KR20210021836A - 수처리 장치용 필터 - Google Patents

수처리 장치용 필터 Download PDF

Info

Publication number
KR20210021836A
KR20210021836A KR1020190101294A KR20190101294A KR20210021836A KR 20210021836 A KR20210021836 A KR 20210021836A KR 1020190101294 A KR1020190101294 A KR 1020190101294A KR 20190101294 A KR20190101294 A KR 20190101294A KR 20210021836 A KR20210021836 A KR 20210021836A
Authority
KR
South Korea
Prior art keywords
electrode
activated carbon
water
filter
water treatment
Prior art date
Application number
KR1020190101294A
Other languages
English (en)
Inventor
이진현
유기원
홍형기
이상덕
이재근
조수창
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020190101294A priority Critical patent/KR20210021836A/ko
Priority to PCT/KR2020/008849 priority patent/WO2021033918A1/ko
Publication of KR20210021836A publication Critical patent/KR20210021836A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

본 발명은 유입된 물의 이온을 흡착하여 수중의 이온을 제거한 뒤 배출하는 수처리장치용 필터에 관한 것으로, 외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함하는 전극유닛, 상기 전극유닛의 전극부에 전원을 공급하는 전원공급수단을 포함하고, 상기 전극부는, 집전체 및 상기 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극, 상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서, 상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단을 포함하고, 상기 전원공급수단은, 이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급한다.

Description

수처리 장치용 필터{filter for water treatment apparatus}
본 발명은 수처리 장치용 필터에 관한 것이다.
일반적으로, 정수기와 같이 원수를 처리하여 정수를 생성하는 수처리 장치는 현대 다양한 형태로 개시되고 있다. 그런데 수처리 장치에 적용되는 방식 중 최근 각광을 받고 있는 방식은 EDI(Electro Deionization), CEDI(Continuous Electro Deionization), CDI(Capacitive Deionization)와 같은 탈이온 방식이다. 이 중에서도 최근 가장 각광을 받고 있는 것은 바로 CDI 방식의 수처리 장치이다.
CDI 방식은 전기적인 힘에 의해 전극의 표면에서 이온이 흡착되고 탈착되는 원리를 이용하여 수중의 이온(오염물질)을 제거하는 방식을 의미한다.
전극에 전압을 인가시킨 채로 이온을 포함한 처리수를 전극(양극과 음극)의 사이로 통과시키면, 음이온은 양극으로 이동하고, 양이온은 음극으로 이동한다. 즉, 흡착이 일어난다. 이와 같은 흡착으로 처리수 내의 이온들이 제거될 수 있다.
그러나, 이와 같은 흡착이 계속되며, 전극은 더 이상 이온을 흡착할 수 없는 상태에 이른다. 이와 같은 상태에 이르면, 전극에 흡착된 이온들을 분리시켜 전극을 재생시킨다. 이때, 전극에서 분리된 이온들을 포함하는 세척수는 외부로 배출된다. 이와 같은 재생은 전극에 전압을 인가하지 않거나, 또는 흡착할 때와는 반대로 전압을 인가하는 것으로 달성될 수 있다.
이와 같은 CDI 방식을 상업적으로 이용하기 위해 전극(양극과 음극)을 매우 많이 적층하는 것이 일반적이다. 그러나 CDI 방식에서 탈이온 성능은 전극 사이의 간격의 영향을 받는다. 즉, CDI 방식에서의 전극 사이의 간격이 멀어지면 탈이온 성능은 저하된다. 그 이유는, 첫째로 전극 사이의 간격이 멀어지면 축전기의 전기용량이 작아지기 때문이다. 일반적으로, 축전기의 전기용량은 전극 사이 간격에 반비례한다. 둘째로, 전극 사이의 간격이 멀어지면 처리수가 전극 사이를 빠르게 통과하기 때문이다. 처리수가 빠르게 통과하면 처리수 중의 이온들이 전극에 흡착되기 어렵다. 따라서, 전극을 많이 적층하더라도 전극 사이의 간격을 일정하게 유지하는 것이 매우 중요하다.
종래의 경우, 전원에서 인가된 전압 대비 각각의 전극에 공급되는 전압이 현저히 작은 문제가 있었다. 따라서, 이온 제거율이 낮아질 수 밖에 없는 문제가 발생한다.
또한, 전원과의 거리에 따라서, 각각의 전극에 전압이 골고루 인가되지 못하게 되고, 적층된 전극 간의 전압 차이가 커지면서, 이온 제거성능이 균일하게 확보되지 못하는 문제도 있었다.
한국특허출원 제 10-2018-0009619호(이하, 선행문헌 1)에는, 활성탄 전극에 인가되는 전압이 고르게 형성될 수 있는 수처리 장치용 필터가 개시된다.
하지만, 선행문헌 1과 같은, 축전식 탈염 기술을 실제 가전제품에 적용할 때, 높은 전류가 문제가 된다. 특히, 축전식 탈염은 면적이 증대될수록 높은 전류가 나타나며, 이로 인해서 피씨비(PCB) 구성에 어려움이 발생한다.
상세히, 가정용 허용 전류 최대값을 초과하는 약 10A 이상의 높은 전류가 흐르게 되면, 피씨비 사이즈(PCB size)가 증가되고, 비용증가로 이어진다. 따라서 실제 가정에 적용하기 위해 10A 이하의 전류 형성 기술이 요구된다.
또한, 선행문헌 1의 경우, 황동 재질의 전극봉이 물과 접촉하면서 용출 문제가 발생한다. 고른 전압 인가를 위하여 사용된 황동재질 전극봉에 의해서, 물 속에는 여러 물질이 용출된다. 황동재질의 전극봉 구성 물질은 아연, 구리, 주석, 철으로 이루어져 있으며 이 중 아연과 구리의 비율이 가장 많이 용출된다.
또한, 선행문헌 1과 같은, 축전식 탈염 기술에 있어서, 카본으로 이루어진 전극은 장당 500㎛의 얇은 구조를 띄며, 반응이 반복적으로 이루어질수록 스케일 형성, 카본의 열화 등의 원인으로 성능이 저하된다. 특히 반복적인 운전에 의해서 (+)극에는 탄소 산화로 인한 열화 반응이 발생하고, (-)극에는 용존산소 환원으로 스케일이 형성되어 지속적인 성능 저하를 일으킨다.
즉, 선행문헌 1과 같은, 종래 축전식 탈염 기술의 경우, 외부로 노출된 황동 재질의 전극봉에서 아연, 구리 등이 용출되는 문제가 있었고, 가정용 전류 최대값을 초과하는 전류가 요구되어, 피씨비(PCB) 가격이 상승하는 문제가 있었으며, 전극 표면에 스케일이 쌓이거나, 열화 반응이 발생하여, 반복 사용 시 성능이 저하되는 문제가 있었다.
본 발명은, 전극부에 포함된 금속 재질의 축부재를 비롯한, 전극수단에서 금속 성분이 용출되지 않도록 방지할 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.
또한, 복수의 전극유닛을 조합하여, 하나의 모듈을 구성하되, 요구되는 운전전류를 최소한으로 유지할 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.
또한, 반복 사용 시에도, 전극의 신뢰도가 유지되어, 전극의 성능이 확보될 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.
또한, 반복 사용 시에도, 전극의 내구성이 유지될 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.
본 발명에 따른 수처리 장치용 필터는, 외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함하는 전극유닛, 및 상기 전극유닛의 전극부에 전원을 공급하는 전원공급수단을 포함한다.
상기 전극부는, 집전체 및 상기 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극과, 상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서와, 상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단을 포함한다.
상기 전원공급수단은, 이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급한다.
상기 복수의 활성탄 전극은 병렬로 연결될 수 있다.
상기 전극유닛은 복수 구비되고, 상기 복수의 전극유닛은 직렬로 연결될 수 있다.
상기 전극수단은, 상호 이격 배치된 제1전극수단과 제2전극수단을 포함하고, 상기 활성탄전극은 이웃하는 활성탄전극과 서로 다른 전극수단에 연결될 수 있다.
상기 활성탄전극은, 상기 전극수단과 연결되는 부분이 외측으로 돌출되어 전극연결부를 형성할 수 있다.
상기 전극수단은, 상기 활성탄전극의 적층 방향과 나란하게 형성된 수직부와, 상기 활성탄전극과 나란하게 형성되고, 상기 수직부와 연결되는 복수의 수평부를 포함할 수 있다.
상기 수평부와 상기 활성탄전극은 상호 대응하는 위치에 접속홀이 형성되고, 상기 접속홀에는 도체로 이루어진 축부재가 삽입될 수 있다.
상기 축부재는, 외측으로 노출되는 측면에 절연성 재질의 코팅층이 형성될 수 있다.
상기 코팅층은, 상기 축부재의 외측에 절연성 재질의 튜브를 끼우고, 상기 튜브에 열을 가하면서 상기 튜브를 수축시키는 방식으로, 상기 축부재의 외측에 튜브를 밀착시켜 형성될 수 있다.
상기 코팅층은, 상기 축부재의 외측에 에폭시를 코팅시켜 형성될 수 있다.
상기 전원공급수단은, 상기 전극부에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다.
상기 전원공급수단은, 상기 전극부에 N+1번째 처리수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다.
상기 전원공급수단은, 상기 전극부에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시킬 수 있다.
상기 활성탄전극은, 활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체의 표면에 도포하여 형성될 수 있다.
상기 챔버는, 물이 유입되는 유입구와, 물이 배출되는 토출구가 형성되고, 상기 유입구 및 토출구와 연통하는 내부공간을 구비할 수 있다.
상기 활성탄전극은, 상기 토출구와 연통하는 출수구가 적층방향과 나란하게 타공될 수 있다.
상기 챔버는, 상기 내부공간을 형성하고 일측이 개방된 몸체부, 상기 몸체부의 개방된 일측을 개폐하는 커버부를 포함할 수 있다.
본 발명에 따르면, 전극부에 포함된 금속 재질의 축부재를 비롯한, 전극수단에서 금속 성분이 용출되지 않도록 방지할 수 있다.
본 발명에 따르면, 복수의 전극유닛을 조합하여, 하나의 모듈을 구성하되, 요구되는 운전전류를 최소한으로 유지할 수 있다.
본 발명에 따르면, 반복 사용 시에도, 전극의 신뢰도가 유지되어, 전극의 성능이 확보될 수 있다.
본 발명에 따르면, 반복 사용 시에도, 전극의 내구성이 유지될 수 있다.
본 발명에 따르면, 수중의 경도가 낮춰 물을 연수화 시킬 수 있다.
본 발명에 따르면, 활성탄 전극에 인가되는 전압이 고르게 형성될 수 있다.
본 발명에 따르면,전원에서 공급된 전압과 활성탄 전극에 인가되는 전압의 차이를 줄일 수 있다.
본 발명에 따르면, 너지의 손실 없이, 전극내 탈염효율을 증대 시킬 수 있다.
본 발명에 따르면, 전극의 적층 위치에 관계없이, 모든 영역에서, 여과력이 확보될 수 있다.
본 발명에 따르면,고른 전압인가로 인해 전극의 부분적인 열화 또는 부분적인 전극 손상을 방지할 수 있다.
본 발명에 따르면,각각의 전극에 전압이 안정적이면서도 고르게 분배될 수 있다.
본 발명에 따르면, 이온제거 성능을 향상시킬 수 있다.
본 발명에 따르면, 적층이 자유로워 요구되는 처리 용량 및 처리 속도에 따라 적층 높이를 다양하게 설정할 수 있다.
본 발명에 따르면, 활성탄전극에 흡착된 이온을 손쉽게 제거하여 전극부의 이온제거능력을 일정하게 유지할 수 있다.
본 발명에 따르면, 전극부의 전체 영역에서, 유입된 물의 경도 제거가 보다 빠르고, 고르게 이루어져, 탈염효율이 확보하면서, 목표 농도(ppm)의 물을 보다 신속하게 생성 및 공급할 수 있는 이점이 있다.
본 발명에 따르면, 고농도 경도물질을 짧은 시간에 처리하여 즉각적인 음용 요구에 대응할 수 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 수처리 장치용 필터의 사시도,
도 2는 본 발명의 일 실시예에 따른 수처리 장치용 필터의 개념도,
도 3은 도 2에 도시된 수처리 장치용 필터에서 물이 정화되는 상태를 보인 개념도,
도 4는 도 2에 도시된 수처리 장치용 필터가 재생되는 상태를 보인 개념도,
도 5는 본 발명의 일 실시예에 따른 수처리 장치용 필터를 구성하는 전극부의 평면도,
도 6은 도 5의 'A'영역의 종단면도,
도 7은 도 6에서, 축부재에 코팅층이 형성된 상태를 보인 단면도이다.
도 8은 본 발명의 주요 구성인 전극유닛의 연결상태를 보인 개념도이다.
도 9는 시간의 흐름에 따라 전극부에 공급되는 전압값의 변화를 도시한 그래프이다.
도 10은 본 발명과 같은 교번 운전방식의 경도 제거율과, 종래 운전방식의 경도 제거율을 비교한 표이다.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나 본 발명의 사상은 이하에 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 구현할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다.
이하의 실시예에 첨부되는 도면은, 같은 발명 사상의 실시예이지만, 발명 사상이 훼손되지 않는 범위 내에서, 용이하게 이해될 수 있도록 하기 위하여, 미세한 부분의 표현에 있어서는 도면별로 서로 다르게 표현될 수 있고, 도면에 따라서 특정 부분이 표시되지 않거나, 도면에 따라서 과장되게 표현되어 있을 수 있다.
본 발명에 따른 수처리 장치는 정수기, 연수기 등과 같은 다양한 정화 장치가 해당될 수 있다. 또한, 세탁기, 식기세척기, 냉장고 등에 설치되는 정화 수단이 해당될 수도 있다.
본 발명에 따른 수처리 장치는 외부에서 유입된 원수에 포함된 이온, 경도물질을 전기 흡착시킨 뒤 배출하는 범위에서 다양한 실시예가 발생할 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 수처리 장치용 필터에 대해서 설명한다.
본 발명에 따른 수처리 장치용 필터는 하나의 필터를 의미할 수 있고, 여러 개의 필터를 의미할 수 있다.
도 1은 본 발명의 일 실시예에 따른 수처리 장치용 필터의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 수처리 장치용 필터의 개념도이다.
도 1 내지 도 2를 참조하면, 상기 수처리 장치용 필터는, 물이 유입되는 유입구(101)와, 물이 배출되는 토출구(102)가 형성되고, 상기 유입구(101) 및 토출구(102)와 연통하는 내부공간을 구비하는 챔버(100)를 포함한다.
그리고, 상기 챔버(100)의 내측에는 전극부(200)가 수용될 수 있다.
상기 전극부(200)에는 상기 토출구(102)와 연통하는 출수구(201)가 적층방향과 나란하게 타공될 수 있다.
즉, 상기 챔버(100)의 내부공간에는 전극부(200)를 수용하고, 유입구(101)를 통해 외부에서 챔버(100)의 내부공간으로 물이 유입된다. 이때, 유입된 물은 전극부(200)를 통과한 뒤, 토출구(102)를 통해 챔버(100) 외부로 빠져나간다. 이 과정에서 물에 포함된 이온은 전극부(200)를 통과하면서 전극부(200)에 흡착 및 제거될 수 있다.
본 실시예에서, 상기 챔버(100)는, 직육면체 형상을 구비하고, 상기 유입구(101)와 상기 토출구(102)는 상호 수직된 방향으로 형성될 수 있다.
상기와 같이 유입구(101)와 토출구(102)가 수직 방향으로 형성되면, 토출구(102)는 전극부(200)의 적층방향과 나란하게 형성되므로 결론적으로 유입구(101)는 전극부(200)의 적층방향과 수직된 방향으로 형성된다. 즉 전극부(200)의 측면을 향하도록 형성된다.
따라서, 유입구(101)로 공급된 물은 상기 전극부(200)의 측면으로 공급되고, 결과적으로 전극부(200)의 전체 두께에 골고루 공급될 수 있다.
만약, 전극부(200)의 최상단 또는 최하단과 인접한 방향으로 물이 공급되면, 전극부(200)의 적층 방향을 따라 순차적으로 물이 이동하게 된다. 그러면 물이 최초로 공급되는 최상단 또는 최하단에 위치된 전극부에서만 이온 흡착이 집중적으로 진행되면서, 전극부(200)의 각 층별로 이온 흡착 정도의 차이가 발생할 수밖에 없다.
반면, 본 발명에서와 같이, 전극부(200)의 측면을 통해 물이 공급되면, 전극부(200)의 전체 두께에 골고루 물이 공급될 수 있다.
또한, 상기와 같이 전극부(200)의 측면 방향으로 물이 골고루 공급된 후, 전극부(200)의 측면 방향에서 중심부 측으로 유동하면서 이온 교환이 이루어진 물은 전극부(200)의 중심부에 형성된 출수구(201)를 통해 외부로 빠져나갈 수 있다.
본 실시예에서, 상기 챔버(100)는, 내부공간을 형성하고 일측이 개방된 몸체부(110)와, 상기 몸체부(110)의 개방된 일측을 개폐하는 커버부(120)를 포함할 수 있다.
상기 몸체부(110) 및 커버(120)는 볼트 등과 같은 별도의 체결수단(미도시)을 통해 고정 및 분리될 수 있다.
이때, 커버부(120)에 토출구(102)가 형성될 수 있다.
상기와 같이 챔버(100)가 몸체부(110)와 커버부(120)로 분리될 경우, 챔버(100)의 내부공간이 외부로 노출되어 내부공간에 전극부(200)를 적층하는 작업이 수월하게 진행될 수 있다.
또한, 챔버(100) 내에 문제 발생 시, 커버부(120)를 분리하여 점검 및 보수가 손쉽게 진행될 수 있다.
또한, 전극부(200)를 교체하더라도 챔버(100)는 반영구적으로 사용할 수 있다.
또한, 챔버(100)가 몸체부(110)와 커버부(120)로 분리되면, 제품의 조립성이 개선되어 생산성이 높아지고, 양산성이 확보될 수 있는 효과도 있다.
본 발명에 따른 수처리 장치용 필터는 전극부(200)를 포함한다.
이때, 전극부(200)는 하나의 전극유닛(200a)으로 구성되거나, 복수의 전극유닛(200a)을 적층하여 구성될 수 있다.
일 예로, 전극유닛(200a)은 집전체(211)와, 상기 집전체(211)의 일측 또는 양측에 활성탄을 도포하여 형성된 활성탄코팅층(212)으로 이루어진 복수의 활성탄전극(210)과, 상기 적층된 복수의 활성탄전극(210)의 일측 단부 또는 타측 단부에 연결되는 복수의 전극수단(220)과, 상기 활성탄전극(210) 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서(230)를 포함하고, 유입된 물의 이온을 흡착하여 수중의 이온을 제거한 뒤 배출한다.
상기 활성탄전극(210)은 활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체(211)의 표면에 도포하여 형성될 수 있다.
또한, 전극유닛(200a)은 이웃하는 활성탄전극(210)이 양극(+극)과 음극(-극)을 번갈아 가며 형성하도록 상기 전극수단(220)을 통해 상기 활성탄전극(210)에 전류를 공급하는 전원공급수단(240)과 연결된다.
한편, 전술한 바와 같이, 상기 활성탄전극(210)은 집전체(211)와 활성탄코팅층(212)으로 이루어진다.
참고로, 상기 활성탄전극(210)은 활성탄을 구비하고 전극을 형성하는 범위에서, 공지의 다양한 실시예가 적용될 수 있다.
상기 집전체(211)는 박막의 형태로서, 전도체(electric conductor)로 구비될 수 있다. 일례로, 상기 집전체(211)는 흑연포일(graphite foil)로 구비될 수 있으며, 이 밖에도 다양한 종류의 전도체가 집전체(211)로 채택될 수 있다.
활성탄코팅층(212)은 상기 집전체(211)의 일면 또는 양면에 형성된다.
상기 활성탄코팅층(212)은 활성탄을 포함한다. 따라서, 정전기적인 인력에 의해 활성탄코팅층(212)에 원수의 불순물이 흡착되면, 흡착된 불순물은 활성탄 표면의 마크로 포어(Macro pore)라고 하는 구멍 속으로 확산을 통해 이동한 후, 내부의 메조포어(Meso pore) 또는 마이크로포어(Micro pore)에서 최종 흡착 및 제거될 수 있다.
상기와 같은 활성탄전극(210)은 요구되는 경도 조절 정도에 따라 그 적층 개수가 다양하게 조절될 수 있다.
본 실시예에서, 상기 활성탄코팅층(212)은 집전체(211)의 일면에만 형성될 수 있다. 이와 같이 집전체(211)의 일면에만 활성탄코팅층(212)이 형성된 활성탄전극(210)은 전극유닛(200a)의 최상단 및 최하단에 배치될 수 있다.
이때, 최상단에 배치된 활성탄전극(210)은 활성탄코팅층(212)이 하측을 향하도록 배치되고, 최하단에 배치된 활성탄전극(210)은 활성탄코팅층(212)이 상측을 향하도록 배치된다.
또한, 상기 활성탄코팅층(212)은 집전체(211)의 양면 모두에 형성될 수 있다. 이와 같이 집전체(211)의 양면에 활성탄코팅층(212)이 형성된 활성탄전극(210)은 전극유닛(200a)의 최상단 및 최하단을 제외한 중심부에 배치될 수 있다.
상기와 같이 집전체(211)의 양면에 활성탄코팅층(212)이 형성되면, 집전체(211)의 양측에서 원수에 포함된 불순물을 흡착할 수 있어, 불순물의 흡착속도 및 흡착성능을 향상시킬 수 있다.
또한, 하나의 집전체(211)의 양측에 활성탄코팅층(212)이 형성되기 때문에 집전체(211)의 개수를 줄일 수 있어, 결과적으로는 전극유닛(200a)의 두께를 줄이고, 전극유닛(200a)의 경량화를 실현할 수 있으며, 전극유닛(200a)의 제작비용을 절약할 수 있다. 또한, 활성탄전극(210)의 적층량을 늘릴 수도 있다.
상기 스페이서(230)는 활성탄전극(210) 사이에 배치된다. 상기 스페이서(230)는 활성탄전극(210) 사이에서 간격을 형성하면서, 활성탄전극(210) 간의 쇼트를 방지한다. 또한, 원수는 스페이서(230)를 통해서 활성탄전극(210) 사이를 통과하면서 정수될 수 있다.
따라서, 스페이서(230)는 부도체(insulator)이면서, 통수성 재질로 이루어져, 활성탄전극(210) 사이에서 쇼트를 방지하고, 정수가 진행되는 원수가 통과하는 유로를 제공할 수 있다. 일례로, 스페이서(230)는 복수의 통수로가 형성된 나일론(nylon) 재질로 형성될 수 있다.
한편, 상기 전극수단(220)은 한 쌍으로 구비되어, 상기 적층된 복수의 활성탄전극(210)의 일측 또는 타측 단부와 연결되며, 전도체(electric conductor)로 구비될 수 있다. 일 예로, 상기 전극수단(220)은 구리(Cu)재질로 형성될 수 있다.
또한, 상기 전극수단(220)은 두 개 이상으로 구비될 수도 있다.
본 발명에 따르면, 상기 전극수단(220)과 활성탄전극(210)의 접촉이 안정적으로 이루어질 수 있다. 이를 위해 상기 전극수단(220)의 적어도 일부는 상기 활성탄전극(210)과 나란히 배치되어, 활성탄전극(210)과 면접촉 할 수 있다.
즉, 상기 활성탄전극(210)이 상호 나란히 적층되고, 활성탄전극(210) 사이에 전극수단(220)의 일부가 활성탄전극(210)과 나란하게 삽입되면서, 전극수단(220)과 활성탄전극(210)은 면접촉한다.
이에 따르면, 활성탄전극(210)과 전극수단(220)의 접촉 면적이 증가되어, 전류 공급이 보다 확실하고 안정적으로 이루어질 수 있다. 또한, 활성탄전극(210)과 면접촉하는 전극수단(220)에 의해, 활성탄전극(210) 끼리의 전도율도 향상될 수 있다. 따라서, 활성탄전극(210)에 전원에서 공급된 전압이 손실없이 인가될 수 있다. 또한, 활성탄전극(210) 각각에 전원에서 공급된 전압이 균일하게 인가될 수 있다.
상기 전극수단(220)과 활성탄전극(210)의 연결에 대한 구체적인 설명은 후술되는 전원공급수단(240,250)과 함께 설명하기로 한다.
전원공급수단(240,250)은 전원(240)과 전선(250)을 포함할 수 있다.
상기 전원(240)에서는, 원수의 물분해는 이루어지지 않으면서, 이온 흡착은 가능한 범위에서 전압이 인가될 수 있다. 일례로, 상기 전원(240)은 1.5V 이하의 전압을 인가할 수 있다.
한편, 상기 전원공급수단(240,250)에 흐르는 전류의 방향에 따라 상기 전극부(220)는 양극 또는 음극을 띈다.
본 실시예에서, 상기 전극수단(220)은, 상호 이격 배치된 제1전극수단(221)과 제2전극수단(222)을 포함할 수 있다.
일례로, 도 2에서와 같이, 도면의 우측에 배치된 제1전극수단(221)이 양극(+)일 경우, 도면의 좌측에 배치된 제2전극수단(222)은 음극(-)일 수 있다.
반대로, 도면의 우측에 배치된 제1전극수단(221)이 음극(-)이라면, 도면의 좌측에 배치된 제2전극수단(222)은 양극(+)일 수 있다.
전술한 바와 같이, 전류가 흐르는 방향에 따라, 활성탄전극(210)의 양측에 배치된 제1전극수단(221) 및 제2전극수단(222)은 양극과 음극을 띄게 된다.
이하, 양극이 형성된 전극수단(220)은 양극이라 칭하고, 음극이 형성된 전극수단(220)은 음극이라 칭한다.
상기 적층된 복수의 활성탄전극(210)은 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아 가며 형성되어야 한다. 여기서 이웃한다는 의미는 그 사이에 스페이서(230)를 두고 근접한다는 것을 의미한다. 즉, 도면상의 최상단에 배치된 활성탄전극(210)은 그 바로 아래 스페이서(230)를 사이에 두고 배치된 두번째 활성탄전극(210)과 이웃한다고 볼 수 있다.
상기와 같이 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극을 번갈아 가며 형성하기 위해서는 활성탄전극(210)의 양측에 배치된 전극수단(220)에 양극과 음극이 각각 형성되고, 상기 적층된 복수의 활성탄전극(210)은 이웃하는 활성탄전극(210)과 양극과 음극에 각각 번갈아가며 연결되어야 한다.
일례로, 도 2에서와 같이, 도면의 우측이 양극이고, 도면의 좌측이 음극인 경우, 도면상의 최상단에 배치된 첫번째 활성탄전극(210)은 우측의 양극과 연결되고, 그 아래 배치된 두번째 활성탄전극(210)은 좌측의 음극과 연결될 수 있다. 또한, 두번째 활성탄전극(210)의 아래 배치된 세번째 활성탄전극(210)은 우측의 양극과 연결되고, 세번째 활성탄전극(210)의 아래 배치된 네번째 활성탄전극(210)은 좌측의 음극과 연결될 수 있다.
이때, 양극과 연결된 활성탄전극(210)은 음극과 전기적으로 분리된 상태이고, 음극과 연결된 활성탄전극(210)은 양극과 전기적으로 분리된 상태이다.
또한, 도면의 우측이 양극이고, 도면의 좌측이 음극인 경우라 하더라도, 도면상의 최상단에 배치된 활성탄전극(210)이 좌측의 음극과 연결되고, 그 아래 배치된 활성탄전극(210)은 우측의 양극과 연결될 수도 있다.
다른 예로, 도면의 우측이 음극이고, 도면의 좌측이 양극인 경우, 도면상의 최상단에 배치된 활성탄전극(210)은 좌측의 양극과 연결되고, 그 아래 배치된 활성탄전극(210)은 우측의 음극과 연결될 수 있다.
또한, 도면의 우측이 음극이고, 도면의 좌측이 양극인 경우라 하더라도, 도면상의 최상단에 배치된 활성탄전극(210)은 우측의 음극과 연결되고, 그 아래 배치된 활성탄전극(210)이 좌측의 양극과 연결될 수도 있다.
이때도 마찬가지로, 양극과 연결된 활성탄전극(210)은 음극과 전기적으로 분리된 상태이고, 음극과 연결된 활성탄전극(210)은 양극과 전기적으로 분리된 상태이다.
일례로, 양극에 연결된 활성탄전극(210)이 음극과 전기적으로 분리될 수 있도록, 음극은 양극에 연결된 활성탄전극(210)으로부터 이격 배치되고, 음극에 연결된 활성탄전극(210)이 양극과 전기적으로 분리될 수 있도록, 양극은 음극과 연결된 활성탄전극(210)으로부터 이격 배치될 수 있다.
도 3은 도 2에 도시된 수처리 장치용 필터에서 물이 정화되는 상태를 보인 개념도이고, 도 4는 도 2에 도시된 수처리 장치용 필터가 재생되는 상태를 보인 개념도이다.
먼저, 도 3을 참조하면, 도면의 좌측 배치된 활성탄전극(210)이 양극으로 대전되고, 도면의 우측에 배치된 활성탄전극(210)이 음극으로 대전된 상태에서, 활성탄전극(210) 사이로 원수를 통과시키면, 원수에 포함된 음이온(-)은 양극으로 대전된 좌측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)은 음극으로 대전된 우측의 활성탄전극(210)에 흡착된다.
상기와 같은 과정에 의해 원수에 포함된 음이온(-)과 양이온(+)이 흡착 및 제거되면서, 원수의 정화가 이루어질 수 있다.
반대로, 도면의 우측 배치된 활성탄전극(210)이 양극으로 대전되고, 도면의 좌측에 배치된 활성탄전극(210)이 음극으로 대전된 상태에서, 활성탄전극(210) 사이로 원수를 통과시키면, 원수에 포함된 음이온(-)은 양극으로 대전된 우측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)은 음극으로 대전된 좌측의 활성탄전극(210)에 흡착될 수 있다.
이때, 원수는 활성탄전극(210) 사이에 쇼트방지 및 유로 확보를 위해 배치된 투수성 스페이서(230)를 통해 활성탄전극(210) 사이를 용이하게 통과할 수 있다.
그러나, 상기와 같은 흡착이 계속되면서, 활성탄전극(210)에 흡착된 이온이 많아지면, 활성탄전극(210)은 더 이상 이온을 흡착할 수 없거나, 이온 흡착력이 현저히 저하되는 상태에 이른다.
이 같은 상태에 이르면, 도 4에 도시한 바와 같이 활성탄전극(210)에 흡착된 이온들을 분리시켜 활성탄전극(210)을 재생시킬 필요가 있다.
상기와 같이, 활성탄전극(210)의 재생을 위한 방법으로는, 전류공급을 차단하는 방법이 있고, 이온을 흡착할 때와는 반대로 전류를 흐르게 하는 방법이 있다.
본 발명의 경우, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극(210)으로 이온을 흡착시켜 수중의 이온을 제거한다.
그리고, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시킬 수도 있다.
일례로, 도 3에서와 같이, 원수에 포함된 음이온(-)이 양극으로 대전된 좌측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)이 음극으로 대전된 우측의 활성탄전극(210)에 흡착된 상태에서, 활성탄전극(210)을 재생시키기 위해서는, 전류의 흐름을 바꾸어 도면 좌측의 활성탄전극(210)을 음극으로 대전시키고, 도면 우측의 활성탄전극(210)을 양극으로 대전시킨다.
그러면, 정수과정에서 좌측의 활성탄전극(210)에 흡착되었던 음이온(-)은 음극으로 대전된 좌측의 활성탄전극(210)에서 분리되고, 정수과정에서 우측의 활성탄전극(210)에 흡착되었던 양이온(+)은 양극으로 대전된 우측의 활성탄전극(210)에서 분리된다.
상기와 같이 양측의 활성탄전극(210)에서 분리된 양이온(+) 및 음이온(-)은 세척수와 함께 외부로 배출된다.
상기와 같은 활성탄전극(210)의 세척 과정을 통해, 활성탄전극(210)에 흡착된 이온이 제거되면, 전극유닛(200a)의 이온제거능력이 재생되어, 이온제거능력이 일정하게 유지될 수 있다.
상기와 같이 구성된, 전극유닛(200a)은 단일체로 전극부(200)를 구성할 수 있고, 복수 구비된 후 여러 층으로 적층되어 전극부(200)를 구성할 수도 있다.
상기와 같은 전극부(200)를 사용하면, 수중의 이온이 신속하게 제거되기 때문에 물의 경도가 낮아져 물의 연수화가 이루어질 수 있다.
또한, 도시하고 있지 않지만, 필요에 따라서는 전극부(200)의 이온 제거율을 더욱 높이기 위해 이온교환막이 구비될 수도 있다. 상기와 같이 이온교환막이 사용될 경우, 이온교환막은 스페이서(230)와 활성탄전극(210) 사이에 배치될 수 있다.
이하, 본 발명의 일부 구성요소인 전극부의 구조 및 전극부와 활성탄전극의 연결구조에 대해 보다 상세히 설명한다.
도 5는 본 발명의 일 실시예에 따른 수처리 장치용 필터를 구성하는 전극부의 평면도이고, 도 6은 도 5의 'A'영역의 종단면도이다.
먼저, 도 5내지 도 6을 참조하여, 상기 적층된 복수의 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아가며 연결되는 구조에 대해 설명한다.
상기 활성탄전극(210)은, 상기 전극수단(220)과 연결되는 일부분 외측으로 돌출되어 전극연결부(213,213')를 형성할 수 있다.
일 예로, 활성탄전극(210)의 일측과 타측에 각각 전극이 형성된 경우, 최상단에 배치된 첫번째 활성탄전극(210)은 일측 단부에 일측으로 돌출된 전극연결부(213)를 형성하고, 그 아래 배치된 두번째 활성탄전극(210)은 타측 단부에 타측으로 돌출된 전극연결부(213')를 형성할 수 있다. 이하, 홀수번째의 활성탄전극(210)은 일측 단부에 일측으로 돌출된 전극연결부(213)를 형성하고, 짝수번째의 활성탄전극(210)은 타측 단부에 타측으로 돌출된 전극연결부(213')를 형성할 수 있다.
이러한 상태에서, 일측에 형성된 전극은 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213)와 연결되고, 타측에 형성된 전극은 타측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213')와 연결될 수 있다.
여기서 일측과 타측은 서로 대향되는 반대 향을 의미할 수 있고, 서로 수직되는 방향을 의미할 수 있다. 또한, 전후방향을 의미할 수 도 있다.
다른 예로, 활성탄전극(210)의 일측 전방과 일측 후방에 각각 전극이 형성된 경우, 도면상의 최상단에 배치된 첫번째 활성탄전극(210)은 일측 전방에 일측으로 돌출된 전극연결부(213)를 형성하고, 그 아래 배치된 두번째 활성탄전극(210)은 일측 후방에 일측으로 돌출된 전극연결부(213')를 형성할 수 있다. 이하, 홀수번째의 활성탄전극(210)은 일측 전방에 일측으로 돌출된 전극연결부(213)를 형성하고, 짝수번째의 활성탄전극(210)은 일측 후방에 일측으로 돌출된 전극연결부(213')를 형성할 수 있다.
이러한 상태에서, 일측 전방에 형성된 전극은 일측 전방에서 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213) 모두와 연결되고, 일측 후방에 형성된 전극은 일측 후방에서 일측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213') 모두와 연결될 수 있다.
이 밖에도, 상기 적층된 복수의 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아가며 연결되는 구조는 다양한 실시예가 발생할 수 있다.
상기와 같이 활성탄전극(210)이 이웃한 활성탄전극(210)과 양극과 음극이 번갈아가며 형성될 경우, 스페이서(230)에 의해 이격된 활성탄전극(210) 사이를 통과하는 원수에 포함된 중금속 등의 이온이 흡착 및 제거될 수 있다.
또한, 상기 전극수단(220)은, 상호 이격 배치된 제1전극수단(221)과 제2전극수단(222)을 포함하고, 상기 활성탄전극(210)은 이웃하는 활성탄전극(210)과 서로 다른 전극수단(221,222)에 연결된다.
일 예로, 일측 전방에서 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213)는 제1전극수단(221)과 연결되고, 일측 후방에서 일측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213')는 제2전극수단(222)과 연결될 수 있다.
한편, 상기 전극수단(220)은 상기 활성탄전극(210)의 적층 방향과 나란하게 형성된 수직부(223)와, 상기 활성탄전극(210)과 나란하게 형성되고, 상기 수직부(223)와 연결되는 복수의 수평부(224)를 포함할 수 있다.
상기 수직부(223)와 수평부(224)는 모두 전도체로 형성된다.
그리고, 상기 수직부(223)는 각각의 수평부(224)를 연결하는 역할을 수행한다.
또한, 상기 수평부(224)는 활성탄전극(210) 사이에 삽입되고, 활성탄전극(210)과 면접촉하면서 통전한다.
일 예로, 상기 수평부(224)는 홀수번째 활성탄전극(210) 사이에 삽입되어 면접촉할 수 있다. 다른 예로, 상기 수평부(224)는 짝수번째 활성탄전극(210) 사이에 삽입되어 면접촉할 수 있다.
또한, 상기 수평부(224)와 상기 활성탄전극(210)의 전극연결부(213)에는 상호 대응하는 위치에 접속홀(213a,224a)이 형성되고, 상기 접속홀(213a,224a)에는 전도체로 이루어진 축부재(225)가 삽입된다.
이에 따르면, 전도체인 축부재(225)를 통해 수평부(224)와 활성탄전극(210) 각각에 통전이 진행될 수 있다.
일 예로, 상기 축부재(225)는 볼트로 구비될 수 있다.
또한, 상기 축부재(225)의 양측 단부는 너트(226)로 체결될 수 있다. 따라서, 수평부(224)와 전극연결부(213)의 체결력이 확보될 수 있다.
도 7은 도 6에서, 축부재에 코팅층이 형성된 상태를 보인 단면도이다.
도 7을 참조하면, 상기 축부재(225)는, 외측으로 노출되는 측면에 절연성 재질의 코팅층(260)이 형성될 수 있다.
일 예로, 상기 코팅층(260)은 상기 축부재(225)의 외측 표면 전체에 형성될 수 있다.
다른 예로, 상기 코팅층(260)은 상기 축부재(225)와 수평부(224)가 연결된 부분 및 상기 축부재(225)와 전극 연결부(213,213')가 연결된 부분을 제외한 축부재(225)의 외측 표면에 형성될 수 있다.
여기서, 상기 축부재(225)와 수평부(224)가 연결된 부분 및 상기 축부재(225)와 전극 연결부(213,213')가 연결된 부분은, 축부재(225)와 수평부(224)가 수평방향(도 7 기준 좌우 방향)으로 중첩된 부분 및 상기 축부재(225)와 전극 연결부(213,213')가 수평방향(도 7 기준 좌우 방향)으로 중첩된 부분을 의미할 수 있다.
한편, 상기 코팅층(260)은 공지의 다양한 방법으로 상기 축부재(225)의 외측에 형성될 수 있다.
일 예로, 상기 축부재(225)의 외측에 절연성 재질의 튜브를 끼우고, 상기 튜브에 열을 가하면서 상기 튜브를 수축시키는 방식으로, 상기 축부재(225)의 외측에 튜브를 밀착시켜 코팅층(260)을 형성할 수 있다.
이때, 상기 코팅층(260)을 형성하는 튜브는 열을 가하면 수축되는 재질로 구비될 수 있다.
다른 예로, 상기 코팅층(260)은, 상기 축부재(225)의 외측에 에폭시를 코팅시켜 형성될 수도 있다.
또 다른 예로, 상기 코팅층(260)은 방수 재질로 형성될 수도 있다.
상기와 같이 금속 재질, 특히 구리, 황동 등의 재질로 이루어진 축부재(225)의 외측에 코팅층(260)이 형성되면, 축부재(225)에서 금속 성분의 용출, 특히 구리, 아연 성분의 용출이 방지될 수 있다.
상기 코팅층(260)은 상기 축부재(225) 뿐 아니라, 수직부(223) 및 수평부(224)의 적어도 일부에 형성될 수 있다.
상기 코팅층(260)은 금속 재질이면서, 상기 챔버(100)의 내측으로 유입된 물과 접촉할 가능성이 있는 부품의 전체 또는 일부 표면에 형성될 수 있다.
따라서, 챔버(100)의 내부로 유입된 물과 금속 재질의 수직부(223), 수평부(224) 및 축부재(225)에 물이 접촉되는 현상을 최대한 방지할 수 있고, 또한, 금속 재질의 수직부(223), 수평부(224) 및 축부재(225)에서 금속성분이 용출되는 현상을 방지할 수 있다.
도 8은 본 발명의 주요 구성인 전극유닛의 연결상태를 보인 개념도이다.
도 8을 참조하면, 상기 복수의 활성탄 전극(210)은 서로 병렬로 연결된다.
즉, 하나의 전극유닛(200a)을 구성하는 활성탄 전극(210)은 서로 병렬로 연결되고, 하나의 전극유닛(200a) 내, 활성탄 전극(210)에는 동일한, 전류가 흐를 수 있다.
한편, 상기 전극유닛(200a)은 복수 구비되고, 상기 복수의 전극유닛(200a)은 서로 직렬로 연결된다.
본 발명과 같은, 축전식 탈염방식의 필터를 실제 가전제품에 적용할 때, 높은 전류의 문제가 발생한다. 특히, 축전식 탈염방식은, 활성탄 전극(210)의 면적이 증대될수록 높은 전류가 나타나며, 이로 인해서 피씨비(PCB) 구성에 어려움이 발생한다.
하지만, 본 발명과 같이, 하나의 전극유닛(200a)을 구성하는 복수의 활성탄 전극(210)은 서로 병렬로 연결되어, 각 활성탄 전극(210)에 균일한 전류가 인가되고, 전체 영역에서 여과성능이 확보될 수 있다.
반면, 복수의 전극유닛(200a)은 서로 직렬로 연결되어, 복수의 전극유닛(200a)을 병렬로 연결할 때보다 요구 전류값을 낮출 수 있다.
일 예로, 하나의 필터에, 240장의 활성탄 전극이 포함될 때, 종래의 경우, 240장의 활성탄 전극은 서로 병렬로 연결된 구조를 갖는다. 이러한 종래 구조의 경우, 전극 면적이 넓기 때문에 활성탄 전극 1m2 기준으로 20A이상의 운전전류가 요구 되었다. 그리고, 이러한 높은 요구 운전전류로 인해서, PCB 전원부 SMPS(Swiched-Mode Power Supply) 및 출력 제어부품인 전류센서, Power FET(Field Effect Transistor), Relay 등의 단가가 증가하게 된다.
본 발명의 경우, 전압을 증대시키고 동시에 전류를 저감시키기 위하여 60장의 활성탄 전극을 서로 병렬로 연결하여, 전극유닛(200a)을 형성하고, 각 전극유닛(200a)을 직렬로 연결한다.
상기와 같이, 병렬구조와 직렬구조를 한 모듈 안에 배치시킬 경우, 필요 전력은 그대로 유지되어 전압은 4배 증대시키고, 전류를 1/4로 감소시킬 수 있다.
본 발명에서와 같이, 직렬구조와 병렬구조의 혼합구조로 인하여 얻어지는 전압 증가 및 전류 저감 효과는 아래의 표 1과 같다.
표 1을 참조하면, 병렬 구조 대비, 직렬 구조를 적용하면 운전 전류는 줄어들고, 전압이 증가 되면서 8A 이하로 전류를 저감시킬 수 있음을 확인할 수 있고, 이에 따라 가정용 제품의 PCB 요구 사양(spec)인 8A 이하로, 요구 운전전류를 유지할 수 있음을 확인할 수 있다.
모듈 병렬형 3직렬 4직렬 8직렬
1장당 전극 면적
(mm)
130×130-Ф12 130×130-Ф12 80×80-Ф10 55×55-Ф8
전극 유효 면적
(m2)
1.03 1.26 1.26 1.19
충전 전압 1.5V 4.5V 6V 12V
운전 전류 20A 8A 6A 4A
도 9는 시간의 흐름에 따라 전극부에 공급되는 전압값의 변화를 도시한 그래프이다.
도 9의 (a)는 종래의 전극부에 공급되는 전압값의 변화를 도시한 그래프이다고, 도 9의 (b)는 본 발명의 전극부에 공급되는 전압값의 변화를 도시한 그래프이다.
도 9의 (a)를 참조하면, 종래 경우, 전극부에 일정한 값의 전압을 주기적으로 공급하였다.
일 예로, 2.0V의 전압 인가 후, 0V전압을 인가하고, 다시 2.0V의 전압 인가 후, 0V전압을 인가하는 사이클(cycle)이 반복 진행된다. 이때, (+)극은 계속해서 (+)극을 유지하고, (-)극은 계속해서 (-)극을 유지한다.
일반적으로, 활성탄 전극(210)은 장당 500㎛의 얇은 구조를 띄며, 반응이 반복적으로 이루어질수록 스케일 형성, 카본의 열화 등의 원인으로 성능이 저하된다.
따라서, 반복적인 운전에 의해서 (+)극에는 탄소 산화로 인한 열화 반응이 점점 더 심하게 발생하고, (-)극에는 용존산소 환원으로 스케일이 형성되어 지속적으로 성능이 저하된다.
본 발명의 경우, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극(210)으로 이온을 흡착시켜 수중의 이온을 제거한다.
그리고, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 N+1번째 처리수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극(210)으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다.
즉, 본 발명의 경우, 도 9의 (b)에 도시한 바와 같이, (+)극과 (-)극을 번갈아 사용하는 교번 운전을 시행한다.
일 예로, 2.0V의 전압 인가 후, 0V전압 인가 하고, -2.0V의 전압 인가 후, 0V전압을 인가하는 사이클(cycle)이 반복 진행된다.
이에 따라서, 하나의 극을 반복 사용할 때, 나타나는 열화 반응을 방지하고, 및 스케일(scale) 형성이 한쪽에만 나타나는 현상을 방지할 수 있다. 또한, 교번운전을 통해서 기존의 운전 방식보다 전극 재생이 신속히 이루어져, 성능 저하가 방지될 수 있다.
도 10은 본 발명과 같은 교번운전과 기존운전의 경도 제거율을 비교한 표이다.
상세히, 300ppm 경도를 갖는 조제수를 도 9의 (b)와 같이 교번운전이 이루어지는 필터에 통과시킨 뒤, 경도 제거율을 측정하였고, 그 결과를 '교번운전'으로 표시하였다. 그리고, 300ppm 경도를 갖는 조제수를 교번운전을 하지 않는 종래 필터에 통과시킨 뒤, 경도 제거율을 측정하였고, 그 결과를 '기존운전'으로 표시하였다.
도 10은 참조하면, 본 발명과 같이,(+)극과 (-)극을 번갈아 사용하는 '교번 운전'을 시행하는 경우, (+)극과 (-)극을 바꾸지 않고, 반복사용하는 '기존운전'을 시행하는 경우보다, 경도 제거율이 향상되는 것을 확인할 수 있다.

Claims (17)

  1. 유입된 물의 이온을 흡착하여 수중의 이온을 제거한 뒤 배출하는 수처리장치용 필터에 있어서,
    외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함하는 전극유닛;
    상기 전극유닛의 전극부에 전원을 공급하는 전원공급수단을 포함하고,
    상기 전극부는:
    집전체 및 상기 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극;
    상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서;
    상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단을 포함하고,
    상기 전원공급수단은, 이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급하는 수처리 장치용 필터.
  2. 제 1항에 있어서,
    상기 복수의 활성탄 전극은 병렬로 연결되는 수처리 장치용 필터.
  3. 제 1항에 있어서,
    상기 전극유닛은 복수 구비되고,
    상기 복수의 전극유닛은 직렬로 연결되는 수처리 장치용 필터.
  4. 제 1항에 있어서,
    상기 전극수단은, 상호 이격 배치된 제1전극수단과 제2전극수단을 포함하고,
    상기 활성탄전극은 이웃하는 활성탄전극과 서로 다른 전극수단에 연결되는 수처리 장치용 필터.
  5. 제 4항에 있어서,
    상기 활성탄전극은, 상기 전극수단과 연결되는 부분이 외측으로 돌출되어 전극연결부를 형성하는 수처리 장치용 필터.
  6. 제 1항에 있어서,
    상기 전극수단은,
    상기 활성탄전극의 적층 방향과 나란하게 형성된 수직부;
    상기 활성탄전극과 나란하게 형성되고, 상기 수직부와 연결되는 복수의 수평부;를 포함하는 수처리 장치용 필터.
  7. 제 6항에 있어서,
    상기 수평부와 상기 활성탄전극은 상호 대응하는 위치에 접속홀이 형성되고, 상기 접속홀에는 도체로 이루어진 축부재가 삽입되는 수처리 장치용 필터.
  8. 제 7항에 있어서,
    상기 축부재는, 외측으로 노출되는 측면에 절연성 재질의 코팅층이 형성되는 수처리 장치용 필터.
  9. 제 8항에 있어서,
    상기 코팅층은, 상기 축부재의 외측에 절연성 재질의 튜브를 끼우고, 상기 튜브에 열을 가하면서 상기 튜브를 수축시키는 방식으로, 상기 축부재의 외측에 튜브를 밀착시켜 형성되는 수처리 장치용 필터.
  10. 제 8항에 있어서,
    상기 코팅층은, 상기 축부재의 외측에 에폭시를 코팅시켜 형성되는 수처리 장치용 필터.
  11. 제1항에 있어서,
    상기 전원공급수단은, 상기 전극부에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거하는 수처리 장치용 필터.
  12. 제 11항에 있어서,
    상기 전원공급수단은, 상기 전극부에 N+1번째 처리수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거하는 수처리 장치용 필터.
  13. 제 11항에 있어서,
    상기 전원공급수단은, 상기 전극부에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시키는 수처리 장치용 필터.
  14. 제 1항에 있어서,
    상기 활성탄전극은,
    활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체의 표면에 도포하여 형성된 수처리 장치용 필터.
  15. 제 1항에 있어서,
    상기 챔버는, 물이 유입되는 유입구와, 물이 배출되는 토출구가 형성되고, 상기 유입구 및 토출구와 연통하는 내부공간을 구비하는 수처리 장치용 필터.
  16. 제 1항에 있어서,
    상기 활성탄전극은, 상기 토출구와 연통하는 출수구가 적층방향과 나란하게 타공되는 수처리 장치용 필터.
  17. 제 1항에 있어서,
    상기 챔버는:
    상기 내부공간을 형성하고 일측이 개방된 몸체부;
    상기 몸체부의 개방된 일측을 개폐하는 커버부;를 포함하는 수처리 장치용 필터.
KR1020190101294A 2019-08-19 2019-08-19 수처리 장치용 필터 KR20210021836A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190101294A KR20210021836A (ko) 2019-08-19 2019-08-19 수처리 장치용 필터
PCT/KR2020/008849 WO2021033918A1 (ko) 2019-08-19 2020-07-07 수처리 장치용 필터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190101294A KR20210021836A (ko) 2019-08-19 2019-08-19 수처리 장치용 필터

Publications (1)

Publication Number Publication Date
KR20210021836A true KR20210021836A (ko) 2021-03-02

Family

ID=74660512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190101294A KR20210021836A (ko) 2019-08-19 2019-08-19 수처리 장치용 필터

Country Status (2)

Country Link
KR (1) KR20210021836A (ko)
WO (1) WO2021033918A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220148506A (ko) * 2021-04-29 2022-11-07 엘지전자 주식회사 수 처리 장치용 필터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479457B1 (ko) * 2012-01-16 2015-01-05 구라레 케미칼 가부시키가이샤 통액형 캐패시터, 탈이온액 제조 장치 및 탈이온액의 제조 방법
US20150158747A1 (en) * 2012-06-04 2015-06-11 Coway Co., Ltd. Deionization filter, water treatment apparatus comprising deionization filter, and method for regenerating deionization filter
KR102093443B1 (ko) * 2012-11-29 2020-03-25 삼성전자주식회사 전기 흡착 탈이온 장치 및 이를 사용한 유체 처리 방법
KR101818621B1 (ko) * 2016-09-05 2018-02-21 한국과학기술원 축전식 탈염 장치 및 이의 운영 방법
KR102247227B1 (ko) * 2018-01-25 2021-05-03 엘지전자 주식회사 수처리 장치용 필터 및 이를 포함하는 수처리 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220148506A (ko) * 2021-04-29 2022-11-07 엘지전자 주식회사 수 처리 장치용 필터

Also Published As

Publication number Publication date
WO2021033918A1 (ko) 2021-02-25

Similar Documents

Publication Publication Date Title
US20080198531A1 (en) Capacitive deionization system for water treatment
EP3552680B1 (en) Water treatment apparatus comprising a filter module
US11667551B2 (en) Water treatment device, water treatment system, method of assembling water treatment device, and water treatment method
JP2009539578A (ja) 電気脱イオンシステムにおける電流分布をシフトする方法及び装置
EP2929068B1 (en) Electrochemical separation systems and methods
KR20180076768A (ko) 수처리 장치용 필터 및 이를 포함하는 수처리 장치
KR102247227B1 (ko) 수처리 장치용 필터 및 이를 포함하는 수처리 장치
KR102058554B1 (ko) 전극 간 접속 효율이 향상된 cdi 장치
KR20210021836A (ko) 수처리 장치용 필터
KR20180082251A (ko) 수처리 장치용 필터 및 이를 포함하는 수처리 장치
KR102267917B1 (ko) 수처리 장치용 필터
KR20120030834A (ko) 전기흡착식 수처리장치
KR20140100601A (ko) 수처리 장치
CN110809564A (zh) 脱盐设备及其制造方法
JP6042234B2 (ja) 脱塩方法及び脱塩装置
KR101939365B1 (ko) 필터 장치 및 상기 필터 장치의 작동 방법
JP2003200166A (ja) 通液型電気二重層コンデンサ脱塩装置の運転方法
KR102528672B1 (ko) 수 처리 장치용 필터
KR101394112B1 (ko) 전기 흡착식 수처리 셀, 이를 이용한 전기 흡착식 수처리 장치 및 방법.
JP6385619B1 (ja) 水処理装置、水処理システム、水処理装置の組立方法及び水処理方法
KR102572460B1 (ko) 수 처리 장치용 필터
KR20220146101A (ko) 수 처리 장치
KR102237038B1 (ko) 가정 정수기용 카본 전극 필터 모듈
KR102177492B1 (ko) 축전식 탈이온 모듈 및 이를 포함하는 축전식 탈이온 장치
JP2005087898A (ja) 静電脱イオン装置および静電脱イオン方法

Legal Events

Date Code Title Description
A201 Request for examination