KR102251947B1 - Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation - Google Patents

Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation Download PDF

Info

Publication number
KR102251947B1
KR102251947B1 KR1020190138231A KR20190138231A KR102251947B1 KR 102251947 B1 KR102251947 B1 KR 102251947B1 KR 1020190138231 A KR1020190138231 A KR 1020190138231A KR 20190138231 A KR20190138231 A KR 20190138231A KR 102251947 B1 KR102251947 B1 KR 102251947B1
Authority
KR
South Korea
Prior art keywords
mdtk
gene
strain
aromatic amino
amino acid
Prior art date
Application number
KR1020190138231A
Other languages
Korean (ko)
Other versions
KR20210052107A (en
Inventor
신원주
조영일
이선희
김현영
김용수
양철민
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020190138231A priority Critical patent/KR102251947B1/en
Publication of KR20210052107A publication Critical patent/KR20210052107A/en
Application granted granted Critical
Publication of KR102251947B1 publication Critical patent/KR102251947B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

mdtK 유전자에 의해 발현되는 다약제 배출 단백질의 활성이 약화 또는 불활성화됨으로써 방향족 아미노산 생산능이 향상된 변이 균주가 개시된다. A mutant strain with improved aromatic amino acid production capacity is disclosed by weakening or inactivating the activity of the multidrug-releasing protein expressed by the mdtK gene.

Description

mdtK 유전자 불활성에 의해 방향족 아미노산 생산능력이 향상된 균주{Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation}Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation}

본 발명은 mdtK 유전자 불활성에 의해 방향족 아미노산 생산능력이 향상된 균주에 관한 것이다.The present invention relates to a strain having improved aromatic amino acid production capacity by mdtK gene inactivation.

방향족 아미노산, 특히 L-트립토판과 L-페닐알라닌은 사료용 아미노산의 핵심품목으로서 전 세계에서 연간 3000억 달러 규모의 시장을 형성하고 있는 고부가가치 산업이다. Aromatic amino acids, especially L-tryptophan and L-phenylalanine, are key products of feed amino acids and are a high value-added industry with an annual market of $300 billion worldwide.

방향족 아미노산은 재조합 균주를 이용해 생산하고 있으며, 이의 생산량을 늘리기 위한 연구가 활발히 이루어지고 있다. 코리스미산(Chorismate)은 방향족 아미노산 생합성 경로에서 필요한 전구체로서, 이를 생산하기 위해서는 PEP(phosphoenolpyruvate), E4P(erythrose-4-phosphate), 부기질인 PRPP(phosphoribosyl pyrophosphate), 세린(Serine), 글루타민(Glutamine) 등이 필요하다. 따라서, 기존에는 L-트립토판 생산능력을 향상시키기 위해 E4P, PEP, 또는 PRPP의 생합성 경로를 강화하기 위한 연구가 진행되었다. Aromatic amino acids are produced using recombinant strains, and research is being actively conducted to increase their production. Chorismate is a precursor necessary for the biosynthetic pathway of aromatic amino acids. To produce it, phosphoenolpyruvate (PEP), erythrose-4-phosphate (E4P), phosphoribosyl pyrophosphate (PRPP), serine, glutamine ), etc. are required. Therefore, in the past, studies have been conducted to enhance the biosynthetic pathway of E4P, PEP, or PRPP in order to improve L-tryptophan production capacity.

그러나, 세린의 배출을 억제함으로써 방향족 아미노산의 생산이 증가되었다고 보고된 바는 없다.However, it has not been reported that the production of aromatic amino acids is increased by suppressing the release of serine.

대한민국 등록공보 제10-1830002호(2018.02.09)Republic of Korea Registration Gazette No. 10-1830002 (2018.02.09)

일 구체예에 따르면, mdtK 유전자의 발현을 억제시킴으로써 방향족 아미노산의 생산능력이 향상된 균주를 제공한다.According to one embodiment, by inhibiting the expression of the mdtK gene provides a strain having improved production capacity of aromatic amino acids.

일 양상은 mdtK(multidrug resistance protein K) 유전자에 의해 발현되는 다약제 배출 단백질(multidrug efflux protein)의 활성이 약화 또는 불활성화됨으로써 방향족 아미노산 생산능이 향상된 변이 균주를 제공한다. One aspect provides a mutant strain having improved aromatic amino acid production ability by weakening or inactivating the activity of a multidrug efflux protein expressed by a multidrug resistance protein K (mdtK) gene.

상기 mdtK 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있다. The mdtK gene may be composed of the nucleotide sequence of SEQ ID NO: 1.

mdtK 단백질은 다약제 내성에 관여하는 것으로 알려져 있으며, 세린(Serine)의 배출에 관여하는 수송체이다. mdtK 유전자가 트립토판 경로와 같은 방향족 생산경로와의 관련성, 또는 이에 미치는 영향은 알려진 바가 없다. 그럼에도 불구하고, 본 발명자는 mdtK 단백질의 발현을 저하시킴으로서 세린의 배출을 억제한 결과, 배출되지 못한 세린이 방향족 아미노산 생산에 이용됨으로서 균주의 방향족 아미노산 생산능이 향상됨을 확인하였다. The mdtK protein is known to be involved in multidrug resistance and is a transporter involved in the excretion of serine. The association of the mdtK gene with an aromatic production pathway such as the tryptophan pathway, or its effect thereon, is unknown. Nevertheless, as a result of suppressing the release of serine by lowering the expression of the mdtK protein, the present inventors confirmed that the ability of the strain to produce aromatic amino acids was improved as serine that could not be released was used for the production of aromatic amino acids.

본 명세서에서 사용되는 용어 "활성이 약화"는 객체인 유전자의 발현량이 본래의 발현량보다 감소되는 것을 의미한다. 이러한 활성의 약화는 유전자를 암호화하는 뉴클레오티드 치환, 삽입, 결실 또는 이들의 조합을 통하여 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함한다.The term "reduced activity" as used herein means that the expression level of a gene, which is an object, is decreased compared to the original expression level. This attenuation of activity is when the activity of the enzyme itself is decreased compared to the activity of the enzyme of the original microorganism through nucleotide substitution, insertion, deletion, or a combination of nucleotide encoding the gene, and inhibition of expression or translation of the gene encoding it. In the case where the overall degree of enzyme activity in the cell is lower than that of the natural strain or the strain before modification, a combination thereof is also included.

본 명세서에서 사용되는 용어 "불활성화"는 효소 등 단백질을 암호화하는 유전자의 발현이 천연형 균주 또는 변형전의 균주에 비하여 전혀 발현이 되지 않는 경우 및 발현이 되더라도 그 활성이 없는 경우를 의미한다.As used herein, the term "inactivation" refers to a case in which the expression of a gene encoding a protein such as an enzyme is not expressed at all compared to a natural strain or a strain before modification, and when there is no activity even if it is expressed.

본 명세서에서 사용되는 용어 "발현이 증가"는 객체인 유전자의 발현량이 본래의 발현량보다 증가되는 것을 의미한다. 변이 전 균주에 발현을 증가시키고자 하는 유전자가 존재하지 않는 경우에는 하나 이상의 유전자를 상기 균주의 염색체에 도입하여 발현을 증가시킬 수 있고, 변이 전 균주에 발현을 증가시키고자 하는 유전자가 존재하는 경우에는 하나 이상의 유전자를 상기 균주에 추가로 도입하거나 기존 유전자의 발현량이 증가하도록 유전공학적으로 조작할 수 있다.The term "increased expression" as used herein means that the expression level of a gene, which is an object, is increased compared to the original expression level. When a gene for increasing expression does not exist in the pre-mutation strain, one or more genes can be introduced into the chromosome of the strain to increase expression, and when a gene for increasing expression is present in the pre-mutation strain In the above, one or more genes may be additionally introduced into the strain or genetically engineered to increase the expression level of an existing gene.

본 발명에서, 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 핵산 서열에 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 프로모터로 교체하는 등의 방법으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다.In the present invention, the method of modifying the expression control sequence is performed by inducing a mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution or a combination thereof in the nucleic acid sequence of the expression control sequence, or by using a weaker promoter. It can be carried out by a method such as replacement. The expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation.

아울러, 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성이 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있다.In addition, the method of modifying the gene sequence on the chromosome is performed by inducing a mutation in the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination of the gene sequence so that the activity of the enzyme is further weakened, or a weaker activity is achieved. It can be carried out by replacing with a gene sequence improved to have or a gene sequence improved to have no activity.

일 구체예에 따르면, 상기 방향족 아미노산은 L-티로신(L-tyrosine), L-트립토판(L-tryptophan, 및 L-페닐알라닌(L-phenylalanine)일 수 있다. According to one embodiment, the aromatic amino acid may be L-tyrosine, L-tryptophan, and L-phenylalanine.

일 구체예에 따르면, 상기 변이 균주는 mdtK 유전자의 전부 또는 일부가 삽입, 치환, 또는 결실된 것일 수 있다. According to one embodiment, the mutant strain may have all or part of the mdtK gene inserted, substituted, or deleted.

일 구체예에 따르면, 상기 변이 균주는 에스케리키아(Escherichia)속 균주일 수 있다. According to one embodiment, the mutant strain may be a strain of Escherichia genus.

일 구체예에 따르면, 상기 에스케리키아 속 균주는 대장균(Escherichia coli)일 수 있고, 예를 들면 KFCC11660P 및 KCCM10016 기탁 균주일 수 있다. According to one embodiment, the strain of the genus Escherichia may be Escherichia coli, for example, KFCC11660P and KCCM10016 deposited strains.

다른 양상에 따르면, 상기 변이 균주를 배지에서 배양하는 단계, 및 상기 배양된 균주 및 배양 배지에서 방향족 아미노산을 회수하는 단계를 포함하는 방향족 아미노산의 제조 방법을 제공한다. According to another aspect, there is provided a method for producing an aromatic amino acid comprising culturing the mutant strain in a medium, and recovering the aromatic amino acid from the cultured strain and the culture medium.

본 발명에 이용되는 균주는 당업계에 공지된 배양 방법을 통해 배양될 수 있다. 배지로는 천연배지 또는 합성배지를 사용할 수 있다. 배지의 탄소원으로는 예를 들어 글루코오스, 수크로오스, 덱스트린, 글리세롤, 녹말 등이 사용될 수 있고, 질소원으로는 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 대두 케이크, 우레아, 티오우레아, 암모늄염, 나이트레이트 및 기타 유기 또는 무기 질소-함유 화합물이 사용될 수 있으나, 이러한 성분에 한정되는 것은 아니다.The strain used in the present invention may be cultured through a culture method known in the art. As a medium, natural or synthetic medium may be used. As the carbon source of the medium, for example, glucose, sucrose, dextrin, glycerol, starch, etc. may be used, and as the nitrogen source, peptone, meat extract, yeast extract, dried yeast, soybean cake, urea, thiourea, ammonium salt, nitrate And other organic or inorganic nitrogen-containing compounds may be used, but are not limited to these components.

배지에 포함되는 무기염으로는 마그네슘, 망간, 포타슘, 칼슘, 철 등의 포스페이트, 나이트레이트, 카보네이트, 클로라이드 등이 사용될 수 있으나, 이들에 한정되는 것은 아니다. 상기 탄소원, 질소원 및 무기염의 성분 이외에 아미노산, 비타민, 핵산 및 그와 관련된 화합물들이 배지에 첨가 될 수 있다.Inorganic salts contained in the medium may include phosphates such as magnesium, manganese, potassium, calcium, iron, etc., nitrates, carbonates, chlorides, etc., but are not limited thereto. In addition to the components of the carbon source, nitrogen source and inorganic salt, amino acids, vitamins, nucleic acids and related compounds may be added to the medium.

배양물의 온도는 27 내지 40℃, 바람직하게는 30 내지 37 ℃일 수 있으나, 이에 한정되는 것은 아니다. 배양 기간은 유용 물질의 원하는 생성량이 수득될 때까지 계속될 수 있으며, 바람직하게는 10 내지 100 시간일 수 있으나, 이에 한정되는 것은 아니다.The temperature of the culture may be 27 to 40°C, preferably 30 to 37°C, but is not limited thereto. The cultivation period may be continued until the desired production amount of the useful substance is obtained, and preferably may be 10 to 100 hours, but is not limited thereto.

방향족 아미노산을 회수하는 단계는 본 발명의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 회수할 수 있으며, 상기 회수 단계는 정제 공정을 포함할 수 있다.In the step of recovering the aromatic amino acid, the desired amino acid can be recovered from the culture medium using a suitable method known in the art according to the method of culturing the microorganism of the present invention, for example, a batch, continuous, or fed-batch culture method. , The recovery step may include a purification process.

일 구체예에 따르면, 상기 방향족 아미노산은 L-트립토판 및 L-페닐알라닌일 수 있다.According to one embodiment, the aromatic amino acid may be L-tryptophan and L-phenylalanine.

일 구체예에 따르면, 균주의 mdtK 유전자에 의해 발현되는 다약제 배출 단백질의 활성이 약화 또는 불활성화시킴으로써 방향족 아미노산의 생산량을 증가시킬 수 있다.According to one embodiment, the production of aromatic amino acids may be increased by weakening or inactivating the activity of the multidrug-releasing protein expressed by the mdtK gene of the strain.

이하 하나 이상의 구체예를 실시예를 통해 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

실시예 1: mdtK 유전자가 결실된 균주 제작Example 1: Construction of strains in which the mdtK gene was deleted

모균주(수탁번호: KFCC11660P)에 원스텝 불활성화 방법(One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Datsenko KA, Wanner BL., Proc Natl Acad Sci USA. 2000 Jun 6;97(12):6640-5)을 이용하여 mdtK 유전자가 불활성화된 변이 균주를 제작하였다. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Datsenko KA, Wanner BL., Proc Natl Acad Sci USA. 2000 Jun 6;97 12):6640-5) was used to construct a mutant strain in which the mdtK gene was inactivated.

KFCC11660P 균주 및 KCCM10016 균주는 대장균(Escherichia coli) 균주로서, 제 4 단편의 상동재조합을 위해 Red recombinase 플라스미드인 pKD46(GenBank 접근번호 AY048746)를 도입하고, pCP20 도입 전에는 pKD46을 제거한다.KFCC11660P strain and KCCM10016 strain are Escherichia coli strains, and pKD46 (GenBank accession number AY048746), a red recombinase plasmid, is introduced for homologous recombination of the fourth fragment, and pKD46 is removed prior to introduction of pCP20.

mdtK 유전자 및 항생제 유전자가 포함된 DNA 단편을 상동재조합시켜 mdtK 유전자를 결실시키고, 다시 재조합된 DNA 단편으로부터 항생제 내성 유전자를 제거하는 과정을 거침으로써 mdtK 유전자를 불활성화시켰다. 구체적인 과정은 다음과 같다. The mdtK gene was deleted by homologous recombination of the mdtK gene and the DNA fragment containing the antibiotic gene, and the mdtK gene was inactivated by undergoing a process of removing the antibiotic resistance gene from the recombined DNA fragment. The specific process is as follows.

(1) 제 1 단편 제작(1) Production of the first short

하기 표 1에서의 mdtK 유전자 일부 서열과 pKD13 플라스미드 일부 서열을 가지는 mdtK_PF, mdtK_PR 프라이머 쌍과 pKD13 플라스미드(Genbank 접근번호 AY048744)를 이용하여 PCR 반응(총 부피 50 ㎕, 95℃ 5분 1사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 2분, 총 30 사이클 이후 72℃에서 5분 및 12℃에서 10분)을 수행하여 약 1.4kb 의 증폭된 제 1 단편을 얻었다. 제 1 단편은 pKD13 플라스미드에서 유래한 카나마이신 내성 유전자를 포함하고 있다.PCR reaction (total volume 50 μl, 95° C. 5 minutes after 1 cycle) using mdtK_PF and mdtK_PR primer pairs and pKD13 plasmid (Genbank accession number AY048744) having some sequences of the mdtK gene in Table 1 and some sequences of the pKD13 plasmid. C. 30 seconds, 58° C. 30 seconds, 72° C. 2 minutes, after a total of 30 cycles, 72° C. for 5 minutes and 12° C. for 10 minutes) to obtain an amplified first fragment of about 1.4 kb. The first fragment contains a kanamycin resistance gene derived from the pKD13 plasmid.

Figure 112019111941966-pat00001
Figure 112019111941966-pat00001

(2) 제 2 단편 제작(2) Production of the second short

mdtK 유전자의 앞쪽 단편을 얻기 위해 대장균 MG1655의 지노믹(genomic) DNA를 주형으로 하고 표 1의 프라이머 mdtK_HF1 및 mdtK_HR1를 이용하여 PCR (총 부피 50 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 30초, 총 30사이클 이후 72℃에서 5분 및 12℃에서 10분)을 수행하여 약 0.3 kb 증폭된 제 2 단편을 얻었다.To obtain the front fragment of the mdtK gene, use the genomic DNA of E. coli MG1655 as a template, and PCR using the primers mdtK_HF1 and mdtK_HR1 in Table 1 (total volume 50 μl, 95° C. 5 minutes 1 cycle, 95° C. 30 Second, 58°C for 30 seconds, 72°C for 30 seconds, after a total of 30 cycles, 72°C for 5 minutes and 12°C for 10 minutes) to obtain a second fragment amplified by about 0.3 kb.

(3) 제 3 단편 제작(3) Production of the 3rd short film

또한 mdtK 유전자의 뒤쪽 단편을 얻기 위해 대장균 MG1655의 지노믹 DNA를 주형으로 하여 표 1의 프라이머 mdtK_HF2와 mdtK_HR2를 이용하여 PCR 반응(총부피 50 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 30초, 총 30 사이클 이후 72℃분 및 12℃에서 10분)을 수행하여 약 0.3 kb 의 증폭된 제 3 단편을 얻었다.In addition, in order to obtain the rear fragment of the mdtK gene, PCR reaction using the primers mdtK_HF2 and mdtK_HR2 in Table 1 using the genomic DNA of E. coli MG1655 as a template (total volume 50 µl, 95°C for 5 minutes 1 cycle, 95°C for 30 seconds , 58°C for 30 seconds, 72°C for 30 seconds, 72°C for a total of 30 cycles, and 12°C for 10 minutes) to obtain an amplified third fragment of about 0.3 kb.

(4) 제 4 단편 제작(4) Production of the 4th short film

위 실험에서 증폭된 각각의 제 1 단편, 제 2 단편, 및 제 3 단편은 증폭시 프라이머의 상보적 서열로 인하여 하나의 단편으로 연결될 수 있다. 이 단편들을 프라이머를 제외하고 총 부피 50 ㎕, 95℃ 5분 1사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃ 2분 30초, 총 30사이클 이후 72℃에서 5분 및 12℃ 에서 10분 조건으로 PCR을 수행하여 약 2 kb 크기를 가지는 하나의 증폭된 제 4 단편을 얻었다. 제 4 단편은 mdtK 유전자 일부와 kanamycin 항생제 저항 유전자를 포함하고 있으며, 구체적으로 mdtK 유전자의 5' 방향의 일부 단편, 카나마이신(kanamycin) 항생제 저항 유전자, 그리고 mdtK 유전자의 3' 방향의 일부 단편으로 구성되어 있다. Each of the first fragment, the second fragment, and the third fragment amplified in the above experiment may be linked into one fragment due to the complementary sequence of the primer during amplification. These fragments were subjected to a total volume of 50 µl excluding primers, 95°C for 5 minutes, 1 cycle, 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 2 minutes and 30 seconds, and a total of 30 cycles at 72°C for 5 minutes and 12 PCR was performed under conditions of 10 minutes at °C to obtain one amplified fourth fragment having a size of about 2 kb. The fourth fragment contains a part of the mdtK gene and a kanamycin antibiotic resistance gene. Specifically, it consists of a part of the mdtK gene in the 5'direction, a kanamycin antibiotic resistance gene, and a part of the mdtK gene in the 3'direction. have.

(5) 제 4 단편 주입 및 mdtK 결실 확인(5) Injection of the fourth fragment and confirmation of mdtK deletion

Red recombinase 플라스미드인 pKD46(GenBank 접근번호 AY048746)을 포함하고 있는 에스케리치아 콜라이(Escherichia coli) 균주인 KFCC11660P에 제 4 단편을 전기천공법(electroporation)으로 주입하였다. 제 4 단편은 람다 레드 재조합 시스템(Lambda Red recombination)에 의해 mdtK와 상동재조합으로 교체됨으로써 mdtK가 결실된다.The fourth fragment was injected into KFCC11660P, an Escherichia coli strain containing the red recombinase plasmid pKD46 (GenBank accession number AY048746) by electroporation. The fourth fragment is replaced with mdtK and homologous recombination by Lambda Red recombination, whereby mdtK is deleted.

이후 카나마이신(kanamycin) 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 mdtK 유전자의 결실 여부를 확인하였다. 반응은 표 1의 mdtK_CF 및 mdtK_CR 프라이머를 이용하여 총 부피 20 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 55℃에서 30초, 72℃에서 3분, 총 30 사이클 이후 72℃에서 5분 및 12℃에서 10분 조건으로 PCR을 수행하였다. 원래 mdtK 유전자가 있을 경우 약 2.2 kb(결실 전)가 생성되는 것과 비교하여 염색체 내에 단편이 삽입된 경우 길이가 더 증가한 약 2.3 kb(항생제 유전자 포함)가 생성됨을 확인하였다. Subsequently, a PCR reaction was performed on a cell line exhibiting kanamycin resistance to confirm the deletion of the mdtK gene. The reaction was carried out using mdtK_CF and mdtK_CR primers in Table 1 in a total volume of 20 µl, 95°C for 5 minutes and 1 cycle, 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 3 minutes, and a total of 30 cycles at 72°C. PCR was performed under conditions of 5 minutes and 10 minutes at 12°C. Compared with the original mdtK gene, about 2.2 kb (before deletion), when the fragment is inserted into the chromosome, about 2.3 kb (including the antibiotic gene) is generated.

(6) 항생제 저항 유전자 제거 및 선별(6) Antibiotic resistance gene removal and selection

mdtK 유전자 결실이 확인된 균주로부터 항생제 내성 표식 유전자를 제거하기 위해 pCP20 플라스미드를 도입하여 FLP 재조합을 유도하였다. 이후 항생제 첨가 혹은 무첨가 LB 평판배지에서 mdtK 결실 균주를 배양하여 항생제 내성 표식 유전자가 제거된 것을 확인하였다.In order to remove the antibiotic resistance marker gene from the strain in which the mdtK gene was deleted, the pCP20 plasmid was introduced to induce FLP recombination. After that, it was confirmed that the antibiotic resistance marker gene was removed by culturing the mdtK deletion strain in LB plate medium with or without antibiotics.

실시예 2: mdtK 결실 균주의 배양 및 방향족 아미노산 생산량 평가 Example 2: Culture of mdtK deletion strain and evaluation of aromatic amino acid production

상기 실시예 1의 방법으로 제작된 대장균 KFCC11660PΔmdtK 및 KFCC11660P을 하기 표 2의 트립토판 생산용 배지에서 배양하였다. E. coli KFCC11660PΔmdtK and KFCC11660P prepared by the method of Example 1 were cultured in the tryptophan production medium shown in Table 2 below.

배양은 하기 표 2와 같은 조성의 트립토판 생산용 배지가 10 mL이 담긴 플라스크에 상기 KFCC11660PΔmdtK, KFCC11660P 균주를 각각 부피를 기준으로 1%씩 접종하여 37℃에서 200 rpm으로 70시간 동안 진탕 배양하고, 그로부터 수득한 L-아미노산의 농도를 비교하였다.Incubation was performed by inoculating 1% of the KFCC11660PΔmdtK and KFCC11660P strains, respectively, based on the volume in a flask containing 10 mL of the tryptophan production medium of the composition shown in Table 2 below, and incubating with shaking at 37°C at 200 rpm for 70 hours, from which The concentration of the obtained L-amino acid was compared.

Figure 112019111941966-pat00002
Figure 112019111941966-pat00002

상기 실험 결과, 하기 표 3에 나타난 바와 같이 mdtK 유전자를 불활성화 시킨 경우 L-트립토판의 생산량이 증가하는 것을 확인하였다.As a result of the above experiment, it was confirmed that the production amount of L-tryptophan increased when the mdtK gene was inactivated as shown in Table 3 below.

Figure 112019111941966-pat00003
Figure 112019111941966-pat00003

<110> Daesang Corporation <120> Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation <130> PN190270 <160> 9 <170> KoPatentIn 3.0 <210> 1 <211> 1374 <212> DNA <213> Artificial Sequence <220> <223> mdtK "YDHE-MONOMER" 1743457..1744830 Escherichia coli K-12 substr. MG1655 <400> 1 gtgcagaagt atatcagtga agcgcgtctg ttattagcat tagcaatccc ggtgattctc 60 gcgcaaatcg cccaaactgc gatgggtttt gtcgataccg tgatggcggg cggctatagt 120 gccaccgaca tggcggcggt cgctatcggt acttctatct ggcttccggc gatcctcttt 180 ggtcacggac tgctgctggc attaacgccg gttatcgcgc aattaaatgg ttccggtcga 240 cgtgagcgca ttgcgcatca ggtgcgacaa ggtttctggc tggcaggttt tgtttccgtt 300 ctcattatgc tggtgctgtg gaatgcaggt tacattatcc gctccatgga aaacatcgat 360 ccggctctgg cggacaaagc cgtgggttat ctgcgtgcgt tgttgtgggg cgcgccggga 420 tatctgttct tccaggttgc ccgtaaccag tgtgaaggtc tggcaaaaac caagccgggt 480 atggtaatgg gctttatcgg cctgctggtg aacatcccgg tgaactatat ctttatttat 540 ggtcatttcg gtatgcctga gctcggtggc gttggttgtg gcgtggctac tgcggcggtg 600 tattgggtca tgttccttgc catggtttct tacattaaac gcgcccgctc catgcgcgat 660 attcgtaacg aaaaaggcac cgcaaaaccc gatcctgcgg ttatgaaacg actgattcaa 720 ctcggtttgc cgattgcgct ggcactgttc tttgaagtga cactgtttgc cgtcgtggct 780 ctgttagtgt ctccgctcgg tattgttgat gtcgcaggac accagattgc cctgaacttt 840 agttcactaa tgttcgtgct tccaatgtcg ctggcggcag cggtaactat ccgcgtaggt 900 tatcgtctgg gtcagggctc aacgctggat gcgcaaaccg ctgcgcggac cgggcttatg 960 gtgggtgtct gtatggcaac cctgacggcc attttcacgg tttcactgcg ggagcaaatc 1020 gccctgttgt acaacgacaa tcccgaggtt gtaacgctgg ctgcgcattt gatgttgctg 1080 gcggcggtat atcagatttc tgactcaatc caggtgattg gcagtgggat tttgcgtggt 1140 tataaagata cgcgttccat tttctatatt acctttacgg cttactgggt gctgggcttg 1200 ccaagcggct atattctggc actgaccgat ctggtcgttg aacctatggg gccagcaggc 1260 ttctggatag gctttattat tggcctgacg tcggcagcca ttatgatgat gttgcgtatg 1320 cggttcctgc aacgtctgcc gtcagccatc attctgcaac gagcatcccg ctaa 1374 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HF1 <400> 2 ccctgtacaa tccccgtaaa 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HR1 <400> 3 ggcgatttgc gcgagaatca 20 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> mdtK_PF <400> 4 tgattctcgc gcaaatcgcc gtgtaggctg gagctgcttc 40 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> mdtK_PR <400> 5 gacggcagac gttgcaggaa ctgtcaaaca tgagaattaa 40 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HF2 <400> 6 ttcctgcaac gtctgccgtc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HR2 <400> 7 ctgaaagtga aacgcctgcg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_CF <400> 8 ggttgccgtt aatttccgtc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_CR <400> 9 gggagtgttg cattactgga 20 <110> Daesang Corporation <120> Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation <130> PN190270 <160> 9 <170> KoPatentIn 3.0 <210> 1 <211> 1374 <212> DNA <213> Artificial Sequence <220> <223> mdtK "YDHE-MONOMER" 1743457..1744830 Escherichia coli K-12 substr. MG1655 <400> 1 gtgcagaagt atatcagtga agcgcgtctg ttattagcat tagcaatccc ggtgattctc 60 gcgcaaatcg cccaaactgc gatgggtttt gtcgataccg tgatggcggg cggctatagt 120 gccaccgaca tggcggcggt cgctatcggt acttctatct ggcttccggc gatcctcttt 180 ggtcacggac tgctgctggc attaacgccg gttatcgcgc aattaaatgg ttccggtcga 240 cgtgagcgca ttgcgcatca ggtgcgacaa ggtttctggc tggcaggttt tgtttccgtt 300 ctcattatgc tggtgctgtg gaatgcaggt tacattatcc gctccatgga aaacatcgat 360 ccggctctgg cggacaaagc cgtgggttat ctgcgtgcgt tgttgtgggg cgcgccggga 420 tatctgttct tccaggttgc ccgtaaccag tgtgaaggtc tggcaaaaac caagccgggt 480 atggtaatgg gctttatcgg cctgctggtg aacatcccgg tgaactatat ctttatttat 540 ggtcatttcg gtatgcctga gctcggtggc gttggttgtg gcgtggctac tgcggcggtg 600 tattgggtca tgttccttgc catggtttct tacattaaac gcgcccgctc catgcgcgat 660 attcgtaacg aaaaaggcac cgcaaaaccc gatcctgcgg ttatgaaacg actgattcaa 720 ctcggtttgc cgattgcgct ggcactgttc tttgaagtga cactgtttgc cgtcgtggct 780 ctgttagtgt ctccgctcgg tattgttgat gtcgcaggac accagattgc cctgaacttt 840 agttcactaa tgttcgtgct tccaatgtcg ctggcggcag cggtaactat ccgcgtaggt 900 tatcgtctgg gtcagggctc aacgctggat gcgcaaaccg ctgcgcggac cgggcttatg 960 gtgggtgtct gtatggcaac cctgacggcc attttcacgg tttcactgcg ggagcaaatc 1020 gccctgttgt acaacgacaa tcccgaggtt gtaacgctgg ctgcgcattt gatgttgctg 1080 gcggcggtat atcagatttc tgactcaatc caggtgattg gcagtgggat tttgcgtggt 1140 tataaagata cgcgttccat tttctatatt acctttacgg cttactgggt gctgggcttg 1200 ccaagcggct atattctggc actgaccgat ctggtcgttg aacctatggg gccagcaggc 1260 ttctggatag gctttattat tggcctgacg tcggcagcca ttatgatgat gttgcgtatg 1320 cggttcctgc aacgtctgcc gtcagccatc attctgcaac gagcatcccg ctaa 1374 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HF1 <400> 2 ccctgtacaa tccccgtaaa 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HR1 <400> 3 ggcgatttgc gcgagaatca 20 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> mdtK_PF <400> 4 tgattctcgc gcaaatcgcc gtgtaggctg gagctgcttc 40 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> mdtK_PR <400> 5 gacggcagac gttgcaggaa ctgtcaaaca tgagaattaa 40 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HF2 <400> 6 ttcctgcaac gtctgccgtc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_HR2 <400> 7 ctgaaagtga aacgcctgcg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_CF <400> 8 ggttgccgtt aatttccgtc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdtK_CR <400> 9 gggagtgttg cattactgga 20

Claims (8)

mdtK 유전자에 의해 발현되는 다약제 배출 단백질의 활성이 약화 또는 불활성화됨으로써 L-트립토판 생산능이 향상된 대장균 변이 균주.E. coli mutant strain with improved L-tryptophan production ability by weakening or inactivating the activity of the multidrug-releasing protein expressed by the mdtK gene. 제 1 항에 있어서,
상기 mdtK 유전자는 서열번호 1의 염기서열로 이루어진 것인,
변이 균주.
The method of claim 1,
The mdtK gene is composed of the nucleotide sequence of SEQ ID NO: 1,
Mutant strain.
삭제delete 제 1항에 있어서,
상기 변이 균주는 mdtK 유전자의 전부 또는 일부가 삽입, 치환, 또는 결실된 것인,
변이 균주.
The method of claim 1,
The mutant strain is that all or part of the mdtK gene is inserted, substituted, or deleted,
Mutant strain.
삭제delete 삭제delete 제 1 항의 변이 균주를 배지에서 배양하는 단계; 및
상기 배양된 변이 균주 및 배양 배지에서 L-트립토판을 회수하는 단계를 포함하는,
방향족 아미노산의 제조 방법.

Culturing the mutant strain of claim 1 in a medium; And
Comprising the step of recovering L-tryptophan from the cultured mutant strain and the culture medium,
A method for producing aromatic amino acids.

삭제delete
KR1020190138231A 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation KR102251947B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190138231A KR102251947B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190138231A KR102251947B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation

Publications (2)

Publication Number Publication Date
KR20210052107A KR20210052107A (en) 2021-05-10
KR102251947B1 true KR102251947B1 (en) 2021-05-17

Family

ID=75917879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190138231A KR102251947B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation

Country Status (1)

Country Link
KR (1) KR102251947B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646168B2 (en) 2007-03-01 2014-12-24 日本マイクロバイオファーマ株式会社 Transformed strains derived from multidrug efflux protein-deficient strains and microbial conversion methods using them
KR101704198B1 (en) 2015-05-14 2017-02-08 씨제이제일제당 (주) A microorganism of escherichia genus having l-tryptophan producing activity and method for producing l-tryptophan using the same
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751968B1 (en) * 2014-11-28 2017-06-30 대상 주식회사 Method for Increasing of Valin Production Potential of Mutant Bacteria

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646168B2 (en) 2007-03-01 2014-12-24 日本マイクロバイオファーマ株式会社 Transformed strains derived from multidrug efflux protein-deficient strains and microbial conversion methods using them
KR101704198B1 (en) 2015-05-14 2017-02-08 씨제이제일제당 (주) A microorganism of escherichia genus having l-tryptophan producing activity and method for producing l-tryptophan using the same
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Also Published As

Publication number Publication date
KR20210052107A (en) 2021-05-10

Similar Documents

Publication Publication Date Title
KR101830002B1 (en) Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same
KR101110580B1 (en) Method for producing target substance
KR101830001B1 (en) Strain overexpressing l-tryptophan by improving prpp synthesis pathway and process for producing l-tryptophan using the same
KR102269634B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by ansB Gene Inactivation
KR102624718B1 (en) Nucleic acid molecule containing a variant RPOC coding sequence
KR102251946B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by yeeO Gene Inactivation
KR102283626B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by glsB Gene Inactivation
KR102269642B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation
KR102251947B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation
KR102251948B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by mdfA Gene Inactivation and yicL Gene Introduction
WO2023065725A1 (en) Bacterial genome multiplex editing method based on double-stranded dna recombination engineering and application thereof
KR102283628B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection
US8247195B2 (en) Methods and host cells for recombinant protein expression
KR102565817B1 (en) Nucleic Acid Molecules Comprising Variant INC Coding Strands
EP4047086A1 (en) Novel mutant polypeptide with attenuated activity of citrate synthase and l-amino acid production method using same
US20240043885A1 (en) Strain with improved aromatic amino acid production capacity by ansb gene inactivation
WO2016036191A1 (en) Microorganism with improved l-lysine productivity, and method for producing l-lysine by using same
KR101233666B1 (en) Production of Isoleucine Using Mutant Bacteria
KR20130050780A (en) Method for production of ribose with metabolically engineered escherichia coli

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant