KR20210041396A - Plasma water treatmemt apparatus using bubbles in water - Google Patents
Plasma water treatmemt apparatus using bubbles in water Download PDFInfo
- Publication number
- KR20210041396A KR20210041396A KR1020190124070A KR20190124070A KR20210041396A KR 20210041396 A KR20210041396 A KR 20210041396A KR 1020190124070 A KR1020190124070 A KR 1020190124070A KR 20190124070 A KR20190124070 A KR 20190124070A KR 20210041396 A KR20210041396 A KR 20210041396A
- Authority
- KR
- South Korea
- Prior art keywords
- water
- plasma
- inlet pipe
- air inlet
- contaminated water
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/4608—Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
Landscapes
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
본 발명은 플라즈마 수처리 장치에 관한 것으로서, 보다 상세하게는 흡입되는 공기를 이용하여 발생되는 플라즈마로 수처리 하는 수중 기포를 이용한 플라즈마 수처리 장치에 관한 것이다.The present invention relates to a plasma water treatment apparatus, and more particularly, to a plasma water treatment apparatus using water bubbles for water treatment with plasma generated using inhaled air.
알려진 바에 따르면, 종래 수처리 기술의 한계를 극복하여 대유량의 물을 처리하기 위하여, 플라즈마 수처리 기술이 개발되고 있다. 그러나 종래의 플라즈마 수처리 기술은 여전히 한계점을 가진다. 따라서 플라즈마의 종류에 관계없이 플라즈마를 물에 접촉시켜 수처리 효과를 극대화 할 필요성이 제기되고 있다.As is known, plasma water treatment technology has been developed in order to treat water of a large flow rate by overcoming the limitations of conventional water treatment technology. However, the conventional plasma water treatment technology still has limitations. Therefore, there is a need to maximize the effect of water treatment by contacting the plasma with water regardless of the type of plasma.
액체 내부에서 플라즈마 방전을 일으키는 기술은 오염물질을 제거하는 환경기술로써, 고부가 가치의 새로운 물질을 개발하는 재료기술 등 다양한 분야에서 활용될 수 있다. 수중에서 플라즈마를 효율적으로 발생시키기 위해서는 기포를 발생시키는 것과 미세한 기포들의 분포를 적절히 제어할 필요가 있다.The technology that generates plasma discharge inside the liquid is an environmental technology that removes pollutants, and can be used in various fields such as material technology that develops new materials of high value. In order to efficiently generate plasma in water, it is necessary to appropriately control the generation of bubbles and the distribution of fine bubbles.
그러나 일반적으로 알려진 기술은 기체를 추가로 주입하여 수중에서 기포를 발생시킨다. 플라즈마 수처리 효율을 극대화하기 위하여 기체를 추가로 공급하기 위한 시스템은 전체 수처리 시스템의 효율을 저하시키며, 수처리 시스템의 복잡성을 증대시킨다.However, a generally known technique generates bubbles in water by injecting additional gas. A system for additionally supplying gas to maximize plasma water treatment efficiency lowers the efficiency of the entire water treatment system and increases the complexity of the water treatment system.
또한, 대유량의 물을 처리하기 위하여 기체를 추가로 공급한 이후, 플라즈마 방전을 하게 되면, 기체 주입 방식에 따라 플라즈마 방전의 불안정성이 증가될 수 있고, 물과 기포가 섞이는 기포 영역에서 기포의 균일한 분포가 어려워진다. 따라서 기체를 추가로 공급하는 플라즈마 수처리 방식은 수처리 효율 증가에 한계를 가진다.In addition, if plasma discharge is performed after additional gas is supplied to treat water with a large flow rate, the instability of plasma discharge may increase depending on the gas injection method, and uniformity of bubbles in the bubble area where water and bubbles are mixed. One distribution becomes difficult. Therefore, the plasma water treatment method that additionally supplies gas has a limitation in increasing water treatment efficiency.
본 발명의 목적은 오염수(예, 물) 흐름 및 플라즈마 방전을 최적화하여 플라즈마로 대유량의 오염수를 효율적으로 수처리 하는 수중 기포를 이용한 플라즈마 수처리 장치를 제공하는 것이다.An object of the present invention is to provide a plasma water treatment apparatus using water bubbles that efficiently water-treat a large flow of contaminated water with plasma by optimizing the flow of contaminated water (eg, water) and plasma discharge.
본 발명의 목적은 오염수(예, 물)의 흐름을 제어하여(부가적인 장치 없이) 오염수가 흐르는 영역에 외부의 기체를 흡입하여 오염수에 와류를 형성하고, 오염수와 공기가 섞이는 와류영역에서 공기를 균일하게 분포하며, 이 와류영역에 플라즈마 방전을 형성하여 수처리 하는 수중 기포를 이용한 플라즈마 수처리 장치를 제공하는 것이다.An object of the present invention is to control the flow of contaminated water (e.g., water) (without an additional device) to inhale external gas into the contaminated water flow area to form a vortex in the contaminated water, and to form a vortex in which contaminated water and air are mixed. It is to provide a plasma water treatment apparatus using bubbles in water that uniformly distributes air in the vortex and forms a plasma discharge in the eddy current region for water treatment.
본 발명의 일 실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치는, 유입구로 처리대상인 오염수를 유입하고 처리공간에서 오염수를 플라즈마 처리한 후, 처리된 처리수를 배출구로 배출하는 하우징, 및 상기 하우징의 외부에 연결되어 상기 처리공간에 설치되어 상기 오염수의 유입에 따라 작용하는 흡인력으로 외부의 공기를 흡입하여 상기 처리공간에 공급하는 공기 유입관을 포함하며, 상기 공기 유입관과 상기 배출구는 고전압전극과 접지전극 중 서로 다른 하나의 전극으로 작용하고, 상기 처리공간에 수용되는 오염수의 수면과 상기 공기 유입관의 내측단은 서로의 사이에 방전갭을 형성하며, 상기 처리공간에 수용되는 오염수와 흡입되는 공기는 와류영역에서 혼합되어 플라즈마 방전을 일으킨다.A plasma water treatment apparatus using underwater bubbles according to an embodiment of the present invention includes a housing for introducing contaminated water to be treated into an inlet, plasma treatment of the contaminated water in a treatment space, and discharging the treated water to an outlet, and the An air inlet pipe connected to the outside of the housing and installed in the treatment space to suck external air with a suction force acting upon the inflow of the contaminated water and supply it to the treatment space, wherein the air inlet pipe and the outlet are It acts as a different electrode among the high voltage electrode and the ground electrode, and the water surface of the contaminated water accommodated in the processing space and the inner end of the air inlet pipe form a discharge gap between each other, and are accommodated in the processing space. The contaminated water and the inhaled air are mixed in the vortex area to cause plasma discharge.
상기 공기 유입관은 고전압전극으로 작용하고, 상기 배출구는 접지전극으로 작용할 수 있다.The air inlet pipe may act as a high voltage electrode, and the outlet may act as a ground electrode.
상기 하우징은 상기 처리공간의 상부에 형성되어 유입되는 오염수를 수용하는 수용부, 및 상기 수용부로부터 오염수가 상기 처리공간으로 내려가는 유량 및 유속을 조절하도록 상기 수용부와 상기 처리공간보다 좁은 통로로 형성되는 조절부를 더 포함할 수 있다.The housing is formed on the upper portion of the treatment space to accommodate the contaminated water introduced, and a passage narrower than the receiving part and the treatment space to control the flow rate and flow rate of the contaminated water descending from the receiving part to the treatment space. It may further include a control portion to be formed.
상기 공기 유입관은 상기 수용부 및 상기 조절부를 경유하여 설치되고, 상기 내측단의 개구를 상기 처리공간에 배치할 수 있다.The air inlet pipe may be installed via the receiving part and the adjusting part, and an opening at the inner end may be disposed in the processing space.
상기 내측단은 상기 처리공간에 수용되는 오염수의 수면과의 사이에 방전갭을 형성할 수 있다.The inner end may form a discharge gap between the water surface of the contaminated water accommodated in the treatment space.
상기 공기 유입관의 외면과 상기 조절부의 내면은 상기 조절부에서 최소 간격으로 형성될 수 있다.The outer surface of the air inlet pipe and the inner surface of the adjusting part may be formed at a minimum distance from the adjusting part.
상기 공기 유입관은 상기 수용부 및 상기 조절부를 경유하여 설치되고, 상기 내측단의 개구를 상기 처리공간에 배치하며, 상기 공기 유입관의 외면과 상기 조절부의 내면은 상기 조절부에서 가변 간격으로 형성될 수 있다.The air inlet pipe is installed via the accommodating part and the adjusting part, and the opening at the inner end is disposed in the processing space, and the outer surface of the air inlet pipe and the inner surface of the adjusting part are formed at variable intervals in the adjusting part. Can be.
상기 조절부에 대응하는 상기 공기 유입관의 외경은 상기 내측단 측에서 상기 공기 유입관의 외측단 측으로 가면서 점진적으로 감소하여, 상기 가변 간격은 상기 외측단 측에서 최대로 형성되고 상기 내측단 측으로 가면서 점진적으로 좁아질 수 있다.The outer diameter of the air inlet pipe corresponding to the adjusting part gradually decreases as it goes from the inner end side to the outer end side of the air inlet pipe, so that the variable spacing is formed to the maximum at the outer end side and goes toward the inner end side. It can be gradually narrowed.
상기 공기 유입관은 접지전극으로 작용하며, 상기 하우징은 절연재로 형성되고, 상기 배출구는 고전압전극으로 작용할 수 있다.The air inlet pipe may function as a ground electrode, the housing may be formed of an insulating material, and the outlet may function as a high voltage electrode.
이와 같이, 본 발명의 일 실시예는 하우징 내에 공기 유입관을 설치하고, 처리대상인 오염수를 유입하면서 오염수의 유입에 따라 공기 유입관에 작용하는 흡인력으로 외부의 공기를 흡입한다.As described above, according to an embodiment of the present invention, an air inlet pipe is installed in the housing, and while contaminated water to be treated is introduced, external air is sucked by a suction force acting on the air inlet pipe according to the inflow of the contaminated water.
따라서 일 실시예는, 처리공간에 수용되는 오염수에 와류를 형성하며, 오염수와 흡입되는 공기(기포)를 와류영역에서 혼합하고, 처리공간에서 플라즈마 방전을 일으키켜, 또한 와류영역의 공기(기포)에서도 플라즈마 방전을 일으키므로 플라즈마 방전으로 대유량의 오염수(물)을 효율적으로 수처리 할 수 있다.Accordingly, in one embodiment, a vortex is formed in the contaminated water accommodated in the treatment space, and the contaminated water and air (bubbles) sucked are mixed in the vortex region, and plasma discharge is generated in the treatment space, and the air in the vortex region ( Air bubbles) also generate plasma discharge, so it is possible to efficiently water-treat a large flow of contaminated water (water) by plasma discharge.
이때, 일 실시예는 와류영역에서 공기(기포)가 오염수(물)에 균일하게 분포되므로 이 공기(기포)에 의하여 플라즈마 방전이 균일하게 일어나므로 와류영역에서 오염수(물)를 더욱 효과적으로 수처리 할 수 있다.At this time, in one embodiment, since the air (bubbles) is uniformly distributed in the contaminated water (water) in the vortex region, the plasma discharge occurs uniformly by the air (bubbles). can do.
도 1은 본 발명의 제1실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치의 구성도이다.
도 2는 도 1의 수중 기포를 이용한 플라즈마 수처리 장치를 통하여, 공기 흡입 현상을 이용한 플라즈마 수처리 개념을 검증한 사진이다.
도 3은 본 발명의 제2실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치의 구성도이다.
도 4는 본 발명의 제3실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치의 구성도이다.1 is a block diagram of a plasma water treatment apparatus using underwater bubbles according to a first embodiment of the present invention.
FIG. 2 is a photograph illustrating the concept of plasma water treatment using an air suction phenomenon through the plasma water treatment apparatus using underwater bubbles of FIG. 1.
3 is a block diagram of a plasma water treatment apparatus using underwater bubbles according to a second embodiment of the present invention.
4 is a block diagram of a plasma water treatment apparatus using underwater bubbles according to a third embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and the same reference numerals are assigned to the same or similar components throughout the specification.
도 1은 본 발명의 제1실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치의 구성도이다. 도 1을 참조하면, 제1실시예의 수중 기포를 이용한 플라즈마 수처리 장치(1)는 하우징(10)과 공기 유입관(20)을 포함한다. 1 is a block diagram of a plasma water treatment apparatus using underwater bubbles according to a first embodiment of the present invention. Referring to FIG. 1, a plasma
하우징(10)은 처리대상 오염수를 유입하여 플라즈마로 처리한 오염수에서 오염물질이 제거된 처리수를 배출하도록 구성된다. 즉 하우징(10)은 오염수를 유입하여 깨끗한 처리수를 배출하게 된다.The
예로써, 하우징(10)은 상부에 유입구(11)를 구비하고 하부에 배출구(12)를 구비한다. 그리고 하우징(10)은 유입구(11)와 배출구(12) 사이에 처리공간(13)을 구비하여, 오염수를 플라즈마 방전(P1)에 의하여 발생되는 플라즈마로 처리한다. For example, the
즉 유입구(11)로 하우징(10)에 유입되는 처리대상 오염수는 처리공간(13)에서 플라즈마 처리로 오염물질이 제거된 처리수로 변화되어, 처리수는 하우징(10)의 배출구(12)로 배출된다.That is, the contaminated water to be treated flowing into the
공기 유입관(20)은 하우징(10)의 외부에 연결되어 하우징(10)의 내부 처리공간(13)에 설치된다. 즉 공기 유입관(20)은 외부로부터 하우징(10)의 내부로 삽입되고, 외측단(21)은 하우징(10)의 외부에 배치되고, 내측단(22)은 처리공간(13)에 노출된다.The
따라서 유입구(11)에서 처리공간(13)으로 오염수가 유입됨에 따라 공기 유입관(20)의 내측단(22)의 개구에 흡인력이 작용하고, 이 흡인력에 의하여 외부의 공기가 외측단(21)의 개구과 내측단(22)의 개구를 통하여 처리공간(13)으로 유입된다.Therefore, as contaminated water flows from the
공기 유입관(20)과 배출구(12)는 고전압전극과 접지전극 중 서로 다른 하나의 전극으로 작용할 수 있다. 이때, 공기 유입관(20)과 하우징(10) 사이에 개재되는 전기 절연부재(23)는 양자를 전기적으로 절연시킨다. The
제1실시예는 일례로써, 공기 유입관(20)은 고전압에 연결되어 고전압전극으로 작용하고, 배출구(12)는 전기적으로 접지되어 접지전극으로 작용하는 것을 예시한다. 따라서 공기 유입관(20)을 통하여 처리공간(13)으로 흡인되는 공기에 고전압이 인가되며, 오염수에 혼합된 공기들에도 고전압이 인가될 수 있다. 즉 공기는 고전압이 인가된 상태로 처리공간(13)으로 흡인되고, 오염수 속에 분포하게 된다.The first embodiment is an example, and the
한편, 하우징(10)은 수용부(14)와 조절부(15)를 더 포함한다. 수용부(14)는 처리공간(13)의 상부에 형성되어 유입되는 오염수를 1차적으로 수용 및 경유하여 처리공간(13)으로 흐르게 한다.Meanwhile, the
조절부(15)는 수용부(14)와 처리공간(13)보다 좁은 통로로 오염수의 흡입 방향(도 1에서 상하 방향)에 대하여 수용부(14)와 처리공간(13) 사이에 형성되어, 수용부(14)로부터 오염수가 처리공간(13)으로 내려가는 유량 및 유속을 조절한다.The adjusting
공기 유입관(20)은 수용부(14) 및 조절부(15)를 경유하여 설치되고, 내측단(22)의 개구를 처리공간(13)에 배치한다. 공기 유입관(20)의 외면과 조절부(15)의 내면은 조절부(15)에서 최소 간격(G1)으로 형성된다. 최소 간격(G1)은 오염수(물)의 유량과 유속을 설정하게 된다.The
처리공간(13)에 수용되는 오염수의 수면과 공기 유입관(20)의 내측단(22)은 서로의 사이에 방전갭(G)을 형성한다. 즉 공기 유입관(20)에 고전압이 인가되고 배출구(12)가 접지되면, 내측단(22)과 오염수의 수면 사이에 설정되는 방전갭(G)에서 플라즈마 방전(P1)이 일어난다. The water surface of the contaminated water accommodated in the
처리공간(13)에 수용되는 오염수와 흡입되는 공기는 와류영역(WA)에서 혼합된다. 방전갭(G)에서 플라즈마 방전(P1)시, 와류영역(WA)에 혼합된 공기를 방전기체로 하여 플라즈마 방전(P2)을 일으키게 된다. 와류영역(WA)의 플라즈마 방전(P2)은 방전갭(G)에서의 플라즈마 방전(P1)에 추가하여 일어나는 것으로써 대유량의 오염수(물)을 효율적으로 수처리 할 수 있게 한다.The contaminated water accommodated in the
이때, 와류영역(WA)에서 공기(기포)가 오염수(물)에 보다 균일하게 분포될 수록 공기(기포)에 의한 플라즈마 방전(P2)이 더 균일하게 일어날 수 있다. 따라서 와류영역(WA)에서 오염수(물)이 더욱 효과적으로 수처리 될 수 있다.In this case, as the air (bubbles) is more evenly distributed in the contaminated water (water) in the eddy current region WA, the plasma discharge P2 due to the air (bubbles) may occur more uniformly. Therefore, contaminated water (water) can be treated more effectively in the vortex area WA.
도 2는 도 1의 수중 기포를 이용한 플라즈마 수처리 장치를 통하여, 공기 흡입 현상을 이용한 플라즈마 수처리 개념을 검증한 사진이다. 도 2를 참조하면, 제1실시예의 플라즈마 수처리 장치는 공기 흡입 현상을 이용하여 방전갭(G)에서 플라즈마 방전(P1)시 오염수와 공기가 혼합된 와류영역(WA)(즉 수중)에서 플라즈마 방전(P2)을 발생시키는 것을 검증하고 있다.FIG. 2 is a photograph illustrating the concept of plasma water treatment using an air suction phenomenon through the plasma water treatment apparatus using underwater bubbles of FIG. 1. Referring to FIG. 2, the plasma water treatment apparatus of the first embodiment uses an air suction phenomenon to generate plasma in a vortex area WA (that is, underwater) in which contaminated water and air are mixed during plasma discharge P1 in the discharge gap G. It is verifying that the discharge P2 is generated.
오염수의 수처리 과정을 보면, 먼저, 플라즈마 수처리 장치는 유입구(11)로 오염수를 유입한다. 오염수는 하우징(10)의 수용부(14) 및 조절부(15)를 경유하면서 유속이 빨라진 상태로 처리공간(13)으로 유입된다. 유속이 빨라지면서 공기 유입관(20)의 내측단(22) 개구에 흡인력이 작용하여, 외부 공기는 외측단(21) 개구 및 내측단(22) 개구를 통하여 처리공간(13)으로 흡인된다.Looking at the water treatment process of contaminated water, first, the plasma water treatment apparatus introduces contaminated water into the
이때, 공기 유입관(20)에 고전압을 인가하여 공기 유입관(20)이 고전압전극으로 작용하고, 배출구(12)를 접지하여 배출구(12)가 접지전극으로 작용한다. 따라서 수용부(14) 내에서 수면과 내측단(22) 사이에 형성되는 방전갭(G)에서 흡인되는 공기가 방전기체로 작용한다. 공기에 고전압이 인가되고 오염수가 전기적으로 접지되어 방전갭(G)에서 플라즈마 방전(P1)이 일어난다. 플라즈마 방전(P1)으로 발생되는 플라즈마는 표면에서 오염수를 처리하게 된다.At this time, by applying a high voltage to the
또한, 흡인되는 공기의 흡인력에 의하여, 공기는 오염수의 내부로 유입되어, 와류영역(WA)을 형성하면서 오염수에 혼합된다. 따라서 오염수 내에 기포가 균일하게 분포된다. 방전갭(G)에서 플라즈마 방전(P1)이 일어남에 더하여 오염수 내부에서 공기(기포)가 방전기체로 작하여 플라즈마 방전(P2)이 더 일어난다.In addition, by the suction force of the air being sucked, air is introduced into the contaminated water and mixed with the contaminated water while forming the vortex area WA. Therefore, air bubbles are evenly distributed in the contaminated water. In addition to the plasma discharge P1 occurring in the discharge gap G, air (bubbles) inside the contaminated water are small as discharge gas, so that the plasma discharge P2 further occurs.
오염수는 방전갭(G)에서 발생되는 플라즈마 방전(P1)으로 발생되는 플라즈마 및 오염수 내부의 공기(기포)에서 발생되는 플라즈마 방전(P2)으로 발생되는 플라즈마에 의하여 보다 효과적으로 플라즈마 수처리 될 수 있다.The contaminated water can be treated more effectively by plasma generated by the plasma discharge P1 generated in the discharge gap G and the plasma generated by the plasma discharge P2 generated in the air (bubbles) inside the contaminated water. .
그리고 방전갭(G)에 형성된 플라즈마 방전(P1)으로 발생되는 플라즈마는 오염수 내부로 더 유입될 수 있다. 이 플라즈마는 오염수 내부의 공기(기포)에서 발생되는 플라즈마 방전(P2)으로 발생되는 플라즈마에 의한 수처리 작용을 더 도울 수 있다. 이로 인하여, 오염수는 더 효과적으로 플라즈마 수처리 될 수 있다.In addition, plasma generated by the plasma discharge P1 formed in the discharge gap G may further flow into the contaminated water. This plasma may further aid in water treatment by plasma generated by plasma discharge P2 generated from air (bubble) inside the contaminated water. Due to this, the contaminated water can be treated with plasma water more effectively.
이하, 본 발명의 다양한 실시예들에 대하여 설명한다. 제1실시예 및 기 설명된 실시예들과 비교하여 동일한 구성들을 생략하고 서로 다른 구성들에 대하여 설명한다.Hereinafter, various embodiments of the present invention will be described. Compared with the first embodiment and the previously described embodiments, the same components are omitted and different components will be described.
도 3은 본 발명의 제2실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치의 구성도이다. 도 3을 참조하면, 제2실시예의 플라즈마 수처리 장치(2)에서, 공기 유입관(30)은 수용부(14) 및 조절부(15)를 경유하여 설치되고, 내측단(32)의 개구를 처리공간(13)에 배치한다.3 is a block diagram of a plasma water treatment apparatus using underwater bubbles according to a second embodiment of the present invention. Referring to FIG. 3, in the plasma
공기 유입관(30)의 외면과 조절부(15)의 내면은 조절부(15)에서 가변 간격(G3)으로 형성된다. 즉 적어도 조절부(15)에 대응하는 공기 유입관(30)의 외경은 내측단(32) 측에서 외측단(31) 측으로 가면서 점진적으로 감소한다.The outer surface of the
따라서 가변 간격(G3)은 외측단(31) 측에서 최대로 형성되고 내측단(32) 측으로 가면서 점진적으로 좁아진다. 가변 간격(G3)으로 인하여, 오염수의 유입에 따라 작용하는 흡인력이 제어되어, 외부의 공기를 흡입하는 공기 유입관(30)의 유량 및 유속이 제어될 수 있다.Therefore, the variable spacing G3 is formed to the maximum in the
제2실시예는 공기 유입관(30)을 테이퍼 관으로 형성하여 가변 간격(G3)을 형성하고 있다. 도시하지 않았으나, 본 발명은 공기 유입관을 전체 길이 범위에서 동일한 직경을 갖는 관으로 형성하고, 조절부의 내면을 테이퍼 관으로 형성할 수도 있다.In the second embodiment, the
일례로써, 공기 유입관(30)은 홀더(33)를 개재하여 전기 절연부재(23)에 승강 가능한 구조로 장착될 수 있다. 도시하지 않았으나 공기 유입관(30)은 홀더(33)에 연결되는 승강 액츄에이터의 작동으로 승강될 수 있다.As an example, the
공기 유입관(30)이 승강하면, 가변 간격(G3)의 증감으로 인하여, 수용부(14)로부터 오염수가 처리공간(13)으로 내려가는 유량 및 유속이 더욱 조절되고, 이로 인하여, 공기 유입관(30)을 통하여 외부에서 흡입되는 공기의 유량 및 유속이 더욱 제어될 수 있다.When the
그리고 공기 유입관(30)의 승강으로 방전갭(G31)이 가변되면, 오염수의 유량과 유속 및 공기의 유량과 유속에 대응하여 방전갭(G31)에서 플라즈마 방전(P31)이 가변적으로 일어날 수 있다. 처리공간(13)에 수용되는 오염수와 흡입되는 공기는 와류영역(WA)에서 혼합된다.In addition, when the discharge gap G31 is changed due to the elevation of the
방전갭(G31)에서 플라즈마 방전(P31)시, 와류영역(WA)에 혼합된 공기를 방전기체로 하여 오염수와 공기의 유량 및 유속에 더욱 대응하는 플라즈마 방전(P32)을 일으키게 된다. 와류영역(WA)의 플라즈마 방전(P32)은 방전갭(G31)에서의 플라즈마 방전(P31)에 추가하여 일어나는 것으로써 대유량의 오염수(물)을 효율적으로 수처리 할 수 있게 한다.During the plasma discharge P31 in the discharge gap G31, the air mixed in the vortex region WA is used as a discharge gas to generate a plasma discharge P32 further corresponding to the flow rate and flow rate of contaminated water and air. The plasma discharge P32 in the eddy current region WA is generated in addition to the plasma discharge P31 in the discharge gap G31, thereby enabling efficient water treatment of contaminated water (water) having a large flow rate.
이때, 와류영역(WA)에서 공기(기포)가 오염수(물)에 보다 균일하게 분포될 수록 공기(기포)에 의한 플라즈마 방전(P32)이 더 균일하게 일어날 수 있다. 따라서 와류영역(WA)에서 오염수(물)가 더욱 효과적으로 수처리 될 수 있다.In this case, as the air (bubble) is more evenly distributed in the contaminated water (water) in the eddy current region WA, the plasma discharge P32 due to the air (bubble) may occur more uniformly. Therefore, contaminated water (water) can be treated more effectively in the vortex area WA.
도 4는 본 발명의 제3실시예에 따른 수중 기포를 이용한 플라즈마 수처리 장치의 구성도이다. 도 4를 참조하면, 제3실시예의 플라즈마 수처리 장치(3)에서, 공기 유입관(20)은 접지전극으로 작용하며, 하우징(310)은 절연재로 형성되고, 배출구(312)는 고전압전극으로 작용할 수 있다.4 is a block diagram of a plasma water treatment apparatus using underwater bubbles according to a third embodiment of the present invention. 4, in the plasma
처리공간(13)에 수용되는 오염수의 수면과 공기 유입관(20)의 내측단(22)은 서로의 사이에 방전갭(G)을 형성한다. 즉 배출구(12)에 고전압이 인가되고, 공기 유입관(20)이 접지되어, 내측단(22)과 오염수의 수면 사이에 설정되는 방전갭(G)에서 플라즈마 방전(P1)이 일어난다.The water surface of the contaminated water accommodated in the
예를 들면, 실시예들의 플라즈마 수처리 장치는 다양한 분야, 즉 오염수를 정화하기 위하여 수중에서 플라즈마 방전을 일으키는 경우, 귀금속 촉매를 대체할 수 있는 탄소 촉매 제작을 위하여 액체 유기물에서 플라즈마 방전을 일으키는 경우, 친환경 수소를 생산하기 위하여 수중에서 플라즈마 방전을 일으키는 경우, 플라즈마 처리된 물의 농업용수로 활용하는 경우, 및 플라즈마 처리된 물로 살균하는 경우, 등에 효과적으로 사용될 수 있다.For example, the plasma water treatment apparatus of the embodiments is in various fields, that is, when plasma discharge is generated in water to purify contaminated water, when plasma discharge is generated from liquid organic material to manufacture a carbon catalyst that can replace a noble metal catalyst, In order to produce eco-friendly hydrogen, it can be effectively used when plasma discharge is generated in water, when plasma-treated water is used as agricultural water, and when plasma-treated water is sterilized.
이상을 통해 본 발명의 바람직한 실시예들에 대하여 설명하였지만, 본 발명은 이들에 한정되는 것이 아니고 청구범위와 발명의 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and it is possible to implement various modifications within the scope of the claims, the description of the invention, and the accompanying drawings. It is natural to fall within the scope of the invention.
1, 2, 3: 플라즈마 수처리 장치
10, 310: 하우징
11: 유입구
12, 312: 배출구
13: 처리공간
14: 수용부
15: 조절부
20, 30: 공기 유입관
21, 31: 외측단
22, 32: 내측단
23: 전기 절연부재
33: 홀더
G, G31: 방전갭
G1: 최소 간격
G3: 가변 간격
P1, P2, P31, P32: 플라즈마 방전
WA: 와류영역1, 2, 3: plasma
11:
13: processing space 14: receiving part
15:
21, 31:
23: electrical insulation member 33: holder
G, G31: Discharge gap G1: Minimum gap
G3: variable interval P1, P2, P31, P32: plasma discharge
WA: Vortex area
Claims (9)
상기 하우징의 외부에 연결되어 상기 처리공간에 설치되어 상기 오염수의 유입에 따라 작용하는 흡인력으로 외부의 공기를 흡입하여 상기 처리공간에 공급하는 공기 유입관
을 포함하며,
상기 공기 유입관과 상기 배출구는 고전압전극과 접지전극 중 서로 다른 하나의 전극으로 작용하고,
상기 처리공간에 수용되는 오염수의 수면과 상기 공기 유입관의 내측단은 서로의 사이에 방전갭을 형성하며,
상기 처리공간에 수용되는 오염수와 흡입되는 공기는 와류영역에서 혼합되어 플라즈마 방전을 일으키는
수중 기포를 이용한 플라즈마 수처리 장치.A housing for introducing contaminated water to be treated through the inlet, plasma treatment of the contaminated water in the treatment space, and discharging the treated water to the discharge port; And
An air inlet pipe connected to the outside of the housing and installed in the treatment space to suck external air with a suction force acting upon the inflow of the contaminated water and supply it to the treatment space
Including,
The air inlet pipe and the outlet serve as different electrodes of a high voltage electrode and a ground electrode,
The water surface of the contaminated water accommodated in the treatment space and the inner end of the air inlet pipe form a discharge gap therebetween,
The contaminated water accommodated in the treatment space and the air sucked are mixed in the eddy current region to cause plasma discharge.
Plasma water treatment apparatus using water bubbles.
상기 공기 유입관은 고전압전극으로 작용하고,
상기 배출구는 접지전극으로 작용하는
수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 1,
The air inlet pipe acts as a high voltage electrode,
The outlet serves as a ground electrode.
Plasma water treatment apparatus using water bubbles.
상기 하우징은
상기 처리공간의 상부에 형성되어 유입되는 오염수를 수용하는 수용부, 및
상기 수용부로부터 오염수가 상기 처리공간으로 내려가는 유량 및 유속을 조절하도록 상기 수용부와 상기 처리공간보다 좁은 통로로 형성되는 조절부
를 더 포함하는 수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 1,
The housing is
A receiving portion formed on the upper portion of the treatment space to receive the introduced contaminated water, and
A control unit formed by a passage narrower than the receiving unit and the treatment space to adjust the flow rate and flow rate of the contaminated water from the receiving unit to the treatment space
Plasma water treatment apparatus using water bubbles further comprising a.
상기 공기 유입관은
상기 수용부 및 상기 조절부를 경유하여 설치되고,
상기 내측단의 개구를 상기 처리공간에 배치하는
수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 3,
The air inlet pipe is
It is installed via the receiving portion and the adjusting portion,
Arranging the opening of the inner end in the processing space
Plasma water treatment apparatus using water bubbles.
상기 내측단은
상기 처리공간에 수용되는 오염수의 수면과의 사이에 방전갭을 형성하는 수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 4,
The inner end
Plasma water treatment apparatus using underwater bubbles to form a discharge gap between the water surface of the contaminated water accommodated in the treatment space.
상기 공기 유입관의 외면과 상기 조절부의 내면은
상기 조절부에서 최소 간격으로 형성되는
수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 1,
The outer surface of the air inlet pipe and the inner surface of the control unit are
Formed at the minimum interval in the adjustment unit
Plasma water treatment apparatus using water bubbles.
상기 공기 유입관은
상기 수용부 및 상기 조절부를 경유하여 설치되고,
상기 내측단의 개구를 상기 처리공간에 배치하며,
상기 공기 유입관의 외면과 상기 조절부의 내면은
상기 조절부에서 가변 간격으로 형성되는
수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 3,
The air inlet pipe is
It is installed via the receiving portion and the adjusting portion,
Arranging the opening of the inner end in the processing space,
The outer surface of the air inlet pipe and the inner surface of the control unit are
Formed at variable intervals in the control unit
Plasma water treatment apparatus using water bubbles.
상기 조절부에 대응하는 상기 공기 유입관의 외경은
상기 내측단 측에서 상기 공기 유입관의 외측단 측으로 가면서 점진적으로 감소하여,
상기 가변 간격은
상기 외측단 측에서 최대로 형성되고 상기 내측단 측으로 가면서 점진적으로 좁아지는
수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 7,
The outer diameter of the air inlet pipe corresponding to the control unit is
It gradually decreases as it goes from the inner end side to the outer end side of the air inlet pipe,
The variable spacing is
It is formed to the maximum at the outer end side and gradually narrows as it goes to the inner end side
Plasma water treatment apparatus using water bubbles.
상기 공기 유입관은 접지전극으로 작용하며,
상기 하우징은 절연재로 형성되고,
상기 배출구는 고전압전극으로 작용하는
수중 기포를 이용한 플라즈마 수처리 장치.The method of claim 1,
The air inlet pipe acts as a ground electrode,
The housing is formed of an insulating material,
The outlet serves as a high voltage electrode
Plasma water treatment apparatus using water bubbles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190124070A KR102340857B1 (en) | 2019-10-07 | 2019-10-07 | Plasma water treatmemt apparatus using bubbles in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190124070A KR102340857B1 (en) | 2019-10-07 | 2019-10-07 | Plasma water treatmemt apparatus using bubbles in water |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210041396A true KR20210041396A (en) | 2021-04-15 |
KR102340857B1 KR102340857B1 (en) | 2021-12-20 |
Family
ID=75441082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190124070A KR102340857B1 (en) | 2019-10-07 | 2019-10-07 | Plasma water treatmemt apparatus using bubbles in water |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102340857B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102481030B1 (en) | 2022-08-10 | 2022-12-26 | 이투플라즈마(주) | Continuous water treatment reactor using Low-temperature plasma generator for chromaticity reduction |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101882424B1 (en) * | 2018-03-08 | 2018-07-26 | 주식회사 플라즈마홀딩스 | Water treatment device using plasma |
KR101974050B1 (en) * | 2018-11-19 | 2019-04-30 | (주)유림산업기계 | Micro-bubble generator and water quality improvement device equipped with the same |
KR20190099886A (en) * | 2018-02-20 | 2019-08-28 | 한국기계연구원 | Plasma liquid treatment device |
-
2019
- 2019-10-07 KR KR1020190124070A patent/KR102340857B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190099886A (en) * | 2018-02-20 | 2019-08-28 | 한국기계연구원 | Plasma liquid treatment device |
KR101882424B1 (en) * | 2018-03-08 | 2018-07-26 | 주식회사 플라즈마홀딩스 | Water treatment device using plasma |
KR101974050B1 (en) * | 2018-11-19 | 2019-04-30 | (주)유림산업기계 | Micro-bubble generator and water quality improvement device equipped with the same |
Also Published As
Publication number | Publication date |
---|---|
KR102340857B1 (en) | 2021-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102098698B1 (en) | Plasma processing apparatus | |
TWI534891B (en) | Reaction chamber and plasma processing device | |
JP4308610B2 (en) | Ion generator | |
US5296018A (en) | Method and apparatus for eliminating electric charges in a clean room | |
CN1189595C (en) | Reduced impedance chamber | |
KR930001351A (en) | Plasma Processors and Methods Using Electromagnetic RF Connections | |
US7713377B2 (en) | Apparatus and method for plasma treating a substrate | |
JP2010212424A (en) | Shower head and plasma processing apparatus | |
KR101984437B1 (en) | Water treating apparatus using plasma | |
KR20220015940A (en) | Plasma processing apparatus and plasma processing method | |
CN108269727A (en) | Capacitance coupling plasma processing unit and method of plasma processing | |
KR20210041396A (en) | Plasma water treatmemt apparatus using bubbles in water | |
KR100788505B1 (en) | Injection type plasma treatment apparatus | |
JP2000514477A (en) | Dry surface treatment process and apparatus for performing such a process | |
KR102015884B1 (en) | humidifier comprising plasma generator | |
JPH11283940A (en) | Plasma treatment method | |
CN112334599A (en) | Active gas generating apparatus and film forming apparatus | |
CN109983848B (en) | Plasma generator | |
CN116031128A (en) | Plasma processing apparatus and internal chamber | |
JPS5610932A (en) | Plasma treating apparatus | |
JP2010251162A (en) | Plasma treatment device | |
KR100874341B1 (en) | Plasma generator | |
KR20220000817A (en) | Plasma processing apparatus | |
KR100720964B1 (en) | Power supplying device and plasma processing apparatus including the same | |
CN111225944B (en) | Surface modification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |