KR20210033550A - 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 - Google Patents
영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 Download PDFInfo
- Publication number
- KR20210033550A KR20210033550A KR1020217008054A KR20217008054A KR20210033550A KR 20210033550 A KR20210033550 A KR 20210033550A KR 1020217008054 A KR1020217008054 A KR 1020217008054A KR 20217008054 A KR20217008054 A KR 20217008054A KR 20210033550 A KR20210033550 A KR 20210033550A
- Authority
- KR
- South Korea
- Prior art keywords
- poc
- reference picture
- picture
- information
- pictures
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/577—Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/423—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/573—Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
본 발명은 영상 정보의 시그널링 방법과 이를 이용하는 디코딩 방법에 관한 것으로서, 본 발명에 따른 영상 정보의 시그널링 방법은 현재 픽처에 대한 인터 예측을 수행하는 단계 및 상기 인터 예측 결과 및 상기 인터 예측에서 이용가능한 참조 픽처들을 지시하는 참조 픽처 정보를 포함하는 정보를 시그널링 하는 단계를 포함하며, 상기 참조 픽처 정보는 상기 이용가능한 참조 픽처들의 POC (Picture Order Count) 정보들을 포함하고, 상기 참조 픽처 정보에서 상기 이용 가능한 참조 픽처들의 POC 정보는, POC 순서상 상기 현재 픽처 이전의 픽처들에 대한 POC들이 앞쪽에 위치하며, POC 순서상 상기 현재 픽처 이후의 픽처들에 대한 POC들이 뒤이어 위치할 수 있다.
Description
본 발명은 영상 압축 기술에 관한 것으로서, 더 구체적으로는 영상 정보를 효율적으로 시그널링하는 방법 및 장치와 이를 이용한 디코딩 방법 및 장치에 관한 것이다.
최근 고해상도, 고품질의 영상에 대한 요구가 다양한 응용 분야에서 증가하고 있다. 하지만, 영상이 고해상도를 가지고 고품질이 될수록 해당 영상에 관한 정보량도 함께 증가한다.
따라서 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 정보를 전송하거나 기존의 저장 매체를 이용해 영상 정보를 저장하는 경우에는, 정보의 전송 비용과 저장 비용이 증가하게 된다.
고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술을 이용할 수 있다.
영상 압축의 효율을 높이기 위해, 인터 예측과 인트라 예측을 이용할 수 있다. 인터 예측(inter prediction) 방법에서는 다른 픽처의 정보를 참조하여 현재 픽처(picture)의 픽셀값을 예측하며, 인트라 예측(intra prediction) 방법에서는 동일한 픽처 내에서 픽셀 간 연관 관계를 이용하여 픽셀값을 예측한다.
인터 예측을 적용하는 경우에, 인코딩 장치와 디코딩 장치는 현재 블록(현재 픽처)가 이용할 수 있는 참조 픽처들을 지시하는 참조 픽처 리스트에 기반해서 예측을 수행한다.
참조 픽처 리스트를 구성하기 위한 정보는 인코딩 장치로부터 디코딩 장치로 전송된다. 디코딩 장치는 인코딩 장치로부터 수신한 정보를 기반으로 참조 픽처 리스트를 구성해서 인터 예측을 효과적으로 수행할 수 있다.
본 발명은 영상 정보의 인코딩/디코딩에 있어서, 영상 정보를 효과적으로 시그널링 하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 영상 정보의 인코딩/디코딩에 있어서, 인터 예측을 위한 정보를 효과적으로 시그널링 하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 인터 예측을 수행하기 위한 참조 픽처 리스트를 구성하는 정보를 효과적으로 시그널링 하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 수신한 정보를 기반으로 인터 예측을 위한 참조 픽처 리스트를 효과적으로 구성하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명의 일 실시형태는 영상 정보의 시그널링 방법으로서, 현재 픽처에 대한 인터 예측을 수행하는 단계 및 상기 인터 예측 결과 및 상기 인터 예측에서 이용가능한 참조 픽처들을 지시하는 참조 픽처 정보를 포함하는 정보를 시그널링 하는 단계를 포함하며, 상기 참조 픽처 정보는 상기 이용가능한 참조 픽처들의 POC (Picture Order Count) 정보들을 포함하고, 상기 참조 픽처 정보에서 상기 이용 가능한 참조 픽처들의 POC 정보는, POC 순서상 상기 현재 픽처 이전의 픽처들에 대한 POC들이 앞쪽에 위치하며, POC 순서상 상기 현재 픽처 이후의 픽처들에 대한 POC들이 뒤이어 위치할 수 있다.
이때, 상기 POC 정보는, POC 순서상 상기 현재 픽처 이전의 참조 픽처들에 대해서는 참조 픽처들의 POC 내림차순으로, POC 순서상 상기 현재 픽처 이후의 참조 픽처들에 대해서는 참조 픽처들의 POC 오름차순으로 위치할 수 있다.
상기 POC 정보는, 상기 참조 픽처 정보가 지시하는 참조 픽처들 중 대상 참조 픽처와 타 픽처 사이의 POC 차일 수 있으며, 상기 참조 픽처 정보에서 상기 참조 픽처들의 POC 정보는 각 대상 참조 픽처의 POC에 기반하여 정렬될 수 있다.
상기 참조 픽처의 POC 정보는, 상기 참조 픽처 정보가 지시하는 참조 픽처들 중 대상 참조 픽처와 기준 픽처 사이의 POC 차의 크기와 부호를 포함하며, 상기 참조 픽처 정보에서 상기 참조 픽처들의 POC 정보는 상기 대상 참조 픽처의 POC에 기반하여 정렬될 수 있다.
이때, 상기 참조 픽처 정보 내에서 상기 POC 정보는, POC 순서상 상기 현재 픽처 이전의 참조 픽처들에 대해서는 참조 픽처들의 POC 내림차순으로, POC 순서상 상기 현재 픽처 이후의 참조 픽처들에 대해서는 참조 픽처들의 POC 오름차순으로 위치하며, 상기 대상 참조 픽처가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나인 경우에, 상기 기준 픽처는 상기 현재 픽처이며, 상기 대상 참조 픽처가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나가 아닌 경우에, 상기 기준 픽처는 상기 참조 픽처 정보에서 상기 대상 참조 픽처의 POC 정보의 바로 앞 POC 정보에 대응하는 참조 픽처일 수 있다.
또한, 이때, 상기 POC 차의 부호는 상기 대상 참조 픽처의 POC와 상기 현재 픽처의 POC 사이의 차의 부호일 수 있다.
상기 참조 픽처 정보에서 이용 가능한 참조 픽처들의 POC 정보는, 상기 참조 픽처 정보가 지시하는 참조 픽처들 중 대상 참조 픽처와 기준 픽처 사이의 POC 차의 크기와 상기 POC 차의 부호가 음인 경우의 개수 및 상기 POC 차의 부호가 양인 경우의 개수를 지시하는 정보일 수 있으며, 상기 참조 픽처 정보에서 상기 참조 픽처들의 POC 정보는 상기 대상 참조 픽처의 POC에 기반하여 정렬될 수 있다.
이때, 상기 POC 차의 부호는 상기 대상 참조 픽처의 POC와 상기 현재 픽처의 POC 사이의 차의 부호일 수 있다.
또한, 이때, 상기 참조 픽처 정보 내에서 상기 POC 정보는, POC 순서상 상기 현재 픽처 이전의 참조 픽처들에 대해서는 참조 픽처들의 POC 내림차순으로, POC 순서상 상기 현재 픽처 이후의 참조 픽처들에 대해서는 참조 픽처들의 POC 오름차순으로 위치하며, 상기 대상 참조 픽처가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나인 경우에, 상기 기준 픽처는 상기 현재 픽처이며, 상기 대상 참조 픽처가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나가 아닌 경우에, 상기 기준 픽처는 상기 참조 픽처 정보에서 상기 대상 참조 픽처의 POC 정보의 바로 앞 POC 정보에 대응하는 참조 픽처일 수 있다.
본 발명의 다른 실시형태는 영상 정보의 디코딩 방법으로서, 수신한 비트 스트림의 정보를 엔트로피 디코딩하여 현재 픽처의 예측에 이용가능한 참조 픽처들의 POC (Picture Order Count) 정보를 포함하는 참조 픽처 정보를 획득하는 단계 및 상기 참조 픽처 정보로부터 유도되는 각 참조 픽처의 POC에 기반하여 구성된 참조 픽처 리스트를 이용하여 상기 현재 블록에 대한 예측을 수행하는 단계를 포함하며, 상기 참조 픽처 정보에서 참조 픽처들의 POC 정보는, POC 순서상 상기 현재 픽처 이전의 픽처들에 대한 POC들이 앞쪽에 위치하고, POC 순서상 상기 현재 픽처 이후의 픽처들에 대한 POC들이 뒤이어 위치할 수 있다.
상기 POC 정보는, POC 순서상 상기 현재 픽처 이전의 참조 픽처들에 대해서는 참조 픽처들의 POC 내림차순으로,
POC 순서상 상기 현재 픽처 이후의 참조 픽처들에 대해서는 참조 픽처들의 POC 오름차순으로 위치할 수 있다.
상기 참조 픽처 정보 내 i(i는 정수) 번째 POC 정보 POCi는 참조 픽처 Pi의 POC 정보이며, 상기 POCi는 상기 참조 픽처 정보 내 Pi와 기준 픽처 사이의 POC 차의 크기를 포함하고, 상기 참조 픽처 정보에서 상기 참조 픽처들의 POC 정보들은 상기 대상 참조 픽처의 POC에 기반하여 정렬될 수 있다.
이때, 상기 참조 픽처 정보 내에서 상기 POC 정보는, POC 순서상 상기 현재 픽처 이전의 참조 픽처들에 대해서는 참조 픽처들의 POC 내림차순으로, POC 순서상 상기 현재 픽처 이후의 참조 픽처들에 대해서는 참조 픽처들의 POC 오름차순으로 위치하며, 상기 Pi가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나인 경우에, 상기 기준 픽처는 상기 현재 픽처이고, 상기 Pi가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나가 아닌 경우에, 상기 기준 픽처는 상기 참조 픽처 정보 내 i-1 번째 POC 정보에 대응하는 참조 픽처일 수 있다.
또한, 이때 상기 POC 정보는 상기 대상 참조 픽처의 POC와 상기 현재 픽처의 POC 사이의 차의 부호를 지시하는 정보를 포함할 수 있다.
상기 참조 픽처 정보 내 i(i는 정수) 번째 POC 정보 POCi는 참조 픽처 Pi의 POC 정보이며, 상기 POCi는 상기 참조 픽처 정보 내 Pi와 기준 픽처 사이의 POC 차의 크기를 포함하고, 상기 참조 픽처 정보에서 상기 참조 픽처들의 POC 정보는 상기 대상 참조 픽처의 POC에 기반하여 정렬될 수 있다.
이때, 상기 참조 픽처 정보 내에서 상기 POC 정보는, POC 순서상 상기 현재 픽처 이전의 참조 픽처들에 대해서는 참조 픽처들의 POC 내림차순으로, POC 순서상 상기 현재 픽처 이후의 참조 픽처들에 대해서는 참조 픽처들의 POC 오름차순으로 위치하며, 상기 Pi가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나인 경우에, 상기 기준 픽처는 상기 현재 픽처이며, 상기 Pi가 상기 참조 픽처 정보가 지시하는 참조 픽처들 중에서 POC 순서상 상기 현재 픽처 이전의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 및 상기 현재 픽처 이후의 픽처 중 상기 현재 픽처와 가장 가까운 픽처 중 어느 하나가 아닌 경우에, 상기 기준 픽처는 상기 참조 픽처 정보 내 i-1 번째 POC 정보에 대응하는 참조 픽처일 수 있다.
또한, 이때, 상기 참조 픽처 정보는 각 대상 참조 픽처의 POC와 상기 현재 픽처의 POC 사이 선후 관계를 지시하는 정보를 포함할 수 있다.
또한, 상기 POC 정보는 POC 차이 정보 및 부호 정보를 포함하며, 상기 참조 픽처 정보에 의해 지시되는 m 개의 참조 픽처들 중 POC 순서상 상기 현재 픽처 이전의 참조 픽처들의 개수가 n인 경우에, 상기 POC 차이 정보 중 k번째 (0≤k≤n-1) POC 차이 정보인 POCk에 대응하는 참조 픽처 k의 POC는 제1 기준 픽처의 POC와 POCk의 차이며, 상기 POC 차이 정보 중 j번째 (n≤j≤m) POC 차이 정보인 POCj에 대응하는 참조 픽처 j의 POC는 제2 기준 픽처의 POC와 POCj의 합일 수 있다.
이때, 상기 k가 0인 경우에, 상기 제1 기준 픽처는 상기 현재 픽처이며, 상기 k가 0이 아닌 경우에, 상기 제1 기준 픽처는 k-1번째 POC 차이 정보에 대응하는 참조 픽처이고, 상기 j가 n인 경우에, 상기 제2 기준 픽처는 상기 현재 픽처이며, 상기 j가 n이 아닌 경우에, 상기 제2 기준 픽처는 n-1번째 POC 차이 정보에 대응하는 참조 픽처일 수 있다.
본 발명에 의하면, 영상 정보의 인코딩/디코딩에 있어서, 영상 정보를 효과적으로 시그널링 할 수 있다.
본 발명에 의하면, 인터 예측을 수행하기 위한 참조 픽처 리스트를 구성하는 정보를 효과적으로 시그널링 할 수 있다.
본 발명에 의하면, 참조 픽처 리스트를 구성하기 위한 정보를 전송함에 있어서 전송 오버헤드를 줄일 수 있다.
본 발명에 의하면, 참조 픽처 리스트를 구성하기 위한 정보를 수신한 후 수신한 정보를 기반으로 인터 예측을 위한 참조 픽처 리스트를 낮은 복잡도를 가지고 효과적으로 구성할 수 있다.
도 1은 본 발명의 일 실시예에 따른 인코딩 장치(영상 부호화 장치)를 개략적으로 도시한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 영상 디코딩 장치를 개략적으로 나타낸 블록도이다.
도 3은 현재 블록에 대하여 인터 예측을 수행하는 경우에 이용할 수 있는 후보 블록의 일 예를 개략적으로 설명하는 도면이다.
도 4는 인코딩 장치로부터 디코딩 장치로 시그널링되는 참조 픽처 집합의 일 예를 개략적으로 설명하는 도면이다.
도 5는, 양방향 예측을 수행하는 B 픽처들 사이의 참조 관계의 일 예를 나타내는 도면이다.
도 6은 B 픽처 및 P 픽처 사이 참조 관계의 일 예를 개략적으로 나타낸 도면이다.
도 7은 본 발명에 따라서 인코딩 장치가 수행하는 인코딩 방법을 개략적으로 설명하는 순서도이다.
도 8은 본 발명에 따라서 디코딩 장치가 수행하는 디코딩 방법을 개략적으로 설명하는 순서도이다.
도 2는 본 발명의 일 실시예에 따른 영상 디코딩 장치를 개략적으로 나타낸 블록도이다.
도 3은 현재 블록에 대하여 인터 예측을 수행하는 경우에 이용할 수 있는 후보 블록의 일 예를 개략적으로 설명하는 도면이다.
도 4는 인코딩 장치로부터 디코딩 장치로 시그널링되는 참조 픽처 집합의 일 예를 개략적으로 설명하는 도면이다.
도 5는, 양방향 예측을 수행하는 B 픽처들 사이의 참조 관계의 일 예를 나타내는 도면이다.
도 6은 B 픽처 및 P 픽처 사이 참조 관계의 일 예를 개략적으로 나타낸 도면이다.
도 7은 본 발명에 따라서 인코딩 장치가 수행하는 인코딩 방법을 개략적으로 설명하는 순서도이다.
도 8은 본 발명에 따라서 디코딩 장치가 수행하는 디코딩 방법을 개략적으로 설명하는 순서도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니다. 본 명세서에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 설명되는 도면상의 각 구성들은 영상 인코딩 장치/디코딩 장치에서 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 인코딩 장치(영상 부호화 장치)를 개략적으로 도시한 블록도이다. 도 1을 참조하면, 인코딩 장치(100)는 픽처 분할부(105), 예측부(110), 변환부(115), 양자화부(120), 재정렬부(125), 엔트로피 인코딩부(130), 역양자화부(135), 역변환부(140), 필터부(145) 및 메모리(150)를 구비한다.
픽처 분할부(105)는 입력된 픽처를 적어도 하나의 처리 단위 블록으로 분할할 수 있다. 이때, 처리 단위로서의 블록은 예측 유닛(Prediction Unit, 이하 ‘PU’라 함)일 수도 있고, 변환 유닛(Transform Unit, 이하 ‘TU’라 함)일 수도 있으며, 코딩 유닛(Coding Unit, 이하 ‘CU’라 함)일 수도 있다.
예측부(110)는 후술하는 바와 같이, 인터 예측을 수행하는 인터 예측부와 인트라 예측을 수행하는 인트라 예측부를 포함한다. 예측부(110)는, 픽처 분할부(105)에서 픽처의 처리 단위에 대하여 예측을 수행하여 예측 블록을 생성한다. 예측부(110)에서 픽처의 처리 단위는 CU일 수도 있고, TU일 수도 있고, PU일 수도 있다. 또한, 예측부(110)는 해당 처리 단위에 대하여 실시되는 예측이 인터 예측인지 인트라 예측인지를 결정하고, 각 예측 방법의 구체적인 내용(예컨대, 예측 모드 등)을 정할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 예측 방법의 구체적인 내용이 정해지는 처리 단위는 다를 수 있다. 예컨대, 예측의 방법과 예측 모드 등은 PU 단위로 결정되고, 예측의 수행은 TU 단위로 수행될 수도 있다.
인터 예측을 통해서는 현재 픽처의 이전 픽처 및/또는 이후 픽처 중 적어도 하나의 픽처의 정보를 기초로 예측을 수행하여 예측 블록을 생성할 수 있다. 또한, 인트라 예측을 통해서는 현재 픽처 내의 픽셀 정보를 기초로 예측을 수행하여 예측 블록을 생성할 수 있다.
인터 예측의 방법으로서, 스킵(skip) 모드, 머지(merge) 모드, MVP(Motion Vector Predtiction) 등을 이용할 수 있다. 인터 예측에서는 PU에 대하여, 참조 픽처를 선택하고 PU와 동일한 크기의 참조 블록을 선택할 수 있다. 참조 블록은 정수 픽셀 단위로 선택될 수 있다. 이어서, 현재 PU와의 레지듀얼(residual) 신호가 최소화되며 움직임 벡터 크기 역시 최소가 되는 예측 블록이 생성된다.
예측 블록은 정수 샘플 단위로 생성될 수도 있고, 1/2 픽셀 단위 또는 1/4 픽셀 단위와 같이 정수 이하 픽셀 단위로 생성될 수도 있다. 이때, 움직임 벡터 역시 정수 픽셀 이하의 단위로 표현될 수 있다. 예컨대 휘도 샘플에 대해서는 1/4 픽셀 단위로, 색차 샘플에 대해서는 1/8 픽셀 단위로 표현될 수 있다.
인터 예측을 통해 선택된 참조 픽처의 인덱스, 움직임 벡터(ex. Motion Vector Predictor), 레지듀얼 신호 등의 정보는 엔트로피 인코딩되어 디코딩 장치에 전달된다. 스킵 모드가 적용되는 경우에는 레지듀얼을 예측 블록을 복원 블록으로 할 수 있으므로, 레지듀얼을 생성, 변환, 양자화, 전송하지 않을 수 있다.
인트라 예측을 수행하는 경우에는, PU 단위로 예측 모드가 정해져서 PU 단위로 예측이 수행될 수 있다. 또한, PU 단위로 예측 모드가 정해지고 TU 단위로 인트라 예측이 수행될 수도 있다.
인트라 예측에서 예측 모드는 33개의 방향성 예측 모드와 적어도 2개 이상의 비방향성 모드를 가질 수 있다. 비향성성 모드는 DC 예측 모드 및 플래이너 모드(Planar 모드)을 포함할 수 있다.
인트라 예측에서는 참조 샘플에 필터를 적용한 후 예측 블록을 생성할 수 있다. 이때, 참조 샘플에 필터를 적용할 것인지는 현재 블록의 인트라 예측 모드 및/또는 사이즈에 따라 결정될 수 있다.
PU는 다양한 사이즈/형태의 블록일 수 있으며, 예컨대 인터 예측의 경우에 PU는 2N×2N 블록, 2N×N 블록, N×2N 블록, 또는 N×N 블록 (N은 정수) 등일 수 있다. 인트라 예측의 경우에 PU는 2N×2N 블록 또는 N×N 블록 (N은 정수) 등일 수 있다. 이때, N×N 블록 크기의 PU는 특정한 경우에만 적용하도록 설정할 수 있다. 예컨대 최소 크기 CU에 대해서만 NxN 블록 크기의 PU를 이용하도록 정하거나 인트라 예측에 대해서만 이용하도록 정할 수도 있다. 또한, 상술한 크기의 PU 외에, N×mN 블록, mN×N 블록, 2N×mN 블록 또는 mN×2N 블록 (m<1) 등의 PU를 더 정의하여 사용할 수도 있다.
생성된 예측 블록과 원본 블록 사이의 레지듀얼 값(레지듀얼 블록 또는 레지듀얼 신호)은 변환부(115)로 입력된다. 또한, 예측을 위해 사용한 예측 모드 정보, 움직임 벡터 정보 등은 레지듀얼 값과 함께 엔트로피 인코딩부(130)에서 인코딩되어 디코딩 장치에 전달된다.
변환부(115)는 변환 단위로 레지듀얼 블록에 대한 변환을 수행하고 변환 계수를 생성한다. 변환부(115)에서의 변환 단위는 TU일 수 있으며, 쿼드 트리(quad tree) 구조를 가질 수 있다. 이때, 변환 단위의 크기는 소정의 최대 및 최소 크기의 범위 내에서 정해질 수 있다. 변환부(115)는 레지듀얼 블록을 DCT(Discrete Cosine Transform) 및/또는 DST(Discrete Sine Transform)를 이용하여 변환할 수 있다.
양자화부(120)는 변환부(115)에서 변환된 레지듀얼 값들을 양자화하여 양자화 계수를 생성할 수 있다. 양자화부(120)에서 산출된 값은 역양자화부(135)와 재정렬부(125)에 제공된다.
재정렬부(125)는 양자화부(120)로부터 제공된 양자화 계수를 재정렬한다. 양자화 계수를 재정렬함으로써 엔트로피 인코딩부(130)에서의 인코딩 효율을 높일 수 있다. 재정렬부(125)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원 블록 형태의 양자화 계수들을 1차원의 벡터 형태로 재정렬할 수 있다. 재정렬부(125)에서는 양자화부에서 전송된 계수들의 확률적인 통계를 기반으로 계수 스캔닝의 순서를 변경함으로써 엔트로피 인코딩부(130)에서의 엔트로피 인코딩 효율을 높일 수도 있다.
엔트로피 인코딩부(130)는 재정렬부(125)에 의해 재정렬된 양자화 계수들에 대한 엔트로피 인코딩을 수행할 수 있다. 엔트로피 인코딩에는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding) 등과 같은 인코딩 방법을 사용할 수 있다. 엔트로피 인코딩부(130)는 재정렬부(125) 및 예측부(110)로부터 전달받은 CU의 양자화 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, PU 정보 및 전송 단위 정보, 움직임 벡터 정보, 참조 픽처 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 인코딩할 수 있다.
또한, 엔트로피 인코딩부(130)는 필요한 경우에, 전송하는 파라미터 셋(parameter set) 또는 신택스에 일정한 변경을 가할 수도 있다.
역양자화부(135)는 양자화부(120)에서 양자화된 값들을 역양자화하고, 역변환부(140)는 역양자화부(135)에서 역양자화된 값들을 역변환한다. 역양자화부(135) 및 역변환부(140)에서 생성된 레지듀얼 값과 예측부(110)에서 예측된 예측 블록이 합쳐져 복원 블록(Reconstructed Block)이 생성될 수 있다.
도 1에서는 가산기를 통해서, 레지듀얼 블록과 예측 블록이 합쳐져 복원 블록이 생성되는 것으로 설명하고 있다. 이때, 가산기를 복원 블록을 생성하는 별도의 유닛(복원 블록 생성부)로 볼 수도 있다.
필터부(145)는 디블록킹 필터, ALF(Adaptive Loop Filter), SAO(Sample Adaptive Offset)를 복원된 픽처에 적용할 수 있다.
디블록킹 필터는 복원된 픽처에서 블록 간의 경계에 생긴 왜곡을 제거할 수 있다. ALF(Adaptive Loop Filter)는 디블록킹 필터를 통해 블록이 필터링된 후 복원된 영상과 원래의 영상을 비교한 값을 기초로 필터링을 수행할 수 있다. ALF는 고효율을 적용하는 경우에만 수행될 수도 있다. SAO는 디블록킹 필터가 적용된 레지듀얼 블록에 대하여, 픽셀 단위로 원본 영상과의 오프셋 차이를 복원하며, 밴드 오프셋(Band Offset), 에지 오프셋(Edge Offset) 등의 형태로 적용된다.
한편, 인터 예측에 사용되는 복원 블록에 대해서 필터부(145)는 필터링을 적용하지 않을 수도 있다.
메모리(150)는 필터부(145)를 통해 산출된 복원 블록 또는 픽처를 저장할 수 있다. 메모리(150)에 저장된 복원 블록 또는 픽처는 인터 예측을 수행하는 예측부(110)에 제공될 수 있다.
도 2는 본 발명의 일 실시예에 따른 영상 디코딩 장치를 개략적으로 나타낸 블록도이다. 도 2를 참조하면, 영상 디코딩 장치(200)는 엔트로피 디코딩부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 예측부(230), 필터부(235) 메모리(240)를 포함할 수 있다.
영상 인코딩 장치에서 영상 비트스트림이 입력된 경우, 입력된 비트스트림은 영상 인코딩 장치에서 영상 정보가 처리된 절차에 따라서 디코딩될 수 있다.
예컨대, 영상 인코딩 장치에서 엔트로피 인코딩을 수행하기 위해 CAVLC 등의 가변 길이 부호화(Variable Length Coding: VLC, 이하 ‘VLC’ 라 함)가 사용된 경우에, 엔트로피 디코딩부(210)도 인코딩 장치에서 사용한 VLC 테이블과 동일한 VLC 테이블로 구현하여 엔트로피 디코딩을 수행할 수 있다. 또한, 영상 인코딩 장치에서 엔트로피 인코딩을 수행하기 위해 CABAC을 이용한 경우에, 엔트로피 디코딩부(210)는 이에 대응하여 CABAC을 이용한 엔트로피 디코딩을 수행할 수 있다.
엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측 블록을 생성하기 위한 정보는 예측부(230)로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값은 재정렬부(215)로 입력될 수 있다.
재정렬부(215)는 엔트로피 디코딩부(210)에서 엔트로피 디코딩된 비트스트림을 영상 인코딩 장치에서 재정렬한 방법을 기초로 재정렬할 수 있다. 재정렬부(215)는 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(215)는 인코딩 장치에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 인코딩 장치에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다.
역양자화부(220)는 인코딩 장치에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다.
역변환부(225)는 영상 인코딩 장치에서 수행된 양자화 결과에 대해, 인코딩 장치의 변환부가 수행한 DCT 및 DST에 대해 역DCT 및/또는 역DST를 수행할 수 있다. 역변환은 인코딩 장치에서 결정된 전송 단위 또는 영상의 분할 단위를 기초로 수행될 수 있다. 인코딩 장치의 변환부에서 DCT 및/또는 DST는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 선택적으로 수행될 수 있고, 디코딩 장치의 역변환부(225)는 인코딩 장치의 변환부에서 수행된 변환 정보를 기초로 역변환을 수행할 수 있다.
예측부(230)는 엔트로피 디코딩부(210)에서 제공된 예측 블록 생성 관련 정보와 메모리(240)에서 제공된 이전에 디코딩된 블록 및/또는 픽처 정보를 기초로 예측 블록을 생성할 수 있다.
현재 PU에 대한 예측 모드가 인트라 예측(intra prediction) 모드인 경우에, 현재 픽처 내의 픽셀 정보를 기초로 예측 블록을 생성하는 인트라 예측을 수행할 수 있다.
현재 PU에 대한 예측 모드가 인터 예측(inter prediction) 모드인 경우에, 현재 픽처의 이전 픽처 또는 이후 픽처 중 적어도 하나의 픽처에 포함된 정보를 기초로 현재 PU에 대한 인터 예측을 수행할 수 있다. 이때, 영상 인코딩 장치에서 제공된 현재 PU의 인터 예측에 필요한 움직임 정보, 예컨대 움직임 벡터, 참조 픽처 인덱스 등에 관한 정보는 인코딩 장치로부터 수신한 스킵 플래그, 머지 플래그 등을 확인하고 이에 대응하여 유도될 수 있다.
복원 블록은 예측부(230)에서 생성된 예측 블록과 역변환부(225)에서 제공된 레지듀얼 블록을 이용해 생성될 수 있다. 도 2에서는 가산기에서 예측 블록과 레지듀얼 블록이 합쳐져 복원 블록이 생성되는 것으로 설명하고 있다. 이때, 가산기를 복원 블록을 생성하는 별도의 유닛(복원 블록 생성부)로 볼 수 있다.
스킵 모드가 적용되는 경우에는 레지듀얼이 전송되지 않으며 예측 블록을 복원 블록으로 할 수 있다.
복원된 블록 및/또는 픽처는 필터부(235)로 제공될 수 있다. 필터부(235)는 복원된 블록 및/또는 픽처에 디블록킹 필터링, SAO(Sample Adaptive Offset) 및/또는 ALF 등을 적용할 수 있다.
메모리(240)는 복원된 픽처 또는 블록을 저장하여 참조 픽처 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽처를 출력부로 제공할 수 있다.
한편, 인코딩되거나 디코딩된 픽처들은 메모리, 예컨대 DPB(Decoded Picture Buffer)에 저장된다. 현재 픽처를 인코딩하거나 디코딩하는 경우에, 현재 픽처에 대한 예측을 수행하기 위해 DPB에 저장된 이전의 픽처들을 참조하게 된다.
구체적으로 인코딩 장치와 디코딩 장치는 인터 예측에 사용하기 위해 이전에 코딩/디코딩된 픽처들의 리스트를 참조 픽처 리스트에 유지할 수 있다.
인터 예측이 적용되는 경우에, 인코딩 장치와 디코딩 장치는 다른 픽처를 참조하여 현재 픽처의 대상 블록(현재 블록)에 대한 예측을 수행할 수 있다. 인터 예측은 도 1 및 도 2에 도시된 바와 같이, 인코딩 장치와 디코딩 장치 내 예측부에서 수행할 수도 있다.
인터 예측을 수행하는 경우에는 상술한 바와 같이, 현재 블록에 인접하고 이용 가능한(available) 주변 블록의 정보를 이용하여 현재 블록을 예측한다. 이 때, 주변 블록은 현재 블록이 참조할 수 있는 참조 픽처들에서 현재 블록과 동일한 위치에 있는(co-located) 블록들 중 이용 가능한 블록(이하, 설명의 편의를 위해 ‘Col 블록’(co-located block)이라 함)을 포함한다.
인터 예측에서 현재 블록에 대한 예측을 수행하기 위해 이용하는 주변 블록을 설명의 편의를 위해 ‘후보 블록’이라고 한다.
인터 예측에서는 후보 블록의 정보를 이용하여 현재 블록에 대한 예측을 수행한다. 스킵 모드 또는 머지 모드의 경우에는, 후보 블록 중 선택된 블록에 대한 움직임 정보(예컨대, 움직임 벡터)와 참조 픽처를 현재 블록에 대한 움직임 정보와 참조 픽처로 이용한다.
MVP를 이용하는 경우에는, 후보 블록 중 선택된 블록에 대한 움직임 정보(예컨대, 움직임 벡터)를 현재 블록에 대한 움직임 벡터로 이용하고 현재 블록에 대한 참조 픽처 정보는 인코딩 장치로부터 디코딩 장치로 전송된다. 후보 블록으로부터 유도된 MVP와 현재 블록에 대한 움직임 벡터의 차이 MVD는 인코딩 장치로부터 디코딩 장치로 전송되며, 디코딩 장치의 예측부는 MVP와 MVD를 기반으로 현재 블록에 대한 움직임 정보를 유도할 수 있다.
도 3은 현재 블록에 대하여 인터 예측을 수행하는 경우에 이용할 수 있는 후보 블록의 일 예를 개략적으로 설명하는 도면이다.
인코딩 장치 및 디코딩 장치의 예측부는 현재 블록(400) 주변 소정 위치의 블록을 후보 블록으로 이용할 수 있다. 예컨대, 도 3의 예에서는 현재 블록의 좌하단에 위치하는 두 블록 A0(410)와 A1(420) 그리고 현재 블록 우상단과 좌상단의 세 블록 B0(430), B1(440), B2(450)을 후보 블록으로 선택할 수 있다. 또한, 공간적으로 인접하는 블록 외에 시간적인 후보 블록으로서, 상술한 Col 블록(460)을 후보 블록으로 이용할 수 있다.
인터 예측을 수행할 때, 현재 블록에 대한 움직임 정보는 상술한 바와 같이, 주변 블록 중 선택된 블록의 움직임 정보를 그대로 사용하거나 주변 블록 중 선택된 블록의 움직임 정보를 기반으로 유도된다.
한편, 인터 예측에 사용되는 참조 픽처에 관해서, 현재 블록에 대한 참조 픽처는 주변 블록의 참조 픽처로부터 유도되거나 디코딩 장치로부터 지시될 수 있다. 스킵 모드 또는 머지 모드의 경우에, 디코딩 장치의 예측부는 주변 블록의 참조 픽처를 현재 블록의 참조 픽처로 이용할 수 있다. MVP를 이용하는 경우에, 디코딩 장치의 예측부는 현재 블록에 대한 참조 픽처를 지시하는 정보를 인코딩 장치로부터 수신할 수 있다.
현재 픽처보다 이전에 인코딩/디코딩된 픽처들은 메모리(예컨대, Decoded Picture Buffer: DPB)에 저장되어 현재 블록(현재 픽처)의 예측에 이용될 수 있다. 현재 블록의 인터 예측에 이용 가능한 픽처들의 리스트는 참조 픽처 리스트로 유지된다.
P 슬라이스는 인트라 예측 또는 최대 하나의 움직임 벡터와 하나의 참조 픽처를 이용하는 인터 예측을 통해 디코딩되는 슬라이스이다. B 슬라이스는 인트라 예측 또는 최대 두 개의 움직임 벡터와 두 개의 참조 픽처를 이용하는 인터 예측을 통해 디코딩되는 슬라이스이다. 이때, 참조 픽처는 단기 참조 픽처(short term reference picture)와 장기 참조 픽처(long term reference picture)를 포함한다.
참조 픽처 리스트 0 (reference picture list 0, 이하 설명의 편의를 위해 ‘L0’이라 함)는 P 슬라이스 또는 B 슬라이스의 인터 예측에 이용되는 참조 픽처 리스트이다. 참조 픽처 리스트 1 (reference picture list 1, 이하 설명의 편의를 위해 ‘L1’이라 함)은 B 슬라이스의 인터 예측을 위해 이용된다. 따라서, 단방향 예측을 수행하는 P 슬라이스의 블록에 대한 인터 예측에는 L0이 이용되며, 양방향 예측을 수행하는 B 슬라이스의 블록에 대한 인터 예측에는 L0과 L1이 이용된다.
디코딩 장치는 인터 예측을 통해 P 슬라이스와 B 슬라이스에 대한 디코딩을 수행하는 경우에, 참조 픽처 리스트를 구성(construct)한다. 인터 예측에 이용되는 참조 픽처는 참조 픽처 리스트를 통해 지정된다. 참조 픽처 인덱스는 참조 픽처 리스트 상의 참조 픽처를 지시하는 인덱스이다.
참조 픽처 리스트는 인코딩 장치로부터 전송되는 참조 픽처 세트(reference picture set)을 기반으로 구성될 수 있다.
참조 픽처 인덱스를 통해 참조 픽처 리스트를 구성하는 참조 픽처들은 메모리(예컨대, DPB)에 저장될 수 있다.
메모리에 저장되는 픽처들(현재 픽처 이전에 인코딩/디코딩된 픽처들)은 인코딩 장치와 디코딩 장치에 의해 관리된다. 인코딩 장치와 디코딩 장치는 현재 블록의 예측에 필요한 픽처들을 유지하고 현재 블록의 예측에 이용되지 않는 픽처를 메모리로부터 방출(release)한다.
참조 픽처를 관리하는 방법으로서 슬라이딩 윈도우(sliding window) 방식을 이용하는 경우에는 메모리에 저장된 후 일정 시간이 지나면 방출되는 간단한 방법에 의해 참조 픽처를 관리할 수 있지만, 몇 가지 문제를 가지고 있다. 예컨대, 더 이상 필요하지 않게 된 참조 픽처가 있다고 해도 메모리에서 바로 방출할 수 없기 때문에 효율이 떨어진다. 또한, 일정 시간 후에는 메모리로부터 방출되므로, 장기 참조 픽처를 관리하기가 어려워진다.
슬라이딩 윈도우 방식의 문제를 고려하여, 인코딩 장치로부터 참조 픽처의 관리에 관한 지시를 직접 시그널링하는 MMCO(Memory Management Command Operation) 방법을 이용할 수도 있다. 하지만, MMCO 방법을 이용하더라도 시그널링 과정에서 픽처 손실(picture loss)이 발생하고, 손실된 픽처가 MMCO 명령(command)을 포함하고 있었다면, 손실된 MMCO 정보를 복원할 수 없게 됨으로써, 메모리(DPB)를 현재 필요한 픽처들이 관리되는 정확한 상태로 유지할 수 없다. 따라서, 인터 예측도 부정확하게 수행될 우려가 있다.
상술한 문제들을 해결하기 이해, 슬라이스의 디코딩 과정에 필요한 참조 픽처들의 리스트를 각각의 슬라이스 헤더에서 전송하는 방법을 이용할 수 있다. 슬라이스 헤더에서 참조 픽처들의 리스트를 포함하는 일종의 추상적인 컨테이너(container)를 “RefPicList”라고 할 수 있다. 혹은, 앞서 설명한 바와 같이 디코딩 장치에서 구성되는 참조 픽처 리스트 0 및 참조 픽처 리스트 1을 구별하기 위해, 슬라이스의 디코딩 과정에서 필요한 참조 픽처들의 리스트를 참조 픽처 집합(reference picture set)라고 할 수도 있다.
참조 픽처 집합 또는 RefPicList (이하, 설명의 편의 및 참조 픽처 리스트와의 구별을 위해, ‘참조 픽처 세트’라고 함)는 현재 픽처/슬라이스 또는 미래(future) 픽처/슬라이스의 참조를 위해 이용되는 참조 픽처들을 포함한다. 예컨대, 참조 픽처 집합은 인코딩 장치로부터 디코딩 장치로 전송되는 정보로서, 참조 픽처 집합에 포함되는 픽처들은 POC(Picture Order Count)에 의해 특정될 수 있다. POC(Picture Order Count)는 픽처의 표시 순서를 나타낸다. 이때, 참조 픽처 집합에 포함되는 참조 픽처들의 POC는 현재 픽처의 POC에 대한 상대적 POC일 수도 있다.
상대적 POC는 참조 픽처 집합 내 두 픽처들 간의 POC 차를 나타낸다. POC 순서상 현재 픽처 이전의 참조 픽처들(현재 픽처의 POC보다 POC가 작은 참조 픽처들)의 상대적 POC는 참조 픽처 집합 내에서 바로 전의 참조 픽처와의 POC 차이이다. POC 순서상 현재 픽처 이후의 참조 픽처들(현재 픽처의 POC보다 POC가 큰 참조 픽처들)의 상대적 POC도 참조 픽처 집합 내에서 바로 전의 참조 픽처와의 POC 차이이다. 다만, (1)참조 픽처 집합에서 첫 번째 참조 픽처 및 (2)참조 픽처 집합에서 이전의 참조 픽처와 상대적 POC의 부호가 다른 참조 픽처의 경우에, 상대적 POC의 크기는 현재 픽처와의 POC 차이가 된다.
참조 픽처 집합 내에서 두 픽처 사이의 POC 차는 절대값과 부호(sign)로 표현될 수 있다.
참조 픽처 집합은 P 슬라이스와 B 슬라이스마다 인코딩 장치로부터 디코딩 장치로 시그널링된다.
참조 픽처 리스트(L0, L1)는 인코딩 장치로부터 수신한 참조 픽처 집합을 기반으로 구성될 수도 있고, 인코딩 장치로부터 명시적으로 전송될 수도 있다.
참조 픽처 리스트 L0을 구성하는 경우에는, 수신한 참조 픽처 집합 중 현재 픽처의 POC보다 POC가 작은 픽처들(POC 순서상 현재 픽처 이전의 픽처들 혹은 상대적 POC의 부호가 음의 값을 갖는 픽처들)과 현재 픽처의 POC보다 POC가 큰 픽처들(POC 순서상 현재 픽처 이후의 픽처들 또는 상대적 POC의 부호가 양의 값을 갖는 픽처들) 중 현재 픽처의 POC보다 POC가 작은 픽처들부터 참조 픽처 인덱스를 할당하여 참조 픽처 리스트가 구성된다.
예컨대, 참조 픽처 리스트를 구성하는 모든 참조 픽처 인덱스가 할당될 때까지, (i) 현재 픽처/슬라이스에 대한 참조 픽처 집합 중 현재 픽처의 POC보다 POC가 작은 픽처들에 대하여, POC 순서상 현재 픽처로부터 가까운 픽처들에 낮은 참조 픽처 인덱스가 부여되며, 이어서 (ii) 현재 픽처/슬라이스에 대한 참조 픽처 집합 중 현재 픽처의 POC보다 POC가 큰 픽처들에 대하여, POC 순서상 현재 픽처로부터 가까운 픽처들에 낮은 참조 픽처 인덱스가 부여된다.
참조 픽처 리스트 L1을 구성하는 경우에는, 수신한 참조 픽처 집합 중 현재 픽처의 POC보다 POC가 작은 픽처들(POC 순서상 현재 픽처 이전의 픽처들 혹은 상대적 POC의 부호가 음의 값을 갖는 픽처들)과 현재 픽처의 POC보다 POC가 큰 픽처들(POC 순서상 현재 픽처 이후의 픽처들 또는 상대적 POC의 부호가 양의 값을 갖는 픽처들) 중 현재 픽처의 POC보다 POC가 큰 픽처들부터 참조 픽처 인덱스를 할당하여 참조 픽처 리스트가 구성된다.
예컨대, 참조 픽처 리스트를 구성하는 모든 참조 픽처가 할당될 때까지, (i) 현재 픽처/슬라이스에 대한 참조 픽처 집합 중 현재 픽처의 POC보다 POC가 큰 픽처들에 대하여, POC 순서상 현재 픽처로부터 가까운 픽처들에 낮은 참조 픽처 인덱스가 부여되고, 이어서, (ii) 현재 픽처/슬라이스에 대한 참조 픽처 집합 중 현재 픽처의 POC보다 POC가 작은 픽처들에 대하여, POC 순서상 현재 픽처로부터 가까운 픽처들에 낮은 참조 픽처 인덱스가 부여된다.
여기서는 단기 참조 픽처들의 경우를 예로서 설명하였으나, 장기 참조 픽처들을 포함하는 참조 픽처 리스트의 경우에는, 상기 L0과 L1에 대하여 (i) 및 (ii)의 과정을 거친 후, 참조 픽처 집합을 통해 장기 참조 픽처로서 전송된 픽처들을 추가할 수 있다.
이하, 본 명세서에서는 단기 참조 픽처에 대하여 참조 픽처 집합을 구성하고, 참조 픽처 리스트를 구성하는 방법을 설명하며, 이하에서 참조 픽처라 함은 단기 참조 픽처를 의미한다.
이때, 시그널링된 참조 픽처 집합의 비트 수를 줄이고, 복호화기에서 참조 픽처 리스트를 구성하는 과정의 복잡도를 감소시키기 위해, 참조 픽처 집합(참조 픽처들의 리스트) 내 참조 픽처들(참조 픽처들의 정보, 예컨대 POC 값)이 정렬하여 전송되도록 할 수 있다.
참조 픽처 집합 내의 참조 픽처들은 (1) 참조 픽처 집합의 앞부분(beginning)에 현재 픽처의 POC보다 작은 POC의 참조 픽처들이 POC의 내림차순으로 정렬되며, (2) 이어서, 현재 픽처의 POC보다 큰 POC 참조 픽처들이 POC의 올림차순으로 정렬되어 시그널링된다.
예컨대, 참조 픽처 집합 내에서는 현재 픽처의 POC보다 POC가 작은 참조 픽처(픽처의 정보)들이 배치된 후에 현재 픽처의 POC보다 POC가 큰 참조 픽처(픽처의 정보)들이 배치된다. 이때, 배치되는 참조 픽처의 정보는 참조 픽처의 POC, 참조 픽처의 상대적 POC 또는 참조 픽처의 상대적 POC의 크기와 부호일 수 있다.
배치되는 정보가 참조 픽처의 POC인 경우, 참조 픽처 집합에서는 현재 픽처의 POC보다 POC가 작은 참조 픽처들의 POC가 현재 픽처의 POC에 가까운 순서대로 배치된 후, 현재 픽처의 POC보다 POC가 큰 참조 픽처들의 POC가 현재 픽처의 POC에 가까운 순서대로 배치된다.
배치되는 정보가 참조 픽처의 상대적 POC라면, 현재 픽처의 POC보다 POC가 작은 참조 픽처들에 대한 상대적 POC가 먼저 배치되고 현재 픽처의 POC보다 POC가 큰 참조 픽처들에 대한 상대적 POC가 이어서 배치될 수 있다. 예컨대, 참조 픽처 집합 내에서 현재 픽처의 POC보다 POC가 작은 참조 픽처들에 대한 상대적 POC는 참조 픽처의 POC 순서(내림차순)로 배치되며, 이어서 현재 픽처의 POC보다 POC가 큰 참조 픽처들에 대한 상대적 POC가 참조 픽처의 POC 순서(올림차순)로 배치된다. 여기서, 참조 픽처에 대한 상대적 POC는 현재 픽처의 POC와 참조 픽처의 POC 사이의 차이값이다.
참조 픽처 집합 내에서 상대적 POC는 상대적 POC의 크기(절대값)와 상대적 POC의 부호로 나타낼 수 있다.
참조 픽처의 상대적 POC의 부호는 POC의 순서에 있어서 참조 픽처가 현재 픽처 이전인지 이후인지를 나타낸다. 따라서, 상대적 POC의 부호(+인지 -인지)를 구체적으로 지시하는 정보를 전송하는 대신, POC 순서에 있어서 현재 픽처 이전의 참조 픽처들에 대한 상대적 POC의 크기를 먼저 전송하고, 이어서 현재 픽처 이후의 참조 픽처들에 대한 상대적 POC의 크기를 전송할 수 있다. 참조 픽처 집합을 수신하는 디코딩 장치는 먼저 수신되는 상대적 POC의 크기들이 POC 순서상 현재 픽처 이전의 참조 픽처들에 대한 것이며, 나중에 수신되는 상대적 POC의 크기들이 POC 순서상 현재 픽처 이후의 참조 픽처들에 대한 것으로 판단할 수 있다. 이때, POC 순서에 있어서 현재 픽처 이전의 참조 픽처 개수와 현재 픽처 이후의 참조 픽처 개수를 나타내는 정보가 함께 전송될 수 있다.
상대적 POC의 크기를 전송하는 경우에도, 참조 픽처 집합 내에서 현재 픽처의 POC보다 POC가 작은 참조 픽처들에 대한 상대적 POC 크기는 참조 픽처의 POC 순서(내림차순)로 배치되며, 이어서 현재 픽처의 POC보다 POC가 큰 참조 픽처들에 대한 상대적 POC 크기가 참조 픽처의 POC 순서(올림차순)로 배치된다.
표 1은 인코딩 장치에서 상대적 POC의 크기와 부호를 결정하는 방법의 일 예를 나타낸 것이다.
인코딩 장치는 표 1의 방법을 이용하여, 참조 픽처 집합을 통해 시그널링할 참조 픽처들의 상대적 POC 크기와 부호를 결정할 수 있다.
sign_ref_pic[i]는 참조 픽처 집합 내 i번째 참조 픽처에 대한 상대적 POC의 부호를 특정한다. i번째 참조 픽처의 POC(ref_pic[i])가 현재 픽처의 POC(currentPOC)보다 큰 경우에, i번째 참조 픽처에 대한 상대적 POC의 부호 sign_ref_pic[i]의 값은 ‘+’를 지시한다. i번째 참조 픽처의 POC(ref_pic[i])가 현재 픽처의 POC(currentPOC)보다 크지 않은 경우에, i번째 참조 픽처에 대한 상대적 POC의 부호 sign_ref_pic[i]의 값은 ‘-’를 지시한다.
abs_ref_pic[i]는 참조 픽처 집합 내 i번째 참조 픽처에 대한 상대적 POC의 크기를 특정한다. i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하다면, i번째 참조 픽처의 POC와 기준값(refValue) 사이의 차와 i-1번째 참조 픽처의 POC와 기준값(refValue) 사이의 차의 차이값이 i번째 참조 픽처의 상대적 POC 크기가 된다. 즉, i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하다면, i번째 참조 픽처의 상대적 POC 크기는 참조 픽처 집합 내에서 이웃하는 참조 픽처들 간의 POC 차이(i번째 참조 픽처의 POC와 i-1번째 참조 픽처의 POC 사이의 차이)가 된다.
기준값(refValue)은 인코딩 장치로부터 전송되거나 미리 설정된 기준 POC 값으로서, 참조 픽처 집합 내 첫 번째 상대적 POC를 산출하는 기준 POC 값이 된다. 예컨대 기준값(refValue)은 현재 픽처의 POC 값일 수 있다.
i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하지 않을 수 있다. 이 경우는 참조 픽처 집합에서 i번째 참조 픽처가 첫 번째 픽처인 경우이거나, 참조 픽처 집합에서 i-1번째 참조 픽처는 POC 순서상 현재 픽처 이전의 픽처이고 i번째 참조 픽처는 POC 순서상 현재 픽처 이후의 픽처인 경우가 된다. 따라서, i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하지 않다면, i번째 참조 픽처의 상대적 POC 크기는 i번째 참조 픽처의 POC와 기준값(refValue) 사이의 차이가 된다. 이어서, i+1번째 참조 픽처의 경우는 다시 i번째 참조 픽처와 상대적 POC의 부호가 같게 되므로, i+1번째 참조 픽처의 상대적 POC 크기는 다시 i+1번째 참조 픽처의 POC와 i번째 참조 픽처의 POC 사이의 차이가 된다.
인코딩 장치는 참조 픽처 집합으로서 상술한 바와 같이 유도한 참조 픽처들의 상대적 POC 크기와 부호를 전송할 수 있다. 또한, 인코딩 장치는 참조 픽처들의 상대적 POC 크기를 전송하되 부호를 전송하는 POC 순서상 현재 픽처 이전의 참조 픽처들에 대한 상대적 POC 크기들을 먼저 전송하고 현재 픽처 이후의 참조 픽처들에 대한 상대적 POC 크기들을 이어서 전송할 수도 있다. 이 경우에 인코딩 장치는 상대적 POC의 부호가 ‘-’인 참조 픽처들(POC 순서상 현재 픽처 이전의 픽처들)의 개수와 상대적 POC의 부호가 ‘+’인 참조 픽처들(POC 순서상 현재 픽처 이후의 픽처들)의 개수를 지시하는 정보를 전송할 수 있다.
표 2은 인코딩 장치에서 상대적 POC의 크기와 부호를 결정하는 방법의 다른 예를 나타낸 것이다.
표 2에서는 기준값(refValue)이 현재 픽처의 POC값인 경우를 예로서 설명한다.
표 1과 마찬가지로, 표 2에서 i번째 참조 픽처의 POC(ref_pic[i])가 현재 픽처의 POC(currentPOC)보다 큰 경우에, i번째 참조 픽처에 대한 상대적 POC의 부호 sign_ref_pic[i]의 값은 ‘+’를 지시한다. i번째 참조 픽처의 POC(ref_pic[i])가 현재 픽처의 POC(currentPOC)보다 크지 않은 경우에, i번째 참조 픽처에 대한 상대적 POC의 부호 sign_ref_pic[i]의 값은 ‘-’를 지시한다.
i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하다면, i번째 참조 픽처의 POC와 현재 픽처의 POC 사이의 차이와 i-1번째 참조 픽처의 POC와 현재 픽처의 POC 사이의 차이 사이의 값이 i번째 참조 픽처의 상대적 POC 크기가 된다. 즉, i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하다면, i번째 참조 픽처의 상대적 POC 크기는 참조 픽처 집합 내에서 이웃하는 참조 픽처들 간의 POC 차이(i번째 참조 픽처의 POC와 i-1번째 참조 픽처의 POC 사이의 차이)가 된다.
i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하지 않을 수 있다. 이 경우는 참조 픽처 집합에서 i번째 참조 픽처가 첫 번째 픽처인 경우이거나, 참조 픽처 집합에서 i-1번째 참조 픽처는 POC 순서상 현재 픽처 이전의 픽처이고 i번째 참조 픽처는 POC 순서상 현재 픽처 이후의 픽처인 경우가 된다. 따라서, i번째 참조 픽처의 상대적 POC 부호가 i-1번째 참조 픽처의 상대적 POC의 부호와 동일하지 않다면, i번째 참조 픽처의 상대적 POC 크기는 i번째 참조 픽처의 POC와 현재 픽처의 POC 사이의 차이가 된다. 이어서, i+1번째 참조 픽처의 경우는 다시 i번째 참조 픽처와 상대적 POC의 부호가 같게 되므로, i+1번째 참조 픽처의 상대적 POC 크기는 다시 i+1번째 참조 픽처의 POC와 i번째 참조 픽처의 POC 사이의 차이가 된다.
인코딩 장치는 참조 픽처 집합으로서 상술한 바와 같이 유도한 참조 픽처들의 상대적 POC 크기와 부호를 전송할 수 있다. 또한, 인코딩 장치는 참조 픽처들의 상대적 POC 크기를 전송하되 부호를 전송하는 POC 순서상 현재 픽처 이전의 참조 픽처들에 대한 상대적 POC 크기들을 먼저 전송하고 현재 픽처 이후의 참조 픽처들에 대한 상대적 POC 크기들을 이어서 전송할 수도 있다. 이 경우에 인코딩 장치는 상대적 POC의 부호가 ‘-’인 참조 픽처들(POC 순서상 현재 픽처 이전의 픽처들)의 개수와 상대적 POC의 부호가 ‘+’인 참조 픽처들(POC 순서상 현재 픽처 이후의 픽처들)의 개수를 지시하는 정보를 전송할 수 있다.
디코딩 장치는 인코딩 장치로부터 참조 픽처 집합에 관한 정보를 수신하고 이를 기반으로 참조 픽처 집합을 구성 또는 복원할 수 있다.
표 3은 참조 픽처 집합을 수신하는 디코딩 장치에서 참조 픽처의 정보(POC)를 복원(recover)하는 방법의 일 예를 나타낸 것이다.
디코딩 장치는 인코딩 장치로부터 수신한 참조 픽처 정보(상대적 POC 크기 또는 상대적 POC의 크기와 부호)를 기반으로 표 3의 방법에 의해 현재 블록(픽처)의 예측에 이용할 수 있는 POC를 복원할 수 있다.
참조 픽처 집합 내 i번째 참조 픽처의 POC(ref_pic[i])는 i 번째 참조 픽처의 상대적 POC 크기(abs_ref_pic[i])와 부호(sign_ref_pic[i])에 기반해서 복원될 수 있다.
디코딩 장치는, 표 3에서와 같이, 상대적 POC의 부호를 명시적으로 인코딩 장치로부터 수신하여 참조 픽처의 POC를 복구(recover)할 수 있다.
참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 동일하고 i번째 참조 픽처의 부호가 ‘-’라면, i번째 참조 픽처의 POC는 기준값(refValue)에서 최초 참조 픽처(0번째 참조 픽처)부터 i번째 참조 픽처까지의 상대적 POC 합을 뺀 값이 된다. 참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 동일하고 i번째 참조 픽처의 부호가 ‘+’라면, i번째 참조 픽처의 POC는 기준값(refValue)에 최조 참조 픽처(0번째 참조 픽처)부터 i번째 참조 픽처까지의 상대적 POC 합을 더한 값이 된다.
이때, 기준값(refValue)은 인코딩 장치로부터 전송되거나 미리 설정된 기준 POC 값으로서, 참조 픽처 집합 내 첫 번째 상대적 POC를 산출하는 기준 POC 값이 된다. 예컨대 기준값(refValue)은 현재 픽처의 POC 값일 수 있다.
참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 상이하면, i번째 참조 픽처 집합에서 i번째 참조 픽처가 첫 번째 픽처인 경우이거나, 참조 픽처 집합에서 i-1번째 참조 픽처는 POC 순서상 현재 픽처 이전의 픽처이고 i번째 참조 픽처는 POC 순서상 현재 픽처 이후의 픽처인 경우가 된다.
참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 상이하고 i번째 참조 픽처의 부호가 ‘-’라면, i번째 참조 픽처의 POC는 기준 값(refValue)에서 i번째 참조 픽처의 상대적 POC를 뺀 값이 된다. 참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 상이하고 i번째 참조 픽처의 부호가 ‘+’라면, i번째 참조 픽처의 POC는 기준값(refValue)에 i번째 참조 픽처의 상대적 POC를 더한 값이 된다.
또한, 표2의 예와 달리, 명시적으로 참조 픽처의 상대적 POC에 대한 부호를 지시하는 정보가 전송되지 않을 수도 있다. 이 경우, 디코딩 장치는 참조 픽처 집합 내에서 앞쪽에 위치하는 상대적 POC들의 부호는 ‘-’(minus)로 판단하고, 참조 픽처 집합 내에서 뒤쪽에 위치하는 상대적 POC들의 부호는 ‘+’(plus)로 판단할 수 있다. 이때, 인코딩 장치로부터 부호가 ‘-’인 상대적 POC의 개수와 부호의 개수가 ‘+’인 상대적 POC의 개수를 지시하는 정보가 전송될 수도 있다. 디코딩 장치는 참조 픽처 집합의 처음부터 인코딩 장치가 지시한 부호가 ‘-’인 상대적 POC의 개수만큼의 상대적 POC들은 부호가 ‘-’인 것으로 판단하고, 나머지 상대적 POC들은 부호가 ‘+’인 것으로 판단하여, 상술한 바와 같이 i번째 참조 신호의 POC(ref_pic[i])를 복구할 수 있다.
다시 말하면, 참조 픽처 집합 내 참조 픽처들 중에서 첫 번째 참조 픽처에 대한 상대적 POC는 기준 값(refValue)과의 POC 차이이다. 참조 픽처 집합 내 참조 픽처 중 첫 번째 참조 픽처를 제외한 현재 픽처 이전의 픽처들에 대한 상대적 POC는 바로 전 참조 픽처와의 POC 차이이다. 참조 픽처 집합 내 참조 픽처 중 현재 픽처 이후 첫 번째 픽처에 대한 상대적 POC는 기준값과의 POC 차이이다. 참조 픽처 집합 내 나머지 참조 픽처(참조 픽처 집합 내에서 현재 픽처 이후의 두 번째 참조 픽처부터 마지막 참조 픽처까지)에 대한 참조 픽처는 바로 전 참조 픽처와의 POC 차이이다. 여기서 현재 픽처 이전 및 이후는 POC 순서로 판단한다. 또한, 바로 전 참조 픽처라 함은 참조 픽처 집합 내 정렬 순서에서 바로 앞 픽처를 의미한다.
표 4은 참조 픽처 집합을 수신하는 디코딩 장치에서 참조 픽처의 정보(POC)를 복구(recover)하는 방법의 다른 예를 나타낸 것이다.
표 4의 방법은 본 발명의 특징을 명확하게 설명하기 위해, 참조 픽처 집합에 포함되는 참조 픽처의 개수가 2이고, 표 3에서 첫 번째 상대적 POC값을 산출하기 위한 기준값(refValue)이 현재 픽처의 POC인 경우를 예로서 설명한다.
디코딩 장치는, 상대적 POC의 부호를 명시적으로 인코딩 장치로부터 수신하여 참조 픽처의 POC를 복구(recover)할 수 있다.
참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 동일하고 i번째 참조 픽처의 부호가 ‘-’라면, i번째 참조 픽처의 POC는 현재 픽처의 POC에서 i번째 참조 픽처의 상대적 POC와 i-1번째 참조 픽처의 상대적 POC를 뺀 값이 된다. 참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 동일하고 i번째 참조 픽처의 부호가 ‘+’라면, i번째 참조 픽처의 POC는 현재 픽처의 POC에 i번째 참조 픽처의 상대적 POC와 i-1번째 참조 픽처의 상대적 POC를 더한 값이 된다.
참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 상이하면, i번째 참조 픽처 집합에서 i번째 참조 픽처가 첫 번째 픽처인 경우이거나, 참조 픽처 집합에서 i-1번째 참조 픽처는 POC 순서상 현재 픽처 이전의 픽처이고 i번째 참조 픽처는 POC 순서상 현재 픽처 이후의 픽처인 경우가 된다. 이 경우에, i번째 참조 픽처의 상대적 POC는 표 2에서 보듯, 현재 픽처의 POC를 기반으로 유도된다.
따라서, 참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 상이하고 i번째 참조 픽처의 부호가 ‘-’라면, i번째 참조 픽처의 POC는 현재 픽처의 POC에서 i번째 참조 픽처의 상대적 POC를 뺀 값이 된다. 참조 픽처 집합 내 i번째 참조 픽처의 부호와 i-1번째 참조 픽처의 부호가 상이하고 i번째 참조 픽처의 부호가 ‘+’라면, i번째 참조 픽처의 POC는 현재 픽처의 POC에 i번째 참조 픽처의 상대적 POC를 더한 값이 된다.
또한, 표 3에서 설명한 바와 같이, 명시적으로 참조 픽처의 상대적 POC에 대한 부호를 지시하는 정보가 전송되지 않을 수도 있다. 이 경우, 디코딩 장치는 참조 픽처 집합 내에서 앞쪽에 위치하는 상대적 POC들의 부호는 ‘-’(minus)로 판단하고, 참조 픽처 집합 내에서 뒤쪽에 위치하는 상대적 POC들의 부호는 ‘+’(plus)로 판단할 수 있다. 이때, 인코딩 장치로부터 부호가 ‘-’인 상대적 POC의 개수와 부호의 개수가 ‘+’인 상대적 POC의 개수를 지시하는 정보가 전송될 수도 있다. 디코딩 장치는 참조 픽처 집합의 처음부터 인코딩 장치가 지시한 부호가 ‘-’인 상대적 POC의 개수만큼의 상대적 POC들은 부호가 ‘-’인 것으로 판단하고, 나머지 상대적 POC들은 부호가 ‘+’인 것으로 판단하여, 상술한 바와 같이 i번째 참조 신호의 POC(ref_pic[i])를 복구할 수 있다.
다시 말하면, 참조 픽처 집합 내 참조 픽처들 중에서 첫 번째 참조 픽처에 대한 상대적 POC는 현재 픽처와의 POC 차이이다. 참조 픽처 집합 내 참조 픽처 중 첫 번째 참조 픽처를 제외한 현재 픽처 이전의 픽처들에 대한 상대적 POC는 바로 전 참조 픽처와의 POC 차이이다. 참조 픽처 집합 내 참조 픽처 중 현재 픽처 이후 첫 번째 픽처에 대한 상대적 POC는 현재 픽처와의 POC 차이이다. 참조 픽처 집합 내 나머지 참조 픽처(참조 픽처 집합 내에서 현재 픽처 이후의 두 번째 참조 픽처부터 마지막 참조 픽처까지)에 대한 참조 픽처는 바로 전 참조 픽처와의 POC 차이이다. 여기서 현재 픽처 이전 및 이후는 POC 순서로 판단한다. 여기서도, 바로 전 참조 픽처라 함은 참조 픽처 집합 내 정렬 순서에서 바로 앞 픽처를 의미한다.
이하, 기준값(refValue)이 현재 픽처의 POC인 경우에 대하여 본 발명이 적용되는 예들을 구체적으로 설명한다.
도 4는 인코딩 장치로부터 디코딩 장치로 시그널링되는 참조 픽처 집합의 일 예를 개략적으로 설명하는 도면이다. 도 4의 예는 단방향 예측을 수행하는 9개의 P 슬라이스(P 픽처)들(P0 ~ P9)이 상호 참조하는 경우를나타낸다.
표 5은 도 4의 예에 대해 시그널링 되는 참조 픽처 집합이 참조 픽처들의 POC로 구성되는 예를 나타낸 것이다.
도 4 및 표 5을 참조하면, 현재 픽처에 대한 참조 픽처 집합은 현재 픽처가 참조할 수 있는 참조 픽처들의 POC를 포함한다. 참조 픽처 집합에서 참조 픽처들은 POC 순서상 현재 픽처에 가까운 참조 픽처들에 낮은 인덱스가 부여된다.
예컨대, 도 4 및 표 5의 예에서 현재 픽처가 P6(POC=26)인 경우에, 현재 픽처가 참조할 수 있는 참조 픽처들은 P5, P4, P0이다. 따라서, POC가 26인 현재 픽처(P6)에 대한 참조 픽처 집합은 P5, P4, P0의 POC들로 구성되며, POC 순서상 현재 픽처에 가까운 참조 픽처에 낮은 인덱스가 할당된다.
도 4 및 표 5의 예에서는 POC 순서상 현재 픽처 이전의 참조 픽처들의 경우에는 참조 픽처 집합 내에서 내림차순으로 정렬되지만, 참조 픽처 집합은 참조 픽처의 POC를 그대로 시그널링 한다.
이와 달리, 앞서 설명한 바와 같이 참조 픽처 집합이 참조 픽처들의 상대적 POC를 시그널링 하도록 할 수도 있다.
표 6는 도 4의 경우에 시그널링 되는 참조 픽처 집합의 일 예를 나타낸 것으로서 참조 픽처 집합이 참조 픽처들의 상대적 POC로 구성되는 예를 설명하기 위한 것이다.
표 6에서는 도 4에 대하여 현재 픽처의 참조 픽처 집합을 참조 픽처의 POC, 참조 픽처의 상대적 POC 크기, 참조 픽처의 상대적 POC 부호로 나타내고 있다.
표 5에서는 참조 픽처 집합에서 참조 픽처의 POC를 그대로 전송하는 경우를 설명하였으나, 표 6의 예에서는 참조 픽처 집합에서 참조 픽처의 상대적 POC를 전송하는 경우를 설명한다.
POC 순서상 현재 픽처 이전의 참조 픽처들(현재 픽처의 POC보다 POC가 작은 참조 픽처들)의 상대적 POC는 참조 픽처 집합 내에서 바로 전의 참조 픽처와의 POC 차이이다. 또한, 참조 픽처 집합에 포함되어 전송되는 상대적 POC 부호는 해당 참조 픽처가 POC 순서상 현재 픽처 이전의 픽처인지 이후의 픽처인지를 나타낸다.
예컨대, 도 4 및 표 6의 예에서, 현재 픽처가 P5인 경우를 고려하면, 현재 픽처가 참조할 수 있는 픽처들은 P4, P3, P0로서 POC가 각각 24, 23, 20이다.
P5에 대한 참조 픽처 집합이 상대적 POC를 전송하는 경우에, 참조 픽처 집합은 P5에 대한 참조 픽처의 상대적 POC 크기와 부호를 소정의 순서대로 정렬해서 전송한다. 상술한 바와 같이, P 슬라이스들 간의 참조 관계를 나타내는 도 4의 예에서, 참조 픽처들은 POC 순서상 현재 픽처 이전의 픽처들이며, 참조 픽처 집합에서 참조 픽처들은 내림차순으로 정렬된다.
따라서, P5에 대한 참조 픽처 집합에서 상대적 POC의 크기는 P4, P3, P0의 순서로 정렬된다. 표 6에 표시된 바와 같이 P5에 대한 참조 픽처 집합으로 전송되는 P4의 상대적 POC 크기는 1이고 부호는 ‘-‘이며, P3의 상대적 POC 크기는 1이고 부호는 ‘-‘이며, P0의 상대적 POC 크기는 3이고 부호는 ‘-‘이다.
이때, 상대적 POC의 부호들 없이, POC 순서상 현재 픽처 이전의 참조 픽처들(참조 픽처들의 상대적 POC 크기)이 참조 픽처 집합의 앞부분에 정렬되고, 현재 픽처 이후의 참조 픽처들(참조 픽처들의 상대적 POC 크기)이 참조 픽처 집합의 뒷부분에 정렬된 참조 픽처 집합이 전송될 수도 있다. 이 경우에, POC 순서상 현재 픽처 이전의 참조 픽처들(상대적 POC의 부호가 ‘-‘인 참조 픽처들)의 개수와 POC 순서상 현재 픽처 이후의 참조 픽처들(상대적 POC의 부호가 ‘+’인 참조 픽처들)의 개수를 지시하는 정보가 함께 전송될 수도 있다.
도 5는, 단방향 예측을 수행하는P 픽처들 사이의 참조 관계를 나타내는 도 4와 달리, 양방향 예측을 수행하는B 픽처들 사이의 참조 관계의 일 예를 나타내는 도면이다. 도 5에서는 9개의 B 픽처들 B0 ~ B8의 참조 관계를 개략적으로 나타낸 것이다.
표 7는 도 5의 경우에 시그널링되는 참조 픽처 집합의 일 예를 나타낸 것으로서, 참조 픽처 집합이 참조 픽처들의 상대적 POC로 구성되는 예를 설명하기 위한 것이다.
표 7와 도 5의 예에서도, 참조 픽처 집합은 참조 픽처의 POC들을 그대로 전송하는 대신, 참조 픽처들의 상대적 POC를 전송할 수 있다.
POC 순서상 현재 픽처 이전의 참조 픽처들(현재 픽처의 POC보다 POC가 작은 참조 픽처들)의 상대적 POC는 참조 픽처 집합 내에서 바로 전의 참조 픽처와의 POC 차이이다. POC 순서상 현재 픽처 이후의 참조 픽처들(현재 픽처의 POC보다 POC가 큰 참조 픽처들)의 상대적 POC도 참조 픽처 집합 내에서 바로 전의 참조 픽처와의 POC 차이이다. 다만, (1)참조 픽처 집합에서 첫 번째 참조 픽처 및 (2)참조 픽처 집합에서 이전의 참조 픽처와 상대적 POC의 부호가 다른 참조 픽처의 경우에, 상대적 POC의 크기는 현재 픽처와의 POC 차이가 된다. 바꿔 말하면, 참조 픽처 집합에서 POC 순서상 현재 픽처 이전의 참조 픽처들 중 현재 픽처에 가장 가까운 참조 픽처와 현재 픽처 이후의 참조 픽처들 중 현재 픽처에 가장 가까운 참조 픽처의 상대적 POC는 현재 픽처와의 POC 차이가 된다.
표 7를 참조하여 현재 픽처가 B5인 경우를 예로서 설명하면, 참조 픽처 집합은 B4, B2, B6, B8로 구성된다. 참조 픽처 집합을 상대적 POC로 구성하는 경우에, 참조 픽처 집합에서 가장 낮은 인덱스가 할당되는 상대적POC 크기는 B4에 대한 것으로서, 현재 픽처의 POC와 B4의 POC 사이의 차이값인 1이며 부호는 ‘-’이다. 이어서, 두 번째 인덱스가 할당되는 상대적 POC의 크기는B2에 대한 것으로서 B4의 POC와 B2의 POC 사이의 차이값인 2이며 부호는 ‘-‘이다. 세 번째 인덱스가 할당되는 상대적 POC의 크기는 B6에 대한 것이다. B6에 대한 상대적 POC는 이전의 참조 픽처인 B2에 대한 상대적 POC와 부호가 상이하므로, B6에 대한 상대적 POC의 크기는 현재 픽처와의 POC 차이인 1이며 부호는 ‘+’가 된다. 마지막 인덱스가 할당되는 상대적 POC의 크기는 B8에 대한 것으로서, B6의 POC와 B8의 차이값인 2이며 부호는 ‘+’이다.
상술한 바와 같이, 참조 픽처 집합은, 현재 픽처에 대한 참조 픽처의 상대적 POC의 크기 및 부호를 모두 전송하는 대신, 현재 픽처에 대한 참조 픽처의 상대적 POC 크기만 전송하되 ‘-‘ 부호를 가지는 상대적 POC의 크기들을 ‘+’ 부호를 가지는 상대적 POC의 크기들보다 먼저 전송함으로써, 부호를 명시적으로 전송하지 않더라도 해당 상대적 POC의 부호가 유도될 수 있도록 할 수 있다. 이 경우에 ‘-‘ 부호를 가지는 상대적 POC의 개수와 ‘+’ 부호를 가지는 상대적 POC의 개수를 지시하는 정보가 함께 전송될 수 있다.
예컨대, 표 7에서 현재 픽처가 B5인 경우를 다시 고려하면, 인코딩 장치는 B5에 대한 참조 픽처 집합을 ( 1 2 1 2 )와 같이 참조 픽처들의 상대적 PC 크기만으로 구성하여 전송할 수 있다. 표 7에서와 같이, ‘-‘ 부호를 가지는 상대적 POC의 크기들이 참조 픽처 집합의 앞 부분에 위치한다. 정렬 순서는 ‘-‘ 부호를 가지는 상대적 POC(POC 순서상 현재 픽처 이전의 참조 픽처들에 대한 상대적 POC)들의 경우, 앞서 설명한 바와 같이 내림차순이며, ‘+’ 부호를 가지는 상대적 POC(POC 순서상 현재 픽처 이후의 참조 픽처들에 대한 상대적 POC)들의 경우 역시 앞서 설명한 바와 같이 오름차순을 유지한다. 이때, 참조 픽처 집합과 함께 ‘-‘를 가지는 상대적 POC의 개수와 ‘+’ 부호를 가지는 상대적 POC의 개수를 지시하는 정보가 전송될 수 있다. 예를 들어, B5에 대한 참조 픽처 집합에서 ‘-‘ 부호를 가지는 참조 픽처(상대적 POC)의 개수가 2이고 ‘+’ 부호를 가지는 참조 픽처(상대적 POC)개수가 2라는 지시를 수신하면, 디코딩 장치는 참조 픽처 집합 중 앞 2 개의 상대적 POC에 대한 부호가 ‘-‘이고 뒤 2개의 상대적 POC에 대한 부호가 ’+’이므로, 참조 픽처 집합 중 앞 2개의 상대적 POC 크기는 현재 픽처보다 POC가 작은 참조 픽처에 대한 상대적 POC 크기이며, 참조 픽처 집합 중 뒤 2개의 상대적 POC 크기는 현재 픽처보다 POC가 큰 참조 픽처에 대한 상대적 POC 크기라고 판단할 수 있다.
도 6은 B 픽처 및 P 픽처 사이 참조 관계의 일 예를 개략적으로 나타낸 도면이다.
도 6에서는 단방향 예측을 수행하는 7 개의 P 픽처들(P0 ~ P6)과 양방향 예측을 수행하는 2개의 B 픽처들(B0, B1) 사이의 참조 관계를 예시하고 있다.
표 8은 도 6의 경우에 시그널링되는 참조 픽처 집합의 일 예를 나타낸 것으로서, 참조 픽처 집합이 참조 픽처들의 상대적 POC로 구성되는 예를 설명하기 위한 것이다.
표 8과 도 6의 예는 P 픽처와 B 픽처가 혼재하는 경우에 대한 것이지만, 상대적 POC의 크기와 부호를 유도하는 방법, 참조 픽처 집합 내에서 상대적 POC의 정렬 방법 등을 상술한 바와 동일하다.
예컨대, 현재 픽처가 B1인 경우에, B1에 대한 참조 픽처 집합은 P3, P0, P6의 상대적 POC로 구성될 수 있다. 참조 픽처 집합은 P3, P0, P6에 대한 상대적 POC의 크기 ( 2 4 2 )와 각각의 부호로 구성되어 디코딩 장치로 전송될 수 있다.
이 경우에도, 상대적 POC의 부호를 지시하는 정보를 전송하지 않고, 정렬 순서를 기반으로 ‘-’ 부호를 가지는 상대적 POC의 개수와 ‘+’ 부호를 가지는 상대적 POC의 개수를 지시하는 정보를 상대적 POc의 크기를 포함하는 참조 픽처 집합과 함께 전송할 수도 있다. 예컨대, 현재 픽처가 B1인 경우 상대적 POC의 크기를 포함하는 참조 픽처 집합 ( 2 4 2 )와 ‘-‘ 부호를 가지는 상대적 POC의 개수가 2이고 ‘+’ 부호를 가지는 상대적 POC의 개수가 1임을 지시하는 정보가 전송될 수 있다.
도 7은 본 발명에 따라서 인코딩 장치가 수행하는 인코딩 방법을 개략적으로 설명하는 순서도이다. 도 7의 인코딩 방법을 수행하는 인코딩 장치는 도 1에서 설명한 인코딩 장치에 대응한다.
도 7을 참조하면, 인코딩 장치는 현재 블록에 대한 예측을 수행한다(S710). 인코딩 장치는 현재 블록에 대하여 인터 예측 또는 인트라 예측을 수행할 수 있다. 인터 예측을 수행하는 경우에는 상술한 바와 같이 구성되는 참조 픽처 리스트를 이용하여 현재 블록에 대한 참조 픽처를 선택/지정할 수 있다.
인코딩 장치는 현재 블록에 대한 예측 결과를 변환/양자화한다(S720). 인코딩 장치는 예측 결과와 원본 블록의 차이에 해당하는 레지듀얼 블록을 변환/양자화할 수 있다. 또한, 인트라 예측이 적용된 경우에는 적용된 인트라 예측 모드에 관한 정보가 변환/양자화될 수 있고, 인터 예측이 적용된 경우에는 움직임 정보(움직임 벡터/참조 픽처에 관한 정보)가 변환/양자화될 수 있다.
인코딩 장치는 변환/양자화된 정보를 엔트로피 부호화한다(S730). 엔트로피 부호화의 방법으로서 CABAC가 이용될 수 있다.
인코딩 장치는 엔트로피 부호화된 정보를 시그널링한다(S740). 이때, 시그널링 되는 정보는 현재 픽처(현재 블록)에 대한 참조 픽처 리스트를 구성하기 위한 참조 픽처 집합을 포함한다. 참조 픽처 집합은 슬라이스별로 구성될 수 있으며, 슬라이스에 헤더에 포함되어 전송될 수 있다.
참조 픽처 집합은 현재 블록에 대한 참조 픽처들의 POC로 구성될 수 있다. 또한, 참조 픽처 집합은 참조 픽처들의 상대적 POC로 구성되어 전송 오버헤드를 줄일 수도 있다.
참조 픽처 집합이 참조 픽처들의 상대적 POC로 구성되는 경우에는, 참조 픽처 집합을 통해 현재 픽처의 참조 픽처로 이용될 수 있는 픽처들에 대한 상대적 POC의 크기와 부호가 전송될 수도 있고, 상대적 POC의 크기와 ‘-‘ 부호를 가지는 상대적 POC 및 ‘+’ 부호를 가지는 상대적 POC의 개수가 전송될 수도 있다. 상대적 POC가 전송되는 경우에, ‘-‘ 부호를 가지는 상대적 POC들이 먼저 전송되며, ‘+’ 부호를 가지는 상대적 POC들은 그 다음에 전송된다. ‘-‘ 부호를 가지는 상대적 POC들은 참조 픽처들의 POC에 따라서 내림차순으로 정렬되며, ‘+’ 부호를 가지는 상대적 POC들은 참조 픽처들의 POC에 따라서 올림차순으로 정렬될 수 있다.
도 7에서는 참조 픽처 집합에 관한 내용을 고려하여, 발명이 용이하게 이해될 수 있도록 인코딩 장치의 동작을 개략적으로 설명하였으나, 이는 설명의 편의를 위한 것으로서, 본 발명에서 인코딩 장치의 동작은 도 1에서 설명한 제 동작을 포함한다.
도 8은 본 발명에 따라서 디코딩 장치가 수행하는 디코딩 방법을 개략적으로 설명하는 순서도이다.
도 8을 참조하면, 디코딩 장치는 인코딩 장치로부터 비트스트림을 수신하고, 엔트로피 디코딩을 수행한다(S810). 인코딩 장치로부터 수신한 비트스트림은 참조 픽처 집합을 포함한다. 참조 픽처 집합은 슬라이드 헤더에 포함되어 수신될 수 있다.
참조 픽처 집합은 현재 블록에 대한 참조 픽처들의 POC로 구성될 수도 있고, 참조 픽처들의 상대적 POC로 구성될 수도 있다.
디코딩 장치는 참조 픽처 집합을 통해 현재 픽처의 참조 픽처로서 이용될 수 있는 픽처들을 지시하는 정보를 수신할 수 있다. 예컨대, 참조 픽처 집합을 통해 현재 픽처의 참조 픽처로서 이용될 수 있는 픽처들의 POC를 수신할 수 있다. 참조 픽처 집합이 (1) 참조 픽처들에 대한 상대적 POC의 크기와 부호 또는 (2) 참조 픽처들에 대한 상대적 POC의 크기와 ‘-‘ 및 ‘+’ 부호를 가지는 상대적 POC의 개수를 포함하는 경우에는, 수신한 정보를 기반으로 표 4의 방법 등을 이용하여 해당 참조 픽처의 POC를 유도할 수 있다.
참조 픽처 집합을 통해 상대적 POC를 수신하는 경우에, ‘-‘ 부호를 가지는 상대적 POC들이 먼저 수신되며, ‘+’ 부호를 가지는 상대적 POC들은 그 다음에 수신된다. ‘-‘ 부호를 가지는 상대적 POC들은 참조 픽처들의 POC에 따라서 내림차순으로 정렬되며, ‘+’ 부호를 가지는 상대적 POC들은 참조 픽처들의 POC에 따라서 올림차순으로 정렬될 수 있다.
디코딩 장치는 엔트로피 복호화한 정보를 기반으로 현재 블록에 대한 예측을 수행한다(S920). 현재 블록에 대한 예측 방법은 인코딩 장치로보터 전송될 수 있다. 현재 블록에 대한 예측 방법이 인터 예측인 경우에 디코딩 장치는 수신한 참조 픽처 집합을 기반으로 구성한 참조 픽처 리스트를 이용하여 예측을 수행할 수 있다.
참조 픽처 집합으로부터 참조 픽처 리스트를 구성하는 방법은 앞서 설명한 바와 같다. 구성된 참조 픽처 리스트는 디코딩 장치의 메모리에 저장될 수 있다.
디코딩 장치는 영상을 복원한다(S930). 현재 블록에 대한 예측을 기반으로 현재 블록을 복원하고 복원된 블록들을 통해 영상을 복원할 수 있다. 스킵 모드가 적용되는 경우, 레지듀얼이 전송되지 않으므로, 예측 블록을 복원 블록을 할 수 있다. 머지 모드가 적용되는 경우에는 또는 MVP를 이용하는 경우에는 예측 블록과 레지듀얼 블록을 합하여 현재 블록을 복원할 수 있다.
본 명세서에서는, “참조 픽처 집합에 포함된 픽처”, “참조 픽처 집합의 x번째 픽처”라는 표현을 사용하였으나, 이는 설명의 편의를 위한 것임에 유의한다. 참조 픽처 집합에 포함된 픽처는 참조 픽처 집합에 대응하는POC 정보가 포함되어 있는 픽처를 의미하며, 참조 픽처 집합의 x번째 픽처는 참조 픽처 집합 내에서 대응하는 POC 정보가 x번째로 정렬되는 픽처를 의미한다.
한편, 도 4 내지 도 6에 도시된 픽처들 간의 참조 관계는 시간적 레벨(temporal level)이 적용되지 않은 경우를 예로서 설명하였으나, 이는 발명의 이해를 돕기 위한 것으로서 본 발명은 이에 한정되지 않는다. 본 발명은 시간적 레벨이 고려되어, 자신보다 하위 레벨의 픽처만을 참조하는 경우에 대해서도 동일하게 적용될 수 있으며, 이 경우에 표 5 내지 표 8의 참조 관계는 이를 반영하여 변경될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 상술한 실시예들은 다양한 양태의 예시들을 포함한다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.
지금까지 본 발명에 관한 설명에서 일 구성 요소가 타 구성 요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 상기 일 다른 구성 요소가 상기 타 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 상기 두 구성 요소 사이에 다른 구성 요소가 존재할 수도 있다고 이해되어야 한다. 반면에, 일 구성 요소가 타 구성 요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 두 구성 요소 사이에 다른 구성요소가 존재하지 않는 것으로 이해되어야 한다.
100 : 영상 부호화기
200: 영상 복호화기
200: 영상 복호화기
Claims (7)
- 디코딩 장치에 의하여 수행되는 비디오 디코딩 방법에 있어서,
참조 픽처를 포함하는 참조 픽처 리스트를 구성하기 위한 POC(picture order count) 정보를 슬라이스 헤더를 통해 획득하는 단계;
상기 POC 정보를 기반으로 상기 참조 픽처들에 대한 POC 값들을 도출하는 단계;
상기 POC 값들을 기반으로 상기 참조 픽처 세트를 구성하는 단계;
상기 참조 픽처 세트를 기반으로 참조 픽처 리스트를 생성하는 단계;
상기 참조 픽처 리스트를 기반으로 현재 블록에 대한 인터 예측을 수행하는 단계를 포함하되,
i번 참조 픽처의 POC 값은 상기 POC 정보로부터 도출된 POC 차분을 기반으로 도출되고,
상기 슬라이스 헤더 내의 상기 POC 정보는 POC 차분값 정보를 포함하고,
i가 0이면, 상기 POC 차분값 정보는 상기 현재 픽처와 상기 i번 참조 픽처의 POC 값들의 차분을 나타내고,
상기 i가 0보다 크면, 상기 POC 차분값 정보는 상기 i번 참조 픽처와 (i-1)번 참조 픽처의 POC 값들의 차분을 나타내고,
상기 참조 픽처 리스트 내에서, POC 순서상 상기 현재 픽처에 선행하는 참조 픽처들은 상기 POC 순서상 상기 현재 픽처에 후행하는 참조 픽처들 보다 우선적으로 위치하고,
상기 참조 픽처 리스트 내에서, 상기 POC 순서상 상기 현재 픽처에 선행하는 참조 픽처들의 인덱스는 상기 POC 순서상 상기 현재 픽처에 선행하는 참조 픽처들의 POC 값의 내림차순에 기초하여 정렬되고, 상기 POC 순서상 상기 현재 픽처에 후행하는 참조 픽처들의 인덱스는 상기 POC 순서상 상기 현재 픽처에 후행하는 참조 픽처들의 POC 값의 올림차순에 기초하여 정렬되는 것을 특징으로 하는 비디오 디코딩 방법. - 제1항에 있어서,
상기 POC 순서상 상기 현재 픽처에 선행하는 상기 참조 픽처들에 대한 상기 POC 차분들은 음수 부호를 가지고,
상기 POC 순서상 상기 현재 픽처에 후행하는 상기 참조 픽처들에 대한 상기 POC 차분들은 양수 부호를 갖는 것을 특징으로 하는 비디오 디코딩 방법. - 제1항에 있어서,
상기 슬라이스 헤더는 P 슬라이스 또는 B 슬라이스에 대한 것을 특징으로 하는, 비디오 디코딩 방법. - 인코딩 장치에 의하여 수행되는 비디오 인코딩 방법에 있어서,
참조 픽처를 포함하는 참조 픽처 리스트에 기초하여 인터 예측을 수행하는 단계와;
상기 참조 픽처들의 POC(picture order count) 값들을 도출하는 단계와;
상기 참조 픽처들의 도출된 POC 값들에 기초하여 상기 참조 픽처의 POC 정보를 생성하되, 상기 POC 정보는 상기 참조 픽처의 POC 차분을 나타내고,
상기 POC 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하되,
상기 POC 정보는 POC 차분값 정보를 포함하는 슬라이스 헤더에서 시그널링되고,
i가 0이면, 상기 POC 차분값 정보는 상기 현재 픽처와 상기 i번 참조 픽처의 POC 값들의 차분을 나타내고,
상기 i가 0보다 크면, 상기 POC 차분값 정보는 상기 i번 참조 픽처와 (i-1)번 참조 픽처의 POC 값들의 차분을 나타내고,
상기 참조 픽처 리스트 내에서, POC 순서상 상기 현재 픽처에 선행하는 참조 픽처들은 상기 POC 순서상 상기 현재 픽처에 후행하는 참조 픽처들 보다 우선적으로 위치하고,
상기 참조 픽처 리스트 내에서, 상기 POC 순서상 상기 현재 픽처에 선행하는 참조 픽처들의 인덱스는 상기 POC 순서상 상기 현재 픽처에 선행하는 참조 픽처들의 POC 값의 내림차순에 기초하여 정렬되고, 상기 POC 순서상 상기 현재 픽처에 후행하는 참조 픽처들의 인덱스는 상기 POC 순서상 상기 현재 픽처에 후행하는 참조 픽처들의 POC 값의 올림차순에 기초하여 정렬되는 것을 특징으로 하는 비디오 인코딩 방법. - 제4항에 있어서,
상기 POC 순서상 상기 현재 픽처에 선행하는 상기 참조 픽처들에 대한 상기 POC 차분들은 음수 부호를 가지고,
상기 POC 순서상 상기 현재 픽처에 후행하는 상기 참조 픽처들에 대한 상기 POC 차분들은 양수 부호를 갖는 것을 특징으로 하는 비디오 인코딩 방법. - 제4항에 있어서,
상기 슬라이스 헤더는 P 슬라이스 또는 B 슬라이스에 대한 것을 특징으로 하는, 비디오 인코딩 방법. - 컴퓨터로 판독 가능한 디지털 저장 매체로서, 청구항 4항의 비디오 인코딩 방법에 의해 인코딩된 영상 정보가 저장된, 디지털 저장 매체.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227004314A KR102494145B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161537586P | 2011-09-22 | 2011-09-22 | |
US61/537,586 | 2011-09-22 | ||
PCT/KR2012/007614 WO2013042995A2 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020207020577A KR102231417B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207020577A Division KR102231417B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227004314A Division KR102494145B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210033550A true KR20210033550A (ko) | 2021-03-26 |
KR102362841B1 KR102362841B1 (ko) | 2022-02-14 |
Family
ID=47915036
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227004314A KR102494145B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020207005224A KR102136358B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020217008054A KR102362841B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020147008048A KR102083013B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020207020577A KR102231417B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227004314A KR102494145B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020207005224A KR102136358B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147008048A KR102083013B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR1020207020577A KR102231417B1 (ko) | 2011-09-22 | 2012-09-21 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Country Status (15)
Country | Link |
---|---|
US (6) | US9571834B2 (ko) |
EP (4) | EP4246976A3 (ko) |
JP (6) | JP6272759B2 (ko) |
KR (5) | KR102494145B1 (ko) |
CN (4) | CN107635139B (ko) |
DK (1) | DK2750387T3 (ko) |
ES (3) | ES2743398T3 (ko) |
FI (1) | FI4017006T3 (ko) |
HK (2) | HK1249321A1 (ko) |
HR (1) | HRP20231385T1 (ko) |
HU (3) | HUE059053T2 (ko) |
PL (3) | PL4017006T3 (ko) |
PT (1) | PT2750387T (ko) |
SI (2) | SI4017006T1 (ko) |
WO (1) | WO2013042995A2 (ko) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102427824B1 (ko) * | 2010-12-08 | 2022-08-02 | 엘지전자 주식회사 | 인트라 예측 방법과 이를 이용한 부호화 장치 및 복호화 장치 |
EP2658263B1 (en) * | 2010-12-22 | 2022-12-14 | LG Electronics Inc. | Intra prediction method and apparatus using the method |
HRP20231385T1 (hr) | 2011-09-22 | 2024-03-01 | Lg Electronics Inc. | Postupak i uređaj za signaliziranje slikovnih informacija, te postupak i uređaj za dekodiranje korištenjem istih |
US9131245B2 (en) | 2011-09-23 | 2015-09-08 | Qualcomm Incorporated | Reference picture list construction for video coding |
US10003817B2 (en) | 2011-11-07 | 2018-06-19 | Microsoft Technology Licensing, Llc | Signaling of state information for a decoded picture buffer and reference picture lists |
US9313500B2 (en) | 2012-09-30 | 2016-04-12 | Microsoft Technology Licensing, Llc | Conditional signalling of reference picture list modification information |
KR20150075041A (ko) * | 2013-12-24 | 2015-07-02 | 주식회사 케이티 | 멀티 레이어 비디오 신호 인코딩/디코딩 방법 및 장치 |
WO2016195460A1 (ko) | 2015-06-05 | 2016-12-08 | 한양대학교 산학협력단 | 화면 내 예측에 대한 부호화/복호화 방법 및 장치 |
CN106817585B (zh) * | 2015-12-02 | 2020-05-01 | 掌赢信息科技(上海)有限公司 | 一种利用长期参考帧的视频编码方法、电子设备和系统 |
CN106713927B (zh) * | 2016-11-14 | 2019-08-13 | 珠海格力电器股份有限公司 | 一种图像输出装置、方法及解码器 |
US20190313107A1 (en) * | 2018-03-15 | 2019-10-10 | University-Industry Cooperation Group Of Kyung Hee University | Image encoding/decoding method and apparatus |
WO2019190338A1 (en) * | 2018-03-26 | 2019-10-03 | Huawei Technologies Co., Ltd. | A video image encoder, a video image decoder and corresponding methods for motion information coding |
KR20240032173A (ko) * | 2018-09-12 | 2024-03-08 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 참조 화상 목록 구조에 대한 후보 시그널링 |
RU2769347C1 (ru) | 2019-01-02 | 2022-03-30 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Способ и устройство для обработки видеосигнала посредством использования внешнего прогнозирования |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102083013B1 (ko) * | 2011-09-22 | 2020-04-14 | 엘지전자 주식회사 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100366643B1 (ko) * | 1998-11-25 | 2003-02-19 | 삼성전자 주식회사 | 구획현상제거방법및장치 |
JP3923898B2 (ja) * | 2002-01-18 | 2007-06-06 | 株式会社東芝 | 画像符号化方法及び装置 |
KR100865034B1 (ko) | 2002-07-18 | 2008-10-23 | 엘지전자 주식회사 | 모션 벡터 예측 방법 |
US6728315B2 (en) * | 2002-07-24 | 2004-04-27 | Apple Computer, Inc. | Method and apparatus for variable accuracy inter-picture timing specification for digital video encoding with reduced requirements for division operations |
KR100619716B1 (ko) * | 2005-05-09 | 2006-09-06 | 엘지전자 주식회사 | 이미지 예측 방법 |
WO2006124885A2 (en) * | 2005-05-12 | 2006-11-23 | Kylintv, Inc. | Codec for iptv |
US20070127578A1 (en) * | 2005-12-02 | 2007-06-07 | Dijia Wu | Low delay and small memory footprint picture buffering |
US7965774B2 (en) * | 2006-01-06 | 2011-06-21 | International Business Machines Corporation | Method for visual signal extrapolation or interpolation |
KR100818921B1 (ko) * | 2006-01-12 | 2008-04-03 | 삼성전자주식회사 | 모션 벡터 압축 방법, 상기 압축 방법을 이용하는 비디오인코더 및 비디오 디코더 |
KR100934674B1 (ko) * | 2006-03-30 | 2009-12-31 | 엘지전자 주식회사 | 비디오 신호를 디코딩/인코딩하기 위한 방법 및 장치 |
MX357910B (es) * | 2006-07-06 | 2018-07-30 | Thomson Licensing | Método y aparato para desacoplar el número de cuadro y/o la cuenta del orden de imagen (poc) para la codificación y decodificación de video de múltiples vistas. |
ZA200900857B (en) * | 2006-07-06 | 2010-05-26 | Thomson Licensing | Method and apparatus for decoupling frame number and/or picture order count (POC) for multi-view video encoding and decoding |
KR100943627B1 (ko) * | 2006-07-20 | 2010-02-24 | 엘지전자 주식회사 | 모션 벡터 예측 방법 |
CN101502119B (zh) * | 2006-08-02 | 2012-05-23 | 汤姆逊许可公司 | 用于视频编码的自适应几何分割方法和设备 |
CA2666452C (en) * | 2006-10-16 | 2014-12-16 | Nokia Corporation | System and method for implementing efficient decoded buffer management in multi-view video coding |
KR100941608B1 (ko) * | 2006-10-17 | 2010-02-11 | 경희대학교 산학협력단 | 다시점 영상의 부호화 및 복호화 방법과 그를 위한 장치 |
US8300698B2 (en) * | 2006-10-23 | 2012-10-30 | Qualcomm Incorporated | Signalling of maximum dynamic range of inverse discrete cosine transform |
TWI338869B (en) * | 2007-08-03 | 2011-03-11 | Via Tech Inc | Method and apparatus for block-based digital encoded picture |
US8938009B2 (en) * | 2007-10-12 | 2015-01-20 | Qualcomm Incorporated | Layered encoded bitstream structure |
JP5056560B2 (ja) * | 2008-03-17 | 2012-10-24 | 富士通株式会社 | 符号化装置、復号化装置、符号化方法および復号化方法 |
JP4935746B2 (ja) * | 2008-04-07 | 2012-05-23 | 富士通株式会社 | 動画像符号化装置、動画像復号化装置及びその符号化、復号化方法 |
US8855199B2 (en) * | 2008-04-21 | 2014-10-07 | Nokia Corporation | Method and device for video coding and decoding |
TW201032597A (en) * | 2009-01-28 | 2010-09-01 | Nokia Corp | Method and apparatus for video coding and decoding |
CN105744284B (zh) * | 2009-02-19 | 2019-04-19 | 交互数字麦迪逊专利控股公司 | 使用3d视频格式的装置 |
JP5332773B2 (ja) * | 2009-03-18 | 2013-11-06 | ソニー株式会社 | 画像処理装置および方法 |
US20100246683A1 (en) * | 2009-03-27 | 2010-09-30 | Jennifer Lois Harmon Webb | Error Resilience in Video Decoding |
KR101619451B1 (ko) * | 2009-04-17 | 2016-05-10 | 엘지전자 주식회사 | 다시점 비디오 신호의 처리 방법 및 장치 |
JP2011077722A (ja) * | 2009-09-29 | 2011-04-14 | Victor Co Of Japan Ltd | 画像復号装置、画像復号方法およびそのプログラム |
JP2011082683A (ja) * | 2009-10-05 | 2011-04-21 | Sony Corp | 画像処理装置、画像処理方法、及び、プログラム |
US20110194613A1 (en) * | 2010-02-11 | 2011-08-11 | Qualcomm Incorporated | Video coding with large macroblocks |
WO2011136896A1 (en) * | 2010-04-27 | 2011-11-03 | Sony Corporation | Boundary adaptive intra prediction for improving subjective video quality |
US20110317757A1 (en) * | 2010-06-25 | 2011-12-29 | Qualcomm Incorporated | Intra prediction mode signaling for finer spatial prediction directions |
US20120044992A1 (en) * | 2010-08-17 | 2012-02-23 | Qualcomm Incorporated | Low complexity adaptive filter |
CN103229507B (zh) * | 2010-11-25 | 2017-09-08 | Lg电子株式会社 | 使用信号通知图像信息的方法和使用该方法来解码图像信息的方法 |
KR102390352B1 (ko) * | 2011-01-07 | 2022-04-25 | 엘지전자 주식회사 | 영상 정보 부호화 방법 및 복호화 방법과 이를 이용한 장치 |
US9008181B2 (en) | 2011-01-24 | 2015-04-14 | Qualcomm Incorporated | Single reference picture list utilization for interprediction video coding |
US9516379B2 (en) * | 2011-03-08 | 2016-12-06 | Qualcomm Incorporated | Buffer management in video codecs |
US8934552B2 (en) * | 2011-03-31 | 2015-01-13 | Qualcomm Incorporated | Combined reference picture list construction and mapping |
US9313494B2 (en) * | 2011-06-20 | 2016-04-12 | Qualcomm Incorporated | Parallelization friendly merge candidates for video coding |
EP2687012A1 (en) * | 2011-06-30 | 2014-01-22 | Telefonaktiebolaget L M Ericsson (PUBL) | Absolute or explicit reference picture signaling |
ITVI20110265A1 (it) | 2011-10-04 | 2013-04-05 | Tyco Electronics Amp Italia Srl | Alloggiamento per connettore |
US9451284B2 (en) * | 2011-10-10 | 2016-09-20 | Qualcomm Incorporated | Efficient signaling of reference picture sets |
EP3576412B1 (en) * | 2011-11-08 | 2021-09-01 | Nokia Technologies Oy | Reference picture handling |
US10158873B2 (en) * | 2011-11-30 | 2018-12-18 | Qualcomm Incorporated | Depth component removal for multiview video coding (MVC) compatible three-dimensional video coding (3DVC) |
US9973749B2 (en) * | 2012-01-20 | 2018-05-15 | Nokia Technologies Oy | Method for video coding and an apparatus, a computer-program product, a system, and a module for the same |
US9253487B2 (en) * | 2012-05-31 | 2016-02-02 | Qualcomm Incorporated | Reference index for enhancement layer in scalable video coding |
WO2014089805A1 (en) * | 2012-12-13 | 2014-06-19 | Mediatek Singapore Pte. Ltd. | A new reference management method for video coding |
US9532052B2 (en) * | 2013-04-08 | 2016-12-27 | Qualcomm Incorporated | Cross-layer POC alignment for multi-layer bitstreams that may include non-aligned IRAP pictures |
EP3078195A4 (en) * | 2013-12-02 | 2017-08-09 | Nokia Technologies OY | Video encoding and decoding |
US9854270B2 (en) * | 2013-12-19 | 2017-12-26 | Qualcomm Incorporated | Device and method for scalable coding of video information |
US9948950B2 (en) * | 2014-01-03 | 2018-04-17 | Qualcomm Incorporated | Disparity vector and/or advanced residual prediction for video coding |
US9967592B2 (en) * | 2014-01-11 | 2018-05-08 | Qualcomm Incorporated | Block-based advanced residual prediction for 3D video coding |
US9866869B2 (en) * | 2014-03-17 | 2018-01-09 | Qualcomm Incorporated | POC value design for multi-layer video coding |
US9866851B2 (en) * | 2014-06-20 | 2018-01-09 | Qualcomm Incorporated | Full picture order count reset for multi-layer codecs |
US10812791B2 (en) * | 2016-09-16 | 2020-10-20 | Qualcomm Incorporated | Offset vector identification of temporal motion vector predictor |
-
2012
- 2012-09-21 HR HRP20231385TT patent/HRP20231385T1/hr unknown
- 2012-09-21 EP EP23190393.1A patent/EP4246976A3/en active Pending
- 2012-09-21 HU HUE18211354A patent/HUE059053T2/hu unknown
- 2012-09-21 KR KR1020227004314A patent/KR102494145B1/ko active IP Right Grant
- 2012-09-21 CN CN201710900202.5A patent/CN107635139B/zh active Active
- 2012-09-21 CN CN201710897407.2A patent/CN107659820B/zh active Active
- 2012-09-21 US US14/346,879 patent/US9571834B2/en active Active
- 2012-09-21 HU HUE12833949A patent/HUE045736T2/hu unknown
- 2012-09-21 SI SI201232046T patent/SI4017006T1/sl unknown
- 2012-09-21 EP EP22153709.5A patent/EP4017006B9/en active Active
- 2012-09-21 ES ES12833949T patent/ES2743398T3/es active Active
- 2012-09-21 PL PL22153709.5T patent/PL4017006T3/pl unknown
- 2012-09-21 PL PL12833949T patent/PL2750387T3/pl unknown
- 2012-09-21 ES ES18211354T patent/ES2913775T3/es active Active
- 2012-09-21 PT PT12833949T patent/PT2750387T/pt unknown
- 2012-09-21 JP JP2014531724A patent/JP6272759B2/ja active Active
- 2012-09-21 KR KR1020207005224A patent/KR102136358B1/ko active IP Right Review Request
- 2012-09-21 KR KR1020217008054A patent/KR102362841B1/ko active IP Right Grant
- 2012-09-21 CN CN201280056283.0A patent/CN103931189B/zh active Active
- 2012-09-21 WO PCT/KR2012/007614 patent/WO2013042995A2/ko active Application Filing
- 2012-09-21 HU HUE22153709A patent/HUE064711T2/hu unknown
- 2012-09-21 SI SI201231997T patent/SI3474551T1/sl unknown
- 2012-09-21 DK DK12833949.6T patent/DK2750387T3/da active
- 2012-09-21 EP EP18211354.8A patent/EP3474551B1/en active Active
- 2012-09-21 FI FIEP22153709.5T patent/FI4017006T3/fi active
- 2012-09-21 KR KR1020147008048A patent/KR102083013B1/ko active IP Right Grant
- 2012-09-21 PL PL18211354T patent/PL3474551T3/pl unknown
- 2012-09-21 KR KR1020207020577A patent/KR102231417B1/ko active IP Right Grant
- 2012-09-21 ES ES22153709T patent/ES2962504T3/es active Active
- 2012-09-21 EP EP12833949.6A patent/EP2750387B1/en active Active
- 2012-09-21 CN CN201710896640.9A patent/CN107659821B/zh active Active
-
2017
- 2017-02-01 US US15/421,528 patent/US10321154B2/en active Active
- 2017-10-19 JP JP2017202832A patent/JP6545770B2/ja active Active
-
2018
- 2018-07-09 HK HK18108861.9A patent/HK1249321A1/zh unknown
- 2018-07-09 HK HK18108860.0A patent/HK1249320A1/zh unknown
-
2019
- 2019-05-08 US US16/406,810 patent/US10791337B2/en active Active
- 2019-06-19 JP JP2019113655A patent/JP6839230B2/ja active Active
-
2020
- 2020-08-28 US US17/006,335 patent/US11412252B2/en active Active
-
2021
- 2021-02-12 JP JP2021020658A patent/JP7179884B2/ja active Active
-
2022
- 2022-06-29 US US17/853,169 patent/US11743494B2/en active Active
- 2022-11-15 JP JP2022182379A patent/JP7457083B2/ja active Active
-
2023
- 2023-07-05 US US18/218,390 patent/US12120343B2/en active Active
-
2024
- 2024-03-14 JP JP2024039776A patent/JP2024060067A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102083013B1 (ko) * | 2011-09-22 | 2020-04-14 | 엘지전자 주식회사 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
KR102136358B1 (ko) * | 2011-09-22 | 2020-07-22 | 엘지전자 주식회사 | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 |
Non-Patent Citations (2)
Title |
---|
Proposed changes to the HEVC Working Draft. JCTVC-F493_WD_changes.doc. URL:http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F493-V8.zip. 2011.07.22.* * |
Rickard Sjoberg, et al.Absolute signaling of reference pictures. JCTVC-F493. 2011.07.01.* * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102231417B1 (ko) | 영상 정보 시그널링 방법 및 장치와 이를 이용한 디코딩 방법 및 장치 | |
KR102219082B1 (ko) | 영상 정보 전송 방법 및 장치와 이를 이용한 복호화 방법 및 장치 | |
KR102574869B1 (ko) | 영상 복호화 방법 및 이를 이용하는 장치 | |
WO2013066045A1 (ko) | 참조 픽처 리스트 초기화 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |