
KR20130070302A (en) The method of improving production of valine
KR20240000169A (en) L-Histidine Export Protein and Method of Producing L-Histidine Using the Same
CN116724113A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
KR20090092438A (en) L-tryptophan producing microorganism and the method for producing L-tryptophan using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant