KR20210044933A - Probe card needle with improved corrosion protection and heat dissipation - Google Patents

Probe card needle with improved corrosion protection and heat dissipation Download PDF

Info

Publication number
KR20210044933A
KR20210044933A KR1020190127702A KR20190127702A KR20210044933A KR 20210044933 A KR20210044933 A KR 20210044933A KR 1020190127702 A KR1020190127702 A KR 1020190127702A KR 20190127702 A KR20190127702 A KR 20190127702A KR 20210044933 A KR20210044933 A KR 20210044933A
Authority
KR
South Korea
Prior art keywords
probe card
needle
card needle
tungsten
zro
Prior art date
Application number
KR1020190127702A
Other languages
Korean (ko)
Inventor
송신애
김기영
임성남
우주영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020190127702A priority Critical patent/KR20210044933A/en
Publication of KR20210044933A publication Critical patent/KR20210044933A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

The present invention relates to a probe card needle with improved anti-corrosion and heat radiation and a method of treating the surface of the probe card needle and, more specifically, to a new surface treatment method wherein an atomic layer deposition (ALD) method is used as a surface treatment method for a probe card needle comprising one selected from a group comprising tungsten, tungsten-rhenium, copper-beryllium and palladium to coat an aluminum oxide (Al2O3) or zirconium oxide (ZrO2) film very thinly and evenly, which can lead to an improvement in anti-corrosion, electric conductivity and heat radiation, thereby solving a deterioration in the reliability of a probe card caused by the thermal corrosion of a thinned needle.

Description

부식 방지 및 방열성을 향상시킨 프로브카드 니들{Probe card needle with improved corrosion protection and heat dissipation}Probe card needle with improved corrosion protection and heat dissipation}

본 발명은 프로브카드 니들 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 프로브카드 니들의 표면처리를 통한 부식 방지 및 방열성을 향상시킨 프로브카드 니들 및 상기 프로브카드 니들의 표면 처리 방법에 관한 것이다.The present invention relates to a probe card needle and a method of manufacturing the same, and more particularly, to a probe card needle having improved corrosion prevention and heat dissipation through surface treatment of the probe card needle, and a surface treatment method of the probe card needle.

최근 주문형 반도체, 디스플레이 구동 반도체 검사를 위해 프로브 카드를 사용하고 있다.Recently, probe cards are being used to inspect custom-made semiconductors and display driving semiconductors.

프로브카드란 IC 웨이퍼 위의 각 칩에 형성된 전극패드에 대응하는 탐침이 설치되어있고 이 탐침을 웨이퍼 칩 전극패드에 눌러 패드의 전기적인 결선상태(예를 들면 오픈검사, 쇼트 검사)를 검사하기 위해 제작된 검사용 회로기판이다.The probe card is equipped with a probe corresponding to the electrode pad formed on each chip on the IC wafer, and is used to check the electrical connection status of the pad (e.g., open inspection, short inspection) by pressing the probe against the electrode pad of the wafer chip. It is a manufactured circuit board for inspection.

반도체의 고성능 초소형화에 따라 전극패드 간격이 협소화되고 이 전극 패드 크기도 10 um까지 작아졌다.Due to the high-performance microminiaturization of semiconductors, the spacing of the electrode pads was narrowed, and the size of the electrode pads was reduced to 10 um.

최근 IC 칩의 소형화에 따라 검사해야 할 칩의 수가 크게 늘어나고 고집적에 따른 패드 미세화에 맞추어 탐침니들 직경이 작아지고 가늘어지고 있다.Recently, as IC chips are miniaturized, the number of chips to be inspected is greatly increased, and the probe needle diameter is getting smaller and thinner in accordance with the miniaturization of pads due to high integration.

이때 반도체 칩 검사를 위해 가늘어진 니들에 전류가 흐르게 되어 기존보다 많은 열이 발생되어 니들의 열부식이 발생하여 검사 신뢰성이 떨어지며 수명 단축의 문제가 있다.At this time, electric current flows through the thin needle for semiconductor chip inspection, generating more heat than before, causing thermal corrosion of the needle, resulting in poor inspection reliability and shortening of lifespan.

프로브카드용 니들로 사용하는 재질은 어느 정도 이상의 경도를 가지고 있어야 반도체 패드와 수많은 접촉에도 탐침끝이 무더지지 않으며 전기전도성이 높아야 반도체 검사시 노이즈없이 전류를 전달할 수 있다.The material used as the probe card needle must have a certain degree of hardness so that the tip of the probe does not become thick even in numerous contact with the semiconductor pad, and the electrical conductivity is high so that current can be transmitted without noise during semiconductor inspection.

금은 부식성은 없으나 연성이 강해 탐침으로 사용하기 적절치 못하며, 백금은 금에 비해 경도는 높고 부식성이 없어 탐침으로 사용하기에 좋아 많이 사용하고 있으나 가격이 높다는 단점이 있다.Gold is not corrosive, but it is not suitable for use as a probe due to its strong ductility, and platinum is used a lot because it has a higher hardness than gold and is not corrosive, so it is used a lot for use as a probe, but it has a disadvantage of high price.

텅스텐, 구리-베릴륨 등의 경우 높은 경도를 가지고 있으며, 금이나 백금에 비해 가격이 저렴하여 니들 재료로써 사용하기 좋으나 열에 의해 부식이 잘 일어나는 문제가 있다.In the case of tungsten, copper-beryllium, etc., they have high hardness, and are good for use as a needle material because they are cheaper than gold or platinum, but there is a problem that corrosion is easily caused by heat.

이에, 본 발명자는 가늘어진 니들의 열 부식에 의해 프로브카드 신뢰성 저하를 해결하기 위해 니들 표면 처리를 통해 열 부식을 해결하고자 노력하였으며, 니들 표면에 Al2O3 또는 ZrO2 막을 ALD(Atomic layer deposition) 방식으로 매우 얇게 그리고 고르게 코팅한 결과, 전류가 흐를 때 발생되는 열을 빨리 밖으로 보내는 역할을 하고, 열부식이 일어나지 않으며, 기존 세라믹 졸을 이용한 코팅 방식에 비해 매우 얇은 10 nm 이하의 막을 형성함으로써 전기저항을 높이지 않는 효과를 얻을 수 있음을 확인함으로써, 본 발명을 완성하였다.The present inventors have made efforts to solve the thermal decay through the needle and the surface treatment in order by heat corrosion The thinner needle to fix the probe card, the reliability decreases, the needle and the surface of Al 2 O 3 or ZrO 2 film ALD (Atomic layer deposition ) As a result of coating very thinly and evenly, the heat generated when current flows out quickly, does not cause thermal corrosion, and forms a film of less than 10 nm, which is very thin compared to the conventional ceramic sol coating method. By confirming that the effect of not increasing the electrical resistance can be obtained, the present invention was completed.

대한민국 등록특허 제10-0825231호Korean Patent Registration No. 10-0825231 대한민국 등록특허 제10-1715153호Korean Patent Registration No. 10-1715153

본 발명의 목적은 종래 기존의 Al2O3 등의 세라믹 졸을 이용한 코팅방식 등은 프로브카드 니들 표면을 100% 감싸지 못하며, 졸로 형성된 입자의 크기도 크기 때문에 코팅시 두께가 두꺼워지는 문제점을 가지기 때문에, 기존 니들 코팅 방식과 달리 니들 표면을 100% 감싸고 코팅시 매우 얇은 막을 형성하여 두께가 두꺼워지지 않는 새로운 프로브카드 니들 표면처리 방법을 제공하는 것이다.An object of the present invention is that the conventional coating method using a ceramic sol such as Al 2 O 3 does not cover 100% of the probe card needle surface, and the size of the particles formed of the sol is also large, so that the thickness becomes thick during coating. Unlike the existing needle coating method, it is to provide a new probe card needle surface treatment method that covers 100% of the needle surface and forms a very thin film during coating so that the thickness does not increase.

구체적으로, 본 발명의 목적은 텅스텐, 구리-베릴륨 표면에 방열효과를 가지면서, 열부식을 막을 수 있도록 30 nm 이하의 Al2O3 또는 ZrO2 막을 표면처리 방법으로 ALD(Atomic layer deposition) 방식을 사용하여 니들 표면에 매우 얇고 고르게 코팅함으로써 열 부식성을 막고 전기전도성을 향상시키며 방열 효과를 증대시킨 프로브카드 니들을 제조하는 방법, 및 상기 제조방법으로 제조된 프로브카드 니들을 제공하는 것이다.Specifically, an object of the present invention is an ALD (Atomic Layer Deposition) method as a surface treatment method of an Al 2 O 3 or ZrO 2 film of 30 nm or less to prevent thermal corrosion while having a heat dissipation effect on tungsten and copper-beryllium surfaces. To provide a method of manufacturing a probe card needle having a very thin and even coating on the surface of the needle to prevent thermal corrosion, improve electrical conductivity, and increase heat dissipation effect, and a probe card needle manufactured by the above manufacturing method.

상기 목적을 달성하기 위하여, To achieve the above object,

본 발명은 The present invention

i) 반응 챔버 내에 텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 프로브카드 니들을 배치하는 단계;i) disposing a probe card needle composed of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium in the reaction chamber;

ii) 상기 반응 챔버 내의 니들 표면에 기화된 금속 전구체인 트리메틸알루미늄(trimethylamuminum) 또는 테트라키스(에틸메틸아미도)지르코늄(tetrakis(Ethylmethylamino) Zirconium)을 공급하여 흡착시키는 단계;ii) supplying and adsorbing trimethylaluminum (trimethylamuminum) or tetrakis (ethylmethylamido) zirconium (tetrakis (Ethylmethylamino) Zirconium) vaporized metal precursors to the surface of the needle in the reaction chamber;

iii) 퍼지가스를 공급하여 반응 챔버로부터 잉여의 기화된 금속 전구체를 제거하는 단계;iii) supplying a purge gas to remove excess vaporized metal precursor from the reaction chamber;

iv) 금속 전구체가 흡착된 샘플 위에 반응가스를 공급하여 반응시켜 산화알루미(Al2O3) 또는 산화지르코늄(ZrO2) 박막을 형성하는 단계; iv) forming an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) thin film by supplying and reacting a reaction gas on the sample to which the metal precursor is adsorbed;

v) 퍼지가스를 공급하여 반응 챔버로부터 잉여의 반응가스 및 반응 부산물을 제거하는 단계; 및v) supplying a purge gas to remove excess reaction gas and reaction by-products from the reaction chamber; And

vi) 원하는 두께의 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 박막이 획득될 때까지 상기 ii) 단계 내지 v) 단계를 순차적으로 반복 수행하는 단계;를 포함하는,vi) sequentially repeating steps ii) to v) until an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2) thin film having a desired thickness is obtained; including,

원자층 증착법(Atomic Layer Deposition; ALD)을 이용한 프로브카드 니들의 표면처리 방법을 제공한다.Provides a method for surface treatment of probe card needles using atomic layer deposition (ALD).

또한, 본 발명은 In addition, the present invention

텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 니들 표면에 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 막이 10 ~ 30 nm 두께로 균일하게 코팅된, 프로브카드 니들을 제공한다. An aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) film is uniformly coated with a thickness of 10 to 30 nm on the needle surface consisting of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium. , Provide probe card needles.

본 발명에서는 표면처리 방법으로 ALD(Atomic layer deposition) 방식을 사용하여 Al2O3 또는 ZrO2 막을 니들 표면에 매우 얇게 그리고 고르게 코팅함으로써 전류가 흐를 때 발생되는 열을 빨리 밖으로 보내는 역할을 하고, 열부식이 일어나지 않도록 할 수 있다. In the present invention, the Al 2 O 3 or ZrO 2 film is coated very thinly and evenly on the needle surface using ALD (Atomic Layer Deposition) method as a surface treatment method, thereby quickly transmitting heat generated when current flows out, and heat You can prevent corrosion from occurring.

종래 텅스텐, 니켈 코팅-텅스텐, 텅스텐-레늄, 구리-베릴륨 등의 경우 높은 경도를 가지고 있으며, 금이나 백금에 비해 가격이 저렴하여 프로브카드 니들 재료로써 사용하기 좋으나 열에 의해 부식이 잘 일어나는 문제가 있다.Conventional tungsten, nickel coating-tungsten, tungsten-rhenium, copper-beryllium, etc. have high hardness and are good for use as a probe card needle material because they are cheaper than gold or platinum, but there is a problem that corrosion easily occurs due to heat. .

이에 대해, 본 발명에서는 이들 텅스텐, 구리-베릴륨 등의 표면에 방열효과를 가지면서 열 부식을 막을 수 있도록 두께 30 nm 이하의 Al2O3 또는 ZrO2를 얇게 코팅시킴으로써, 신뢰성을 갖는 프로브카드 니들을 제조할 수 있다. On the other hand, in the present invention, by thinly coating Al 2 O 3 or ZrO 2 having a thickness of 30 nm or less to prevent thermal corrosion while having a heat dissipation effect on the surfaces of these tungsten, copper-beryllium, etc., a probe card needle having reliability Can be manufactured.

기존의 졸 코팅의 경우에는 졸 입자의 크기가 보통 5 ~ 10 nm 정도이며 이를 표면에 균일하게 코팅을 위해서는 일반적으로 50 nm 이상의 두께로 코팅이 이루어졌다. 또한, 기존의 졸 코팅의 경우에는 졸 입자가 떨어질 수 있는 문제도 있어서 나중에 이를 적용한 프로브카드가 반도체 성능평가시 니들 표면에서 코팅된 입자 알갱이가 떨어져 반도체칩 오염이 일어날 수 있는 문제를 가지고 있다.In the case of the conventional sol coating, the size of the sol particles is usually about 5 to 10 nm, and in order to uniformly coat it on the surface, the coating has been generally made to a thickness of 50 nm or more. In addition, in the case of the existing sol coating, there is a problem that the sol particles may fall off, so the probe card to which the sol particles are applied later has a problem that the coated particles may fall off the needle surface during the semiconductor performance evaluation, resulting in contamination of the semiconductor chip.

이에 대해, 본 발명에서는 기존보다 매우 얇은 최소 30 nm 이하, 최대 10 nm 이하의 막을 형성함으로써 가늘어진 니들에 적합한 코팅 두께를 형성할 수 있고, 전기저항을 높이지 않는 효과도 얻을 수 있다.On the other hand, in the present invention, by forming a film having a minimum thickness of 30 nm or less and a maximum of 10 nm or less, which is much thinner than before, a coating thickness suitable for a thin needle can be formed, and an effect of not increasing electrical resistance can be obtained.

도 1은 본 발명에 따른 프로브카드 니들의 구조를 보여주는 그림이다.
도 2는 본 발명에 따른 ZrO2로 각각 코팅된 텅스텐 와이어, 텅스텐-레늄 와이어 및 팔라듐 와이어의 TEM 분석 결과를 보여주는 그림이다.
도 3은 본 발명에 따른 Al2O3로 각각 코팅된 텅스텐 와이어, 텅스텐-레늄 와이어 및 팔라듐 와이어의 TEM 분석 결과를 보여주는 그림이다.
도 4는 본 발명에 따른 ZrO2 및 Al2O3로 각각 코팅된 텅스텐-레늄 와이어의 코팅 두께를 보여주는 그림이다.
도 5는 본 발명에 따른 Al2O3로 코팅된 텅스텐 와이어에 대해 염수분무시험 결과로서 SEM 표면 관찰 결과를 보여주는 그림이다.
1 is a diagram showing the structure of a probe card needle according to the present invention.
FIG. 2 is a diagram showing TEM analysis results of a tungsten wire, a tungsten-rhenium wire, and a palladium wire each coated with ZrO 2 according to the present invention.
3 is a diagram showing TEM analysis results of a tungsten wire, a tungsten-rhenium wire, and a palladium wire each coated with Al 2 O 3 according to the present invention.
Figure 4 is a diagram showing the coating thickness of the tungsten-rhenium wire each coated with ZrO 2 and Al 2 O 3 according to the present invention.
5 is a view showing the SEM surface observation result as a salt spray test result for the tungsten wire coated with Al 2 O 3 according to the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 프로브카드 니들에 표면처리 방법으로 원자층 증착법(Atomic Layer Deposition; ALD)을 사용하여 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 막을 매우 얇게 그리고 고르게 코팅함으로써 부식 방지, 전기전도성 및 방열성을 향상시키는 방법을 제공한다.The present invention uses an atomic layer deposition (ALD) method on a probe card needle composed of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium, and uses aluminum oxide (Al 2 ). O 3 ) or a zirconium oxide (ZrO 2 ) film is coated very thinly and evenly, thereby providing a method of improving corrosion protection, electrical conductivity and heat dissipation.

이와 관련하여, 프로브카드 니들에 ALD 코팅 기술은 적용된 경우는 아직 없다. 기존 프로브카드 분야에서도 반도체 패드사이즈는 작아지면서 니들이 점점 얇아져야하는데 요구 신호전달속도는 높아지면서 기니들로는 한계에 도달하다보니 새로운 니들 표면처리방식에 대한 요구가 커졌다. 이에, 본 발명은 니들에 새로운 코팅기술을 도입하고자 하였다. 방열효과가 크면서 막의 경도가 큰 산화물계를 코팅하는 것이 니들에 신호전류가 전달될 때 저항에 의해 발생되는 열을 빨리 빼줄 수 있다. 또한 산화막을 이미 피막하였기 때문에 공기중에서 산화될 가능성이 낮으며, 니들 간 전류간섭도 줄일 수 있다. 본 발명은 ALD 기술을 프로브카드 니들에 사용되어 니들 표면을 코팅하여 산화를 방지하고 전류간의 간섭이나 단락을 막을 수 있는 수단으로 쓰일 수 있다는 점을 최초로 규명하였다.In this regard, the ALD coating technology has not yet been applied to the probe card needle. Even in the field of conventional probe cards, as the semiconductor pad size decreases, the needles have to become thinner. As the required signal transmission speed increases, the guineas reach their limits, so the demand for a new needle surface treatment method has increased. Thus, the present invention was to introduce a new coating technology to the needle. Coating an oxide-based film with a high heat dissipation effect and a large film hardness can quickly remove heat generated by resistance when a signal current is transmitted to the needle. In addition, since the oxide film has already been coated, the possibility of oxidation in the air is low, and current interference between the needles can be reduced. In the present invention, it was found for the first time that the ALD technology can be used as a means to prevent oxidation by coating the surface of the needle and to prevent interference or short circuit between electric currents by coating the surface of the probe card needle.

구체적으로, 본 발명은 Specifically, the present invention

i) 반응 챔버 내에 텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 프로브카드 니들을 배치하는 단계;i) disposing a probe card needle composed of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium in the reaction chamber;

ii) 상기 반응 챔버 내의 니들 표면에 기화된 금속 전구체인 트리메틸알루미늄(trimethylamuminum) 또는 테트라키스(에틸메틸아미도)지르코늄(tetrakis(Ethylmethylamino) Zirconium)을 공급하여 흡착시키는 단계;ii) supplying and adsorbing trimethylaluminum (trimethylamuminum) or tetrakis (ethylmethylamido) zirconium (tetrakis (Ethylmethylamino) Zirconium) vaporized metal precursors to the surface of the needle in the reaction chamber;

iii) 퍼지가스를 공급하여 반응 챔버로부터 잉여의 기화된 금속 전구체를 제거하는 단계;iii) supplying a purge gas to remove excess vaporized metal precursor from the reaction chamber;

iv) 금속 전구체가 흡착된 샘플 위에 반응가스를 공급하여 반응시켜 산화알루미(Al2O3) 또는 산화지르코늄(ZrO2) 박막을 형성하는 단계; iv) forming an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) thin film by supplying and reacting a reaction gas on the sample to which the metal precursor is adsorbed;

v) 퍼지가스를 공급하여 반응 챔버로부터 잉여의 반응가스 및 반응 부산물을 제거하는 단계; 및v) supplying a purge gas to remove excess reaction gas and reaction by-products from the reaction chamber; And

vi) 원하는 두께의 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 박막이 획득될 때까지 상기 ii) 단계 내지 v) 단계를 순차적으로 반복 수행하는 단계;를 포함하는, 원자층 증착법(Atomic Layer Deposition; ALD)을 이용한 프로브카드 니들의 표면처리 방법을 제공한다.vi) sequentially repeating steps ii) to v) until an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2) thin film having a desired thickness is obtained; including, atomic layer deposition method Provides a method for surface treatment of probe card needles using (Atomic Layer Deposition; ALD).

상기 방법에 있어서, 원자층 증착법(ALD)은 서로 화학 반응을 일으킬 수 있는 전구체(Precursor)와 반응물(Reactant)의 공급을 주기적으로 반복하여, 증착 대상 위에서 자기포화(자가제한) 표면 반응을 통해 박막을 형성하는 방법이다. 여기서 전구체들의 반응은 오직 당해 표면 위에서만 이루어지고 사이클 단위로 박막을 증착하기 때문에 우수한 단차 피복성과 더불어 원자레벨로 두께조절이 가능한 특징이 있으며, 박막 특성이 우수하고 불순물 형성을 억제할 수 있는 장점도 있다.In the above method, the atomic layer deposition method (ALD) periodically repeats the supply of a precursor and a reactant that can cause a chemical reaction with each other to form a thin film through a self-saturation (self-limiting) surface reaction on the deposition target. Is how to form. Here, since the reaction of the precursors occurs only on the surface and deposits a thin film in cycle units, it has excellent step coverage and thickness control at the atomic level, and has excellent thin film properties and the advantage of suppressing the formation of impurities. have.

상기 방법에 있어서, 원자층 증착법(ALD)의 메커니즘은 다음과 같아. 필름 전구체의 증기가 진공 챔버 중에서 기판 상에 흡수된다. 이어서, 증기는 챔버로부터 펌핑되어 기판 상의 흡수된 전구체의 박층 (일반적으로 실질적으로 단일층)을 빠져나온다. 이어서, 흡수된 전구체와의 반응을 촉진시키는 열적 조건 하에서 반응물을 챔버 중으로 도입하여 목적하는 물질층을 형성한다. 반응 생성물은 챔버로부터 펌핑된다. 기판을 다시 전구체 증기에 노출시키고, 증착 공정을 반복함으로써 후속 물질층이 형성될 수 있다.In the above method, the mechanism of atomic layer deposition (ALD) is as follows. The vapor of the film precursor is absorbed onto the substrate in a vacuum chamber. The vapor is then pumped out of the chamber and exits a thin layer (generally a substantially monolayer) of absorbed precursor on the substrate. Subsequently, the reactant is introduced into the chamber under thermal conditions to promote the reaction with the absorbed precursor to form the desired material layer. The reaction product is pumped from the chamber. Subsequent material layers may be formed by exposing the substrate to the precursor vapor again and repeating the deposition process.

상기 방법에 있어서, 상기 단계 iii) 및 v)에서 퍼지가스는 아르곤(Ar) 가스 또는 질소(N2) 가스인 것이 바람직하나, 아르곤(Ar) 가스가 더 바람직하다.In the above method, the purge gas in steps iii) and v) is preferably argon (Ar) gas or nitrogen (N 2 ) gas, but argon (Ar) gas is more preferred.

상기 방법에 있어서, 상기 단계 iv)에서 반응가스는 O3, H2O, H2O2 및 O2로 구성된 군으로부터 선택된 어느 하나인 것이 바람직하나, O3가 더 바람직하다.In the above method, the reaction gas in step iv) is preferably any one selected from the group consisting of O 3 , H 2 O, H 2 O 2 and O 2 , but O 3 is more preferable.

상기 방법에 있어서, 상기 ii) 단계에서 v) 단계까지는 1 스텝(step)으로서 각각 0.1 ~ 1초, 10 ~ 60초, 0.05 ~ 1초 및 10 ~ 60초로 1 사이클(cycle)을 수행하는 것이 바람직하고, 각각 0.5 ~ 1초, 30 ~ 40초, 0.1 ~ 0.5초 및 30 ~ 40초로 1 사이클(cycle)을 수행하는 것이 더 바람직하다.In the above method, it is preferable to perform one cycle from step ii) to step v) at 0.1 to 1 second, 10 to 60 seconds, 0.05 to 1 second, and 10 to 60 seconds, respectively, as one step. And, it is more preferable to perform one cycle in 0.5 to 1 second, 30 to 40 seconds, 0.1 to 0.5 seconds, and 30 to 40 seconds, respectively.

상기 방법에 있어서, 상기 vi) 단계에서 반복은 10 ~ 30 사이클(cycle)을 수행하는 것이 바람직하고, 20 ~ 25 사이클(cycle)을 수행하는 것이 더 바람직하다.In the above method, the repetition in step vi) is preferably 10 to 30 cycles, and more preferably 20 to 25 cycles.

또한, 본 발명은 텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 니들 표면에 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 막이 10 ~ 30 nm 두께로 균일하게 코팅된, 프로브카드 니들을 제공한다. In addition, in the present invention, an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) film is 10 to 30 nm thick on the needle surface consisting of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium. Provide a probe card needle uniformly coated with.

상기 프로브카드 니들은 텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 프로브카드 니들에 표면처리 방법으로 원자층 증착법(Atomic Layer Deposition; ALD)을 사용하여 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 막을 매우 얇게 그리고 고르게 코팅함으로써 제조될 수 있다.The probe card needle is made of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium. Al 2 O 3 ) or zirconium oxide (ZrO 2 ) It can be prepared by coating a film very thinly and evenly.

상기 프로브카드 니들은 텅스텐, 구리-베릴륨 등의 표면에 방열효과를 가지면서 열 부식을 막을 수 있도록 두께 30 nm 이하의 Al2O3 또는 ZrO2를 얇게 코팅시킴으로써, 전류가 흐를 때 발생되는 열을 빨리 밖으로 보내는 역할을 하고, 열부식이 일어나지 않도록 할 수 있다. The probe card needle is a thin coating of Al2O3 or ZrO2 with a thickness of 30 nm or less to prevent thermal corrosion while having a heat dissipation effect on the surface of tungsten, copper-beryllium, etc., thereby quickly sending heat generated when current flows to the outside. And prevent heat corrosion from occurring.

특히, 기존의 졸 코팅의 경우에는 졸 입자의 크기가 보통 5 ~ 10 nm 정도이며 이를 표면에 균일하게 코팅을 위해서는 일반적으로 50 nm 이상의 두께로 코팅이 이루어졌고, 기존의 졸 코팅의 경우에는 졸 입자가 떨어질 수 있는 문제도 있어서 나중에 이를 적용한 프로브카드가 반도체 성능평가시 니들 표면에서 코팅된 입자 알갱이가 떨어져 반도체칩 오염이 일어날 수 있는 문제를 가지고 있는 반면, 상기 프로브카드 니들은 기존보다 매우 얇은 최소 30 nm 이하, 최대 10 nm 이하의 막을 형성함으로써 가늘어진 니들에 적합한 코팅 두께를 형성할 수 있고 상기 반도체칩 오염 문제가 없다.In particular, in the case of the existing sol coating, the size of the sol particles is usually about 5 to 10 nm, and in order to coat the surface uniformly, the coating is generally made with a thickness of 50 nm or more, and in the case of the conventional sol coating, the sol particles There is also a problem that the probe card to which it is applied later has a problem that the coated particles may fall off the surface of the needle during semiconductor performance evaluation, causing contamination of the semiconductor chip, whereas the probe card needle is at least 30, which is very thinner than before. By forming a film of less than or equal to 10 nm, a coating thickness suitable for a thin needle can be formed, and there is no problem of contamination of the semiconductor chip.

이하, 본 발명을 하기 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by the following examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following Examples and Experimental Examples.

<< 실시예Example 1> 1>

텅스텐 와이어, 텅스텐-레늄 와이어 및 팔라듐 와이어 각각의 표면을 원자층 증착법(Atomic Layer Deposition; ALD)을 이용하여 Al2O3 및 ZrO2로 코팅을 수행하였다.The surfaces of each of the tungsten wire, tungsten-rhenium wire, and palladium wire were coated with Al 2 O 3 and ZrO 2 using atomic layer deposition (ALD).

ALD 코팅은 다음과 같은 공정으로 수행하였다.ALD coating was performed in the following process.

a) 와이어를 반응 챔버 내에 배치하였다. 이때, 챔버 온도는 Al2O3 코팅의 경우 180℃, ZrO2 코팅의 경우 250℃로 세팅하였다.a) The wire was placed in the reaction chamber. At this time, the chamber temperature was set to 180°C for Al 2 O 3 coating and 250°C for ZrO 2 coating.

b) 상기 반응 챔버 내의 와이어 표면 위로 기화된 전구체(Al2O3 코팅: TMA (trimethylamuminum, Al(CH3)3), ZrO2 코팅: Tetrakis (Ethylmetylamino) Zirconium (TEMA Zr))를 0.5초 동안 투여하였다. 이때, 공정 압력은 400 m torr로 유지하였다.b) A precursor vaporized on the wire surface in the reaction chamber (Al 2 O 3 coating: TMA (trimethylamuminum, Al(CH 3 ) 3 ), ZrO 2 coating: Tetrakis (Ethylmetylamino) Zirconium (TEMA Zr)) was administered for 0.5 seconds I did. At this time, the process pressure was maintained at 400 m torr.

c) 와이어 표면에 물리적 또는 화학적으로 흡착된 전구체를 제외한 잉여의 기화된 전구체를 아르곤(Ar) 퍼지가스를 30초 동안 공급하여 반응 챔버로부터 제거하였다.c) The excess vaporized precursor excluding the precursor physically or chemically adsorbed on the wire surface was removed from the reaction chamber by supplying an argon (Ar) purge gas for 30 seconds.

d) 전구체가 흡착된 와이어에 반응가스로서 산소(O3)를 0.1초 동안 투여하여 흡착된 전구체와 반응시켜 박막을 형성하였다. d) Oxygen (O 3 ) was administered as a reaction gas to the wire on which the precursor was adsorbed for 0.1 seconds to react with the adsorbed precursor to form a thin film.

e) 잉여의 반응가스 및 반응 부산물을 아르곤(Ar) 퍼지가스를 30초 동안 공급하여 반응 챔버로부터 제거하였다.e) The excess reaction gas and reaction by-products were removed from the reaction chamber by supplying an argon (Ar) purge gas for 30 seconds.

f) 상기 사이클을 20 사이클까지 반복하여, Al2O3, ZrO2를 코팅하였다.f) The cycle was repeated up to 20 cycles, and Al 2 O 3 and ZrO 2 were coated.

ALD 실험조건ALD test conditions 실험조건Experimental conditions Al2O3 코팅Al 2 O 3 coating ZrO2 코팅ZrO 2 coating 챔버온도Chamber temperature 180℃180℃ 250℃250℃ 퍼지가스Purge gas ArAr ArAr process pressureprocess pressure 400 m torr400 m torr 400 m torr400 m torr 전구체Precursor TMA (trimethylamuminum, Al(CH3)3)TMA (trimethylamuminum, Al(CH 3 ) 3 ) Tetrakis (Ethylmetylamino) Zirconium (TEMA Zr)Tetrakis (Ethylmetylamino) Zirconium (TEMA Zr) 반응가스Reaction gas O3 O 3 O3 O 3 1사이클 반응시간1 cycle reaction time O3-Purge-TMA-Purge로 1step으로 0.1-30-0.5-30 s0.1-30-0.5-30 s in 1 step with O3-Purge-TMA-Purge O3-Purge-TEMA Zr-Purge을 1step으로 0.1-30-0.5-30 sO3-Purge-TEMA Zr-Purge in 1 step 0.1-30-0.5-30 s 반복repeat 20 사이클20 cycles 20 사이클20 cycles

<< 실험예Experimental example 1> 코팅 두께 확인 1> Check the coating thickness

TEM 분석을 위해 FIB 시편을 제작하였으며, TEM을 통해 표면에 고르게 코팅되었는지 확인하였다.FIB specimens were prepared for TEM analysis, and it was confirmed that the surface was evenly coated through TEM.

그 결과, 도 2 및 도 3에 나타난 바와 같이, 표면에 Al2O3, ZrO2 코팅이 매우 일정한 두께로 균일하게 이루어 진 것을 확인하였다.As a result, as shown in FIGS. 2 and 3, it was confirmed that the Al 2 O 3 and ZrO 2 coatings were uniformly formed with a very constant thickness on the surface.

또한, 도 4에 나타난 바와 같이, 코팅 두께는 Al2O3의 경우 약 20 ~ 30 nm 코팅이 이루어졌으며, ZrO2의 경우 약 10 ~ 15 nm 코팅이 이루어진 것을 확인하였다. In addition, as shown in FIG. 4, it was confirmed that the coating thickness was about 20 to 30 nm coating in the case of Al 2 O 3 and about 10 to 15 nm coating in the case of ZrO 2.

<< 실험예Experimental example 2> 부식 방지 효과 확인 2> Check the anti-corrosion effect

ALD 코팅을 통해 니들의 부식 방지효과를 보기 위해 코팅하지 않은 텅스텐와이어, 텅스텐-레륨와이어, 팔라듐와이어와 각각 Al2O3, ZrO2 코팅한 와이어를 염수분무시험을 통해 부식도를 평가하였다.In order to see the anti-corrosion effect of the needle through ALD coating, uncoated tungsten wire, tungsten-lelium wire, palladium wire, and wires coated with Al 2 O 3 and ZrO 2 , respectively, were evaluated for corrosion through salt spray test.

염수분무시험 실험은 HCl 5% 용액을 분무하여 35℃ 챔버에 운반기체 N2 gas를 통해 공급하였으며, 72시간 방치 후 표면 SEM과 EDS를 통한 표면 성분분석을 통해 부식 여부를 확인하였다. In the salt spray test experiment, a 5% HCl solution was sprayed and supplied to a 35°C chamber through a carrier gas N 2 gas. After leaving for 72 hours, corrosion was confirmed through surface component analysis through surface SEM and EDS.

그 결과, 표 2 및 도 5에 나타난 바와 같이, 표면에 Al2O3, ZrO2 코팅 후 부식이 현저히 덜 일어나는 것을 확인하였다.As a result, as shown in Table 2 and FIG. 5, it was confirmed that corrosion occurred significantly less after coating Al 2 O 3 and ZrO 2 on the surface.

염수분무실험 결과 Salt spray test results no-coatingno-coating Al2O3 코팅Al 2 O 3 coating ZrO2 코팅ZrO 2 coating 염수분무
실험 전
Salt spray
Before experiment
염수분무
실험 후
Salt spray
After experiment
염수분무
실험 전
Salt spray
Before experiment
염수분무
실험 후
Salt spray
After experiment
염수분무
실험 전
Salt spray
Before experiment
염수분무
실험 후
Salt spray
After experiment
턴스텐
와이어
Turnsten
wire
W 87.0 wt%
O 5.5 wt%
Re 7.5 wt%
W 87.0 wt%
O 5.5 wt%
Re 7.5 wt%
W 75.6 wt%
O 6.2 wt%
Re 18.2 wt%
W 75.6 wt%
O 6.2 wt%
Re 18.2 wt%
W 85.8 wt%
Al 0.2wt%
O 6.2 wt%
Re 7.8 wt%
W 85.8 wt%
Al 0.2wt%
O 6.2 wt%
Re 7.8 wt%
W 84.6 wt%
Al 0.3 wt%
O 5.9 wt%
Re 9.2 wt%
W 84.6 wt%
Al 0.3 wt%
O 5.9 wt%
Re 9.2 wt%
W 85.5 wt%
Zr 0.5 wt%
O 6.1 wt%
Re 7.9 wt%
W 85.5 wt%
Zr 0.5 wt%
O 6.1 wt%
Re 7.9 wt%
W 85.2 wt%
Zr 0.4 wt%
O 6.2 wt%
Re 8.2 wt%
W 85.2 wt%
Zr 0.4 wt%
O 6.2 wt%
Re 8.2 wt%
텅스텐-레늄
와이어
Tungsten-rhenium
wire
W 72.6 wt%
O 6.2 wt%
Re 21.2 wt%
W 72.6 wt%
O 6.2 wt%
Re 21.2 wt%
W 51.6 wt%
O 8.2 wt%
Re 40.2 wt%
W 51.6 wt%
O 8.2 wt%
Re 40.2 wt%
W 72.9 wt%
Al 0.3 wt%
O 5.9 wt%
Re 20.9 wt%
W 72.9 wt%
Al 0.3 wt%
O 5.9 wt%
Re 20.9 wt%
W 70.6 wt%
Al 0.3 wt%
O 6.1 wt%
Re 23.0 wt%
W 70.6 wt%
Al 0.3 wt%
O 6.1 wt%
Re 23.0 wt%
W 71.3 wt%
Zr 0.6 wt%
O 6.4 wt%
Re 21.7 wt%
W 71.3 wt%
Zr 0.6 wt%
O 6.4 wt%
Re 21.7 wt%
W 68.7 wt%
Zr 0.4 wt%
O 6.3 wt%
Re 24.6 wt%
W 68.7 wt%
Zr 0.4 wt%
O 6.3 wt%
Re 24.6 wt%
팔라쥼
와이어
Palazzo
wire
Pd 97.2 wt%
O 2.8 wt%
Pd 97.2 wt%
O 2.8 wt%
Pd 97.2 wt%
O 2.8 wt%
Pd 97.2 wt%
O 2.8 wt%
Pd 97.2 wt%
Al 0.1 wt%
O 2.7 wt%
Pd 97.2 wt%
Al 0.1 wt%
O 2.7 wt%
Pd 97.9 wt%
Al 0.1 wt%
O 2.8 wt%
Pd 97.9 wt%
Al 0.1 wt%
O 2.8 wt%
Pd 97.4 wt%
Zr 0.1 wt%
O 2.5 wt%
Pd 97.4 wt%
Zr 0.1 wt%
O 2.5 wt%
Pd 97.2 wt%
Zr 0.2 wt%
O 2.6 wt%
Pd 97.2 wt%
Zr 0.2 wt%
O 2.6 wt%

Claims (7)

i) 반응 챔버 내에 텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 프로브카드 니들을 배치하는 단계;
ii) 상기 반응 챔버 내의 니들 표면에 기화된 금속 전구체인 트리메틸알루미늄(trimethylamuminum) 또는 테트라키스(에틸메틸아미도)지르코늄(tetrakis(Ethylmethylamino) Zirconium)을 공급하여 흡착시키는 단계;
iii) 퍼지가스를 공급하여 반응 챔버로부터 잉여의 기화된 금속 전구체를 제거하는 단계;
iv) 금속 전구체가 흡착된 샘플 위에 반응가스를 공급하여 반응시켜 산화알루미(Al2O3) 또는 산화지르코늄(ZrO2) 박막을 형성하는 단계;
v) 퍼지가스를 공급하여 반응 챔버로부터 잉여의 반응가스 및 반응 부산물을 제거하는 단계; 및
vi) 원하는 두께의 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 박막이 획득될 때까지 상기 ii) 단계 내지 v) 단계를 순차적으로 반복 수행하는 단계;를 포함하는,
원자층 증착법(Atomic Layer Deposition; ALD)을 이용한 프로브카드 니들의 표면처리 방법.
i) disposing a probe card needle composed of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium in the reaction chamber;
ii) supplying and adsorbing trimethylaluminum (trimethylamuminum) or tetrakis (ethylmethylamido) zirconium (tetrakis (Ethylmethylamino) Zirconium) vaporized metal precursors to the surface of the needle in the reaction chamber;
iii) supplying a purge gas to remove excess vaporized metal precursor from the reaction chamber;
iv) forming an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) thin film by supplying and reacting a reaction gas on the sample to which the metal precursor is adsorbed;
v) supplying a purge gas to remove excess reaction gas and reaction by-products from the reaction chamber; And
vi) sequentially repeating steps ii) to v) until an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2) thin film having a desired thickness is obtained; including,
Surface treatment method of probe card needle using atomic layer deposition (ALD).
제1항에 있어서,
상기 퍼지가스는 아르곤(Ar) 가스 또는 질소(N2) 가스인 것을 특징으로 하는 프로브카드 니들의 표면처리 방법.
The method of claim 1,
The purge gas is argon (Ar) gas or nitrogen (N 2 ) gas, characterized in that the surface treatment method of the probe card needle.
제1항에 있어서,
상기 반응가스는 O3, H2O, H2O2 및 O2로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 프로브카드 니들의 표면처리 방법.
The method of claim 1,
The reaction gas is a surface treatment method of the probe card needle, characterized in that any one selected from the group consisting of O 3 , H 2 O, H 2 O 2 and O 2.
제1항에 있어서,
상기 ii) 단계에서 v) 단계까지는 1 스텝(step)으로서 각각 0.1 ~ 1초, 10 ~ 60초, 0.05 ~ 1초 및 10 ~ 60초로 1 사이클(cycle)을 수행하는 것을 특징으로 하는 프로브카드 니들의 표면처리 방법.
The method of claim 1,
The probe card needle, characterized in that one cycle from step ii) to step v) is performed in 0.1 to 1 second, 10 to 60 seconds, 0.05 to 1 second, and 10 to 60 seconds, respectively, as one step. Surface treatment method.
제1항에 있어서,
상기 반복은 10 ~ 30 사이클(cycle)을 수행하는 것을 특징으로 하는 프로브카드 니들의 표면처리 방법.
The method of claim 1,
The repetition is a method of surface treatment of the probe card needle, characterized in that performing 10 to 30 cycles (cycle).
텅스텐, 텅스텐-레늄, 구리-베릴륨 및 팔라듐으로 구성된 군으로부터 선택된 어느 하나로 구성되는 니들 표면에 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 막이 10 ~ 30 nm 두께로 균일하게 코팅된, 프로브카드 니들.
An aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) film is uniformly coated with a thickness of 10 to 30 nm on the needle surface consisting of any one selected from the group consisting of tungsten, tungsten-rhenium, copper-beryllium, and palladium. , Probe card needle.
제6항에 있어서,
상기 프로브카드 니들은 니들 표면에 원자층 증착법(Atomic Layer Deposition; ALD)을 통해 산화알루미륨(Al2O3) 또는 산화지르코늄(ZrO2) 막이 코팅된 것을 특징으로 하는 프로브카드 니들.
The method of claim 6,
The probe card needle is a probe card needle, characterized in that an aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ) film is coated on the surface of the needle through atomic layer deposition (ALD).
KR1020190127702A 2019-10-15 2019-10-15 Probe card needle with improved corrosion protection and heat dissipation KR20210044933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190127702A KR20210044933A (en) 2019-10-15 2019-10-15 Probe card needle with improved corrosion protection and heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190127702A KR20210044933A (en) 2019-10-15 2019-10-15 Probe card needle with improved corrosion protection and heat dissipation

Publications (1)

Publication Number Publication Date
KR20210044933A true KR20210044933A (en) 2021-04-26

Family

ID=75733803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190127702A KR20210044933A (en) 2019-10-15 2019-10-15 Probe card needle with improved corrosion protection and heat dissipation

Country Status (1)

Country Link
KR (1) KR20210044933A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825231B1 (en) 2007-06-29 2008-04-25 (주)피티앤케이 Method for manufacturing probe needle used in probe card and probe needle
KR101715153B1 (en) 2015-06-17 2017-03-10 주식회사 새한마이크로텍 Method of fabricating insulated probe pin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825231B1 (en) 2007-06-29 2008-04-25 (주)피티앤케이 Method for manufacturing probe needle used in probe card and probe needle
KR101715153B1 (en) 2015-06-17 2017-03-10 주식회사 새한마이크로텍 Method of fabricating insulated probe pin

Similar Documents

Publication Publication Date Title
US11251023B2 (en) Multi-layer plasma resistant coating by atomic layer deposition
US20210310124A1 (en) Coating by ald for suppressing metallic whiskers
US11515155B2 (en) Methods for enhancing selectivity in SAM-based selective deposition
KR20050118706A (en) Integrated circuit die having a copper contact and method therefor
KR101703195B1 (en) Multi-Layer Ceramic Chip Component having Nano Thin Film Oxide Layer and Method of Manufacturing of the Same
US10513433B2 (en) Laminated ceramic chip component including nano thin film layer, manufacturing method therefor, and atomic layer vapor deposition apparatus therefor
TW202126845A (en) Ultrathin conformal coatings for electrostatic dissipation in semiconductor process tools
CN108907183B (en) Double-layer coated metal powder and preparation method and application thereof
US6530992B1 (en) Method of forming a film in a chamber and positioning a substitute in a chamber
KR20220084395A (en) Hafnium Aluminum Oxide Coatings Deposited by Atomic Layer Deposition
KR20210044933A (en) Probe card needle with improved corrosion protection and heat dissipation
JPWO2007064012A1 (en) Method for forming Cu film
KR20080069918A (en) Film forming method of srtio3 film
JP4807960B2 (en) Film forming apparatus and film forming method
JP2019220494A (en) Film formation composition, film-equipped substrate, manufacturing method thereof, and manufacturing method of thin film
US20220359332A1 (en) Temporary passivation layer on a substrate
JP2022191403A (en) Protection of substrate
KR102019834B1 (en) Methods of treating metal surface and structure surface treated by using the same
CN110475904A (en) The manufacturing method containing Yttrium oxide thin film is manufactured by atomic layer deposition method
US20110052797A1 (en) Low Temperature Plasma-Free Method for the Nitridation of Copper
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
KR100719805B1 (en) Method of depositing capacitor electrode adding transition metal
KR20230078538A (en) Manufacturing method of composite material filament
JP2005167114A (en) Method and apparatus for forming boron nitride film
Ahmet et al. X-Ray Photoelectron Spectroscopy (XPS) Investigations to Monitor the Cleanliness of Copper Surfaces During Palladium-Free Colloidal Copper Activation

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application