KR20210019126A - Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film - Google Patents

Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film Download PDF

Info

Publication number
KR20210019126A
KR20210019126A KR1020217004031A KR20217004031A KR20210019126A KR 20210019126 A KR20210019126 A KR 20210019126A KR 1020217004031 A KR1020217004031 A KR 1020217004031A KR 20217004031 A KR20217004031 A KR 20217004031A KR 20210019126 A KR20210019126 A KR 20210019126A
Authority
KR
South Korea
Prior art keywords
thin film
oxide thin
film
oxide
sintered body
Prior art date
Application number
KR1020217004031A
Other languages
Korean (ko)
Other versions
KR102315765B1 (en
Inventor
아츠시 나라
게이 무네야스
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20210019126A publication Critical patent/KR20210019126A/en
Application granted granted Critical
Publication of KR102315765B1 publication Critical patent/KR102315765B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Nb, Mo, O로 이루어지는 산화물 박막이며, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.0인 것을 특징으로 하는 산화물 박막. 또한, Nb, Mo, O로 이루어지는 산화물 소결체이며, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.1, MoO2상의 (-111)면에 귀속되는 XRD 피크 강도 IMoO2와 백그라운드 강도 IBG의 관계가 IMoO2/IBG>3을 만족시키는 것을 특징으로 하는 산화물 소결체. 본 발명은, 반사율 및 투과율이 낮고 우수한 광 흡수능을 갖고, 또한 에칭액에 녹아, 가공이 용이한 한편, 내후성이 높아, 경시 변화가 일어나기 어렵다고 하는 우수한 특성을 갖는 산화물 박막, 및 당해 박막의 형성에 적합한 스퍼터링 타깃용 산화물 소결체를 제공하는 것을 과제로 한다.It is an oxide thin film made of Nb, Mo, O, and the content ratio (atomic ratio) of Nb and Mo is 0.1≤Nb/(Nb+Mo)≤0.8, and the content ratio (atomic ratio) of O and metal (Nb+Mo) is An oxide thin film characterized in that 1.5<O/(Nb+Mo)<2.0. In addition, it is an oxide sintered body composed of Nb, Mo, and O, and the content ratio (atomic ratio) of Nb and Mo is 0.1≦Nb/(Nb+Mo)≦0.8, and the content ratio of O and metal (Nb+Mo) (atomic ratio) ) Is 1.5<O/(Nb+Mo)<2.1, the relationship between the XRD peak intensity I MoO2 and the background intensity I BG attributable to the (-111) plane on MoO 2 satisfies I MoO2 /I BG >3 Oxide sintered body made into. The present invention is an oxide thin film having excellent properties such that it has low reflectance and transmittance, has excellent light absorption ability, is dissolved in an etching solution, is easy to process, has high weather resistance, and is less likely to change over time, and is suitable for forming the thin film. It is an object to provide an oxide sintered body for sputtering targets.

Description

산화물 박막 및 당해 박막을 제조하기 위한 스퍼터링 타깃용 산화물 소결체 {OXIDE THIN FILM, AND OXIDE SINTERED BODY FOR SPUTTERING TARGET FOR PRODUCING OXIDE THIN FILM}Oxide thin film and oxide sintered body for sputtering target for producing the thin film {OXIDE THIN FILM, AND OXIDE SINTERED BODY FOR SPUTTERING TARGET FOR PRODUCING OXIDE THIN FILM}

본 발명은, 광 흡수능을 갖는 산화물 박막 및 당해 박막을 제조하기 위한 스퍼터링 타깃용 산화물 소결체에 관한 것이다.The present invention relates to an oxide thin film having light absorbing ability and an oxide sintered body for a sputtering target for producing the thin film.

액정 디스플레이, 플라스마 디스플레이, 유기 EL 디스플레이나, 터치 패널, 태양 전지 등에는, 배선 부재로서, ITO(산화인듐주석)로 이루어지는 투명 도전막이 사용되고 있다. ITO는, 가시광에 대해 우수한 투과성을 갖고, 산화물 중에서는 저항률이 낮으므로, 배선 부재로서 우수한 재료이다. 그러나 디스플레이나 패널을 대면적화 한 경우, 저항이 높아져, 대면적화에 대응할 수 없다고 하는 문제가 발생하고 있었다.In liquid crystal displays, plasma displays, organic EL displays, touch panels, solar cells, and the like, a transparent conductive film made of ITO (indium tin oxide) is used as a wiring member. Since ITO has excellent transmittance to visible light and has a low resistivity in oxides, it is an excellent material as a wiring member. However, when the display or panel is made into a large area, there is a problem that resistance is high and that it cannot cope with the large area.

이러한 점에서, ITO막 대신에, 저항률이 낮은 금속 박막을 배선 부재로서 사용하는 것이 검토되고 있다. 그러나 배선 부재로서 사용한 경우, 금속 박막이 가시광을 반사하여, 디스플레이나 패널의 시인성을 저하시킨다고 하는 문제가 발생하고 있었다. 이에 대해, 금속 박막의 근방에 반사광을 흡수할 수 있는 막을 형성하여, 당해 금속 박막에 의한 광의 반사를 억제하고, 시인성의 향상을 도모하는 것이 검토되고 있다.In this respect, instead of the ITO film, it has been studied to use a metal thin film having a low resistivity as a wiring member. However, when used as a wiring member, there has been a problem that the metal thin film reflects visible light, thereby reducing the visibility of a display or panel. On the other hand, it has been studied to form a film capable of absorbing reflected light in the vicinity of the metal thin film, to suppress reflection of light by the metal thin film, and to improve visibility.

광의 반사를 저감하는 막에 관하여, 예를 들어 특허문헌 1에는, 터치 패널 화면의 배선 패턴의 금속 광택을 저감하는 막으로서, Cu 및 Fe 중 어느 1종, Ni 및 Mn 중 어느 1종을 함유하는 산화물 막을 사용하는 것이 개시되어 있다. 또한, 특허문헌 2에는, 구리박 등으로 구성되는 배선층과 함께, 산소, 구리, 니켈 및 몰리브덴을 함유하는 흑색화층을 형성하는 것이 개시되어 있다.Regarding the film for reducing reflection of light, for example, in Patent Document 1, as a film for reducing the metallic luster of the wiring pattern of the touch panel screen, it contains any one of Cu and Fe, and any one of Ni and Mn. It is disclosed to use an oxide film. In addition, Patent Document 2 discloses forming a blackening layer containing oxygen, copper, nickel, and molybdenum together with a wiring layer composed of copper foil or the like.

특허문헌 3∼5에는, 태양열 이용을 위한 태양광 흡수층이나 액정 디스플레이의 블랙 매트릭스층에 사용되는 광 흡수층에 관하여, 산화물 매트릭스 중에 흡수 성분인 금속이 분산된, 2층으로 이루어지는 광 흡수층이 개시되어 있다. 또한, 층 전체의 두께가 180∼455㎚의 범위 내에 있는 것, 380∼780㎚의 파장 영역에 있어서, 1% 미만의 시감 투과율, 6% 미만의 시감 반사율을 갖는 것 등이 기재되어 있다.Patent Documents 3 to 5 disclose a light absorbing layer composed of two layers in which a metal as an absorbing component is dispersed in an oxide matrix with respect to a light absorbing layer for use of solar heat or a black matrix layer of a liquid crystal display. . In addition, those having a luminous transmittance of less than 1% and a luminous reflectance of less than 6% in a wavelength range of 380 to 780 nm are described in which the thickness of the entire layer is in the range of 180 to 455 nm.

또한 그 밖에도, 광의 투과율이나 반사율, 막 두께가 요구되는 용도로서, 위상 시프트형 포토마스크가 알려져 있다. 위상 시프트형 포토마스크는, 광의 간섭을 이용하여, 해상도를 향상시킬 목적으로 사용된다. 위상 시프트형 포토마스크 막에는, 사용하는 레이저 파장에 따라서, 특정 막 두께, 특정 투과율(수 % 정도), 저반사율이 요구되고 있다. 또한, 장식 용도에서도, 광의 반사를 저감시키는 막의 수요가 있다.In addition, a phase shift type photomask is known as an application requiring light transmittance, reflectance, and film thickness. The phase shift type photomask is used for the purpose of improving the resolution by utilizing interference of light. The phase shift type photomask film is required to have a specific film thickness, a specific transmittance (about several%), and a low reflectance depending on the laser wavelength to be used. In addition, even in decorative applications, there is a demand for a film that reduces reflection of light.

또한, 특허문헌 6에는, Nb의 함유량이 1∼35중량%이고, 잔부가 실질적으로 Mo인 블랙 매트릭스용 박막이며, 그 박막의 일부 또는 전부가 산화물, 질화물, 탄화물 중 어느 1종 혹은 2종 이상의 화합물로서 존재하는 것이 기재되어 있다. 그러나 특허문헌 6에는, 산소 등의 함유 비율에 대해서는 구체적인 개시가 없어, 어느 정도의 반사율이나 투과율이 얻어지는 것인지, 전혀 밝혀져 있지 않다.In addition, Patent Document 6 discloses a thin film for a black matrix in which the Nb content is 1 to 35% by weight and the remainder is substantially Mo, and a part or all of the thin film is one or two or more of oxides, nitrides and carbides. It is described that exists as a compound. However, in Patent Document 6, there is no specific disclosure about the content ratio of oxygen or the like, and it is not known at all what degree of reflectance or transmittance is obtained.

일본 특허 공개 제2016-160448호 공보Japanese Patent Publication No. 2016-160448 일본 특허 공개 제2017-41115호 공보Japanese Patent Publication No. 2017-41115 일본 특허 공표 제2016-504484호 공보Japanese Patent Publication No. 2016-504484 일본 특허 공표 제2016-502592호 공보Japanese Patent Publication No. 2016-502592 일본 특허 공표 제2016-522317호 공보Japanese Patent Publication No. 2016-522317 일본 특허 공개 제2000-214308호 공보Japanese Patent Publication No. 2000-214308

본 발명은, 광의 반사를 방지하는 데 적합한, 양호한 에칭에 의한 가공성과 내후성을 겸비한 광 흡수능을 갖는 산화물 박막, 상기 산화물 박막을 성막하는 데 적합한 스퍼터링 타깃용 산화물 소결체를 제공하는 것을 과제로 한다.An object of the present invention is to provide an oxide thin film suitable for preventing reflection of light and having a light absorbing ability having both good workability by etching and weather resistance, and an oxide sintered body for a sputtering target suitable for forming the oxide thin film.

본 발명의 실시 형태에 관한 산화물 박막은, Nb, Mo, O(산소)로 이루어지는 산화물 박막이며, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.0인 것에 요지를 갖는다.The oxide thin film according to the embodiment of the present invention is an oxide thin film made of Nb, Mo, O (oxygen), and the content ratio (atomic ratio) of Nb and Mo is 0.1≦Nb/(Nb+Mo)≦0.8, and O and The gist is that the content ratio (atomic ratio) of the metal (Nb+Mo) is 1.5<O/(Nb+Mo)<2.0.

또한, 본 발명의 실시 형태에 관한 산화물 소결체는, Nb, Mo, O(산소)로 이루어지고, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.1, MoO2상의 (-111)면에 귀속되는 XRD 피크 강도 IMoO2와 백그라운드 강도 IBG의 관계가 IMoO2/IBG>3을 만족시키는 것에 요지를 갖는다.In addition, the oxide sintered body according to the embodiment of the present invention is made of Nb, Mo, O (oxygen), and the content ratio (atomic ratio) of Nb and Mo is 0.1≦Nb/(Nb+Mo)≦0.8, and O and The content ratio (atomic ratio) of metal (Nb+Mo) is 1.5<O/(Nb+Mo)<2.1, XRD peak intensity I MoO2 and background intensity I BG attributable to the (-111) plane of MoO 2 I have a gist of satisfying I MoO2 /I BG >3.

본 발명에 따르면, 양호한 에칭에 의한 가공성과 내후성을 겸비한, 광의 반사를 방지하는 데 적합한 광 흡수능을 갖는 산화물 박막을 얻을 수 있다. 또한, 상기 산화물 박막의 형성에 적합한 스퍼터링 타깃용 산화물 소결체를 얻을 수 있다.Advantageous Effects of Invention According to the present invention, it is possible to obtain an oxide thin film having good workability by etching and weather resistance, and having a light absorption ability suitable for preventing reflection of light. Further, it is possible to obtain an oxide sintered body for a sputtering target suitable for forming the oxide thin film.

도 1은 박막측으로부터 입사한 광의 반사율(막측 반사율)의 설명도이다.
도 2는 글래스 기판측으로부터 입사한 광의 반사율(기판측 반사율)의 설명도이다.
1 is an explanatory diagram of the reflectance (film side reflectance) of light incident from the thin film side.
Fig. 2 is an explanatory diagram of reflectance (substrate side reflectance) of light incident from the glass substrate side.

광 흡수막으로서 금속막을 사용하는 것도 생각할 수 있다. 그러나 이 경우, 광의 흡수성이 높아, 투과율의 저감이 가능하지만, 금속 특유의 금속 반사가 발생해 버려, 반사율의 저감이 어렵다. 또한, 금속막 상에 산화막을 성막하는 것도 생각할 수 있지만, 제조 프로세스가 증가하여, 생산 효율을 저하시키게 된다. 한편, 광 흡수막으로서 산화물 막을 사용하는 것을 생각할 수 있다. 이 경우, 금속 반사는 발생하지 않으므로 표면 반사는 억제되지만, 금속막에 비해 광 흡수성이 낮기 때문에, 투과율이 증가하고, 하부 메탈 전극 등으로부터의 반사광이 두드러져, 시인성을 악화시키는 경우가 있다.It is also conceivable to use a metal film as the light absorbing film. However, in this case, light absorption is high and the transmittance can be reduced, but metal reflection peculiar to the metal occurs, making it difficult to reduce the reflectance. It is also conceivable to form an oxide film on the metal film, but the manufacturing process increases, resulting in lowering the production efficiency. On the other hand, it is conceivable to use an oxide film as the light absorbing film. In this case, since metal reflection does not occur, surface reflection is suppressed. However, since the light absorption property is lower than that of the metal film, the transmittance increases, the reflected light from the lower metal electrode or the like is remarkable, and the visibility may be deteriorated.

이 점에서, 산화물 중에서도 NbO2나 MoO2는, 비교적, 가시광의 투과율이 낮고, 또한 반사율도 낮은 재료여서, 광 흡수막으로서 유용하다고 생각할 수 있다. 그러나 NbO2막 단독의 경우, 경시 변화가 작고 내후성이 우수한 한편, 불화 수소(HF) 이외의 에칭액에는 용해되기 어려워, 에칭에 의한 가공이 어렵다고 하는 문제가 있다. 한편, MoO2막 단독의 경우에는, 금속 배선에 사용되는 과산화수소(H2O2)계의 에칭액에서도 에칭에 의한 가공이 가능하지만, 내후성이 떨어진다고 하는 문제가 있다.From this point of view, among oxides, NbO 2 or MoO 2 is a material that has a relatively low transmittance of visible light and a low reflectance, and is considered useful as a light absorbing film. However, in the case of the NbO 2 film alone, there is a problem in that the change over time is small and the weather resistance is excellent, while it is difficult to dissolve in an etching solution other than hydrogen fluoride (HF), and processing by etching is difficult. On the other hand, in the case of the MoO 2 film alone, it is possible to process by etching even in a hydrogen peroxide (H 2 O 2 )-based etching solution used for metal wiring, but there is a problem that weather resistance is inferior.

이러한 점에서, 본 발명의 실시 형태에 관한 산화물 박막은, 내후성이 양호하지만, 에칭에 의한 가공이 어려운 NbO2와, 에칭에 의한 가공이 가능하지만, 내후성에 어려움이 있는 MoO2를 특정 비율로 함유하는 것이다. 즉, 본 발명의 실시 형태에 관한 산화물 박막은, Nb, Mo, O(산소)로 이루어지고, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.0인 것을 특징으로 한다.In this respect, the oxide thin film according to the embodiment of the present invention has good weather resistance, but contains NbO 2 which is difficult to process by etching, and MoO 2 which can be processed by etching, but has difficulty in weather resistance, in a specific ratio. Is to do. That is, the oxide thin film according to the embodiment of the present invention is made of Nb, Mo, O (oxygen), and the content ratio (atomic ratio) of Nb and Mo is 0.1≦Nb/(Nb+Mo)≦0.8, and O and It is characterized in that the content ratio (atomic ratio) of the metal (Nb+Mo) is 1.5<O/(Nb+Mo)<2.0.

상기 조성 범위 0.1≤Nb/(Nb+Mo)≤0.8을 만족시키는 본 발명의 실시 형태에 관한 산화물 박막은, 원하는 광학 특성, 막 저항, 아몰퍼스성을 갖는다. 한편, Nb/(Nb+Mo)가 0.1 미만이면, 원하는 내후성이 얻어지지 않고, Nb/(Nb+Mo)가 0.8 초과이면, 원하는 에칭에 의한 가공성이 얻어지지 않는다. 바람직하게는, Nb와 Mo의 함유 비율이 0.1<Nb/(Nb+Mo)<0.5이다. 또한, O와 메탈(Nb+Mo)의 함유 비율 O/(Nb+Mo)가 1.5 이하이면 반사율이 커지고, 2.0 이상이면 투과율이 커져, 원하는 광학 특성이 얻어지지 않는다. 따라서, 상기한 조성 범위로 한다.The oxide thin film according to the embodiment of the present invention satisfying the composition range 0.1≦Nb/(Nb+Mo)≦0.8 has desired optical properties, film resistance, and amorphous properties. On the other hand, when Nb/(Nb+Mo) is less than 0.1, desired weatherability cannot be obtained, and when Nb/(Nb+Mo) is more than 0.8, desired workability by etching cannot be obtained. Preferably, the content ratio of Nb and Mo is 0.1<Nb/(Nb+Mo)<0.5. Further, when the content ratio O/(Nb+Mo) of O and metal (Nb+Mo) is 1.5 or less, the reflectance increases, and when it is 2.0 or more, the transmittance increases, and desired optical properties cannot be obtained. Therefore, it is set as the above composition range.

또한, 본 발명의 실시 형태에 관한 산화물 박막은, 글래스 기판 상에 막 두께 100±10nm의 박막을 형성하였을 때의, 가시광 영역(파장: 380∼780㎚)의 입사광에 대한 평균 반사율이 30% 이하인 것이 바람직하다. 여기서 「평균」 반사율이라 함은, 상기한 파장 영역을 5㎚마다 반사율을 측정하고, 그 평균값을 산출한 것이다.In addition, the oxide thin film according to the embodiment of the present invention has an average reflectance of 30% or less for incident light in the visible region (wavelength: 380 to 780 nm) when a thin film having a film thickness of 100 ± 10 nm is formed on a glass substrate. It is desirable. Here, the "average" reflectance is obtained by measuring the reflectance of the above-described wavelength range every 5 nm, and calculating the average value.

반사율에는, 도 1에 도시하는 바와 같은, 박막측으로부터 입사한 광의 반사율(막측 반사율)과, 도 2에 도시하는 바와 같은, 글래스 기판측으로부터 입사한 광의 반사율(기판측 반사율)이 있는데, 본 개시에서는, 반사율은, 막측 반사율만을 의미한다. 또한, 반사광에는, 경면 반사광과 확산 반사광이 있는데, 본 개시에서는, 경면 반사광과 확산 반사광을 합친 상대 전광선 반사율을 의미한다.The reflectance includes the reflectance of light incident from the thin film side as shown in Fig. 1 (film side reflectance) and the reflectance of light incident from the glass substrate side as shown in Fig. 2 (substrate side reflectance). In, reflectance means only the film side reflectance. In addition, the reflected light includes specular reflected light and diffusely reflected light, and in the present disclosure, it refers to a relative total light reflectance obtained by combining the specularly reflected light and diffusely reflected light.

또한, 본 발명의 실시 형태에 관한 산화물 박막은, 또한 글래스 기판 상에 막 두께 100±10㎚의 박막을 형성하였을 때의, 가시광 영역(파장: 380∼780㎚)의 입사광에 대한 평균 투과율은 20% 이하인 것이 바람직하다. 여기서 「평균」 투과율이라 함은, 상기 파장 영역을 5㎚마다 투과율을 측정하고, 그 평균값을 산출한 것이다.In addition, in the oxide thin film according to the embodiment of the present invention, when a thin film having a film thickness of 100 ± 10 nm is formed on a glass substrate, the average transmittance to incident light in the visible region (wavelength: 380 to 780 nm) is 20 It is preferable that it is% or less. Here, the "average" transmittance is obtained by measuring the transmittance of the wavelength region every 5 nm and calculating the average value.

이 레벨의 반사율 및 투과율이라면, 디스플레이나 패널 내부에 있어서의 금속 배선(구리박 등)으로부터 반사된 광을 충분히 흡수할 수 있어, 시인성의 저하를 억제할 수 있다. 게다가, 위상 시프트형 포토마스크 용도로서 요구되는 낮은 반사율을 만족시킬 수 있다.With this level of reflectance and transmittance, light reflected from metal wirings (copper foil, etc.) inside the display or panel can be sufficiently absorbed, and a decrease in visibility can be suppressed. In addition, it is possible to satisfy the low reflectance required for a phase shift type photomask application.

그런데, 상기 투과율은, 산화물 박막의 막 두께와 관계가 있어, 통상, 막 두께가 두꺼워짐에 따라, 투과율은 감소한다. 상기한 바와 같이, 본 발명의 실시 형태에서는, 산화물 박막의 막 두께가 100㎚±10nm 이상일 때의 투과율에 대해 규정하고 있지만, ±10㎚로 하고 있는 것은, 100㎚를 정확하게 성막하는 것이 현실적으로 곤란한 것을 고려한 것이며, 막 두께가 ±10㎚ 변동되어도(즉, 90∼110㎚), 이론상, 투과율의 변동 폭은, ±1.3% 이내 정도이다. 본 발명의 실시 형태에 관한 산화물 박막은, 이 투과율의 변동 폭을 고려해도, 평균 투과율이 20% 이하를 만족시키는 것이다.By the way, the transmittance is related to the film thickness of the oxide thin film, and generally, the transmittance decreases as the film thickness increases. As described above, in the embodiment of the present invention, the transmittance when the thickness of the oxide thin film is 100 nm ± 10 nm or more is specified, but the value of ± 10 nm is that it is practically difficult to form a film accurately at 100 nm. This is considered, and even if the film thickness fluctuates by ±10 nm (ie, 90 to 110 nm), in theory, the fluctuation width of the transmittance is within ±1.3%. The oxide thin film according to the embodiment of the present invention satisfies an average transmittance of 20% or less even when the fluctuation width of the transmittance is considered.

또한, 본 발명의 실시 형태에 관한 산화물 박막은, 표면 저항률이 1.0×105Ω/sq 이하인 것이 바람직하다. 광 흡수막으로서 기능하는 산화물 박막은, 금속 배선에 의한 광 반사를 억제하기 위해 금속 배선에 인접하여 적층되지만, 산화물 박막의 저항률이 높은 경우, 충분한 전류가 금속 배선에 흐르지 않는다. 따라서, 산화물 박막의 표면 저항률은, 상기한 범위 내로 하는 것이 바람직하다.In addition, it is preferable that the oxide thin film according to the embodiment of the present invention has a surface resistivity of 1.0×10 5 Ω/sq or less. The oxide thin film functioning as the light absorbing film is laminated adjacent to the metal wiring in order to suppress light reflection by the metal wiring, but when the resistivity of the oxide thin film is high, sufficient current does not flow through the metal wiring. Therefore, it is preferable that the surface resistivity of the oxide thin film is within the above-described range.

또한, 본 발명의 실시 형태에 관한 산화물 박막은, 내후성이 우수하고, 항온 항습 시험 전후의 가시광 영역(파장: 380∼780㎚)의 평균 투과율 및 평균 반사율의 변화율이 30% 이하인 것이 바람직하다. 또한, 항온 항습 시험 전후의 표면 저항률의 변화율이 30% 이하인 것이 바람직하다.In addition, it is preferable that the oxide thin film according to the embodiment of the present invention is excellent in weather resistance, and has an average transmittance and an average reflectance change rate of 30% or less in the visible light region (wavelength: 380 to 780 nm) before and after the constant temperature and humidity test. Further, it is preferable that the rate of change of the surface resistivity before and after the constant temperature and humidity test is 30% or less.

여기서, 본 개시에 있어서의 항온 항습 시험은, 기판 상에 성막한 산화물 박막 샘플을, 실내 A(온도 40℃-습도 90%), 실내 B(온도 85℃-습도 85%)에 방치하여, 120시간 경과 후, 500시간 경과 후 및 1000시간 경과 후의, 투과율, 반사율 및 표면 저항률을 측정하고, 성막 직후의 각 측정값과 대비하여, 그 변화율을 조사한 것이다.Here, in the constant temperature and humidity test according to the present disclosure, the oxide thin film sample formed on the substrate is left to stand in room A (temperature 40°C-90% humidity) and room B (temperature 85°C-85% humidity), and 120 Transmittance, reflectance, and surface resistivity were measured after the lapse of time, after 500 hours, and after 1000 hours, and the rate of change was investigated in comparison with each measured value immediately after film formation.

또한, 본 발명의 실시 형태에 있어서, 산화물 박막의 막 두께는, 20∼2000㎚인 것이 바람직하다. 막 두께 20㎚ 미만이면, 광 흡수능이 저하되는 경우가 있고, 한편, 막 두께가 2000㎚를 초과하면, 성막에 필요 이상의 시간이 걸리므로 바람직하지 않다. 단, 막 두께는, 최종적으로, 디바이스 설계에 의해 결정되므로, 광 흡수능을 확보할 수 있으면, 이 막 두께에 한정되는 일은 없다.In addition, in the embodiment of the present invention, the thickness of the oxide thin film is preferably 20 to 2000 nm. If the film thickness is less than 20 nm, the light absorbing ability may decrease. On the other hand, if the film thickness exceeds 2000 nm, the film formation takes more time than necessary, which is not preferable. However, since the film thickness is finally determined by the device design, it is not limited to this film thickness as long as the light absorption ability can be secured.

또한, 본 발명의 실시 형태에 관한 산화물 박막은, 비정질(아몰퍼스)인 것이 바람직하다. 아몰퍼스막은, 결정화 막에 비해 막 응력이 작기 때문에, 적층 시의 막 박리나 크랙이 발생하기 어렵다. 그 때문에, 특히 플렉시블 디바이스에의 사용에 적합하다.In addition, it is preferable that the oxide thin film according to the embodiment of the present invention is amorphous (amorphous). Since the amorphous film has a smaller film stress than the crystallized film, film peeling or cracking at the time of lamination is less likely to occur. Therefore, it is particularly suitable for use in flexible devices.

다음으로, 본 발명의 실시 형태에 관한 산화물 소결체에 대해, 상세하게 설명한다.Next, an oxide sintered body according to an embodiment of the present invention will be described in detail.

본 발명의 실시 형태에 관한 산화물 소결체는, Nb, Mo, O(산소)로 이루어지고, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.1, MoO2상의 (-111)면에 귀속되는 XRD 피크 강도 IMoO2와, 백그라운드 강도 IBG의 관계가, IMoO2/IBG>3을 만족시키는 것을 특징으로 한다. 이러한 특성을 구비한 산화물 소결체는, 스퍼터링 타깃으로서 사용할 수 있다.The oxide sintered body according to the embodiment of the present invention is made of Nb, Mo, O (oxygen), and the content ratio (atomic ratio) of Nb and Mo is 0.1≦Nb/(Nb+Mo)≦0.8, and O and metal ( The content ratio (atomic ratio) of Nb+Mo) is 1.5<O/(Nb+Mo)<2.1, the relationship between the XRD peak intensity I MoO2 and the background intensity I BG attributable to the (-111) plane on MoO 2 , It is characterized by satisfying I MoO2 /I BG >3. An oxide sintered body having such characteristics can be used as a sputtering target.

상기 조성 범위 0.1≤Nb/(Nb+Mo)≤0.8 및 1.5<O/(Nb+Mo)<2.1을 만족시키는 본 발명의 실시 형태에 관한 산화물 소결체는, 스퍼터 성막한 박막에 있어서, 원하는 광학 특성, 막 저항, 아몰퍼스성을 갖는다. 상기 산화물 소결체에 있어서, O와 메탈(Nb+Mo)의 함유 비율이 1.5<O/(Nb+Mo)<2.1인 경우, 당해 산화물 소결체(스퍼터링 타깃)를 사용하여 스퍼터 성막한 박막에서는, 스퍼터 시에 있어서의 산소 도입을 행하지 않는 경우라도, O와 메탈(Nb+Mo)의 함유 비율이 1.5<O/(Nb+Mo)<2.0의 범위가 되어, 원하는 막 특성이 얻어진다.The oxide sintered body according to the embodiment of the present invention satisfying the above composition ranges 0.1≦Nb/(Nb+Mo)≦0.8 and 1.5<O/(Nb+Mo)<2.1 is a sputtered thin film having desired optical properties. , Membrane resistance, and amorphous properties. In the oxide sintered body, when the content ratio of O and metal (Nb+Mo) is 1.5<O/(Nb+Mo)<2.1, in the thin film formed by sputtering using the oxide sintered body (sputtering target), during sputtering, Even when oxygen introduction is not performed, the content ratio of O and metal (Nb+Mo) is in the range of 1.5<O/(Nb+Mo)<2.0, and desired film properties are obtained.

본 발명의 실시 형태에 관한 산화물 소결체는, MoO2상의 (-111)면에 귀속되는 XRD 피크 강도 IMoO2와, 백그라운드 강도 IBG의 관계가, IMoO2/IBG>3을 만족시키는 것이지만, 상기 XRD 피크 강도비 IMoO2/IBG>3을 만족시키면, 소결체 중의 몰리브덴(Mo)은 그 대부분이 MoO2로서 존재하고 있고, 그러한 산화물 소결체를 사용한 경우는, 스퍼터 성막한 박막에 있어서, 원하는 광학 특성이 얻어진다.And the oxide-sintered body of the embodiment of the present invention, MoO 2 (-111) XRD peak intensity I MoO2 attributable to the surface on, but that the relationship between the background intensity BG I, satisfying the I MoO2 / I BG> 3, the When the XRD peak intensity ratio I MoO2 /I BG > 3 is satisfied, most of the molybdenum (Mo) in the sintered body is present as MoO 2 , and when such an oxide sintered body is used, desired optical properties in the sputtered thin film Is obtained.

또한, 본 발명의 실시 형태에 관한 산화물 소결체는, 상대 밀도가 80% 이상인 것이 바람직하다. 상대 밀도가 80% 이상이면, 스퍼터링 타깃으로서 실용적인 사용에 견딜 수 있다. 더 바람직하게는, 85% 이상이다.In addition, it is preferable that the relative density of the oxide sintered body according to the embodiment of the present invention is 80% or more. If the relative density is 80% or more, it can withstand practical use as a sputtering target. More preferably, it is 85% or more.

또한, 본 발명의 실시 형태에 관한 산화물 소결체는, 벌크 저항률이 100mΩ·㎝ 이하인 것이 바람직하다. 벌크 저항률의 저하에 의해, DC 스퍼터에 의한 성막이 가능해진다. DC 스퍼터링은 RF 스퍼터링에 비해, 성막 속도가 빠르고, 스퍼터 효율이 우수하여, 스루풋을 향상시킬 수 있다. 또한, 제조 조건에 따라서는 RF 스퍼터링을 행하는 경우도 있지만, 그 경우에도, 성막 속도의 향상이 있다.In addition, it is preferable that the oxide sintered body according to the embodiment of the present invention has a bulk resistivity of 100 mΩ·cm or less. Due to the decrease in bulk resistivity, film formation by DC sputtering becomes possible. Compared to RF sputtering, DC sputtering has a faster film formation speed and has excellent sputtering efficiency, and thus throughput can be improved. Moreover, although RF sputtering may be performed depending on the manufacturing conditions, there is an improvement in the film forming speed also in that case.

본 발명의 실시 형태에 관한 산화물 소결체는, 예를 들어 이하와 같이 하여 제작할 수 있다.The oxide sintered body according to the embodiment of the present invention can be produced, for example, as follows.

NbO2 분말, MoO2 분말의 원료 분말을 원하는 조성이 되도록, 칭량, 혼합한다. 원료 분말은 순도가 99.9% 이상, 입자 직경(D50)이 0.5∼10㎛인 것을 사용하는 것이 바람직하다. 혼합 방법으로서는, 볼 밀 등을 사용하여 분쇄를 겸하여, 혼합하는 것이 바람직하다. 원료 분말로서, Nb2O5 분말과 Mo 분말을 사용하는 것도 생각할 수 있지만, Nb2O5와 Mo는 소결 온도가 크게 상이하다는 점에서, 고밀도화가 곤란하다.The raw material powder of NbO 2 powder and MoO 2 powder is weighed and mixed so as to obtain a desired composition. It is preferable to use a raw material powder having a purity of 99.9% or more and a particle diameter (D50) of 0.5 to 10 µm. As a mixing method, it is preferable to use a ball mill or the like to pulverize and mix. As the raw material powder, it is also conceivable to use Nb 2 O 5 powder and Mo powder, but Nb 2 O 5 and Mo have a large difference in sintering temperature, making it difficult to increase density.

다음으로, 혼합 분말을 Ar 분위기 중, 1100℃ 이상 1200℃ 이하, 가압력 250㎫ 이상, 5∼10시간, 핫 프레스(1축 가압 소결)를 행한다. 이에 의해, 상대 밀도 80% 이상의 Nb, Mo, O로 이루어지는 산화물 소결체를 얻을 수 있다. 또한, 얻어진 산화물 소결체를 절삭, 연마하거나 하여, 스퍼터링 타깃으로 가공할 수 있다.Next, the mixed powder is subjected to hot pressing (uniaxial pressure sintering) in an Ar atmosphere of 1100°C or more and 1200°C or less, a pressing force of 250 MPa or more for 5 to 10 hours. Thereby, an oxide sintered body made of Nb, Mo, and O having a relative density of 80% or more can be obtained. Further, the obtained oxide sintered body can be cut and polished to be processed into a sputtering target.

본 발명의 실시 형태에 관한 산화물 박막은, 예를 들어 이하와 같이 하여 제작할 수 있다.The oxide thin film according to the embodiment of the present invention can be produced, for example, as follows.

NbO2 스퍼터링 타깃, MoO2 스퍼터링 타깃을 스퍼터 장치에 설치하고, 동시 스퍼터를 행하여, 기판 상에 NbO2와 MoO2의 혼합막을 성막한다. 이때, 스퍼터 시의 각각의 스퍼터 파워를 변화시킴으로써, 막 조성을 바꿀 수 있다.An NbO 2 sputtering target and a MoO 2 sputtering target are installed in a sputtering device, sputtering is performed simultaneously, and a mixed film of NbO 2 and MoO 2 is formed on the substrate. At this time, the film composition can be changed by changing the respective sputtering power during sputtering.

또는, 상술한 방법에 의해 제작된 스퍼터링 타깃을 스퍼터 장치에 설치하고, 스퍼터를 실시하여, 기판 상에 NbO2와 MoO2의 혼합막을 성막한다. 이때, 스퍼터링 타깃의 조성은, 막의 조성과 완전히 동일해지는 일은 없지만, 그것에 근사한 조성이 된다. 타깃의 조성과 막의 조성은 관계성이 있으므로, 조건 제시를 행하여 원하는 막 조성을 얻을 수 있는 타깃의 조성을 파악하는 것이 가능해진다. 또한, 스퍼터 시에 도입하는 산소 유량을 조정함으로써, 막 중의 산소량을 조정할 수도 있다.Alternatively, a sputtering target produced by the above-described method is installed in a sputtering apparatus, sputtering is performed, and a mixed film of NbO 2 and MoO 2 is formed on the substrate. At this time, the composition of the sputtering target does not become completely the same as the composition of the film, but a composition approximates it. Since the composition of the target and the composition of the film have a relationship, it becomes possible to grasp the composition of the target capable of obtaining a desired film composition by presenting conditions. Further, the amount of oxygen in the film can also be adjusted by adjusting the flow rate of oxygen introduced during sputtering.

<성막 조건><film formation conditions>

스퍼터 장치: ANELVA SPL-500Sputter device: ANELVA SPL-500

기판 온도: 실온(기판 무가열)Substrate temperature: room temperature (substrate no heating)

성막 분위기: Ar 또는 Ar+O2 Film formation atmosphere: Ar or Ar+O 2

가스압: 0.2∼2.0PaGas pressure: 0.2 to 2.0 Pa

가스 유량: 50∼100sccmGas flow: 50-100 sccm

파워: 100∼1000W(DC, RF)Power: 100 to 1000W (DC, RF)

기판: 코닝제 Eagle XG(φ4㎜×0.7㎜)Substrate: Corning Eagle XG (φ4㎜×0.7㎜)

본 발명의 실시 형태에 관한 산화물 박막 및 산화물 소결체의 평가 방법 등은, 실시예 및 비교예를 포함하여, 이하와 같다.The evaluation methods of the oxide thin film and the oxide sintered body according to the embodiment of the present invention are as follows, including examples and comparative examples.

(투과율, 반사율에 대해)(About transmittance and reflectance)

장치: SHIMADZU사 제조 분광 광도계 UV-2450Apparatus: SHIMADZU spectrophotometer UV-2450

측정 샘플:Measurement sample:

두께 0.7㎜의 글래스 기판 상에, 막 두께 100±10㎚로 성막한 샘플, 및 미성막 글래스 기판A sample formed to a film thickness of 100±10 nm on a glass substrate having a thickness of 0.7 mm, and an unfilmed glass substrate

측정 방법:How to measure:

(반사율) 적분구(기준 샘플; 경면 미러)를 사용한 상대 전광선 반사율.(Reflectance) Relative total light reflectance using an integrating sphere (reference sample; mirror mirror).

박막측으로부터 입사한 광의 반사율(막측 반사율)에는, 박막면으로부터의 반사율뿐만 아니라, 박막과의 계면에 있는 글래스 기판(표면)으로부터의 반사율, 글래스 기판의 이면으로부터의 반사율을 포함한다.The reflectance (film side reflectance) of light incident from the thin film side includes not only the reflectance from the thin film surface, but also the reflectance from the glass substrate (surface) at the interface with the thin film, and the reflectance from the back surface of the glass substrate.

글래스 기판측으로부터 입사한 광의 반사율(기판측 반사율)에는,In the reflectance of light incident from the glass substrate side (substrate side reflectance),

글래스 기판면으로부터의 반사율과 글래스 기판의 계면에 있는 박막으로부터의 반사율을 포함한다.It includes the reflectance from the surface of the glass substrate and the reflectance from the thin film at the interface of the glass substrate.

(투과율) 기준 샘플에 글래스 기판을 사용한, 상대 투과율.(Transmittance) Relative transmittance using a glass substrate as a reference sample.

(막의 성분 조성에 대해)(About the composition of the film)

장치: JEOL 제조 JXA-8500FDevice: JEOL manufactured JXA-8500F

방법: EPMA(전자선 마이크로 애널라이저)Method: Electron Beam Microanalyzer (EPMA)

가속 전압: 5∼10keVAcceleration voltage: 5 to 10 keV

조사 전류: 1.0×10-8∼1.0∼10-9AIrradiation current: 1.0×10 -8 ∼1.0∼10 -9 A

프로브 직경 10㎛이고, 5점, 먼지의 부착이 없고, 기판면이 보이지 않으며,Probe diameter 10㎛, 5 points, no adhesion of dust, no visible substrate surface,

평활한 성막 부분을 선택하여, 점 분석을 행하고, 그것들의 평균 조성을 산출하였다.A smooth film-forming part was selected, point analysis was performed, and their average composition was calculated.

(막의 표면 저항에 대해)(About the surface resistance of the film)

장치: NPS사 제조 저항률 측정기 Σ-5+Apparatus: Resistivity measuring instrument manufactured by NPS Σ-5+

방법: 직류 4탐침법Method: DC 4-probe method

(막의 아몰퍼스성에 대해)(About the amorphous nature of the film)

성막 샘플의 X선 회절에 의한 회절 피크의 유무로 판단하였다. 하기 조건에서의 측정에 의해 막 재료에 기인하는 회절 피크가 보이지 않는 경우, 아몰퍼스막이라고 판단한다. 여기서, 회절 피크가 존재하지 않는다고 하는 것은, 2θ=10°∼60°에 있어서의 최대 피크 강도를 Imax, 2θ=20°∼25°의 평균 피크 강도를 IBG로 하였을 때, Imax/IBG<5인 경우를 의미한다. 또한, 표에 있어서, 아몰퍼스성의 판정 기준으로서, Imax/IBG<5를 만족시키는 경우를 ○, 만족하지 않는 경우를 ×로 하였다.It was judged by the presence or absence of a diffraction peak by X-ray diffraction of the film-forming sample. When the diffraction peak due to the film material is not observed by measurement under the following conditions, it is judged as an amorphous film. Here, that the diffraction peak does not exist, when the maximum peak intensity at 2θ = 10° to 60° is I max , and the average peak intensity at 2θ = 20° to 25° is I BG , I max / I It means the case of BG <5. In addition, in the table, as a criterion for the determination of amorphous property, the case where I max /I BG <5 was satisfied was set to ○, and the case not satisfied was set to ×.

장치: 리가쿠사 제조 Smart LabApparatus: Smart Lab manufactured by Rigaku Corporation

관구: Cu-Kα선District: Cu-Kα line

관전압: 40㎸Tube voltage: 40kV

전류: 30㎃Current: 30㎃

측정 방법: 2θ-θ 반사법Measurement method: 2θ-θ reflection method

스캔 속도: 20°/minScan speed: 20°/min

샘플링 간격: 0.02°Sampling interval: 0.02°

측정 범위: 10°∼60°Measurement range: 10° to 60°

측정 샘플: 글래스 기판(Eagle XG) 상의 성막 샘플(막 두께 100㎚ 이상)Measurement sample: Film formation sample on glass substrate (Eagle XG) (film thickness 100 nm or more)

(막 두께 측정에 대해)(About film thickness measurement)

촉침식 단차계 Veeco 제조 Dektak8Dektak8 manufactured by Veeco, a stylus type step meter

방법; 성막된 글래스 기판의 성막면과 미성막면의 단차로부터 막 두께를 측정.Way; The film thickness is measured from the step difference between the film-forming surface and the non-film-forming surface of the formed glass substrate.

(막의 에칭에 의한 가공성에 대해)(About workability by film etching)

에칭액은 과산화수소(H2O2)계의 약액을 사용하였다. 에칭 판정은, 에칭 레이트가 빠른 경우를 ○, 느린 경우를 △, 거의 녹지 않는 경우를 ×로 하였다.As the etching solution, a hydrogen peroxide (H 2 O 2 )-based chemical solution was used. Etching determination was made as (circle) a case in which the etching rate is fast, △ for a slow case, and × as a case where it hardly melts.

(소결체의 성분 조성에 대해)(About the composition of the sintered body)

장치: SII사 제조 SPS3500DDDevice: SPS3500DD manufactured by SII

방법: ICP-OES(고주파 유도 결합 플라스마 발광 분석법)Method: ICP-OES (high frequency inductively coupled plasma luminescence assay)

(소결체의 상대 밀도에 대해)(About the relative density of the sintered body)

소결체의 치수(버니어 캘리퍼스를 사용)와 중량을 측정하여 치수 밀도를 산출하고, 그 치수 밀도와 소결체의 이론 밀도로부터, 상대 밀도(%)=치수 밀도/이론 밀도×100을 산출한다.The dimensional density is calculated by measuring the size (using a vernier caliper) and the weight of the sintered body, and from the dimensional density and the theoretical density of the sintered body, relative density (%) = dimensional density/theoretical density x 100 is calculated.

이론 밀도는, 각 산화물의 배합비와 각각의 이론 밀도로부터 계산한다.The theoretical density is calculated from the mixing ratio of each oxide and each theoretical density.

NbO2 중량을 a(wt%), MoO2 중량을 b(wt%)로 하였을 때,When the weight of NbO 2 is a (wt%) and the weight of MoO 2 is b (wt%),

이론 밀도=100/(a/5.90+b/6.44)Theoretical density = 100/(a/5.90+b/6.44)

NbO2의 이론 밀도: 5.90g/㎤, MoO2의 이론 밀도: 6.44g/㎤Theoretical density of NbO 2 : 5.90 g/cm 3, Theoretical density of MoO 2 : 6.44 g/cm 3

(소결체의 XRD 분석에 대해)(About XRD analysis of sintered body)

장치: 리가쿠사 제조 Smart LabApparatus: Smart Lab manufactured by Rigaku Corporation

관구: Cu-Kα선District: Cu-Kα line

관전압: 40㎸Tube voltage: 40kV

전류: 30㎃Current: 30㎃

측정 방법: 2θ-θ 반사법Measurement method: 2θ-θ reflection method

스캔 속도: 20°/minScan speed: 20°/min

샘플링 간격: 0.02°Sampling interval: 0.02°

측정 범위: 10°∼60°Measurement range: 10° to 60°

샘플 측정 개소: 스퍼터면Sample measurement location: sputtered surface

또한 MoO2상의 (-111)면에 귀속되는 XRD 피크 IMoO2를 이하에 정의한다.In addition, the XRD peak I MoO2 attributable to the (-111) plane on MoO 2 is defined below.

IMoO2=IMoO2´/IMoO2-BG I MoO2 =I MoO2´ /I MoO2-BG

IMoO2´: 25.5°≤2θ≤26.5°의 범위에 있어서의 XRD 피크 강도I MoO2' : XRD peak intensity in the range of 25.5°≤2θ≤26.5°

IMoO2-BG: 19.5°≤2θ<20.5°의 범위에 있어서의 XRD 평균 강도.I MoO2-BG : XRD average intensity in the range of 19.5°≦2θ<20.5°.

(소결체의 벌크 저항률에 대해)(About bulk resistivity of sintered body)

장치: NPS사 제조 저항률 측정기 Σ-5+Apparatus: Resistivity measuring instrument manufactured by NPS Σ-5+

방법: 직류 4 탐침법Method: DC 4 probe method

[실시예][Example]

이하, 실시예 및 비교예에 기초하여 설명한다. 또한, 본 실시예는 어디까지나 일례이며, 이 예에 의해 전혀 제한되는 것은 아니다. 즉, 본 발명은 청구범위에 의해서만 제한되는 것이며, 본 발명에 포함되는 실시예 이외의 다양한 변형을 포함하는 것이다.Hereinafter, it demonstrates based on an Example and a comparative example. In addition, this embodiment is an example only, and is not limited at all by this example. That is, the present invention is to be limited only by the claims, and includes various modifications other than the embodiments included in the present invention.

(실시예 1-1∼1-6, 비교예 1-1∼1-2)(Examples 1-1 to 1-6, Comparative Examples 1-1 to 1-2)

NbO2 타깃(φ6inch)과 MoO2 타깃(φ6inch)을 스퍼터 장치(ANELVA SPL-500)에 설치하여, 동시 스퍼터에 의해, 글래스 기판(Eagle XG, φ4inch) 상에 NbO2와 MoO2의 혼합막을 형성하였다. 성막 조건은 상술한 바와 같이 하고, 표 1과 같이, 스퍼터 시의 각각의 타깃의 파워를 변화시켜, 표 1에 기재된 조성의 막을 제작하였다. 또한, 비교예 1-1은, MoO2 타깃만을 스퍼터하여, MoO2막을 성막한 것이고, 비교예 1-2는, NbO2 타깃만을 스퍼터하여, NbO2막을 성막한 것이다. 그 후, 조성을 각각 변화시킨 각 산화물 박막에 대해, 성막 직후(실온)에 있어서의 투과율, 표면 반사율·이면 반사율 및 표면 저항률을 측정하고, 또한 에칭성에 대해 조사하였다. 그 결과를 표 1에 나타낸다.NbO 2 target (φ 6 inch) and MoO 2 target (φ 6 inch) were installed on a sputtering device (ANELVA SPL-500), and a mixed film of NbO 2 and MoO 2 was formed on a glass substrate (Eagle XG, φ 4 inch) by simultaneous sputtering. I did. Film formation conditions were as described above, and as shown in Table 1, the power of each target during sputtering was changed to produce a film having the composition shown in Table 1. In addition, in Comparative Example 1-1, only the MoO 2 target was sputtered to form a MoO 2 film, and in Comparative Example 1-2, only the NbO 2 target was sputtered to form an NbO 2 film. Thereafter, for each oxide thin film whose composition was respectively changed, the transmittance, the surface reflectance, the back surface reflectance, and the surface resistivity were measured immediately after film formation (room temperature), and further investigated for etching property. The results are shown in Table 1.

Figure pat00001
Figure pat00001

표 1에 나타내는 바와 같이, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8을 만족시키는 산화물 박막(실시예 1-1∼1-6)은, 어느 것이나 모두 평균 투과율 및 평균 반사율이 낮아, 우수한 광 흡수능을 나타내고, 또한 막 저항이 낮고, 에칭가공성도 우수하고, 아몰퍼스성을 나타냈다. 실시예 1-1∼1-5는, 특히 빠른 에칭 레이트를 나타냈다.As shown in Table 1, all of the oxide thin films (Examples 1-1 to 1-6) satisfying the content ratio (atomic ratio) of Nb and Mo to 0.1≦Nb/(Nb+Mo)≦0.8 were The average transmittance and the average reflectance were low, exhibiting excellent light absorption capability, low film resistance, excellent etching processability, and exhibiting amorphous properties. Examples 1-1 to 1-5 exhibited particularly fast etching rates.

다음으로, 내후성을 조사하기 위해, 각각의 조건에서 기판 상에 성막한 각 산화물 박막을, 실내 A(온도 40℃-습도 90%), 실내 B(온도 85℃-습도 85%)에 방치하여, 12시간, 500시간 및 1000시간 경과 후의, 투과율, 표면 반사율·이면 반사율, 표면 저항의 변화에 대해 조사하였다. 그 결과를 표 2에 나타낸다.Next, in order to investigate weather resistance, each oxide thin film formed on the substrate under each condition was left to stand in room A (temperature 40°C-90% humidity) and room B (temperature 85°C-85% humidity), Changes in transmittance, surface reflectance, back surface reflectance, and surface resistance after the lapse of 12 hours, 500 hours, and 1000 hours were investigated. The results are shown in Table 2.

Figure pat00002
Figure pat00002

표 2에 나타내는 바와 같이, 당해 산화물 박막(실시예 1-2∼1-5)은, 투과율, 반사율 및 표면 저항의 경시 변화(변화율)는 모두 30% 이하이며, 내후성이 우수한 막이었다.As shown in Table 2, the oxide thin films (Examples 1-2 to 1-5) had a change in transmittance, reflectance, and surface resistance with time (change rate) of 30% or less, and were excellent in weather resistance.

한편, Mo만을 함유하는 산화물 박막(비교예 1-1)은, 내후성이 떨어지는 것이며, 시간의 경과에 수반하여, 투과율 등이 현저하게 상승하였다. 또한, Nb만을 함유하는 산화물 박막(비교예 1-3)은 에칭액에 거의 용해되지 않았다.On the other hand, the oxide thin film containing only Mo (Comparative Example 1-1) was inferior in weather resistance, and the transmittance and the like remarkably increased with the passage of time. In addition, the oxide thin film containing only Nb (Comparative Example 1-3) was hardly dissolved in the etching solution.

(실시예 2-1∼2-4, 비교예 2-1)(Examples 2-1 to 2-4, Comparative Example 2-1)

원료 분말로서, 순도 99.9% 이상, 입경 0.5∼10㎛의 NbO2 분말과 MoO2 분말을 준비하고, 이들 분말을 표 3에 기재하는 소정의 비율이 되도록 칭량하여, 볼 밀에 의한 혼합·분쇄를 실시하였다. 다음으로, 얻어진 혼합 분말을 아르곤 분위기 중, 소결 온도 1200℃, 면압 250kgf/㎠로 핫 프레스 소결하여, 산화물 소결체를 제작하였다. 또한, 칭량비만을 조정한 것 이외에, 모두 마찬가지의 조건에서 혼합·분쇄, 소결을 실시하였다.As raw material powders, NbO 2 powder and MoO 2 powder having a purity of 99.9% or more and a particle diameter of 0.5 to 10 μm were prepared, and these powders were weighed so as to have a predetermined ratio shown in Table 3, and mixed and pulverized by a ball mill. Implemented. Next, the obtained mixed powder was hot press-sintered in an argon atmosphere at a sintering temperature of 1200°C and a surface pressure of 250 kgf/cm 2 to prepare an oxide sintered body. In addition, all of them were mixed, pulverized and sintered under the same conditions, except that only the weighing ratio was adjusted.

얻어진 산화물 소결체의 평가 결과를 표 3에 나타낸다. 표 3에 나타낸 바와 같이, 어느 실시예도 MoO2상의 (-111)면에 귀속되는 XRD 피크 강도 IMoO2와 백그라운드 강도 IBG의 관계가 IMoO2/IBG>3을 만족시키고, 또한 상대 밀도가 80% 이상이고, 벌크 저항률은 100mΩ㎝ 이하였다. 한편, 비교예 2-1에 대해서는, MoO2상의 XRD 피크 강도비가 1.7이며, MoO2가 소실되었다.Table 3 shows the evaluation results of the obtained oxide sintered body. As shown in Table 3, which embodiment examples the XRD peak intensity I relationship between MoO2 and the background intensity BG I attributable to plane (-111) on the MoO 2 satisfy the MoO2 I / I BG> 3, also a relative density of 80 % Or more, and the bulk resistivity was 100 mΩcm or less. On the other hand, for Comparative Example 2-1, and the XRD peak intensity ratio of 1.7 on the MoO 2, MoO 2 is disappeared.

다음으로, 실시예, 비교예에서 얻어진 산화물 소결체를 스퍼터링 타깃으로 가공하고, 당해 타깃을 사용하여 스퍼터 성막하였다. 얻어진 스퍼터링막의 광학 특성을 표 3에 나타낸다. 실시예에서 얻어진 산화물 소결체를 사용하여 스퍼터 성막한 막은, 모두 평균 투과율 및 평균 반사율이 낮아, 우수한 광 흡수능을 나타냈다.Next, the oxide sintered body obtained in Examples and Comparative Examples was processed into a sputtering target, and sputtering was formed using the target. Table 3 shows the optical properties of the obtained sputtering film. All of the films formed by sputtering using the oxide sintered body obtained in Examples had low average transmittance and average reflectance, and exhibited excellent light absorption ability.

Figure pat00003
Figure pat00003

본 발명의 실시 형태에 관한 산화물 박막은, 투과율 및 반사율이 낮아, 우수한 광 흡수능을 갖고, 게다가 에칭에 의한 가공이 가능하고, 내후성이 높아, 경시 변화가 일어나기 어렵다고 하는 우수한 특성을 갖는다. 또한, 본 발명의 실시 형태에 관한 산화물 소결체는, 고밀도이므로 스퍼터링 타깃으로서 사용할 수 있다. 본 발명의 실시 형태에 관한 산화물 박막은, 액정 디스플레이, 플라스마 디스플레이, 유기 EL 디스플레이나, 터치 패널, 태양 전지 등에 사용되는 금속 배선에 의한 광의 반사를 방지하는 광 흡수막으로서, 또한 포토마스크 재료, 장식 용도로서 매우 유용하다.The oxide thin film according to the embodiment of the present invention has excellent characteristics such as low transmittance and reflectance, excellent light absorption ability, and further processing by etching, high weather resistance, and less likely to change over time. In addition, since the oxide sintered body according to the embodiment of the present invention has high density, it can be used as a sputtering target. The oxide thin film according to the embodiment of the present invention is a light absorbing film that prevents reflection of light by metal wiring used in a liquid crystal display, a plasma display, an organic EL display, a touch panel, a solar cell, etc. Very useful as an application.

Claims (9)

Nb, Mo, O로 이루어지는 산화물 박막이며, Nb와 Mo의 함유 비율(원자비)이 0.1≤Nb/(Nb+Mo)≤0.8, O와 메탈(Nb+Mo)의 함유 비율(원자비)이 1.5<O/(Nb+Mo)<2.0인 것을 특징으로 하는 산화물 박막.It is an oxide thin film made of Nb, Mo, O, and the content ratio (atomic ratio) of Nb and Mo is 0.1≤Nb/(Nb+Mo)≤0.8, and the content ratio (atomic ratio) of O and metal (Nb+Mo) is An oxide thin film characterized in that 1.5<O/(Nb+Mo)<2.0. 제1항에 있어서,
가시광 영역(파장: 380∼780㎚)에 있어서의 평균 반사율이 30% 이하인 것을 특징으로 하는 산화물 박막.
The method of claim 1,
An oxide thin film characterized by having an average reflectance of 30% or less in a visible light region (wavelength: 380 to 780 nm).
제1항 또는 제2항에 있어서,
가시광 영역(파장: 380∼780㎚)에 있어서의 평균 투과율이 20% 이하인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
An oxide thin film having an average transmittance of 20% or less in a visible light region (wavelength: 380 to 780 nm).
제1항 또는 제2항에 있어서,
표면 저항률이 1.0×105Ω/sq 이하인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
An oxide thin film having a surface resistivity of 1.0×10 5 Ω/sq or less.
제1항 또는 제2항에 있어서,
항온 항습 시험 전후의 가시광 영역(파장: 380∼780㎚)에 있어서의 평균 반사율의 변화율이 30% 이하인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
An oxide thin film characterized in that the rate of change in the average reflectance in the visible light region (wavelength: 380 to 780 nm) before and after the constant temperature and humidity test is 30% or less.
제1항 또는 제2항에 있어서,
항온 항습 시험 전후의 가시광 영역(파장: 380∼780㎚)에 있어서의 평균 투과율의 변화율이 30% 이하인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
An oxide thin film characterized in that the rate of change in the average transmittance in the visible region (wavelength: 380 to 780 nm) before and after the constant temperature and humidity test is 30% or less.
제1항 또는 제2항에 있어서,
항온 항습 시험 전후의 표면 저항률의 변화율이 30% 이하인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
An oxide thin film characterized in that the rate of change of the surface resistivity before and after the constant temperature and humidity test is 30% or less.
제1항 또는 제2항에 있어서,
막 두께가 20∼2000㎚인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
An oxide thin film having a film thickness of 20 to 2000 nm.
제1항 또는 제2항에 있어서,
아몰퍼스인 것을 특징으로 하는 산화물 박막.
The method according to claim 1 or 2,
Oxide thin film, characterized in that the amorphous.
KR1020217004031A 2018-03-13 2019-02-28 Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film KR102315765B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2018-045605 2018-03-13
JP2018045605 2018-03-13
PCT/JP2019/007733 WO2019176552A1 (en) 2018-03-13 2019-02-28 Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
KR1020197027207A KR102225493B1 (en) 2018-03-13 2019-02-28 Oxide thin film and oxide sintered body for sputtering target for producing the thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197027207A Division KR102225493B1 (en) 2018-03-13 2019-02-28 Oxide thin film and oxide sintered body for sputtering target for producing the thin film

Publications (2)

Publication Number Publication Date
KR20210019126A true KR20210019126A (en) 2021-02-19
KR102315765B1 KR102315765B1 (en) 2021-10-22

Family

ID=67908233

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197027207A KR102225493B1 (en) 2018-03-13 2019-02-28 Oxide thin film and oxide sintered body for sputtering target for producing the thin film
KR1020217004031A KR102315765B1 (en) 2018-03-13 2019-02-28 Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020197027207A KR102225493B1 (en) 2018-03-13 2019-02-28 Oxide thin film and oxide sintered body for sputtering target for producing the thin film

Country Status (5)

Country Link
JP (1) JP6767723B2 (en)
KR (2) KR102225493B1 (en)
CN (1) CN110637102B (en)
TW (1) TWI700382B (en)
WO (1) WO2019176552A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114845861B (en) * 2019-12-18 2024-03-15 Agc株式会社 Transparent substrate with multilayer film
KR102315283B1 (en) * 2020-12-10 2021-10-21 엘티메탈 주식회사 Metal oxide thin film containing molybdenum oxide as the main component, and thin film transistors and display devices in which such thin films are formed
KR102315308B1 (en) * 2020-12-10 2021-10-21 엘티메탈 주식회사 Metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same
CN114916228B (en) * 2020-12-10 2023-08-15 Lt金属株式会社 Metal oxide sintered body containing molybdenum oxide as main component and sputtering target material containing same
KR102646917B1 (en) * 2021-09-16 2024-03-13 엘티메탈 주식회사 Molybdenum oxide based sintered body, metal oxide thin film using the sintered body, and thin film transistors and displa devices comprising the thin films
TWI839845B (en) * 2021-10-06 2024-04-21 南韓商Lt金屬股份有限公司 Molybdenum oxide based sintered body, sputtering target, oxide thin film using the sintered body, and thin film transistors and display devices including the thin films
PL443400A1 (en) * 2023-01-02 2024-07-08 Politechnika Gdańska Method for producing crystalline layers of molybdenum trioxide
WO2024202444A1 (en) * 2023-03-29 2024-10-03 Jx金属株式会社 Oxide sputtering target and oxide film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008359A1 (en) * 1995-08-23 1997-03-06 Asahi Glass Company Ltd. Target, process for production thereof, and method of forming highly refractive film
JP2000214308A (en) 1999-01-25 2000-08-04 Asahi Glass Co Ltd Black matrix thin film, multilayered black matrix, color filter substrate, target for formation of black matrix thin film and production of substrate
JP2016502592A (en) 2012-10-23 2016-01-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG Layer system for absorbing light, its production and sputter target suitable therefor
JP2016522317A (en) 2013-04-11 2016-07-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG LIGHT ABSORBING LAYER, LAYER SYSTEM HAVING THIS LAYER, LAYER SYSTEM MANUFACTURING METHOD, AND SPUTTER TARGET MATERIAL
JP2016160448A (en) 2015-02-27 2016-09-05 三菱マテリアル株式会社 Sputtering target, and optical function film for reducing metal reflections
JP2017041115A (en) 2015-08-20 2017-02-23 住友金属鉱山株式会社 Conductive substrate and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214309A (en) * 1999-01-25 2000-08-04 Asahi Glass Co Ltd Substrate with black matrix thin film, color filter substrate, target for formation of black matrix thin film and production of substrate
JP2001073125A (en) * 1999-09-08 2001-03-21 Nikko Materials Co Ltd Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
CN100558552C (en) * 2006-08-09 2009-11-11 株式会社神户制钢所 Hard film and hard film-coated material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008359A1 (en) * 1995-08-23 1997-03-06 Asahi Glass Company Ltd. Target, process for production thereof, and method of forming highly refractive film
JP2000214308A (en) 1999-01-25 2000-08-04 Asahi Glass Co Ltd Black matrix thin film, multilayered black matrix, color filter substrate, target for formation of black matrix thin film and production of substrate
JP2016502592A (en) 2012-10-23 2016-01-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG Layer system for absorbing light, its production and sputter target suitable therefor
JP2016504484A (en) 2012-10-23 2016-02-12 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG Superabsorbent layer system, process for producing this layer system and sputter target suitable for this
JP2016522317A (en) 2013-04-11 2016-07-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG LIGHT ABSORBING LAYER, LAYER SYSTEM HAVING THIS LAYER, LAYER SYSTEM MANUFACTURING METHOD, AND SPUTTER TARGET MATERIAL
JP2016160448A (en) 2015-02-27 2016-09-05 三菱マテリアル株式会社 Sputtering target, and optical function film for reducing metal reflections
JP2017041115A (en) 2015-08-20 2017-02-23 住友金属鉱山株式会社 Conductive substrate and manufacturing method therefor

Also Published As

Publication number Publication date
KR102225493B1 (en) 2021-03-10
JPWO2019176552A1 (en) 2020-04-16
JP6767723B2 (en) 2020-10-14
TWI700382B (en) 2020-08-01
WO2019176552A1 (en) 2019-09-19
CN110637102A (en) 2019-12-31
TW201938823A (en) 2019-10-01
CN110637102B (en) 2021-08-20
KR102315765B1 (en) 2021-10-22
KR20190120272A (en) 2019-10-23

Similar Documents

Publication Publication Date Title
KR102225493B1 (en) Oxide thin film and oxide sintered body for sputtering target for producing the thin film
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
KR101244092B1 (en) Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
US20160070033A1 (en) Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
KR101738742B1 (en) Oxide sintered compact, sputtering target, thin film and method of producing oxide sintered compact
JP2007314364A (en) Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
KR20070088246A (en) Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
JPWO2007000878A1 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
KR101600261B1 (en) Oxide sintered compact, sputtering target and oxide thin film
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP5392633B2 (en) Target for ZnO-based transparent conductive film and method for producing the same
JP2007314812A (en) Sputtering target and film-forming method
WO2014168073A1 (en) Oxide sputtering target and method for producing same, and protective film for optical recording media
CN115819083B (en) Molybdenum oxide-based sintered body, thin film using the sintered body, thin film transistor including the thin film, and display device
JP2003342068A (en) Oxide sintered compact
TW202233871A (en) Sputtering target, method for producing sputtering target, and optical functional film
WO2020050421A1 (en) Optical functional film, sputtering target, and method for manufacturing sputtering target
WO2024202444A1 (en) Oxide sputtering target and oxide film

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right