KR102668767B1 - Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same - Google Patents

Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same Download PDF

Info

Publication number
KR102668767B1
KR102668767B1 KR1020210056549A KR20210056549A KR102668767B1 KR 102668767 B1 KR102668767 B1 KR 102668767B1 KR 1020210056549 A KR1020210056549 A KR 1020210056549A KR 20210056549 A KR20210056549 A KR 20210056549A KR 102668767 B1 KR102668767 B1 KR 102668767B1
Authority
KR
South Korea
Prior art keywords
lysine
strain
corynebacterium glutamicum
corynebacterium
mutant strain
Prior art date
Application number
KR1020210056549A
Other languages
Korean (ko)
Other versions
KR20220149219A (en
Inventor
문민우
미 유
최민진
박석현
박준현
Original Assignee
씨제이제일제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 주식회사 filed Critical 씨제이제일제당 주식회사
Priority to KR1020210056549A priority Critical patent/KR102668767B1/en
Priority to PCT/KR2021/005804 priority patent/WO2022231049A1/en
Priority to CN202110721189.3A priority patent/CN115261246A/en
Publication of KR20220149219A publication Critical patent/KR20220149219A/en
Application granted granted Critical
Publication of KR102668767B1 publication Critical patent/KR102668767B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01011Aspartate-semialdehyde dehydrogenase (1.2.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 L-라이신의 생산 방법에 관한 것으로, 상기 변이주는 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자 (lysC-asd 오페론)의 발현을 증가 또는 강화시킴으로써 모균주에 비해 L-라이신의 생산 수율을 향상시킬 수 있다.The present invention relates to a Corynebacterium glutamicum mutant strain with improved L-lysine production ability and a method for producing L-lysine using the same, wherein the mutant strain encodes aspartate kinase and aspartate semialdehyde dehydrogenase. By increasing or enhancing the expression of the gene (lysC-asd operon), the production yield of L-lysine can be improved compared to the parent strain.

Description

L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 L-라이신의 생산 방법{Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same}Corynebacterium glutamicum mutant with enhanced L-lysine production ability and method for producing L-lysine using the same {Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same}

본 발명은 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 L-라이신의 생산 방법에 관한 것이다.The present invention relates to a Corynebacterium glutamicum mutant strain with improved L-lysine production ability and a method for producing L-lysine using the same.

L-라이신은 사람이나 동물 체내에서 합성되지 않는 필수아미노산으로서 외부에서 공급되어야 하며, 일반적으로 세균이나 효모와 같은 미생물을 이용한 발효에 의해 생산된다. L-라이신 생산은 자연상태에서 수득된 야생형 균주나 이의 L-라이신 생산능이 향상되도록 변형된 변이주를 이용할 수 있다. 최근에는 L-라이신의 생산 효율을 개선시키기 위해 L-아미노산 및 기타 유용물질 생산에 많이 이용되는 대장균, 코리네박테리움 등의 미생물을 대상으로 유전자 재조합 기술을 적용하여 우수한 L-라이신 생산능을 갖는 다양한 재조합 균주 또는 변이주 및 이를 이용한 L-라이신 생산 방법이 개발되고 있다. L-lysine is an essential amino acid that is not synthesized in the human or animal body and must be supplied from outside, and is generally produced through fermentation using microorganisms such as bacteria or yeast. For L-lysine production, a wild-type strain obtained in nature or a mutant strain modified to improve its L-lysine production ability can be used. Recently, in order to improve the production efficiency of L-lysine, genetic recombination technology has been applied to microorganisms such as Escherichia coli and Corynebacterium, which are widely used in the production of L-amino acids and other useful substances, to produce excellent L-lysine production ability. Various recombinant strains or mutant strains and methods for producing L-lysine using them are being developed.

한국등록특허 제10-0838038호 및 제10-2139806호에 따르면, L-라이신 생산과 관련된 효소를 포함한 단백질을 암호화하는 유전자의 염기서열 또는 아미노산 서열을 변경하여 그 유전자의 발현을 증가시키거나 불필요한 유전자를 제거함으로써 L-라이신 생산능을 향상시킬 수 있다. 또한, 한국공개특허 제10-2020-0026881호에는 L-라이신 생산에 관여하는 효소를 암호화하는 유전자의 발현을 증가시키기 위하여 유전자의 기존 프로모터를 강한 활성을 가지는 프로모터로 변경하는 방법을 개시하고 있다. According to Korean Patent Nos. 10-0838038 and 10-2139806, the base sequence or amino acid sequence of a gene encoding a protein including an enzyme related to L-lysine production is changed to increase the expression of that gene or to increase the expression of an unnecessary gene. L-lysine production ability can be improved by removing . In addition, Korean Patent Publication No. 10-2020-0026881 discloses a method of changing the existing promoter of a gene to a promoter with strong activity in order to increase the expression of a gene encoding an enzyme involved in L-lysine production.

이와 같이 L-라이신 생산능을 증가시키는 다양한 방법이 개발되고 있으나, L-라이신 생산에 직간접적으로 연관된 효소, 전사인자, 수송 단백질 등 단백질의 종류가 수십여 종에 이르기 때문에 이러한 단백질의 활성 변화에 따른 L-라이신 생산능 증가 여부에 관해 여전히 많은 연구가 필요한 실정이다. As such, various methods to increase L-lysine production capacity are being developed, but since there are dozens of types of proteins such as enzymes, transcription factors, and transport proteins directly or indirectly related to L-lysine production, changes in the activity of these proteins can be affected. Much research is still needed to determine whether L-lysine production capacity increases.

한국등록특허 제10-0838038호Korean Patent No. 10-0838038 한국등록특허 제10-2139806호Korean Patent No. 10-2139806 한국공개특허 제10-2020-0026881호Korean Patent Publication No. 10-2020-0026881

본 발명은 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 변이주를 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a Corynebacterium glutamicum mutant strain with improved L-lysine production ability.

또한, 본 발명은 상기 변이주를 이용한 L-라이신의 생산 방법을 제공하는 것을 목적으로 한다.Additionally, the present invention aims to provide a method for producing L-lysine using the mutant strain.

본 발명자들은 코리네박테리움 글루타미쿰 균주를 이용하여 L-라이신 생산능이 향상된 새로운 변이주를 개발하기 위해 연구한 결과, L-라이신 생합성 경로에 관여하는 주요 효소인 아스파르테이트 키나아제를 암호화하는 lysC 유전자 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 asd 유전자를 포함하는 lysC-asd 오페론의 프로모터 내 특정 위치의 염기서열을 치환한 경우 L-라이신 생산량이 증가하는 것을 확인함으로써 본 발명을 완성하였다.The present inventors conducted research to develop a new mutant strain with improved L-lysine production ability using Corynebacterium glutamicum strain, and as a result, the lysC gene encoding aspartate kinase, a key enzyme involved in the L-lysine biosynthetic pathway, was found. The present invention was completed by confirming that L-lysine production increased when the base sequence at a specific position in the promoter of the lysC-asd operon containing the asd gene encoding aspartate semialdehyde dehydrogenase was replaced.

본 발명의 일 양상은 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 활성이 강화되어 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주를 제공한다.One aspect of the present invention provides a Corynebacterium glutamicum mutant strain with improved L-lysine production ability by enhancing the activities of aspartate kinase and aspartate semialdehyde dehydrogenase.

본 발명에서 사용된 “아스파르테이트 키나아제(aspartate kinase)”는 L-라이신 생합성 경로의 첫 번째 단계에 관여하는 효소로서 아스파르테이트의 인산화(phosphorylation)를 유도하여 아스파르틸 포스페이트(aspartyl phosphate)를 생성하는 반응을 촉매하는 효소를 의미한다. 또한, 본 발명에서 사용된 “아스파르테이트 세미알데히드 디히드로게나제(aspartate semialdehyde dehydrogenase)"는 L-라이신 생합성 경로의 두 번째 단계에 관여하는 효소로서 상기 아스파르틸 포스페이트(aspartyl phosphate)로부터 아스파르테이트 세미알데히드(aspartate semialdehyde)를 생성하는 반응을 촉매하는 효소를 의미한다. 이러한 아스파르테이트 키나아제를 암호화하는 lysC 유전자 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 asd 유전자는 하나의 프로모터에 의해 발현이 조절되는 lysC-asd 오페론(operon)을 형성한다.“Aspartate kinase” used in the present invention is an enzyme involved in the first step of the L-lysine biosynthesis pathway and induces phosphorylation of aspartate to form aspartyl phosphate. Refers to an enzyme that catalyzes the reaction that produces it. In addition, “aspartate semialdehyde dehydrogenase” used in the present invention is an enzyme involved in the second step of the L-lysine biosynthesis pathway, which converts aspartate from aspartyl phosphate. It refers to an enzyme that catalyzes the reaction that produces aspartate semialdehyde. The lysC gene encoding aspartate kinase and the asd gene encoding aspartate semialdehyde dehydrogenase are driven by one promoter. It forms the lysC-asd operon whose expression is regulated.

본 발명의 일 구체예에 따르면, 상기 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제는 코리네박테리움(Corynebacterium) 속 균주에서 유래된 것일 수 있다. 구체적으로, 상기 코리네박테리움 속 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데저티(Corynebacterium deserti), 코리네박테리움 칼루나에(Corynebacterium callunae), 코리네박테리움 수라나래에(Corynebacterium suranareeae), 코리네박테리움 루브리칸티스(Corynebacterium lubricantis), 코리네박테리움 두사넨세(Corynebacterium doosanense), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 우테레키(Corynebacterium uterequi), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 파캔세(Corynebacterium pacaense), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 휴미레듀센스(Corynebacterium humireducens), 코리네박테리움 마리눔(Corynebacterium marinum), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스페니스코룸(Corynebacterium spheniscorum), 코리네박테리움 프레이부르겐세(Corynebacterium freiburgense), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 카니스(Corynebacterium canis), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 레날레(Corynebacterium renale), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 카스피움(Corynebacterium caspium), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris), 코리네박테리움 슈도펠라지(Corynebacaterium pseudopelargi) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있으며, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the aspartate kinase and aspartate semialdehyde dehydrogenase may be derived from a strain of the genus Corynebacterium . Specifically, the Corynebacterium genus strains include Corynebacterium glutamicum , Corynebacterium crudilactis , Corynebacterium deserti, and Corynebacterium. Corynebacterium callunae , Corynebacterium suranareeae , Corynebacterium lubricantis , Corynebacterium doosanense , Corynebacterium iphish Corynebacterium efficiens , Corynebacterium uterequi , Corynebacterium stationis , Corynebacterium pacaense , Corynebacterium singulare ), Corynebacterium humireducens , Corynebacterium marinum , Corynebacterium halotolerans , Corynebacterium spheniscorum , Corynebacterium freiburgense, Corynebacterium striatum , Corynebacterium canis , Corynebacterium ammoniagenes , Corynebacterium Corynebacterium renale , Corynebacterium pollutisoli , Corynebacterium imitans, Corynebacterium caspium , Corynebacterium testudinoris ( It may be Corynebacterium testudinoris ), Corynebacaterium pseudopelargi , or Corynebacterium flavescens, but is not limited thereto.

본 발명에서 사용된 “활성이 강화”는 목적하는 효소, 전사 인자, 수송 단백질 등의 단백질을 암호화하는 유전자의 발현이 새로 도입되거나 증대되어 야생형 균주 또는 변형 전의 균주에 비하여 발현량이 증가되는 것을 의미한다. 이러한 활성의 강화는 유전자를 암호화하는 뉴클레오티드 치환, 삽입, 결실 또는 이들의 조합을 통하여 단백질 자체의 활성이 본래 미생물이 가지고 있는 단백질의 활성에 비해 증가한 경우와, 이를 암호화하는 유전자의 발현 증가 또는 번역 증가 등으로 세포 내에서 전체적인 효소 활성 정도가 야생형 균주 또는 변형 전의 균주에 비하여 높은 경우, 이들의 조합 역시 포함한다.As used in the present invention, “enhanced activity” means that the expression of genes encoding proteins such as desired enzymes, transcription factors, and transport proteins is newly introduced or increased, and the expression level is increased compared to the wild-type strain or the strain before modification. . Enhancement of this activity occurs when the activity of the protein itself is increased compared to the activity of the protein originally possessed by the microorganism through nucleotide substitution, insertion, deletion, or a combination of these encoding the gene, and increased expression or translation of the gene encoding it. If the overall level of enzyme activity within the cell is higher than that of the wild-type strain or the strain before modification, a combination thereof is also included.

본 발명의 일 구체예에 따르면, 상기 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 활성 강화는 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 오페론의 프로모터에 위치 특이적 변이를 유발하는 것일 수 있다.According to one embodiment of the present invention, the enhancement of the activity of the aspartate kinase and aspartate semialdehyde dehydrogenase is achieved through an operon comprising genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase. It may cause site-specific mutations in the promoter.

본 발명의 일 구체예에 따르면, 상기 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 오페론의 프로모터는 서열번호 1의 염기서열로 표시되는 것일 수 있다.According to one embodiment of the present invention, the promoter of the operon containing genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase may be represented by the base sequence of SEQ ID NO: 1.

본 발명에서 사용된 “프로모터(promoter)”는 목적하는 유전자의 mRNA 전사를 개시하는 RNA 중합효소(polymerase)에 대한 결합부위를 포함하여 유전자의 전사를 조절하는 DNA의 특정 부위를 의미하며, 일반적으로 전사 개시점을 기준으로 상위(upstream)에 위치한다. 원핵생물에서의 프로모터는 RNA 중합효소가 결합하는 전사 개시점 주변의 부위로 정의되며, 일반적으로 전사 개시점으로부터 앞쪽으로 -10 영역과 -35 영역의 염기쌍이 떨어져 있는 두 개의 짧은 염기서열로 구성된다. 본 발명에서의 프로모터 변이는 야생형 프로모터에 비해 높은 활성을 가지도록 개량하는 것으로, 전사 개시점의 상위에 위치한 프로모터 영역 안에서 변이를 유발함으로써 하위(downstream)에 위치한 유전자의 발현을 증가시킬 수 있다.As used in the present invention, “promoter” refers to a specific region of DNA that regulates transcription of a gene, including a binding site for RNA polymerase that initiates mRNA transcription of the gene of interest, and generally refers to a specific region of DNA that regulates transcription of a gene. It is located upstream from the transcription start point. Promoters in prokaryotes are defined as the region around the transcription start point where RNA polymerase binds, and are generally composed of two short base sequences separated by -10 and -35 base pairs ahead of the transcription start point. . The promoter mutation in the present invention is improved to have higher activity than the wild-type promoter, and can increase the expression of genes located downstream by causing mutations in the promoter region located upstream of the transcription start point.

본 발명의 일 구체예에 따르면, 상기 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 활성 강화는 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 오페론의 프로모터 서열 내 전사 개시점으로부터 앞쪽으로 -60 내지 -30 영역 중 하나 이상의 염기가 치환된 것일 수 있다.According to one embodiment of the present invention, the enhancement of the activity of the aspartate kinase and aspartate semialdehyde dehydrogenase is achieved through an operon comprising genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase. One or more bases in the -60 to -30 region forward from the transcription start point in the promoter sequence may be substituted.

보다 구체적으로, 본 발명에서의 프로모터 변이는 -60 내지 -30 영역 중 1개 이상의 염기, 바람직하게는 -55 내지 -35 영역, -50 내지 -30 영역, -47 내지 -45 영역, -47 또는 -45 영역에서 1개, 2개, 3개, 4개, 또는 5개의 염기가 연속적으로 또는 비연속적으로 치환된 것일 수 있다. More specifically, the promoter mutation in the present invention is one or more bases in the -60 to -30 region, preferably the -55 to -35 region, -50 to -30 region, -47 to -45 region, -47 or One, two, three, four, or five bases in the -45 region may be substituted consecutively or discontinuously.

본 발명의 일 실시예에 따르면, 코리네박테리움 글루타미쿰 균주의 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제 유전자를 포함하는 lysC-asd 오페론의 프로모터 서열에서 -47 ~ -45 영역의 염기서열을 gag에서 taa로 치환하여 lysC-asd 오페론의 새로운 프로모터 서열을 가지는 코리네박테리움 글루타미쿰 변이주를 획득하였다. 이러한 코리네박테리움 글루타미쿰 변이주는 서열번호 2의 염기서열로 표시되는 lysC-asd 오페론의 변이된 프로모터를 포함하는 것일 수 있다.According to one embodiment of the present invention, the -47 to -45 region in the promoter sequence of the lysC-asd operon containing the aspartate kinase and aspartate semialdehyde dehydrogenase genes of the Corynebacterium glutamicum strain. By substituting the base sequence from gag to taa, a Corynebacterium glutamicum mutant strain with a new promoter sequence of the lysC-asd operon was obtained. This Corynebacterium glutamicum mutant may contain a mutated promoter of the lysC-asd operon represented by the base sequence of SEQ ID NO: 2.

본 발명에서 사용된 “생산능이 향상된”은 모균주에 비해 L-라이신의 생산성이 증가된 것을 의미한다. 상기 모균주는 변이의 대상이 되는 야생형 또는 변이주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에 있어서, 모균주는 야생형 코리네박테리움 글루타미쿰 균주 또는 야생형으로부터 변이된 균주일 수 있다.“Improved production capacity” as used in the present invention means that the productivity of L-lysine is increased compared to the parent strain. The parent strain refers to a wild type or mutant strain that is subject to mutation, and includes a subject that is directly subject to mutation or transformed with a recombinant vector, etc. In the present invention, the parent strain may be a wild-type Corynebacterium glutamicum strain or a strain mutated from the wild type.

본 발명의 일 구체예에 따르면, 상기 모균주는 라이신 생산에 관여하는 유전자 (예컨대, lysC, zwf 및 hom 유전자)의 서열에 변이가 유발된 변이주로서 한국미생물보존센터(Korean Culture Center of Microorganisms)에 2021년 4월 2일자 수탁번호 KCCM12969P로 기탁된 코리네박테리움 글루타미쿰 균주 (이하 '코리네박테리움 글루타미쿰 DS1 균주'라 함)인 것일 수 있다.According to one embodiment of the present invention, the parent strain is a mutant strain causing mutations in the sequences of genes involved in lysine production (e.g., lysC, zwf, and hom genes), and is provided to the Korean Culture Center of Microorganisms. It may be a Corynebacterium glutamicum strain (hereinafter referred to as 'Corynebacterium glutamicum DS1 strain') deposited with accession number KCCM12969P on April 2, 2021.

이와 같이 본 발명의 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주는 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 lysC-asd 오페론의 변이된 프로모터 서열을 포함하는 것일 수 있다.As such, the Corynebacterium glutamicum mutant strain with improved L-lysine production ability of the present invention has a mutated promoter sequence of the lysC-asd operon containing genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase. It may include.

본 발명의 일 구체예에 따르면, 상기 변이주는 서열번호 2로 표시되는 염기서열을 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 유전자를 포함하는 오페론의 프로모터 서열로 포함하는 것일 수 있다.According to one embodiment of the present invention, the mutant strain may contain the base sequence represented by SEQ ID NO: 2 as the promoter sequence of an operon containing genes for aspartate kinase and aspartate semialdehyde dehydrogenase. .

본 발명의 일 실시예에 따르면, 상기 변이주는 lysC-asd 오페론의 프로모터 서열 변이를 포함함으로써 모균주에 비해 증가된 L-라이신 생산능을 나타내며, 특히 모균주에 비해 L-라이신 생산량이 3% 이상, 구체적으로는 3 내지 40%, 더욱 구체적으로는 5 내지 30% 증가되어 균주 배양액 1 ℓ 당 65 ~ 80 g의 L-라이신을 생산할 수 있으며, 바람직하게는 68 ~ 75 g의 L-라이신을 생산할 수 있다. 또한, 상기 변이주는 프로모터의 변이 위치가 상이한 종래 lysC-asd 오페론의 프로모터 변이주에 비해 L-라이신 생산량이 4.6% 이상 증가되어, 고수율로 L-라이신을 생산할 수 있다.According to one embodiment of the present invention, the mutant strain exhibits increased L-lysine production ability compared to the parent strain by including a promoter sequence mutation of the lysC-asd operon, and in particular, L-lysine production is 3% or more compared to the parent strain. , specifically 3 to 40%, more specifically 5 to 30%, so that 65 to 80 g of L-lysine can be produced per 1 liter of strain culture, and preferably 68 to 75 g of L-lysine can be produced. You can. In addition, the mutant strain increases L-lysine production by more than 4.6% compared to the promoter mutant strain of the conventional lysC-asd operon in which the mutation position of the promoter is different, and can produce L-lysine in high yield.

본 발명의 일 구체예에 따른 코리네박테리움 글루타미쿰 변이주는 모균주에 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 유전자를 포함하는 오페론의 프로모터 서열이 일부 치환된 변이체를 포함하는 재조합 벡터를 통해 구현될 수 있다.Corynebacterium glutamicum mutant strain according to one embodiment of the present invention includes a mutant in which the promoter sequence of an operon containing genes for aspartate kinase and aspartate semialdehyde dehydrogenase in the parent strain is partially substituted. It can be implemented through a recombinant vector.

본 발명에서 사용된 “일부”는 염기서열 또는 폴리뉴클레오티드 서열의 전부가 아닌 것을 의미하며, 1 내지 300개, 바람직하게는 1 내지 100개, 보다 바람직하게는 1 내지 50개일 수 있으나, 이에 한정되는 것은 아니다.“Part” as used in the present invention means not all of the base sequence or polynucleotide sequence, and may be 1 to 300, preferably 1 to 100, more preferably 1 to 50, but is limited thereto. That is not the case.

본 발명에서 사용된 “변이체”는 L-라이신의 생합성에 관여하는 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 유전자를 포함하는 오페론의 프로모터 서열 내 -60 내지 -30 영역 중 하나 이상의 염기가 치환된 프로모터 변이체를 의미한다.“Variant” used in the present invention refers to one or more of the -60 to -30 regions in the promoter sequence of the operon containing the genes for aspartate kinase and aspartate semialdehyde dehydrogenase, which are involved in the biosynthesis of L-lysine. It refers to a promoter variant in which a base has been substituted.

본 발명의 일 구체예에 따르면, 상기 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 유전자를 포함하는 오페론의 프로모터 서열 내 -47 ~ -45 영역의 염기서열이 taa로 치환된 변이체는 서열번호 2의 염기서열 가지는 것일 수 있다.According to one embodiment of the present invention, a variant in which the nucleotide sequence of the -47 to -45 region in the promoter sequence of the operon containing the genes for aspartate kinase and aspartate semialdehyde dehydrogenase is substituted with taa is It may have the base sequence of SEQ ID NO: 2.

본 발명에서 사용된 “벡터”는 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서 유전자 삽입물이 발현되도록 작동 가능하게 연결된(operably linked) 필수적인 조절요소를 포함하는 유전자 제조물을 의미한다. 여기서, “작동 가능하게 연결된”은 발현이 필요한 유전자와 이의 조절 서열이 서로 기능적으로 결합되어 유전자 발현을 가능케 하는 방식으로 연결된 것을 의미하고, “조절요소”는 전사를 수행하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 암호화하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 이러한 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터, 바이러스 벡터 등을 포함하나, 이에 한정되는 것은 아니다.As used in the present invention, “vector” refers to an expression vector capable of expressing a target protein in a suitable host cell, and refers to a gene product containing essential regulatory elements operably linked to express the gene insert. Here, “operably linked” means that a gene requiring expression and its regulatory sequence are functionally linked to each other to enable gene expression, and “regulatory elements” are a promoter to perform transcription and regulate transcription. optional operator sequences for: sequences encoding suitable mRNA ribosome binding sites, and sequences regulating termination of transcription and translation. Such vectors include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, etc.

본 발명에서 사용된 “재조합 벡터”는 적합한 숙주세포 내로 형질전환된 후, 숙주세포의 게놈과 무관하게 복제 가능하거나 게놈 그 자체에 봉합될 수 있다. 이때, 상기 "적합한 숙주세포"는 벡터가 복제 가능한 것으로서 복제가 개시되는 특정 염기서열인 복제 원점을 포함할 수 있다. The “recombinant vector” used in the present invention can be transformed into a suitable host cell and then replicate independently of the host cell's genome or can be incorporated into the genome itself. At this time, the “suitable host cell” is a vector capable of replication and may include an origin of replication, which is a specific base sequence at which replication is initiated.

상기 형질전환은 숙주세포에 따라 적합한 벡터 도입 기술이 선택되어 목적하는 유전자를 숙주세포 내에서 발현시킬 수 있다. 예를 들면, 벡터 도입은 전기천공법(electroporation), 열 충격(heat-shock), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 초산 리튬-DMSO법, 또는 이들의 조합에 의해 수행될 수 있다. 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다.For the transformation, an appropriate vector introduction technology is selected depending on the host cell to express the desired gene in the host cell. For example, vector introduction can be performed using electroporation, heat-shock, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE- It may be performed by the dextran method, the cationic liposome method, the lithium acetate-DMSO method, or a combination thereof. As long as the transformed gene can be expressed within the host cell, it can be included without limitation, whether it is inserted into the chromosome of the host cell or located outside the chromosome.

상기 숙주세포는 생체내 또는 시험관내에서 본 발명의 재조합 벡터 또는 폴리뉴클레오티드로 형질감염, 형질전환, 또는 감염된 세포를 포함한다. 본 발명의 재조합 벡터를 포함하는 숙주 세포는 재조합 숙주 세포, 재조합 세포 또는 재조합 미생물이다.The host cells include cells transfected, transformed, or infected with the recombinant vector or polynucleotide of the present invention in vivo or in vitro. The host cell containing the recombinant vector of the present invention is a recombinant host cell, a recombinant cell, or a recombinant microorganism.

또한, 본 발명에 의한 재조합 벡터는 선택 마커(selection marker)를 포함할 수 있는데, 상기 선택 마커는 벡터로 형질전환된 형질전환체 (숙주세포)를 선별하기 위한 것으로서 상기 선택 마커가 처리된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환 된 세포의 선별이 가능하다. 상기 선택 마커는 대표적인 예로 카나마이신, 스트렙토마이신, 클로람페니콜 등이 있으나, 이에 한정되는 것은 아니다.In addition, the recombinant vector according to the present invention may include a selection marker, which is used to select transformants (host cells) transformed with the vector, and is used in the medium treated with the selection marker. Because only cells expressing the selection marker are viable, selection of transformed cells is possible. Representative examples of the selection marker include kanamycin, streptomycin, and chloramphenicol, but are not limited thereto.

본 발명의 형질전환용 재조합 벡터 내에 삽입된 유전자들은 상동성 재조합 교차로 인하여 코리네박테리움 속 미생물과 같은 숙주세포 내로 치환될 수 있다.Genes inserted into the recombinant vector for transformation of the present invention can be replaced into host cells such as microorganisms of the Corynebacterium genus due to homologous recombination crossing.

본 발명의 일 구체예에 따르면, 상기 숙주세포는 코리네박테리움 속 균주일 수 있으며, 예를 들면 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주일 수 있다.According to one embodiment of the present invention, the host cell may be a strain of the genus Corynebacterium, for example, a strain of Corynebacterium glutamicum .

또한, 본 발명의 다른 일 양상은 a) 상기 코리네박테리움 글루타미쿰 변이주를 배지에서 배양하는 단계; 및 b) 상기 변이주 또는 변이주가 배양된 배지로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신의 생산 방법을 제공한다.In addition, another aspect of the present invention includes a) culturing the Corynebacterium glutamicum mutant strain in a medium; and b) recovering L-lysine from the mutant strain or medium in which the mutant strain was cultured.

상기 배양은 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나, 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.The culture can be carried out according to appropriate media and culture conditions known in the art, and a person skilled in the art can easily adjust the medium and culture conditions. Specifically, the medium may be a liquid medium, but is not limited thereto. Cultivation methods may include, for example, batch culture, continuous culture, fed-batch culture, or combinations thereof, but are not limited thereto.

본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다. 코리네박테리움 속 균주에 대한 배양 배지는 공지된 문헌 (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981)을 참조할 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the medium must meet the requirements of a specific strain in an appropriate manner and can be appropriately modified by a person skilled in the art. Culture media for strains of the genus Corynebacterium may refer to known literature (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981), but are not limited thereto.

본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the medium may contain various carbon sources, nitrogen sources, and trace element components. Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, It includes fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These substances may be used individually or in mixtures, but are not limited thereto. Nitrogen sources that may be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. Nitrogen sources can also be used individually or in a mixture, but are not limited thereto. Sources of phosphorus that can be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. Additionally, the culture medium may contain metal salts such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto. In addition, essential growth substances such as amino acids and vitamins may be included. Additionally, precursors appropriate for the culture medium may be used. The medium or individual components may be added to the culture medium in a batch or continuous manner in an appropriate manner during the culture process, but are not limited thereto.

본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.According to one embodiment of the present invention, the pH of the culture medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, and sulfuric acid to the microbial culture medium in an appropriate manner during cultivation. Additionally, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester during culture. Additionally, in order to maintain the aerobic state of the culture medium, oxygen or oxygen-containing gas (e.g., air) can be injected into the culture medium. The temperature of the culture medium may typically be 20°C to 45°C, for example, 25°C to 40°C. The culturing period may continue until the desired yield of useful material is obtained, for example, 10 to 160 hours.

본 발명의 일 구체예에 따르면, 상기 배양된 변이주 및 변이주가 배양된 배지에서 L-라이신을 회수하는 단계는 배양 방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 L-라이신을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해 (예를 들면, 암모늄 설페이트 침전), 크로마토그래피 (예를 들면, 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나, 이에 한정되는 것은 않는다.According to one embodiment of the present invention, the step of recovering L-lysine from the cultured mutant strain and the medium in which the mutant strain was cultured includes L-lysine produced from the medium using a suitable method known in the art according to the culture method. Can be collected or recovered. Examples include centrifugation, filtration, extraction, nebulization, drying, evaporation, precipitation, crystallization, electrophoresis, differential dissolution (e.g. ammonium sulfate precipitation), chromatography (e.g. ion exchange, affinity, hydrophobic and Methods such as size exclusion) can be used, but are not limited to this.

본 발명의 일 구체예에 따르면, 라이신을 회수하는 단계는 배양 배지를 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 이온교환 크로마토그래피를 통하여 분리할 수 있다.According to one embodiment of the present invention, the step of recovering lysine can be performed by centrifuging the culture medium at low speed to remove biomass and separating the obtained supernatant through ion exchange chromatography.

본 발명의 일 구체예에 따르면, 상기 L-라이신을 회수하는 단계는 L-라이신을 정제하는 공정을 포함할 수 있다.According to one embodiment of the present invention, the step of recovering L-lysine may include a process of purifying L-lysine.

본 발명에 따른 코리네박테리움 글루타미쿰 변이주는 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자 (lysC-asd 오페론)의 발현을 증가 또는 강화시킴으로써 모균주에 비해 L-라이신의 생산 수율을 향상시킬 수 있다.The Corynebacterium glutamicum mutant strain according to the present invention has L- The production yield of lysine can be improved.

도 1은 본 발명의 일 실시예에 따라 lysC-asd 오페론의 프로모터 서열 내 -47 ~ -45 영역의 염기서열이 taa로 치환된 프로모터를 포함하는 pCGI(Pm-lysC') 벡터의 구조를 나타낸 것이다.Figure 1 shows the structure of the pCGI (Pm-lysC') vector containing a promoter in which the nucleotide sequence of the region -47 to -45 in the promoter sequence of the lysC-asd operon is replaced with taa according to an embodiment of the present invention. .

이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail. However, this description is merely provided as an example to aid understanding of the present invention, and the scope of the present invention is not limited by this example description.

실시예 1. 코리네박테리움 글루타미쿰 변이주의 제조Example 1. Preparation of Corynebacterium glutamicum mutant strains

아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 활성이 강화된 코리네박테리움 글루타미쿰 변이주를 제조하기 위하여, 코리네박테리움 글루타미쿰 DS1 균주를 사용하였다.To prepare a Corynebacterium glutamicum mutant strain with enhanced activities of aspartate kinase and aspartate semialdehyde dehydrogenase, Corynebacterium glutamicum DS1 strain was used.

1-1. 돌연변이 유발1-1. mutagenesis

코리네박테리움 글루타미쿰 DS1 균주를 CM 액체배지 (글루코오스 5 g, NaCl 2.5 g, 효모 추출물 5.0 g, 유레아(urea) 1.0 g, 폴리펩톤 10.0 g 및 비프(beef) 추출물 5.0 g 함유, pH 6.8) 50 ㎖가 담긴 플라스크에 접종하고 돌연변이 유발물질인 N-메틸-N`-니트로-N-니트로소구아니딘(N-methyl-N`-nitro-N-nitrosoguanidine, NTG)을 최종농도 300 ㎍/㎖로 첨가한 후 30℃에서 200 rpm으로 20시간 동안 진탕 배양하였다. 배양을 종료한 후 배양액을 12,000 rpm에서 10분 동안 원심분리하여 상층액을 제거하고, 식염수(saline)로 1회 세척하고 인산 완충액(phosphate buffer)으로 3회 더 세척하였다. 이를 인산 완충액 5 ㎖에 현탁한 후 CM 고체배지 (CM 액체배지에 한천 15 g/ℓ를 더 포함함)에 도말하고 30℃에서 30시간 동안 배양하여 콜로니(colony) 100개를 분리하였다.Corynebacterium glutamicum DS1 strain was cultured in CM liquid medium (containing 5 g of glucose, 2.5 g of NaCl, 5.0 g of yeast extract, 1.0 g of urea, 10.0 g of polypeptone, and 5.0 g of beef extract, pH 6.8). ) Inoculate a flask containing 50 ㎖ and add N-methyl-N`-nitro-N-nitrosoguanidine (NTG), a mutagen, at a final concentration of 300 ㎍/㎖. After addition, it was cultured with shaking at 200 rpm for 20 hours at 30°C. After completion of the culture, the culture was centrifuged at 12,000 rpm for 10 minutes to remove the supernatant, washed once with saline, and washed three more times with phosphate buffer. This was suspended in 5 ml of phosphate buffer, spread on CM solid medium (CM liquid medium containing an additional 15 g/l of agar), and cultured at 30°C for 30 hours to isolate 100 colonies.

1-2. L-라이신 생산능이 향상된 변이주 선별1-2. Selection of mutant strains with improved L-lysine production ability

분리된 콜로니 100개를 하기 표 1의 생산 액체배지 10 ㎖가 담긴 플라스크에 각각 5%씩 접종하고 30℃에서 200 rpm으로 30시간 동안 진탕 배양하였다. 각 배양액을 OD 610 nm에서 흡광도를 측정하고 L-라이신 생산량을 비교하여 L-라이신을 75.0 g/ℓ 이상 생산하는 콜로니 3개를 선별하였고, 이를 대상으로 라이신 생합성 경로의 첫번째 효소와 두번째 효소를 암호화하는 유전자를 포함하는 lysC-asd 오페론의 프로모터에 대한 변이 여부를 조사하였다. 이들 프로모터에 대한 염기서열 분석을 통하여 lysC-asd 오페론의 프로모터 변이 위치를 확인하였다.100 isolated colonies were inoculated at a rate of 5% each into flasks containing 10 ml of the production liquid medium shown in Table 1 below, and cultured with shaking at 30°C at 200 rpm for 30 hours. By measuring the absorbance of each culture at OD 610 nm and comparing the L-lysine production, three colonies producing more than 75.0 g/l of L-lysine were selected, and the first and second enzymes of the lysine biosynthetic pathway were encoded for these. Mutations in the promoter of the lysC-asd operon containing the gene were investigated. Through nucleotide sequence analysis of these promoters, the location of the mutation in the promoter of the lysC-asd operon was confirmed.

조성Furtherance 함량 (1 L 기준)Content (based on 1 L) GlucoseGlucose 100 g100 g Ammonium sulfateAmmonium sulfate 55 g55g (NH4)2SO4 (NH 4 ) 2 SO 4 35 g35g KH2PO4 KH 2 PO 4 1.1 g1.1g MgSO4ㆍH2OMgSO 4 ㆍH 2 O 1.2 g1.2g MnSO4ㆍH2OMnSO 4 ㆍH 2 O 180 mg180mg FeSO4ㆍH2OFeSO 4 ㆍH 2 O 180 mg180mg ThiamineㆍHClThiamineㆍHCl 9 mg9mg BiotinBiotin 1.8 mg1.8mg CaCO3 CaCO 3 5%5% pHpH 7.07.0

그 결과, 콜로니 3개 모두 lysC-asd 오페론 내 유전자의 개시코돈 상단 -47 ~ -45 영역에서 염기서열이 gag에서 taa로 치환된 것을 확인하였다. 콜로니 3개 중 염색체 DNA 추출을 위한 코리네박테리움 글루타미쿰 DS1 변이주 1개를 선택하였고, 이후에서는 코리네박테리움 글루타미쿰 DS1 균주를 이용하여 lysC-asd 오페론의 프로모터 변이에 의한 L-라이신 생산성 증가를 검증하기 위한 실험을 수행하였다.As a result, it was confirmed that in all three colonies, the nucleotide sequence was substituted from gag to taa in the -47 to -45 region at the top of the start codon of the gene in the lysC-asd operon. Among the three colonies, one Corynebacterium glutamicum DS1 mutant strain was selected for chromosomal DNA extraction, and later, the Corynebacterium glutamicum DS1 strain was used to produce L-lysine by promoter mutation of the lysC-asd operon. An experiment was conducted to verify productivity increase.

실시예 2. 코리네박테리움 글루타미쿰 변이주의 제조Example 2. Preparation of Corynebacterium glutamicum mutant strains

아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 활성이 강화된 코리네박테리움 글루타미쿰 변이주를 제조하기 위하여, 코리네박테리움 글루타미쿰 DS1 균주 및 E. coli DH5a (HIT Competent cells™, Cat No. RH618)를 사용하였다.To prepare Corynebacterium glutamicum mutants with enhanced activities of aspartate kinase and aspartate semialdehyde dehydrogenase, Corynebacterium glutamicum DS1 strain and E. coli DH5a (HIT Competent cells) ™, Cat No. RH618) was used.

상기 코리네박테리움 글루타미쿰 DS1 균주는 증류수 1 L에 글루코오스 5 g, NaCl 2.5 g, 효모 추출물 5.0 g, 유레아(urea) 1.0 g, 폴리펩톤 10.0 g 및 비프(beef) 추출물 5.0 g 조성의 CM 액체배지 (pH 6.8)에서 30℃의 온도로 배양하였다. The Corynebacterium glutamicum DS1 strain is a CM containing 5 g of glucose, 2.5 g of NaCl, 5.0 g of yeast extract, 1.0 g of urea, 10.0 g of polypeptone, and 5.0 g of beef extract in 1 L of distilled water. Cultured at a temperature of 30°C in liquid medium (pH 6.8).

E. coli DH5a는 증류수 1 L에 트립톤 10.0 g, NaCl 10.0 g 및 효모 추출물 5.0 g 조성의 LB 배지 상에서 37℃의 온도로 배양하였다. E. coli DH5a was cultured at a temperature of 37°C on LB medium containing 10.0 g of tryptone, 10.0 g of NaCl, and 5.0 g of yeast extract in 1 L of distilled water.

카나마이신(kanamycin) 및 스트렙토마이신(streptomycine)은 시그마(Sigma)사의 제품을 사용하였고, DNA 시퀀싱 분석은 마크로젠(주)에 의뢰하여 분석하였다.kanamycin and streptomycin were used from Sigma, and DNA sequencing was conducted by Macrogen Co., Ltd.

2-1. 재조합 벡터의 제작2-1. Construction of recombinant vectors

균주에 라이신 생합성 경로를 강화하여 라이신 생산성을 증가시키기 위해 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제의 강화를 도입하였다. 본 실시예에서 이용한 방법은 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 lysC-asd 오페론의 발현을 증가시키기 위하여, lysC-asd 오페론 유전자의 프로모터에 특이적인 변이를 유발하였다. lysC-asd 오페론 유전자의 프로모터 -47 ~ -45 위치의 염기서열을 gag에서 taa로 치환하기 위해, 상기 코리네박테리움 글루타미쿰 DS1 균주 게놈 상에서 lysC-asd 오페론의 프로모터 변이 위치를 중심으로 좌측암 478 bp 부분과 우측암 475 bp 부분을 하기 표 2의 서열번호 3과 4, 그리고 5와 6의 프라이머를 이용해 PCR로 증폭하였다. 또한, 벡터인 pCGI (문헌 [Kim et al., Journal of Microbiological Methods 84 (2011) 128-130] 참조)를 주형으로 하여 하기 표 2의 서열번호 7과 8, 그리고 9와 10의 프라이머를 이용하여 PCR 증폭 후 4개 PCR 산물을 self-assembly cloning을 이용하여 클로닝하였다. 상기 제조된 재조합 플라스미드를 pCGI(Pm-lysC')라고 명명하였다 (도 1 참조).To increase lysine productivity by strengthening the lysine biosynthetic pathway in the strain, enhancement of aspartate kinase and aspartate semialdehyde dehydrogenase was introduced. The method used in this example involves a specific mutation in the promoter of the lysC-asd operon gene to increase the expression of the lysC-asd operon containing genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase. caused. In order to replace the nucleotide sequence at positions -47 to -45 of the promoter of the lysC-asd operon gene from gag to taa, the left arm centered on the promoter mutation position of the lysC-asd operon on the Corynebacterium glutamicum DS1 strain genome. The 478 bp portion and the 475 bp portion of the right arm were amplified by PCR using primers of sequence numbers 3 and 4, and 5 and 6 in Table 2 below. In addition, using the vector pCGI (see literature [Kim et al., Journal of Microbiological Methods 84 (2011) 128-130]) as a template, primers of SEQ ID NOs: 7 and 8, and 9 and 10 in Table 2 below were used. After PCR amplification, four PCR products were cloned using self-assembly cloning. The recombinant plasmid prepared above was named pCGI (Pm-lysC') (see Figure 1).

프라이머(primer) (5' - 3')Primer (5' - 3') 서열번호sequence number 프로모터 변이 포함 증폭 프라이머Amplification primers containing promoter mutations lysCP-F1lysCP-F1 CCGTCACAAGACCAAGGATGCCGTCACAAGACCAAGGATG 33 lysCP-R1lysCP-R1 AGTGGCACATTGAATGCACGAGTGGCACATTGAATGCACG 44 lysCP-F2lysCP-F2 TGATTACGCCCCGTCACAAGACCAAGGATGTGATTACGCCCCCGTCACAAGACCAAGGATG 55 lysCP-R2lysCP-R2 TGAATGCACGAGCGTATTCATGAATGCACGAGCGTATTCA 66 pCGI 벡터 증폭
프라이머
pCGI vector amplification
primer
pCGI-F1pCGI-F1 ACTGGCCGTCGTTTTACAACACTGGCCGTTCGTTTTACAAC 77
pCGI-R1pCGI-R1 GGCGTAATCATGGTCATAGCGGCGTAATCATGGTCATAGC 88 pCGI-F2pCGI-F2 ATGTGCCACTACTGGCCGTCGTTTTACAACATGTGCCACTACTGGCCGTCGTTTTACAAC 99 pCGI-R2pCGI-R2 TGGTCATAGCTGTTTCCTGTGTGGTCATAGCTGTTTCCTTGTG 1010

이상의 프라이머를 이용한 PCR을 수행 조건은 다음과 같다. Thermocycler (TP600, TAKARA BIO Inc., 일본)를 이용하여 각각의 데옥시뉴클레오티드 트리포스페이트 (dATP, dCTP, dGTP, dTTP) 100 μM가 첨가된 반응액에 올리고뉴클레오티드 1 pM, 실시예 1에서 선택된 코리네박테리움 글루타미쿰 DS1 변이주 (프로모터 -47 ~ -45 영역에 변이 발생)의 염색체 DNA 또는 pCGI 벡터 각각 DNA 10 ng을 주형(template)으로 이용하여, pfu-X DNA 폴리머라제 혼합물 (Solgent) 1 유닛의 존재 하에서 25 ~ 30 주기(cycle)를 수행하였다. PCR 수행 조건은 (i) 변성(denaturation) 단계: 94℃에서 30초, (ii) 결합(annealing) 단계: 58℃에서 30초, 및 (iii) 확장(extension) 단계: 72℃에서 1 ~ 2분 (1 kb 당 2분의 중합시간 부여)의 조건에서 실시하였다.The conditions for performing PCR using the above primers are as follows. Using a thermocycler (TP600, TAKARA BIO Inc., Japan), 100 μM of each deoxynucleotide triphosphate (dATP, dCTP, dGTP, dTTP) was added to the reaction solution, 1 pM of oligonucleotide, and corynein selected in Example 1. Using 10 ng of chromosomal DNA or pCGI vector DNA from Bacterium glutamicum DS1 mutant strain (mutation occurred in the promoter -47 to -45 region) as a template, 1 unit of pfu-X DNA polymerase mixture (Solgent) 25 to 30 cycles were performed in the presence of . PCR performance conditions were (i) denaturation step: 30 seconds at 94°C, (ii) annealing step: 30 seconds at 58°C, and (iii) extension step: 1 to 2 at 72°C. It was carried out under conditions of 2 minutes (polymerization time of 2 minutes per 1 kb).

이와 같이 제조된 유전자 단편을 self-assembly cloning을 이용하여, pCGI 벡터에 클로닝하였다. 상기 벡터를 E. coli DH5a에 형질전환 시키고, 50 ㎍/㎖의 카나마이신을 함유하는 LB-한천 플레이트 상에 도말하여, 37℃에서 24시간 배양하였다. 최종 형성되는 콜로니를 분리하여 삽입물(insert)이 정확히 벡터에 존재하는지 확인한 후, 이 벡터를 분리하여 코리네박테리움 글루타미쿰 DS1 균주 의 재조합에 사용하였다.The gene fragment prepared in this way was cloned into the pCGI vector using self-assembly cloning. The vector was transformed into E. coli DH5a, spread on LB-agar plates containing 50 μg/ml kanamycin, and cultured at 37°C for 24 hours. After separating the finally formed colonies to confirm that the insert was correctly present in the vector, this vector was isolated and used for recombination of Corynebacterium glutamicum DS1 strain.

유전자 조작 시 PCR 증폭 효소로는 Ex Taq 중합효소 (Takara), Pfu 중합효소 (Solgent)를 이용하였고, 각종 제한효소 및 DNA modifying 효소는 NEB 제품을 사용하였으며, 공급된 버퍼 및 프로토콜에 따라 사용하였다.During genetic manipulation, Ex Taq polymerase (Takara) and Pfu polymerase (Solgent) were used as PCR amplification enzymes, and various restriction enzymes and DNA modifying enzymes were NEB products, and were used according to the supplied buffer and protocol.

2-2. 변이주의 제조2-2. Manufacturing of variant strains

상기 pCGI(Pm-lysC') 벡터를 이용하여 변이 균주인 DS6 균주를 제조하였다. 상기 벡터의 최종 농도가 1 ㎍/㎕ 이상 되도록 준비하여 코리네박테리움 글루타미쿰 DS1 균주에 전기천공법 (문헌 [Tauch et al., FEMS Microbiology letters 123 (1994) 343-347] 참조)을 사용하여 1차 재조합을 유도하였다. 이때, 전기 천공한 균주를 카나마이신이 20 ㎍/㎕ 포함되는 CM 고체배지에 도말하여 콜로니를 분리한 후 게놈상의 유도한 위치에 적절히 삽입되었는지 PCR 및 염기서열 분석을 통해 확인하였다. 이렇게 분리된 균주를 다시 2차 재조합을 유도하기 위하여 스트렙토마이신(streptomycine)을 함유한 CM-한천 액체배지에 접종하고, 하룻밤 이상 배양하여 동일 농도의 스트렙토마이신을 함유한 한천배지에 도말하여 콜로니를 분리하였다. 최종 분리한 콜로니 중에서 카나마이신에 대한 내성 여부를 확인한 후, 항생제 내성이 없는 균주들 중 lysC-asd 오페론 유전자의 프로모터에 변이가 도입되었는지 염기서열 분석을 통해 확인하였다 (문헌 [Schafer et al., Gene 145 (1994) 69-73] 참조). 최종적으로 lysC-asd 오페론 유전자의 프로모터에 변이가 도입된 코리네박테리움 글루타미쿰 변이주 DS6 균주를 획득하였다.A mutant strain, strain DS6, was prepared using the pCGI (Pm-lysC') vector. The final concentration of the vector was prepared to be 1 ㎍/㎕ or more and electroporation method (see Tauch et al., FEMS Microbiology letters 123 (1994) 343-347) was used on Corynebacterium glutamicum DS1 strain. This induced the first recombination. At this time, the electroporated strain was spread on CM solid medium containing 20 ㎍/㎕ kanamycin to isolate colonies, and then it was confirmed through PCR and base sequence analysis whether it was properly inserted into the induced position on the genome. In order to induce secondary recombination, the isolated strain was inoculated into a CM-agar liquid medium containing streptomycin, cultured overnight, and then spread on an agar medium containing the same concentration of streptomycin to isolate colonies. did. After confirming resistance to kanamycin among the final isolated colonies, it was confirmed through base sequence analysis whether mutations were introduced into the promoter of the lysC-asd operon gene among the strains without antibiotic resistance (Reference [Schafer et al., Gene 145 (1994) 69-73]. Finally, the Corynebacterium glutamicum mutant strain DS6, in which a mutation was introduced into the promoter of the lysC-asd operon gene, was obtained.

비교예 1. 코리네박테리움 글루타미쿰 변이주Comparative Example 1. Corynebacterium glutamicum mutant strain

대한민국 등록특허 제10-0930203호에 개시된, 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제 유전자를 암호화하는 lysC-asd 오페론의 프로모터 서열 중 -54 ~ -52 영역에 aaa가 tgt로 변이가 유발된 변이주 (lysCP1)를 사용하였다.In the promoter sequence of the lysC-asd operon encoding the aspartate kinase and aspartate semialdehyde dehydrogenase genes disclosed in Korean Patent No. 10-0930203, aaa is mutated to tgt in the -54 to -52 region. The induced mutant strain (lysCP1) was used.

실험예 1. 변이주의 L-라이신 생산성 비교Experimental Example 1. Comparison of L-lysine productivity of mutant strains

모균주 코리네박테리움 글루타미쿰 DS1 균주, 실시예 1에서 제조된 라이신 생산 변이주인 DS6 균주 및 비교예 1의 종래 라이신 생산 변이주인 lysCP1 균주의 L-라이신 생산성을 비교하였다.The L-lysine productivity of the parent strain Corynebacterium glutamicum DS1 strain, the DS6 strain, a lysine-producing mutant strain prepared in Example 1, and the lysCP1 strain, a conventional lysine-producing mutant strain prepared in Comparative Example 1, were compared.

상기 표 1과 같은 조성을 갖는 라이신 배지 10 ml를 함유한 100 ml 플라스크에 각각의 균주를 각각 접종하고, 30℃에서 28시간, 180 rpm의 조건으로 진탕 배양하였다. 배양 종료 후 라이신 분석은 HPLC (Shimazu, 일본)로 L-라이신의 생산량을 측정하였고, 그 결과를 표 3에 나타내었다. Each strain was inoculated into a 100 ml flask containing 10 ml of lysine medium with the composition shown in Table 1, and cultured with shaking at 30°C for 28 hours at 180 rpm. After completion of the culture, the production of L-lysine was measured using HPLC (Shimazu, Japan) for lysine analysis, and the results are shown in Table 3.

균주strain L-라이신 (g/L)L-Lysine (g/L) 단위 균체 당 L-라이신 생산량 (g/gDCW)L-lysine production per unit cell (g/gDCW) 모균주 (DS1)Parent strain (DS1) 64.564.5 6.986.98 변이주 (DS6)Mutant strain (DS6) 70.570.5 8.318.31 변이주 (lysCP1)Mutant strain (lysCP1) 67.567.5 7.577.57

상기 표 3에 나타낸 바와 같이, 코리네박테리움 글루타미쿰 변이주 DS6 균주는 라이신 생합성 경로의 강화를 위해 lysC-asd 오페론의 프로모터 서열의 특정 위치 (-47 내지 -45 영역)가 최적의 염기서열로 치환됨으로써 모균주 코리네박테리움 글루타미쿰 DS1 균주에 비해 L-라이신의 생산성이 약 9.3% 증가한 것으로 확인되었다. As shown in Table 3, the Corynebacterium glutamicum mutant DS6 strain has a specific position (-47 to -45 region) of the promoter sequence of the lysC-asd operon as the optimal base sequence for strengthening the lysine biosynthetic pathway. It was confirmed that the substitution increased the productivity of L-lysine by about 9.3% compared to the parent strain Corynebacterium glutamicum DS1 strain.

또한, 코리네박테리움 글루타미쿰 변이주 DS6 균주는 변이 위치 (-54 내지 -52 영역) 및 서열 (tgt)이 상이한 종래 변이주 lysCP1에 비해 L-라이신의 생산성이 4.6% 이상 증가한 것으로 확인되었다. In addition, the Corynebacterium glutamicum mutant strain DS6 was confirmed to have increased L-lysine productivity by more than 4.6% compared to the conventional mutant strain lysCP1, which has a different mutation position (-54 to -52 region) and sequence (tgt).

이러한 결과를 통해, 프로모터 -47 내지 -45 영역의 변이로 인한 lysC-asd 오페론 내 유전자의 발현 강화가 라이신 생합성능을 강화함으로써 균주의 L-라이신 생산능을 향상시킨다는 것을 알 수 있었다.These results showed that enhanced expression of genes in the lysC-asd operon due to mutations in the promoter -47 to -45 region enhances lysine biosynthetic performance, thereby improving the L-lysine production ability of the strain.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

<110> DAESANG CORPORATION <120> Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same <130> PN210036 <160> 10 <170> KoPatentIn 3.0 <210> 1 <211> 353 <212> DNA <213> Artificial Sequence <220> <223> Promoter sequence of lysC gene <400> 1 ccatcttttg gggtgcggag cgcgatccgg tgtctgacca cggtgcccca tgcgattgtt 60 aatgccgatg ctagggcgaa aagcacggcg agcagattgc tttgcacttg attcagggta 120 gttgactaaa gagttgctcg cgaagtagca cctgtcactt ttgtctcaaa tattaaatcg 180 aatatcaata tatggtctgt ttattggaac gcgtcccagt ggctgagacg catccgctaa 240 agccccagga accctgtgca gaaagaaaac actcctctgg ctaggtagac acagtttata 300 aaggtagagt tgagcgggta actgtcagca cgtagatcga aaggtgcaca aag 353 <210> 2 <211> 353 <212> DNA <213> Artificial Sequence <220> <223> Mutant promoter sequence of lysC gene <400> 2 ccatcttttg gggtgcggag cgcgatccgg tgtctgacca cggtgcccca tgcgattgtt 60 aatgccgatg ctagggcgaa aagcacggcg agcagattgc tttgcacttg attcagggta 120 gttgactaaa gagttgctcg cgaagtagca cctgtcactt ttgtctcaaa tattaaatcg 180 aatatcaata tatggtctgt ttattggaac gcgtcccagt ggctgagacg catccgctaa 240 agccccagga accctgtgca gaaagaaaac actcctctgg ctaggtagac acagtttata 300 aaggtataat tgagcgggta actgtcagca cgtagatcga aaggtgcaca aag 353 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lysCP-F1 <400> 3 ccgtcacaag accaaggatg 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lysCP-R1 <400> 4 agtggcacat tgaatgcacg 20 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lysCP-F2 <400> 5 tgattacgcc ccgtcacaag accaaggatg 30 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lysCP-R2 <400> 6 tgaatgcacg agcgtattca 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pCGI-F1 <400> 7 actggccgtc gttttacaac 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pCGI-R1 <400> 8 ggcgtaatca tggtcatagc 20 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pCGI-F2 <400> 9 atgtgccact actggccgtc gttttacaac 30 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pCGI-R2 <400> 10 tggtcatagc tgtttcctgt g 21 <110> DAESANG CORPORATION <120> Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same <130> PN210036 <160> 10 <170> KoPatentIn 3.0 <210> 1 <211> 353 <212> DNA <213> Artificial Sequence <220> <223> Promoter sequence of lysC gene <400> 1 ccatcttttg gggtgcggag cgcgatccgg tgtctgacca cggtgcccca tgcgattgtt 60 aatgccgatg ctagggcgaa aagcacggcg agcagattgc tttgcacttg attcagggta 120 gttgactaaa gagttgctcg cgaagtagca cctgtcactt ttgtctcaaa tattaaatcg 180 aatatcaata tatggtctgt ttattggaac gcgtcccagt ggctgagacg catccgctaa 240 agccccagga accctgtgca gaaagaaaac actcctctgg ctaggtagac acagtttata 300 aaggtagagt tgagcgggta actgtcagca cgtagatcga aaggtgcaca aag 353 <210> 2 <211> 353 <212> DNA <213> Artificial Sequence <220> <223> Mutant promoter sequence of lysC gene <400> 2 ccatcttttg gggtgcggag cgcgatccgg tgtctgacca cggtgcccca tgcgattgtt 60 aatgccgatg ctagggcgaa aagcacggcg agcagattgc tttgcacttg attcagggta 120 gttgactaaa gagttgctcg cgaagtagca cctgtcactt ttgtctcaaa tattaaatcg 180 aatatcaata tatggtctgt ttattggaac gcgtcccagt ggctgagacg catccgctaa 240 agccccagga accctgtgca gaaagaaaac actcctctgg ctaggtagac acagtttata 300 aaggtataat tgagcgggta actgtcagca cgtagatcga aaggtgcaca aag 353 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lysCP-F1 <400> 3 ccgtcacaag accaaggatg 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lysCP-R1 <400> 4 agtggcacat tgaatgcacg 20 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lysCP-F2 <400> 5 tgattacgcc ccgtcacaag accaaggatg 30 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lysCP-R2 <400> 6 tgaatgcacg agcgtattca 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pCGI-F1 <400> 7 actggccgtc gtttacaac 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pCGI-R1 <400> 8 ggcgtaatca tggtcatagc 20 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pCGI-F2 <400> 9 atgtgccact actggccgtc gtttacaac 30 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pCGI-R2 <400> 10 tggtcatagc tgtttcctgt g 21

Claims (5)

lysC-asd 오페론의 프로모터인 서열번호 1의 프로모터 서열에서 -47 내지 -45 영역의 염기서열 gag가 taa로 치환된, L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 변이주로서,
상기 lysC-asd 오페론은 아스파르테이트 키나아제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 것인, 코리네박테리움 글루타미쿰 변이주.
A Corynebacterium glutamicum mutant strain with improved L-lysine production ability in which gag in the -47 to -45 region of the promoter sequence of SEQ ID NO: 1, which is the promoter of the lysC-asd operon, is replaced with taa,
The lysC-asd operon is a Corynebacterium glutamicum mutant containing genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase.
삭제delete 삭제delete 청구항 1에 있어서,
상기 변이주는 서열번호 2로 표시되는 염기서열을 포함하는 것인 코리네박테리움 글루타미쿰 변이주.
In claim 1,
The mutant strain is a Corynebacterium glutamicum mutant strain containing the base sequence represented by SEQ ID NO: 2.
a) 청구항 1의 변이주를 배지에서 배양하는 단계; 및
b) 상기 변이주 또는 변이주가 배양된 배지로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신의 생산 방법.
a) cultivating the mutant strain of claim 1 in a medium; and
b) A method for producing L-lysine comprising the step of recovering L-lysine from the mutant strain or medium in which the mutant strain was cultured.
KR1020210056549A 2021-04-30 2021-04-30 Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same KR102668767B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210056549A KR102668767B1 (en) 2021-04-30 2021-04-30 Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
PCT/KR2021/005804 WO2022231049A1 (en) 2021-04-30 2021-05-10 Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
CN202110721189.3A CN115261246A (en) 2021-04-30 2021-06-28 Corynebacterium glutamicum mutant strain having improved L-lysine productivity and method for producing L-lysine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210056549A KR102668767B1 (en) 2021-04-30 2021-04-30 Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same

Publications (2)

Publication Number Publication Date
KR20220149219A KR20220149219A (en) 2022-11-08
KR102668767B1 true KR102668767B1 (en) 2024-05-24

Family

ID=83759048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210056549A KR102668767B1 (en) 2021-04-30 2021-04-30 Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same

Country Status (3)

Country Link
KR (1) KR102668767B1 (en)
CN (1) CN115261246A (en)
WO (1) WO2022231049A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927046B1 (en) * 1999-12-30 2005-08-09 Archer-Daniels-Midland Company Increased lysine production by gene amplification using coryneform bacteria
US20050255568A1 (en) * 2003-05-30 2005-11-17 Bailey Richard B Methods and compositions for amino acid production
EP2066782A4 (en) * 2006-09-15 2010-02-03 Cj Cheiljedang Corp A corynebacteria having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR100838038B1 (en) 2006-12-29 2008-06-12 씨제이제일제당 (주) - - a microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR100930203B1 (en) * 2008-01-28 2009-12-07 씨제이제일제당 (주) Improved promoter and method for producing L-lysine using the same
KR20200026881A (en) 2017-06-07 2020-03-11 지머젠 인코포레이티드 Uses thereof to modulate promoter and accessory gene expression from Corynebacterium glutamicum
CN110951662B (en) * 2019-12-26 2024-03-12 新疆梅花氨基酸有限责任公司 Coryneform bacterium for high lysine production and construction method and application thereof
KR102139806B1 (en) 2020-02-13 2020-07-30 씨제이제일제당 (주) Microorganism Comprising Mutated LysE and Method of L-Amino Acid Production Using the Same

Also Published As

Publication number Publication date
WO2022231049A1 (en) 2022-11-03
KR20220149219A (en) 2022-11-08
CN115261246A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US20240175064A1 (en) Mutant of corynebacterium glutamicum with enhanced l-lysine productivity and method for preparing l-lysine using the same
EP3964572A1 (en) Mutant of corynebacterium glutamicum with enhanced l-lysine productivity and method for preparing l-lysine using the same
KR102668767B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR102685495B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR102682180B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR102703209B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR102703188B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20230175159A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20230165734A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20240000418A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
EP4332230A1 (en) Corynebacterium glutamicum variant with improved l-lysine production ability, and method for producing l-lysine using same
EP4446417A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
KR20220148694A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20220126610A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20240013960A (en) A microorganism of Corynebacterium genus having enhanced L-arginine or L-citrulline productivity and a method for producing L-arginine or L-citrulline using the same
KR20220149376A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
JP2024538110A (en) Corynebacterium glutamicum mutant with improved L-lysine production ability and method for producing L-lysine using the same
KR20240017394A (en) Mutant of Corynebacterium glutamicum with enhanced L-citrulline productivity and method for preparing L-citrulline using the same
KR20240013961A (en) A microorganism of Corynebacterium genus having enhanced L-arginine or L-citrulline productivity and a method for producing L-arginine or L-citrulline using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant