KR20200136669A - Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same - Google Patents

Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same Download PDF

Info

Publication number
KR20200136669A
KR20200136669A KR1020190062507A KR20190062507A KR20200136669A KR 20200136669 A KR20200136669 A KR 20200136669A KR 1020190062507 A KR1020190062507 A KR 1020190062507A KR 20190062507 A KR20190062507 A KR 20190062507A KR 20200136669 A KR20200136669 A KR 20200136669A
Authority
KR
South Korea
Prior art keywords
origin
sesame seeds
sesame
determining
metabolites
Prior art date
Application number
KR1020190062507A
Other languages
Korean (ko)
Other versions
KR102202225B1 (en
Inventor
김영석
최형균
이도엽
한아라
김석영
이보미
이은미
Original Assignee
이화여자대학교 산학협력단
중앙대학교 산학협력단
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단, 중앙대학교 산학협력단, 국민대학교산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020190062507A priority Critical patent/KR102202225B1/en
Publication of KR20200136669A publication Critical patent/KR20200136669A/en
Application granted granted Critical
Publication of KR102202225B1 publication Critical patent/KR102202225B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8836Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving saccharides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Abstract

The present invention relates to a biomarker for determining the origin of sesame seeds and a method for determining the origin of sesame seeds using the same. By using the biomarker for determining the origin of sesame seeds of the present invention, it is possible to determine whether it is domestic sesame seeds or imported sesame seeds by using a change in the level of metabolites in sesame seeds. The biomarker of the present invention can be used as an important tool to crack down on acts of deceiving origin and taking unreasonable profits by being used for actual crack down, which can contribute to establishing marker order of domestically distributed agricultural products and securing consumer trust.

Description

참깨의 원산지 판별용 바이오마커 및 이를 이용한 원산지 판별방법{Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same}Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same}

본 발명은 참깨의 원산지 판별용 바이오마커 및 이를 이용한 원산지 판별방법에 관한 것이다.The present invention relates to a biomarker for determining the origin of sesame seeds and a method for determining origin using the same.

원산지란 그 물품이 성장했거나, 생산, 제조, 가공된 지역을 말하며, 수출입 물품의 경우 국적을 의미한다. 전 세계적인 자유무역협정(FTA)의 확대로 농산물들이 자유롭게 각국의 국경을 넘나들 수 있는 가능성이 커졌으나, 국가들 간의 교역을 통한 농산물의 원산지가 위조되어 판매되는 경우가 발생하여 시장 질서를 교란시키고 소비자들의 불신을 사고 있다. 우리나라 원산지 표시 제도는 1991년 7월 1일부터 시행되고 있으며, 대외무역법령에 '원산지 판정 기준', '원산지 표시 대상 물품', '위반시의 벌칙'등에 관한 규정을 두고 있다.Origin refers to the region where the product has grown, produced, manufactured, or processed, and in the case of import and export products, it refers to the nationality. With the expansion of the global Free Trade Agreement (FTA), the possibility of agricultural products freely crossing the borders of each country has increased.However, there are cases where the origin of agricultural products is forged and sold through trade between countries, disturbing the market order and causing consumers to People are buying distrust. The country of origin labeling system in Korea has been in force since July 1, 1991, and the Foreign Trade Act stipulates regulations on'country of origin criteria','products subject to country of origin', and'penalties for violations'.

관세법령에는 통관 시의 원산지 및 그 표시의 확인 및 시중 유통 과정에서의 단속 등에 관한 규정을 두어 운영하고 있다. 국립농산물품질관리원은 2014년 4290개 업체가 농식품의 원산지를 속여 판매하다가 적발되었다고 밝힌 바 있으며, 2012년에는 4642개, 2013년에는 4443개 업체가 원산지를 위조하다 적발되었다. 해마다 적발되는 업체의 수가 소폭 감소하고 있지만, 여전히 하루에 10개 이상의 업체가 적발되고 있다. 정부에서는 "불량식품"을 4대 사회악 중 하나로 포함시켜서 이의 근절을 위해 다각적으로 심혈을 기울이고 있으나, 식품으로 직접 사용되거나 가공식품의 주요 원료가 되는 농산물의 원산지 변조를 막지 못하고 있다. 국내 농산물 및 식품의 위변조 규모는 정확하게 알려져 있지 않지만, 전 세계적인 추세를 감안하면, 국내 전체 시장 규모의 10% 정도 차지하는 것으로 예측된다. The Customs Act establishes and operates regulations regarding verification of the country of origin and labeling at the time of customs clearance, and crackdowns in the distribution process on the market. The National Agricultural Products Quality Management Service revealed that in 2014, 4290 companies were caught selling agri-food by tricking them of the origin. In 2012, 4642 companies and in 2013 4443 companies were caught forging the country of origin. Although the number of companies caught year by year is declining slightly, there are still more than 10 companies detected per day. The government has included "defective food" as one of the four major social evils and is making various efforts to eradicate it, but it has not prevented the alteration of the origin of agricultural products that are directly used as food or are the main raw materials for processed foods. Although the scale of forgery and alteration of domestic agricultural products and foods is not accurately known, considering the global trend, it is predicted to account for about 10% of the total domestic market.

또한, 이 중 약 5%, 즉 국내에서 유통되고 있는 전체 농산물 및 식품 중 약 0.5% 정도가 원산지가 위변조 되어 유통되고 있을 것으로 추정된다. 이에 농산물의 원산지를 과학적으로 판별하는 것은 국가적으로 중요한 사회문제로 대두되고 있으며, 과학적이고 객관적인 판별법의 확보가 시급한 실정이다.In addition, it is estimated that about 5% of them, that is, about 0.5% of all agricultural products and foods distributed in Korea, are being distributed due to the forgery of their origin. Therefore, scientifically determining the origin of agricultural products is emerging as an important social issue nationally, and securing a scientific and objective method of discrimination is urgent.

현재까지 농산물의 원산지 판별은 주로 isotope-ratio mass spectrometry(IRMS), HPLC, visible micro-Raman spectroscopy, ultraviolet-visible absorption spectroscopy(UV-vis), elemental analysis-like inductively coupled plasma-atomic emission spectrometry(ICP-AES) 등을 활용한 화학적 분석으로 이루어져 왔다. 그러나 이들 연구 방법들은 모두 특정 성분이나 그룹에 초점을 맞추어 온 targeted 접근방법으로써 한계점이 있다.To date, the identification of the origin of agricultural products has mainly been isotope-ratio mass spectrometry (IRMS), HPLC, visible micro-Raman spectroscopy, ultraviolet-visible absorption spectroscopy (UV-vis), elemental analysis-like inductively coupled plasma-atomic emission spectrometry (ICP- AES), etc. have been used for chemical analysis. However, all of these research methods have limitations as targeted approaches that have focused on specific components or groups.

한편, 대사체학(metabolomics)은 농산물에 존재하는 대사체(metabolites) 들을 분석, 연구하는 학문으로 정의한다. 또한 대사체학은 농산물 내 전대사체(metabolome)를 비표적적인(non-targeted) 방식으로 분석하는 접근방법이며, 유전적 차이나 환경적 변화에 대한 차이를 효율적으로 규명할 수 있어서 대사체학을 활용한 농산물 및 약용작물의 원산지 판별에 대한 많은 연구가 진행되고 있다.Meanwhile, metabolomics is defined as the study of analyzing and studying metabolites present in agricultural products. In addition, metabolomics is an approach that analyzes the metabolome in agricultural products in a non-targeted manner, and because it can efficiently identify differences in genetic differences or environmental changes, agricultural products using metabolomics And many studies on the identification of the origin of medicinal crops are being conducted.

2010년도 이후 농산물품질관리원에서 주로 유전체 정보를 활용한 단일염기다형성마커을 이용하여 곶감, 구기자, 쌀 등의 원산지 판별을 위한 키트를 개발하여 특허를 출원 중에 있거나 등록하였으나, 대사체를 이용해 국내에서 재배되는 참깨의 원산지를 판별하는 연구는 아직 이루어지지 않은 상태이다. Since 2010, the Agricultural Products Quality Management Service has developed a kit for determining the origin of dried persimmon, goji berry, rice, etc. using a single base polymorphism marker mainly using genomic information, and is pending or registered for a patent, but is grown in Korea using metabolites. Research to determine the origin of sesame seeds has not yet been conducted.

또한, 최근 농수산물 시장개방에 따라 농산물의 원산지 관리 등 국내 농산물에 대한 보호 및 육성에 대한 관심이 높아지고 있으며, 참깨의 경우 국내 생산량이 전체 소비량의 13% 정도로 수입 의존도가 높은 품목으로 원산지 부정 유통 사례가 끊이지 않고, 종래기술의 경우 참깨의 국내산과 수입산 여부를 판별하는 방법을 제시하고 있지는 못한 상황이므로, 과학적인 원산지 판별법 개발이 시급한 실정이다.In addition, with the recent opening of the agricultural and marine products market, interest in the protection and promotion of domestic agricultural products such as management of the origin of agricultural products is increasing.In the case of sesame seeds, domestic production is 13% of the total consumption, and there are cases of illegal distribution of origin. Incessantly, in the case of the prior art, since it is not possible to provide a method for determining whether sesame seeds are domestically or imported, the development of a scientific method of determining origin is urgent.

따라서, 국내산과 수입산 참깨를 정확히 구별하여 국내 생산 농가의 소득 보전과 부정유통 방지를 위한 판별법을 개발할 필요성이 있다.Therefore, there is a need to develop a discrimination method for preserving income and preventing illegal distribution of domestically produced farmers by accurately distinguishing between domestic and imported sesame seeds.

이에, 본 발명자들은 종래기술의 문제점을 해결하기 위해 대사체를 이용해 국내에서 재배되는 참깨의 원산지를 판별하는 방법을 개발하는 데 연구 노력하였다. 그 결과, 본 발명자들은 한국산 및 수입산 참깨의 원산지별로 발현량에서 차이를 나타내는 참깨 내 대사체를 분석하여 5 종의 참깨 원산지 판별용 마커로서, 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)를 확립하고, 이를 이용하여 한국산 및 수입산 참깨의 원산지를 신속 정확하게 판별할 수 있음을 확인함으로써, 본 발명을 완성하였다.Accordingly, the present inventors have made research efforts to develop a method for determining the origin of sesame seeds grown in Korea using metabolites in order to solve the problems of the prior art. As a result, the present inventors analyzed metabolites in sesame seeds showing differences in expression levels for each country of origin of Korean and imported sesame seeds, as markers for determining the origin of five types of sesame seeds, Valine, L-Glutathione ), 2-Amino-1,3,4-octadecanetriol, adenosine 5'-monophosphate and D-rapinose (D -Raffinose) was established, and it was confirmed that the country of origin of Korean and imported sesame seeds can be quickly and accurately determined, thereby completing the present invention.

따라서, 본 발명의 일 목적은, 참깨의 원산지 판별용 바이오마커 조성물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a biomarker composition for determining the origin of sesame seeds.

또한, 본 발명의 다른 목적은, 상기 조성물을 포함하는 참깨의 원산지 판별용 키트를 제공하는 데 있다.In addition, another object of the present invention is to provide a kit for determining the origin of sesame seeds comprising the composition.

또한, 본 발명의 또 다른 목적은, 참깨의 원산지 판별용 바이오마커를 이용하여 참깨의 원산지를 판별하는 방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a method for determining the origin of sesame seeds by using a biomarker for determining the origin of sesame seeds.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 양태에 따르면, 본 발명은 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)로 이루어진 군으로부터 선택된 1 종 이상의 대사체를 포함하는 참깨의 원산지 판별용 바이오마커 조성물을 제공한다.According to one aspect of the present invention, the present invention provides valine, L-glutathione, 2-amino-1,3,4-octadecantriol (2-Amino-1,3, 4-octadecanetriol), adenosine 5'-monophosphate (Adenosine 5'-monophosphate) and a biomarker composition for determining the origin of sesame seeds comprising at least one metabolite selected from the group consisting of D-Raffinose to provide.

본 발명의 참깨의 원산지 판별용 바이오마커는 원산지별 참깨의 대사체의 발현 수준 차이를 이용하여 참깨의 원산지를 판별할 수 있는 것을 특징으로 한다. 상기 대사체의 발현 수준은, 구체적으로, 수입산 중에서 가장 많이 고발현 또는 저발현되는 것으로 이해되어야 한다.The biomarker for determining the origin of sesame seeds of the present invention is characterized in that it is possible to determine the origin of sesame seeds by using a difference in the expression level of metabolites of sesame seeds by origin. It should be understood that the level of expression of the metabolite is, specifically, the most high or low expression among imported products.

본 명세서에서 사용된 용어 "원산지"는, 그 물품이 성장했거나, 생산, 제조 가공된 지역을 말하여 수출입 물품의 경우 국적을 의미한다. 우리나라의 원산지 표시제도는 1991년 7월 1일 부터 시행되고 있으며, 대외무역법령에 「원산지 판정 기준」,「원산지 표시 대상 물품」,「위반시의 벌칙」등 에 관한 규정을 두고 있다. 관세법령에는 통관 시의 원산지 및 그 표시의 확인 및 시중 유통 과정에서의 단속 등에 관한 규정을 두어 운영하고 있다.As used herein, the term "country of origin" refers to an area in which the product has grown or has been produced, manufactured and processed, and means nationality in the case of import and export goods. The country's country of origin labeling system has been in force since July 1, 1991, and the Foreign Trade Act has regulations on “country of origin determination”, “products subject to labeling of origin”, and “penalties for violations”. The Customs Act establishes and operates regulations regarding verification of the country of origin and labeling at the time of customs clearance, and crackdowns in the distribution process on the market.

본 명세서에서 사용된 용어 "참깨"는, 참깨과의 한해살이풀, 또는 그 씨이다. 서아시아가 원산지인 한해살이풀로 한국을 비롯한 동아시아와 북아메리카, 아프리카 등에 널리 분포하는 유료작물(油料作物)이다. 참깨는 빛깔에 따라 검정깨, 흰깨, 누른깨로 나뉘고 특성에 따라 분류하기도 한다. 참깨는 지방이 45-55%, 단백질이 36% 들어있으며, 비타민 B1 및 E도 많다. 기름은 식용하고, 깨소금을 만들어 조미료로 쓰며, 떡, 엿, 과자 등에 넣기도 한다 인조버터, 비누원료, 올리브기름 대용으로도 쓴다. 지방유가 들어 있으므로 자양강장 및 변비치료에 좋고 다른 생약과 배합하면 허약체질, 병후 회복용으로 유효하며, 염증 등에 외용되고 해독제, 완화제, 연고 등으로 이용된다. The term "sesame" as used herein is a perennial plant of the sesame family, or its seeds. It is an annual plant native to Western Asia, and is a paid crop widely distributed in East Asia, North America, and Africa, including Korea. Sesame seeds are divided into black sesame, white sesame, and pressed sesame according to their color, and classified according to their characteristics. Sesame seeds contain 45-55% fat and 36% protein, and are also high in vitamins B1 and E. Oil is edible. It is used as a seasoning by making sesame salt. It is also added to rice cakes, candy, and sweets. It is also used as a substitute for artificial butter, soap, and olive oil. Since it contains fatty oil, it is good for nutrient tonic and constipation treatment, and when combined with other herbal medicines, it is effective for recovery from weakness and illness. It is externally used for inflammation and is used as an antidote, emollient, and ointment.

본 명세서에서 사용된 용어 "판별"은, 참깨의 원산지가 어느 곳인지 결정하여 구별하는 것을 의미한다.The term "discrimination" as used herein means to determine and distinguish where the origin of sesame seeds is.

본 명세서에서 사용된 용어 "수준 차이"는, 참깨에서의 특정 대사체를 비교하고자 하는 그룹 간에서의 대사체 수준이 높거나 혹은 낮은 것을 의미한다.The term "level difference", as used herein, refers to a high or low metabolite level between groups in which a specific metabolite in sesame seeds is to be compared.

본 명세서에서 사용된 용어 "참깨 원산지 판별용 바이오마커"는 원산지로부터의 참깨 내에 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)인 대사체들이 발현되어 상기 대사체들의 발현 수준을 이용하여 원산지를 판별할 수 있는 바이오마커로 사용할 수 있다는 뜻이다. The term "biomarker for determining the origin of sesame seeds" as used herein refers to valine, L-glutathione, and 2-amino-1,3,4-octadecantriol in sesame seeds from the origin. (2-Amino-1,3,4-octadecanetriol), adenosine 5'-monophosphate (Adenosine 5'-monophosphate) and D-Raffinose metabolites were expressed to determine the level of expression of the metabolites. This means that it can be used as a biomarker that can identify the country of origin.

상기 참깨 원산지 판별용 바이오마커로 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)를 단독 또는 1 종 이상을 조합하여 사용할 수 있다.As biomarkers for determining the origin of sesame seeds, Valine, L-Glutathione, 2-Amino-1,3,4-octadecanetriol (2-Amino-1,3,4-octadecanetriol) ), adenosine 5'-monophosphate and D-Raffinose may be used alone or in combination of one or more.

본 발명의 바람직한 구현예에 따르면, 본 발명의 참깨 원산지 판별용 바이오마커 조성물은, 상기 참깨 원산지 판별용 바이오마커로서, 바람직하게는 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. 가장 바람직하게는 상기 5 종을 모두 포함할 수 있다. 총 5 종을 모두 포함하는 참깨 원산지 판별용 바이오마커 조성물을 사용할 경우 국내 또는 해외 지역, 바람직하게는 중국 지역에서 생산되는 참깨의 원산지를 보다 정확하게 판별할 수 있다.According to a preferred embodiment of the present invention, the biomarker composition for determining the origin of sesame seeds of the present invention is a biomarker for determining the origin of sesame seeds, preferably Valine, L-Glutathione, 2 -Amino-1,3,4-octadecanetriol (2-Amino-1,3,4-octadecanetriol), adenosine 5'-monophosphate (Adenosine 5'-monophosphate) and D-Raffinose (D-Raffinose) It may include one or more selected from the group consisting of. Most preferably, it may contain all of the five types. When using a biomarker composition for determining the origin of sesame seeds containing all five species, it is possible to more accurately determine the origin of sesame seeds produced in domestic or overseas regions, preferably in China.

본 발명의 참깨 원산지 판별용 바이오마커는 원산지별 참깨의 대사체의 발현 빈도 차이를 이용하여 참깨의 원산지를 판별할 수 있는 것을 특징으로 한다. 상기 대사체의 발현 빈도는 구체적으로, 한국산 또는 중국산에서 가장 많이 발현되는 것으로 이해되어야 한다.The biomarker for determining the origin of sesame seeds of the present invention is characterized in that it is possible to determine the origin of sesame seeds by using the difference in the frequency of expression of metabolites of sesame seeds by origin. It should be understood that the frequency of expression of the metabolite is specifically, most commonly expressed in Korea or China.

상기 참깨 원산지 판별용 바이오마커로 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올, 아데노신 5'-모노포스페이트 및 D-라피노즈를 단독 또는 2종 이상 사용할 수 있다.Valine, L-glutacion, 2-amino-1,3,4-octadecantriol, adenosine 5'-monophosphate, and D-rapinose can be used alone or two or more as biomarkers for determining the origin of sesame seeds. have.

보다 구체적으로, 한국산 참깨의 경우, 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올 및 아데노신 5'-모노포스페이트가 다량 발현되는 특징이 있다.More specifically, in the case of Korean sesame seeds, valine, L-glutacion, 2-amino-1,3,4-octadecantriol and adenosine 5'-monophosphate are expressed in large amounts.

또한, 중국산 참깨의 경우, D-라피노즈가 다량 발현되는 특징이 있다.In addition, in the case of Chinese sesame seeds, there is a characteristic that a large amount of D-rapinose is expressed.

따라서, 이들을 원산지 판별을 위한 바이오마커로 사용하여 참깨의 원산지를 판별할 수 있는 것이다Therefore, it is possible to determine the origin of sesame seeds by using them as biomarkers for determining the origin.

이에 따라, 참깨의 원산지를 명확하게 확인할 수 있게 되어, 참깨의 원산지에 대한 신뢰성을 확보할 수 있어, 소비자는 믿고 국산 참깨를 구입할 수 있으며, 생산자는 신뢰성 확보를 통해 참깨 판매 시장을 더 활성화시킬 수 있게 된다.Accordingly, it is possible to clearly confirm the origin of sesame seeds, so that the reliability of the origin of sesame seeds can be secured, so that consumers can trust and purchase domestic sesame seeds, and producers can further activate the sesame sales market through securing reliability. There will be.

즉, 본 발명은 국내 및 외국에서 수집된 참깨 품종을 대상으로 분자 마커로서 대사체를 이용한 참깨 원산지 판별 방법 및 체계를 확립하였다. 본 발명에 따르면, 국내산 및 수입산 참깨를 식별할 수 있으므로, 농산물 원산지표시제에도 활용할 수 있다. 나아가, 참깨 품종의 진위성 규명, 종자분쟁의 중재 및 품종보호 출원품종의 대조품종 선정 등과 같은 분야에 기여할 수 있다.That is, the present invention has established a method and system for determining the origin of sesame seeds using metabolites as molecular markers for sesame varieties collected in Korea and abroad. According to the present invention, since domestic and imported sesame seeds can be identified, they can also be used in the country of origin labeling of agricultural products. Furthermore, it can contribute to fields such as identification of the authenticity of sesame varieties, mediation of seed disputes, and selection of control varieties for varieties applied for variety protection.

본 발명의 일 실시예에서는 최초 동정된 총 243종 중 5 종을 모두 포함하는 참깨 원산지 판별용 바이오마커 조성물을 사용할 경우 유의성있는 판별 효과가 없음을 확인함으로써, 본 발명의 5 종을 모두 포함하는 참깨 원산지 판별용 바이오마커 조합이 최적임을 확인하였다.In one embodiment of the present invention, by confirming that there is no significant discrimination effect when using a biomarker composition for determining the origin of sesame seeds containing all five of the total 243 species initially identified, sesame seeds containing all five species of the present invention It was confirmed that the biomarker combination for determining the country of origin was optimal.

또한, 상기 조성물은 참깨 내 대사체의 수준을 측정할 수 있는 제제를 포함할 수 있으며, 상기 제제는 해외 지역으로부터 생산된 참깨 시료에서 대사체 각각의 수준을 측정할 수 있다.In addition, the composition may include a formulation capable of measuring the level of metabolites in sesame seeds, and the formulation may measure the level of each metabolite in a sesame sample produced from overseas.

또한, 본 발명의 다른 양태에 따르면, 본 발명은 상술한 참깨의 원산지 판별용 바이오마커 조성물을 포함하는, 참깨의 원산지 판별용 키트를 제공한다.In addition, according to another aspect of the present invention, the present invention provides a kit for determining the origin of sesame seeds, including the biomarker composition for determining the origin of sesame seeds described above.

본 발명의 참깨의 원산지 판별용 키트는 원산지가 의심되는 참깨시료로부터 상기 대사체를 검출하거나 정량분석하여 참깨시료의 원산지를 판별하는데 사용될 수 있으며, 특별히 이에 제한되지는 않는다.The kit for determining the origin of sesame seeds of the present invention may be used to determine the origin of the sesame sample by detecting or quantitatively analyzing the metabolite from a sesame sample whose origin is suspected, but is not particularly limited thereto.

또한, 상기 참깨의 원산지 판별용 키트는 대사체를 검출하기 위한 직접적인 수단뿐만 아니라 분석 방법에 사용되는 다른 구성 성분, 용액 또는 장치를 포함할 수 있다. 그 예로써 테스트 튜브, 컨테이너, 반응 완충액, 분석용 효소, 멸균수 등을 포함할 수 있다.In addition, the kit for determining the origin of sesame seeds may include not only direct means for detecting metabolites, but also other components, solutions, or devices used in the analysis method. Examples thereof may include test tubes, containers, reaction buffers, enzymes for analysis, sterile water, and the like.

본 발명의 참깨의 원산지 판별용 키트는 상술한 5 종 이상의 바이오마커를 포함하여 시료의 대사체를 정량 분석함으로써 참깨의 원산지를 판별할 수 있는 것을 특징으로 한다.The kit for determining the origin of sesame seeds of the present invention is characterized in that it is possible to determine the origin of sesame seeds by quantitatively analyzing metabolites of a sample, including the above-described five or more biomarkers.

본 발명의 키트는 시료를 담지할 수 있는 통상의 웰 형태의 마이크로타이터 플레이트를 포함할 수 있다. 상기 웰 내에는 시료 및 하나 이상의 바이오마커를 흡수할 수 있는 다공성 지지체를 포함할 수 있다. 상기 지지체는 참깨 대사체 추출물의 첨가를 대비하여 내부 바이오마커를 미리 결정된 농도로 포함하고 있으며, 아울러 각 시료를 고정할 수 있다. 또한, 지지체의 다공성은 시료 분석 시 첨가되는 추출 용매에 최대한 노출되게 할 수 있다.The kit of the present invention may include a microtiter plate in a conventional well form capable of carrying a sample. The well may include a porous support capable of absorbing a sample and one or more biomarkers. The support contains an internal biomarker at a predetermined concentration in preparation for the addition of the sesame metabolite extract, and each sample can be fixed. In addition, the porosity of the support may allow maximum exposure to the extraction solvent added during sample analysis.

따라서, 상기 지지체는 높은 수준의 다공도를 가진 임의의 지지체일 수 있으며, 이러한 지지체는 종래 기술분야에서 공지되어 있으며, 또는 상업적으로 구입 가능하다.Thus, the support may be any support having a high level of porosity, and such support is known in the prior art, or is commercially available.

구체적으로, 고형 지지체일 수 있다. 보다 구체적으로는 액체에 대한 흡수성 물질로 이루어져 있다. 상기 흡수성 물질은 흡착제 또는 흡착성 물질일 수 있다.Specifically, it may be a solid support. More specifically, it is composed of a material absorbing liquid. The absorbent material may be an adsorbent or an adsorbent material.

상기 액체 흡수성 물질은 바이오마커의 용액과 분석용 후속 시료가 기공을 통해 일정하게 흡착 또는 흡수되게 한다.The liquid absorbent material allows the solution of the biomarker and the subsequent sample for analysis to be constantly adsorbed or absorbed through the pores.

상기 흡수성 물질로 셀룰로오스와 같은 카보하이드레이트 물질, 유리 섬유, 유리 비드, 폴리아크릴아미드 젤, 다공성 플라스틱 불활성 폴리머 및 다공성 흑연 중에서 하나 이상을 포함할 수 있다. 보다 구체적으로는, 아가로오스, 아가, 셀룰로오스, 덱스트란, 키토산 또는 곤약과 같은 카보하이드레이트 물질이나 그 유도체, 카나기난, 젤란 또는 알기네이트를 포함할 수 있다. 가장 구체적으로는, 셀룰로오스 또는 유리 섬유일 수 있다.The absorbent material may include at least one of a carbohydrate material such as cellulose, glass fiber, glass beads, polyacrylamide gel, a porous plastic inert polymer, and porous graphite. More specifically, carbohydrate substances such as agarose, agar, cellulose, dextran, chitosan, or konjac, or derivatives thereof, carnaginan, gellan, or alginate may be included. Most specifically, it may be cellulose or glass fibers.

본 발명의 키트에 포함된 바이오마커는 시료에 존재하는 대사체의 양을 정량하기 위해 유사 또는 동일한 유사체에 대한 비교로 사용되는, 양을 알고 있는 절대량의 비교물질인 것으로 이해할 수 있다. 상기 바이오마커는 시료의 대사체와의 적절한 구별을 위해 동위원소로 표지될 수 있다.The biomarker included in the kit of the present invention can be understood to be an absolute amount of a comparative substance with a known amount, which is used as a comparison for similar or identical analogs to quantify the amount of metabolites present in a sample. The biomarker may be labeled with an isotope to appropriately distinguish it from the metabolite of the sample.

또한, 본 발명의 키트에 사용할 수 있는 시료는 참깨 원산지별 대사체 추출물로서, 액체 시료의 형태로 키트에 제공될 수 있다.In addition, a sample that can be used in the kit of the present invention is an extract of metabolites by origin of sesame seeds, and may be provided in the kit in the form of a liquid sample.

상기 대사체의 추출방법은 특별히 제한하지는 않으나, 바람직하게는 용매추출법을 이용한다. 상기 용매는 참깨의 대사체를 용해할 수 있는 것이라면 특별히 제한하지는 않는다. 예를 들어, 상기 용매로, 물; 메탄올, 에탄올, 프로판올, 부탄올 등의 저급 알코올; 아세톤; 트리플루오로에탄올; 테트라하이드로퓨란; 디클로로메탄; 포스페이트; 및 이들의 혼합용매를 사용할 수 있다.The method of extracting the metabolite is not particularly limited, but a solvent extraction method is preferably used. The solvent is not particularly limited as long as it can dissolve metabolites of sesame seeds. For example, as the solvent, water; Lower alcohols such as methanol, ethanol, propanol, and butanol; Acetone; Trifluoroethanol; Tetrahydrofuran; Dichloromethane; Phosphate; And a mixed solvent thereof may be used.

예컨대, 상기 대사체 추출물은 메탄올 및 물의 혼합용매, 구체적으로 1:1 내지 9:1의 부피비, 보다 구체적으로는 7:3의 부피비로 혼합한 혼합용매에서 참깨를 균질화하여 얻을 수 있으나, 이에 특별히 제한하는 것은 아니다.For example, the metabolite extract can be obtained by homogenizing sesame seeds in a mixed solvent of methanol and water, specifically in a volume ratio of 1:1 to 9:1, and more specifically in a volume ratio of 7:3. It is not limiting.

또한, 대사체의 추출 범위를 보다 넓게 하기 위해 상기 용매 내에서 참깨 시료를 균질화하는 과정을 추가적으로 실시할 수 있다.In addition, in order to widen the extraction range of metabolites, a process of homogenizing a sesame sample in the solvent may be additionally performed.

또한, 상기 마이크로타이터 플레이트는 분석물을 배출하기 위한 필터 및 배출구 등을 추가로 포함할 수 있으며, 이들의 배치, 배출방법 등은 당업자 수준에서 이해될 수 있는 범위 내에서 조정 가능하다.In addition, the microtiter plate may further include a filter and an outlet for discharging the analyte, and their arrangement and discharging method may be adjusted within a range that can be understood by those skilled in the art.

또한, 본 발명의 키트는 통상적으로 분석장치와 조합하여 대사체 범위를 정량 표적 분석하기 위하여 여러 가지 대사체를 준비할 수 있는 기구에 포함된 시약, 용매, 소프트웨어 시스템 등을 더 포함할 수 있다.In addition, the kit of the present invention may further include a reagent, a solvent, a software system, etc. included in a device capable of preparing various metabolites in order to quantitatively target a range of metabolites in combination with an analysis device.

본 발명의 키트는 상술한 조성물을 이용하므로, 상술한 바와 중복된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다. Since the kit of the present invention uses the above-described composition, descriptions of overlapping contents as described above are omitted in order to avoid excessive complexity of the present specification.

또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 다음 단계를 포함하는 참깨의 원산지 판별방법을 제공한다:In addition, according to another aspect of the present invention, the present invention provides a method for determining the origin of sesame seeds comprising the following steps:

(a) 참깨로부터 대사체를 추출하는 단계; 및(a) extracting metabolites from sesame seeds; And

(b) 상기 (a) 단계에서 추출된 대사체 중 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)로 이루어진 군으로부터 선택된 1 종 이상의 대사체를 액체 크로마토그래피-질량분석기(LC-MS)로 분석하는 단계; 및(b) Among the metabolites extracted in step (a), Valine, L-Glutathione, 2-amino-1,3,4-octadecantriol (2-Amino-1) ,3,4-octadecanetriol), adenosine 5'-monophosphate (Adenosine 5'-monophosphate) and at least one metabolite selected from the group consisting of D-Raffinose was analyzed by liquid chromatography-mass spectrometry (LC -MS) analysis; And

(c) 상기 (b) 단계의 대사체들 간의 발현 수준 차이로 한국산 및 수입산 참깨의 원산지를 판정하는 단계. (c) determining the origin of Korean and imported sesame seeds based on the difference in expression levels between metabolites in step (b).

바람직하게는, 상기 수입산은 중국산이다.Preferably, the imported product is made in China.

바람직하게는, 상기 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올 및 아데노신 5'-모노포스페이트의 발현량은 수입산 참깨와 비교하여 한국산에서 증가한다.Preferably, the expression levels of valine, L-glutacion, 2-amino-1,3,4-octadecantriol, and adenosine 5'-monophosphate are increased in Korean production compared to imported sesame seeds.

바람직하게는, 상기 D-라피노즈의 발현량은 한국산 참깨와 비교하여 중국산에서 증가한다.Preferably, the expression level of D-Raffinose is increased in Chinese production compared to Korean sesame seeds.

예컨대, 국내산 참깨는 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올, 및 아데노신 5'-모노포스페이트 같은 물질들은 많이 포함되어 있으나, 이에 비해 D-라피노즈는 상대적으로 적게 포함되어 있다. For example, domestic sesame seeds contain a lot of substances such as valine, L-glutacion, 2-amino-1,3,4-octadecantriol, and adenosine 5'-monophosphate, but D-rapinose It contains relatively little.

본원발명의 바이오마커로서 이용되는 경우, 국내산 참깨 내 대사체인 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올, 아데노신 5'-모노포스페이트 및 D-라피노즈의 분포 비율은 1.53: 1.86: 1.32: 1.27: 0.53이다.When used as a biomarker of the present invention, valine, L-glutacion, 2-amino-1,3,4-octadecantriol, adenosine 5'-monophosphate and D-rapinose, which are metabolites in domestic sesame The distribution ratio is 1.53: 1.86: 1.32: 1.27: 0.53.

중국산 참깨는 아데노신 5'-모노포스페이트와 D-라피노즈 같은 물질들은 많이 포함되어 있으나, 이에 비해 발린, L-글루타시온 및 2-아미노-1,3,4-옥타데칸트리올은 상대적으로 적게 포함되어 있다. 본원발명의 바이오마커로서 이용되는 경우, 중국산 참깨 내 대사체인 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올, 아데노신 5'-모노포스페이트 및 D-라피노즈의 분포 비율은 0.97: 0.86: 0.86: 1.01: 1.17이다.Chinese sesame seeds contain a lot of substances such as adenosine 5'-monophosphate and D-rapinose, but valine, L-glutacion, and 2-amino-1,3,4-octadecantriol are relatively low. Included. When used as a biomarker of the present invention, valine, L-glutacion, 2-amino-1,3,4-octadecantriol, adenosine 5'-monophosphate and D-rapinose, which are metabolites in sesame seeds from China The distribution ratio is 0.97: 0.86: 0.86: 1.01: 1.17.

그 외 수입산 참깨는 D-라피노즈 같은 물질은 많이 포함되어 있으나, 이에 비해 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올 및 아데노신 5'-모노포스페이트은 상대적으로 적게 포함되어 있다. 본원발명의 바이오마커로서 이용되는 경우, 수입산 참깨 내 대사체인 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올, 아데노신 5'-모노포스페이트 및 D-라피노즈의 분포 비율은 0.50: 0.28: 0.81: 0.72: 1.30이다.Other imported sesame seeds contain a lot of substances such as D-rapinose, but compared to this, valine, L-glutacion, 2-amino-1,3,4-octadecantriol and adenosine 5'-monophosphate are relatively It contains less. When used as a biomarker of the present invention, the metabolites in imported sesame seeds, valine, L-glutacion, 2-amino-1,3,4-octadecantriol, adenosine 5'-monophosphate, and D-rapinose The distribution ratio is 0.50: 0.28: 0.81: 0.72: 1.30.

본 발명의 일 구현예에서, 하기와 같은 방법으로 서로 다른 원산지의 참깨 시료 간의 대사체의 차별성을 판별한다:In one embodiment of the present invention, the differentiation of metabolites between sesame samples of different origins is determined by the following method:

(1) 국내산 및 수입산 참깨 시료에서 차이를 보이는 5 가지 대사체(발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올, 아데노신 5'-모노포스페이트 및 D-라피노즈)를 선별 후, 선별된 대사체에 대해 부분최소제자승판별(PLS-DA)를 이용하여 다변량 방식으로 반응 변수 모형화;(1) Five metabolites showing differences in domestic and imported sesame samples (valine, L-glutacion, 2-amino-1,3,4-octadecantriol, adenosine 5'-monophosphate and D-rapi) Nose) after selection, modeling of response variables in a multivariate method using partial least prototyping (PLS-DA) for the selected metabolites;

(2) 기체 크로마토그래피와 액체 크로마토그래피에서 분석된 대사체의 강도를 이용하여 상대적 수준 차이 비교;(2) Comparison of the relative level difference using the strength of metabolites analyzed in gas chromatography and liquid chromatography;

(3) ROC 곡선 (Receiver Operating Characteristic curve)을 이용하여 대사체 바이오마커를 검증하는 방법을 순차적으로 적용하여 AUC(Area Under the Curve) 값 비교; 및(3) Comparison of AUC (Area Under the Curve) values by sequentially applying a method of verifying metabolite biomarkers using ROC curve (Receiver Operating Characteristic curve); And

(4) ROC 곡선(Receiver Operating Characteristic curve)을 이용하여 대사체 바이오마커를 검증을 통하여 참깨 시료로부터 대사체 바이오마커 분석.(4) Metabolite biomarker analysis from sesame seeds through verification of metabolite biomarker using ROC curve (Receiver Operating Characteristic curve).

또한, 각 그룹별 t-검정을 통하여 그룹에 특이적인 대사체를 확인할 수 있었다. 대사체의 유의적 차이의 크기를 폴드 체인지로 비교하여 (fold changd) 그 양이 증가 혹은, 감소하는 패턴을 분석하여, 그룹 특이적 대사체를 선별하였다.In addition, the group-specific metabolites could be identified through the t-test for each group. Group-specific metabolites were selected by comparing the magnitude of the significant difference between metabolites by fold change and analyzing the pattern of increasing or decreasing the amount.

본 발명에서, 상기 참깨시료에서 대사체의 수준차이를 측정하는 방법은 질량분석기(Mass Spectrometer), 크로마토그래피(Chromatography) 기기, 크로마토그래피가 결합된 질량분석기(Chromatography- mass spectrometer), 핵자기공명분광분석기(Nuclear Magnetic Resonance spectrometer), 라만 분광기(Raman spectroscopy), 광흡수분석(light absorption analysis)기, 유동주입분석(flow injection analysis)기 등의 기기장치를 이용한 분석법; 상기 대사체에 특이적인 항체, 엡타머, 펩타이드, 핵산 또는 고분자와 대사체 간의 특이적인 결합을 이용한 대사체의 정량분석법; ELISA(enzyme linked immunosorbent asay), 웨스턴 블랏, 방사선면역분석(RIA: Radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역 확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation assay), 보체고정분석법(Complement Fixation Assay), FACS(Fluorescence activated cell sorter) 또는 마이크로어레이(microarray) 분석법 등의 방법을 이용하여 수행할 수 있으며, 이에 제한하지 않는다. 바람직하게는, 상기 대사체의 수준을 측정하는 방법으로 액체 크로마토그래피 분석법 및 질량분석법을 사용할 수 있다.In the present invention, the method of measuring the level difference of metabolites in the sesame sample is a mass spectrometer, a chromatography instrument, a chromatography-mass spectrometer combined with chromatography, and nuclear magnetic resonance spectroscopy. An analysis method using instrumentation such as a Nuclear Magnetic Resonance spectrometer, a Raman spectroscopy, a light absorption analysis, and a flow injection analysis; Quantitative analysis of metabolites using specific binding between antibodies, aptamers, peptides, nucleic acids or polymers and metabolites specific to the metabolites; ELISA (enzyme linked immunosorbent asay), Western blot, radioimmunoassay (RIA), radioimmunodiffusion, Ouchterlony immune diffusion method, rocket immunoelectrophoresis, tissue immunostaining, immunity It can be performed using a method such as an Immunoprecipitation assay, a Complement Fixation Assay, a fluorescence activated cell sorter (FACS), or a microarray assay, but is not limited thereto. Preferably, liquid chromatography analysis and mass spectrometry may be used as a method of measuring the level of the metabolite.

본 발명에서 이용되는 크로마토그래피(Chromatography)는 액체 크로마토그래피(Liquid- Chromatography, LC), 가스 크로마토그래피(Gas Chromatography), 액체-고체 크로마토그래피 (Liquid-Solid Chromatography, LSC), 종이 크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피 (Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함하며, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다. 바람직하게는, 본 발명에서 이용되는 크로마토그래피는 액체 크로마토그래피이다. Chromatography used in the present invention includes liquid-chromatography (LC), gas chromatography, liquid-solid chromatography (LSC), and paper chromatography. , PC), Thin-Layer Chromatography (TLC), Gas-Solid Chromatography (GSC), Liquid-Liquid Chromatography, LLC), Foam Chromatography , FC), Emulsion Chromatography (EC), Gas-Liquid Chromatography (GLC), Ion Chromatography (IC), Gel Filtration Chromatograhy (GFC) or Including gel permeation chromatography (GPC), but not limited thereto, all quantitative chromatography commonly used in the art may be used. Preferably, the chromatography used in the present invention is liquid chromatography.

바람직하게는, 본 발명에서 이용되는 질량분석기는 액체 크로마토그래피를 이용한 액체 크로마토그래피-질량분석기(Liquid Chromatography-Mass Spectrometry, LC-MS)이다.Preferably, the mass spectrometer used in the present invention is a Liquid Chromatography-Mass Spectrometry (LC-MS) using liquid chromatography.

본 발명에서 국내산 또는 수입산 참깨 시료에서 발현 수준이 차이나는 5 종의 대사체를 참깨의 원산지를 판별할 수 있는 바이오 마커로 선정하였고, 이를 이용하는 경우 보다 일관성 있고 신뢰도 높은 정확한 원산지 판별을 가능하게 함으로써 실제 원산지 단속에 적용 가능하도록 하였다.In the present invention, five kinds of metabolites having different expression levels in domestic or imported sesame samples were selected as biomarkers capable of discriminating the origin of sesame seeds, and when using them, a more consistent and highly reliable and accurate country of origin determination is possible. It was made applicable to the country of origin control.

따라서, 본 발명의 참깨의 원산지 판별용 바이오마커를 이용한 참깨의 원산지 판별방법을 이용하였을 때, 보다 일관성 있고 신뢰도 높게 참깨의 원산지를 판별할 수 있음을 확인하였다. 또한, 이는 실제 원산지 단속에 적용할 수 있으며, 참깨 외 다양한 농산물에도 적용할 수 있다.Therefore, it was confirmed that when the method for determining the origin of sesame seeds using the biomarker for determining the origin of sesame seeds of the present invention was used, it was possible to determine the origin of sesame seeds with higher consistency and reliability. In addition, this can be applied to the control of the actual origin, and can also be applied to various agricultural products other than sesame seeds.

본 발명의 참깨의 원산지 판별용 바이오마커를 이용하면, 참깨 내 대사체의 수준 차이를 이용하여 참깨의 원산지를 판별할 수 있다. 본 발명의 바이오마커는, 실제 단속에 이용하여 원산지를 속여 부당한 이익을 취하는 행위를 단속할 수 있는 중요한 도구로써 사용할 수 있으며, 이는 국내 유통 농산물의 시장질서 확립과 소비자들의 신뢰 확보에 기여할 수 있다.When the biomarker for determining the origin of sesame seeds of the present invention is used, the origin of sesame seeds can be determined by using the difference in the level of metabolites in sesame seeds. The biomarker of the present invention can be used as an important tool to crack down on acts of deceiting the country of origin and taking unreasonable profits by being used for actual crackdown, which can contribute to establishing market order of domestically distributed agricultural products and securing consumer trust.

도 1은 국내산 및 수입산 참깨의 휘발성 대사체의 PCA 스코어 plot을 나타낸다.
도 2는 국내산, 수입산 참깨의 휘발성 대사체의 PLS-DA 스코어 plot을 나타낸다.
도 3은 SAM 분석을 나타낸다.
도 4는 PLS-DA 분석을 나타낸다.
도 5는 ROC 분석을 나타낸다.
도 6은 참깨 시료의 전처리 시 액체질소 유무에 따른 FT-IR 스펙트럼을 보여준다; (A) 각 스펙트럼의 층배열 (stack) (B) 각 스펙트럼의 겹침배열 (overlay)
도 7은 참깨 시료의 주요 대사체 작용기를 동정한 결과를 보여준다.
도 8은 각 정규화 방법별 참깨 시료의 PCA 및 PLS-DA 분석 스코어 plot (FT-IR spectrum 전체 영역 사용) 결과를 보여준다: (A) area normalization: FT-IR 피크의 면적을 동일하게 맞춰주는 방법; (B) min-max normalization: FT-IR 피크의 최소점을 0, 최대점을 1로 맞춰주는 방법; (C) amide normalization: FT-IR 피크 중 amide Ⅰ 피크를 기준으로 정규화하는 방법; (D) vector 1차 normalization: FT-IR 피크를 1차 미분 후 Euclidean norm으로 정규화하는 방법; (E) vector 2차 normalization: FT-IR 피크를 2차 미분 후 Euclidean norm으로 정규화하는 방법.
도 9는 참깨 시료의 (A) PCA, (B) PLS-DA 및 (C) OPLS-DA 분석 스코어 plot (FT-IR sepctrum ①번 region (C-H stretching region, 3,050-2,800 cm-1) 사용) 결과를 보여준다.
도 10은 단독추출법과 Bligh & Dyer추출법으로 추출한 참깨 내 수용성 성분 (A)과 지용성 성분 (B)의 NMR 분석 스펙트럼을 보여준다.
도 11은 참깨 시료에 대한 1H NMR 스펙트럼을 보여준다.
도 12는 (A) 한국, 중국산 참깨의 PLS score plot, (B) 한국, 중국산 참깨의 원산지 판별을 위한 예측 PLS-DA model의 permutation 결과, (C) 한국, 중국산 참깨의 원산지 판별을 위한 OPLS-DA score plot, (D) 한국, 중국산 참깨의 원산지 판별을 위한 OPLS-DA model의 permutation 결과, (E) 한국, 중국산 참깨의 HCA 결과를 보여준다.
도 13은 (A) 한국 5지역 분리, (B) 한국 내 참깨의 원산지 판별을 위한 PCA score plot, (C) 한국 내 참깨의 원산지 판별을 위한 PLS-DA score plot, (D) 한국 내 참깨의 원산지 판별을 위한 예측 PLS-DA model의 permutation 결과를 보여준다.
도 14는 (A) 중국 3지역으로 분리, (B) 중국 내 참깨의 원산지 판별을 위한 PCA score plot, (C) 중국 내 참깨의 원산지 판별을 위한 PLS-DA score plot, (D) 중국 내 참깨의 원산지 판별을 위한 예측 PLS-DA model의 permutation 결과를 보여준다.
1 shows a PCA score plot of volatile metabolites of domestic and imported sesame seeds.
Figure 2 shows a PLS-DA score plot of volatile metabolites of domestic and imported sesame seeds.
3 shows the SAM analysis.
4 shows the PLS-DA analysis.
5 shows the ROC analysis.
6 shows the FT-IR spectrum according to the presence or absence of liquid nitrogen during pretreatment of a sesame sample; (A) Stack of each spectrum (B) Overlay of each spectrum
7 shows the results of identifying major metabolite functional groups of sesame seeds.
FIG. 8 shows the results of PCA and PLS-DA analysis score plots (using the entire FT-IR spectrum) of sesame samples for each normalization method: (A) area normalization: a method of equalizing the area of the FT-IR peak; (B) min-max normalization: a method of setting the minimum point of the FT-IR peak to 0 and the maximum point to 1; (C) amide normalization: a method of normalizing based on the amide I peak among the FT-IR peaks; (D) vector first order normalization: a method of normalizing the FT-IR peak to Euclidean norm after first differentiation; (E) Vector second order normalization: A method of normalizing the FT-IR peak to the Euclidean norm after second derivative.
9 is a plot of (A) PCA, (B) PLS-DA and (C) OPLS-DA analysis score of sesame samples (using FT-IR sepctrum 1 region (CH stretching region, 3,050-2,800 cm-1)) results Show
10 shows the NMR spectrum of the water-soluble component (A) and the fat-soluble component (B) in sesame seeds extracted by the single extraction method and the Bligh & Dyer extraction method.
11 shows a 1H NMR spectrum for a sesame sample.
Figure 12 is (A) PLS score plot of sesame seeds from Korea and China, (B) permutation results of the predicted PLS-DA model for determining the origin of sesame seeds from Korea and China, (C) OPLS- for determining the origin of sesame seeds from Korea and China. DA score plot, (D) permutation results of the OPLS-DA model for determining the origin of sesame seeds from Korea and China, and (E) HCA results of sesame seeds from Korea and China.
13 shows (A) separation of five regions in Korea, (B) PCA score plot for determining the origin of sesame seeds in Korea, (C) PLS-DA score plot for determining the origin of sesame seeds in Korea, (D) It shows the permutation result of the predicted PLS-DA model for determining the origin.
Figure 14 is (A) separated into three regions of China, (B) PCA score plot for determining the origin of sesame seeds in China, (C) PLS-DA score plot for determining the origin of sesame seeds in China, (D) sesame seeds in China The permutation result of the predicted PLS-DA model for determining the origin of

이하, 본 발명을 실시예에 의거하여 보다 구체적으로 설명한다. 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail based on examples. The examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the invention is not limited by these examples according to the gist of the present invention.

실시예 1. 참깨 시료 내 휘발성 대사체 분석Example 1. Analysis of volatile metabolites in sesame samples

1-1. 참깨 시료의 휘발성 대사체 추출1-1. Extraction of volatile metabolites from sesame seeds

본 발명자들은 참깨 시료 내 휘발성 대사체를 분석하기 위하여, 국내산 27개 지역의 참깨 시료는 국립농산물품질관리원으로부터 2018년에 생산된 것을 제공받았고, 중국 현지에서 중국산 6종, 추가로 수입산 6종(에티오피아산 1종, 나이지리아산 2종, 파키스탄산 1종, 인도산 1종과 추가 구입한 중국산 1종)을 구입하여 사용하였다. QC 시료로는 2018년에 전라남도 해남군 화원면에서 생산된 참깨를 사용하였다. 분석에 사용된 모든 시료는 보관, roasting, 추출 등의 전처리 과정 중의 수분으로 인한 실험 오차를 줄이기 위해 50℃의 dry oven에서 24시간 동안 건조하여 수분함량 2.5% 미만으로 조절한 후 사용되었다.In order to analyze the volatile metabolites in sesame samples, the present inventors were provided with those produced in 2018 from the National Agricultural Products Quality Management Agency for sesame samples from 27 regions produced in Korea, and 6 species from China and 6 additional imported products (Ethiopia). 1 type of acid, 2 types of Nigeria, 1 type of Pakistan, 1 type of India and 1 type of additional purchase from China) were purchased and used. Sesame seeds produced in Hwawon-myeon, Haenam-gun, Jeollanam-do in 2018 were used as the QC sample. All samples used in the analysis were dried in a dry oven at 50℃ for 24 hours to reduce experimental errors due to moisture during pretreatment such as storage, roasting, extraction, etc., and then used after adjusting the moisture content to less than 2.5%.

SPME용 20 mL vial에 참깨 시료 4.0g을 넣어 crimp cap으로 밀봉하였다. GC/MS에 부착된 MPS에서 180℃로 10분간 로스팅하였으며, 재현성을 높이기 위해 바이얼 6개씩 한 세트로 진행하였다. 일간 SPME 방법의 재현성 확보를 위해 시료 4개마다 QC 시료를 1개씩 분석하여 오차를 보정하였고, QC 시료는 예외로 바이얼 1개씩 한 세트로 진행하였다. 180℃에서 로스팅한 시료는 1±2℃의 냉장고에서 15분간 냉각시킨 후 10 μL 실린지를 사용하여 내부표준물질 각 100 mg/L 2종을 6 μL씩 첨가하였다. 내부표준물질로는 에틸 2-메틸 부티레이트(ethyl 2-methyl butyrate)(CAS 7452-79-1, Sigma-Aldrich, St. Louis, M.O., USA)와 메틸 살리실레이트(methyl salicylate)(CAS 119-36-8, Sigma-Aldrich)를 사용하였으며, 용매는 메탄올을 사용하였다. 바이얼에 담긴 시료의 휘발성 성분을 흡착하기 위해 DVB/CAR/PDMS SPME fiber (Supelco)를 사용하였다. 시료의 휘발성 성분을 포집하기 위하여 시료를 담은 20 mL 바이얼을 65℃에서 250 rpm으로 10분간 교반하며 평형을 이룬 뒤 휘발성 성분을 30분간 흡착, 230℃에서 5분간 탈착하였다.In a 20 mL vial for SPME, 4.0 g of sesame seeds were put and sealed with a crimp cap. Roasted at 180°C for 10 minutes in MPS attached to GC/MS, and proceeded as a set of 6 vials to increase reproducibility. In order to ensure the reproducibility of the daily SPME method, the error was corrected by analyzing one QC sample for every four samples, and the QC sample was performed as an exception, a set of one vial. Samples roasted at 180°C were cooled in a refrigerator at 1±2°C for 15 minutes, and then 6 μL of each of 100 mg/L of internal standards was added using a 10 μL syringe. Internal standards include ethyl 2-methyl butyrate (CAS 7452-79-1, Sigma-Aldrich, St. Louis, MO, USA) and methyl salicylate (CAS 119- 36-8, Sigma-Aldrich) was used, and methanol was used as the solvent. DVB/CAR/PDMS SPME fiber (Supelco) was used to adsorb the volatile components of the sample contained in the vial. In order to collect the volatile components of the sample, a 20 mL vial containing the sample was stirred at 65°C for 10 minutes at 250 rpm to equilibrate, and then the volatile components were adsorbed for 30 minutes and desorbed at 230°C for 5 minutes.

1-2. 참깨 시료의 기체 크로마토그래피 분석1-2. Gas chromatography analysis of sesame seeds

본 발명자들은 참깨 시료에서 추출한 샘플 내 대사체 검출을 위해, 상기 실시예 1-1의 샘플 4g을 Multi-Purpose Sampler (MPS, Gerstel, M

Figure pat00001
lheim an der Ruhr, Germany)를 이용해 기체 크로마토그래피에 주입하였다. 기체 크로마토 그래피는 7890B GC system (Agilent Technologies, Wilmington, DE)과 HP-5MS (length 30m × inner diameter 0.250mm × film thickness 0.25 μm, Agilent Technologies)를 사용 하였다. Oven은 40℃에서 3분간 유지하고, 280℃까지 4℃/min으로 온도를 높여 63분간 분석하였다. 이동상 기체는 헬륨(helium)을 사용하여 0.8 mL/min로 흐르게 하였고, splitless mode로 설정하였다.The present inventors used Multi-Purpose Sampler (MPS, Gerstel, M) for the sample of Example 1-1 to detect metabolites in samples extracted from sesame seeds.
Figure pat00001
lheim an der Ruhr, Germany) was injected into gas chromatography. Gas chromatography was performed using a 7890B GC system (Agilent Technologies, Wilmington, DE) and HP-5MS (length 30m × inner diameter 0.250mm × film thickness 0.25 μm, Agilent Technologies). Oven was maintained at 40℃ for 3 minutes, and the temperature was increased to 280℃ at 4℃/min and analyzed for 63 minutes. The mobile phase gas was flowed at 0.8 mL/min using helium, and the splitless mode was set.

1-3. 질량 분석기 분석1-3. Mass spectrometry analysis

본 발명자들은 참깨 시료에서 추출한 샘플 내 대사체 검출을 위해 질량 분석기를 이용하여 질량 분석을 실시하였다. 질량 분석에는 5977A MSD (Agilent Technologies) 질량 분석기를 이용하였으며, 35-350m/z의 질량 범위에서 초당 4.5 스펙트럼의 속도로 대사체들의 질량 스펙트럼을 확보하였고, 전자 충격 이온화 (electron impact ionization) 는 70 eV로 시행하였다.The present inventors performed mass spectrometry using a mass spectrometer to detect metabolites in samples extracted from sesame seeds. A 5977A MSD (Agilent Technologies) mass spectrometer was used for mass analysis, and mass spectra of metabolites were obtained at a rate of 4.5 spectra per second in the mass range of 35-350 m/z, and electron impact ionization was 70 eV. It was implemented with.

1-4. 대사체 정성 및 통계 분석1-4. Metabolite qualitative and statistical analysis

본 발명자들은 대사체를 정성 및 통계 분석하였다.The present inventors analyzed metabolites qualitatively and statistically.

SPME법으로 추출한 참깨의 휘발성 대사체는 non-targeted analysis 되었으며, mass profiler professional software (MPP, Agilent Technologies)가 사용되었다. hexane에 희석한 saturated alkanes C7~C30 (1 mg/mL in hexane)을 외부 표준물질로 사용하여 각 휘발성분의 RI (Retention Index)를 구한 후 문헌상의 RI값과 비교하였다. 분석된 모든 휘발성 대사체는 내부표준물질인 ethyl 2-methyl butyrate (100 mg/L)와 methyl salicylate (100 mg/L)를 기준으로 RT (Retention Time)값이 보정되었다. MPP에서 추출한 데이터로 SIMCA P+ software (SIMCA-P version 11.0, Umetrics, Umea, Sweden)를 사용하여 다변량 통계분석을 실시하였다.Volatile metabolites of sesame seeds extracted by the SPME method were analyzed non-targeted, and mass profiler professional software (MPP, Agilent Technologies) was used. Using saturated alkanes C7~C30 (1 mg/mL in hexane) diluted in hexane as an external standard, the RI (Retention Index) of each volatile component was calculated and compared with the RI values in the literature. For all analyzed volatile metabolites, the RT (Retention Time) values were corrected based on the internal standards ethyl 2-methyl butyrate (100 mg/L) and methyl salicylate (100 mg/L). Multivariate statistical analysis was performed using the data extracted from MPP using SIMCA P+ software (SIMCA-P version 11.0, Umetrics, Umea, Sweden).

그 결과, 도 1에 나타낸 바와 같이, 주성분 분석(principal component analysis, PCA)을 통해 국내산(파란색) 및 수입산(빨간색) 참깨 시료 간의 차이를 명확하게 확인하였다.As a result, as shown in FIG. 1, the difference between domestic (blue) and imported (red) sesame samples was clearly confirmed through principal component analysis (PCA).

또한, 도 2에 나타낸 바와 같이, 부분 최소 제곱 판별 분석(partial least squares discriminant analysis, PLS-DA)을 통해 국내산 및 수입산 참깨 시료 간의 차이를 명확하게 확인하였다.In addition, as shown in Figure 2, through partial least squares discriminant analysis (PLS-DA) it was clearly confirmed the difference between domestic and imported sesame samples.

또한, PLS-DA 분석을 통해 Variable Important Plot (VIP) list를 얻어 PLS component 1과 PLS component 2의 구분에 영향을 미치는 주요 피크(peak)를 추출하여 RI를 계산한 후 이를 문헌상의 RI와 비교하여 주요 성분을 분석하였고, 하기 표 1에 참깨 휘발성 대사체 PLS-DA component1의 VIP(Variable Important Plot) 리스트(>1.0)를 나타냈고, 하기 표 2에 참깨 휘발성 대사체 PLS-DA component2의 VIP 리스트(>1.0)를 나타내었다.In addition, by obtaining a Variable Important Plot (VIP) list through PLS-DA analysis, extracting the main peaks affecting the classification of PLS component 1 and PLS component 2, calculating RI, and comparing it with RI in the literature. The main components were analyzed, and a VIP (Variable Important Plot) list (>1.0) of the sesame volatile metabolite PLS-DA component1 is shown in Table 1, and the VIP list of the sesame volatile metabolite PLS-DA component2 ( >1.0).

그 결과, 하기 표 1 및 2에 나타낸 바와 같이, VIP가 1.0이상인 휘발성 대사체만 선정해 분석하였고, PLS-DA component 1에 대한 VIP로는 alcohol류 1개, aldehyde류 7개, ester류 1개, hydrocarbons 3개, ketone류 2개, fatty acid 1개, phenol류 1개의 성분이 동정되었고, PLS-DA component 2에 대한 VIP로는 alcohol류 1개, aldehyde류 8개, ester류 1개, hydrocarbons 3개, ketone류 2개, fatty acid 1개, furan 계열 1개, phenol류 1개의 성분이 동정되었다.As a result, as shown in Tables 1 and 2 below, only volatile metabolites with a VIP of 1.0 or more were selected and analyzed. As VIPs for PLS-DA component 1, 1 alcohol, 7 aldehydes, 1 ester, 3 hydrocarbons, 2 ketones, 1 fatty acid, and 1 phenol component were identified. As VIPs for PLS-DA component 2, 1 alcohol, 8 aldehydes, 1 ester, 3 hydrocarbons , 2 ketones, 1 fatty acid, 1 furan, and 1 phenol were identified.

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

실시예 2. LC-MS를 사용한 참깨 시료 내 원산지 특이적 지표 발굴Example 2. Discovery of specific indicators of origin in sesame samples using LC-MS

2-1. 참깨 시료의 LC-MS 분석2-1. LC-MS analysis of sesame seeds

본 발명자들은 참깨의 2차 대사산물을 LC-Orbitrap MS를 이용하여 분석하였으며 데이터 프로세스 결과 총 138개의 대사체를 동정하였다.The present inventors analyzed the secondary metabolites of sesame seeds using LC-Orbitrap MS, and identified a total of 138 metabolites as a result of the data process.

2-2. 단변량 통계 분석 (Univariate statistics) 2-2. Univariate statistics

본 발명자들은 Student’s T-Test를 이용하여 국내산과 외국산을 비교했을 때 대사물질들의 변화를 통계적으로 검증하고, 각 반도별로 유의 수준 있게 변화하는 대사물질 리스트를 하기 표 3에 나타내었다(Student's T-Test < 0.05).The present inventors statistically verify the change of metabolites when comparing domestic and foreign products using Student's T-Test, and a list of metabolites that change significantly for each peninsula is shown in Table 3 below (Student's T-Test <0.05).

Figure pat00009
Figure pat00009

2-3. SAM (Significane Analysis for Microarrays) 분석2-3. SAM (Significane Analysis for Microarrays) analysis

본 발명자들은 SAM (Significane Analysis for Microarrays) 분석을 통해 국내산과 수입산을 비교하였다.The present inventors compared domestic and imported products through a SAM (Significane Analysis for Microarrays) analysis.

그 결과, 도 3에 나타낸 바와 같이, 4 종의 대사 물질(N2-Methylguanosine, 4-Coumaric acid, Valine, L-Glutathione(환원형))의 발현 수준이 특징적으로 분석되었다. 대체적으로 국내산은 수입산에 비해 상향조절(up-regulated)되었으며, 수입산은 하향조절(down-regulated)된 것을 확인하였다. As a result, as shown in FIG. 3, the expression levels of four metabolites (N2-Methylguanosine, 4-Coumaric acid, Valine, L-Glutathione (reduced type)) were analyzed characteristically. In general, it was confirmed that domestic products were up-regulated compared to imported products, and imported products were down-regulated.

2-4. 감독 다변량 통계(Supervised multivariate statistics)2-4. Supervised multivariate statistics

본 발명자들은 감독 다변량 통계를 분석한 결과, 도 4에 나타낸 바와 같이, 부분최소자승판별 분석 (PLS-DA, Partial least squares-discriminant analysis)를 적용하였을 때, 그룹간의 대사체 프로파일이 잘 분리되었음을 확인하였다(R2Y = 0.955, Q2 = 0.794).As a result of analyzing the supervisory multivariate statistics, the present inventors confirmed that metabolite profiles between groups were well separated when applying partial least squares-discriminant analysis (PLS-DA) as shown in FIG. (R2Y = 0.955, Q2 = 0.794).

2-5. ROC 곡선 분석(Receiver operating characteristic Curve analysis)2-5. ROC curve analysis (Receiver operating characteristic Curve analysis)

본 발명자들은 VIP (Variable importance) 스코어를 고려하여 여러 가지 대사물질을 조합하였고, 그 결과, 도 5에 나타낸 바와 같이, 최종적으로 5개의 대사물질(D-Raffinose, L-Glutathione (reduced), Adenosine 5'-monophosphate, Valine, 2-Amino-1,3,4-octadecanetriol)을 선별하였다. 각각의 AUC value는 0.954이다.The present inventors combined various metabolites in consideration of the VIP (Variable importance) score, and as a result, as shown in FIG. 5, finally, five metabolites (D-Raffinose, L-Glutathione (reduced), Adenosine 5 '-monophosphate, Valine, 2-Amino-1,3,4-octadecanetriol) were selected. Each AUC value is 0.954.

2-6. 참깨 시료에 존재하는 대사체(metabolic features)의 정량적 DB 구축2-6. Quantitative DB construction of metabolic features present in sesame seeds

본 발명자들은 국내산과 수입산 참깨 시료에 존재하는 대사체(metabolic features)의 정량적 DB를 구축하였다. 그 결과, 하기 표 4에 나타낸 바와 같이, LC-MS 분석을 통해 참깨의 이차대사산물 및 기능성 대사산물의 표적물질 프로파일링 플랫폼을 구축하였다.The present inventors constructed a quantitative DB of metabolic features present in domestic and imported sesame samples. As a result, as shown in Table 4 below, a platform for profiling target substances of secondary metabolites and functional metabolites of sesame seeds was constructed through LC-MS analysis.

Metabolite nameMetabolite name Molecular WeightMolecular Weight Metabolite name Metabolite name Molecular WeightMolecular Weight CholineCholine 103.09966103.09966 3-Hydroxypicolinic acid3-Hydroxypicolinic acid 139.0269139.0269 Pyrrole-2-carboxylic acidPyrrole-2-carboxylic acid 111.03204111.03204 GuvacolineGuvacoline 141.079141.079 CytosineCytosine 111.04327111.04327 DL-StachydrineDL-Stachydrine 143.0946143.0946 HistamineHistamine 111.0796111.0796 8-Hydroxyquinoline8-Hydroxyquinoline 145.0527145.0527 UracilUracil 112.02726112.02726 4-Guanidinobutyric acid4-Guanidinobutyric acid 145.0851145.0851 CreatinineCreatinine 113.05894113.05894 AcetylcholineAcetylcholine 145.1103145.1103 N-MethylhydantoinN-Methylhydantoin 114.04294114.04294 SpermidineSpermidine 145.1579145.1579 D-(+)-ProlineD-(+)-Proline 115.06329115.06329 CoumarinCoumarin 146.0368146.0368 BetaineBetaine 117.07894117.07894 D-(-)-GlutamineD-(-)-Glutamine 146.069146.069 ValineValine 117.07894117.07894 5,6-Dimethylbenzimidazole5,6-Dimethylbenzimidazole 146.0844146.0844 L-ThreonineL-Threonine 119.05822119.05822 L-LysineL-Lysine 146.1055146.1055 4-Hydroxybenzaldehyde4-Hydroxybenzaldehyde 122.03676122.03676 L-Glutamic acidL-Glutamic acid 147.053147.053 NicotinamideNicotinamide 122.04803122.04803 MethionineMethionine 149.0511149.0511 Nicotinic acidNicotinic acid 123.03208123.03208 7-Methyladenine7-Methyladenine 149.0701149.0701 MaltolMaltol 126.03159126.03159 N6-MethyladenineN6-Methyladenine 149.0702149.0702 PhloroglucinolPhloroglucinol 126.03161126.03161 4'-Methoxyacetophenone4'-Methoxyacetophenone 150.068150.068 DihydrothymineDihydrothymine 128.05851128.05851 GuanineGuanine 151.0494151.0494 L-Pyroglutamic acidL-Pyroglutamic acid 129.04262129.04262 2-Phenylglycine2-Phenylglycine 151.0634151.0634 IsoquinolineIsoquinoline 129.05782129.05782 L-(-)-ArabitolL-(-)-Arabitol 152.0684152.0684 Pipecolic acidPipecolic acid 129.07896129.07896 D-(+)-CamphorD-(+)-Camphor 152.1201152.1201 SkatoleSkatole 131.07352131.07352 3-Hydroxyanthranilic acid3-Hydroxyanthranilic acid 153.0426153.0426 LeucineLeucine 131.09463131.09463 L-HistidineL-Histidine 155.0695155.0695 L-NorleucineL-Norleucine 131.09467131.09467 Imidazolelactic acidImidazolelactic acid 156.0535156.0535 OrnithineOrnithine 132.08991132.08991 3-(2-Hydroxyethyl)indole3-(2-Hydroxyethyl)indole 161.084161.084 L-Aspartic acidL-Aspartic acid 133.03738133.03738 DL-CarnitineDL-Carnitine 161.1051161.1051 AdenineAdenine 135.0545135.0545 4-Hydroxycoumarin4-Hydroxycoumarin 162.0316162.0316 HypoxanthineHypoxanthine 136.03854136.03854 7-Hydroxycoumarine7-Hydroxycoumarine 162.0317162.0317 3-Methoxybenzaldehyde3-Methoxybenzaldehyde 136.05245136.05245 4-Methoxycinnamaldehyde4-Methoxycinnamaldehyde 162.068162.068 TrigonellineTrigonelline 137.04761137.04761 Methyl cinnamateMethyl cinnamate 162.068162.068 3,4-Dihydroxybenzaldehyde3,4-Dihydroxybenzaldehyde 138.03166138.03166 4-Coumaric acid4-Coumaric acid 164.0473164.0473 7-Methylguanine7-Methylguanine 165.0651165.0651 Indole-3-pyruvic acidIndole-3-pyruvic acid 203.0581203.0581 L-PhenylalanineL-Phenylalanine 165.0789165.0789 NeocuproineNeocuproine 208.1208.1 Uric acidUric acid 168.0283168.0283 ValylprolineValylproline 214.1318214.1318 NorharmanNorharman 168.0687168.0687 KinetinKinetin 215.0808215.0808 PyridoxinePyridoxine 169.0738169.0738 N-α-L-Acetyl-arginineN-α-L-Acetyl-arginine 216.1222216.1222 1-Methylhistidine1-Methylhistidine 169.0851169.0851 (+)-ar-Turmerone(+)-ar-Turmerone 216.1515216.1515 GlycylprolineGlycylproline 172.0847172.0847 NootkatoneNootkatone 218.1671218.1671 TryptolineTryptoline 172.1001172.1001 Sinapinic acidSinapinic acid 224.0684224.0684 DL-ArginineDL-Arginine 174.1117174.1117 ProlylleucineProlylleucine 228.1474228.1474 N-MethyltryptamineN-Methyltryptamine 174.1157174.1157 RadicininRadicinin 236.0681236.0681 Indole-3-acetic acidIndole-3-acetic acid 175.0633175.0633 CytidineCytidine 243.0854243.0854 CotinineCotinine 176.0949176.0949 Coenzyme Q1Coenzyme Q1 250.1217250.1217 EsculetinEsculetin 178.0265178.0265 2'-Deoxyadenosine2'-Deoxyadenosine 251.1018251.1018 KanosamineKanosamine 179.0792179.0792 Palmitoleic acidPalmitoleic acid 254.2244254.2244 Caffeic acidCaffeic acid 180.0422180.0422 HexadecanamideHexadecanamide 255.256255.256 L-TyrosineL-Tyrosine 181.0739181.0739 IndirubinIndirubin 262.0742262.0742 L-threo-3-PhenylserineL-threo-3-Phenylserine 181.0739181.0739 ThiamineThiamine 264.1044264.1044 L-IditolL-Iditol 182.079182.079 AdenosineAdenosine 267.0966267.0966 4'-(Imidazol-1-yl)acetophenone4'-(Imidazol-1-yl)acetophenone 186.0792186.0792 InosineInosine 268.0806268.0806 Indole-3-acrylic acidIndole-3-acrylic acid 187.0633187.0633 GalanginGalangin 270.0526270.0526 Glycyl-L-leucineGlycyl-L-leucine 188.1161188.1161 Υ-L-Glutamyl-L-glutamic acidΥ-L-Glutamyl-L-glutamic acid 276.0957276.0957 N6,N6,N6-Trimethyl-L-lysineN6,N6,N6-Trimethyl-L-lysine 188.1524188.1524 L-SaccharopineL-Saccharopine 276.132276.132 Kynurenic acidKynurenic acid 189.0425189.0425 α-Aspartylphenylalanineα-Aspartylphenylalanine 280.1058280.1058 Methyl indole-3-acetateMethyl indole-3-acetate 189.079189.079 2'-O-Methyladenosine2'-O-Methyladenosine 281.1123281.1123 5-Hydroxyindole-3-acetic acid5-Hydroxyindole-3-acetic acid 191.0583191.0583 OleamideOleamide 281.2717281.2717 ScopoletinScopoletin 192.0422192.0422 Argininosuccinic acidArgininosuccinic acid 290.1223290.1223 trans-3-Hydroxycotininetrans-3-Hydroxycotinine 192.09192.09 9-Oxo-10(E),12(E)-octadecadienoic acid9-Oxo-10(E),12(E)-octadecadienoic acid 294.2193294.2193 Isoferulic acidIsoferulic acid 194.0578194.0578 5'-S-Methyl-5'-thioadenosine5'-S-Methyl-5'-thioadenosine 297.0895297.0895 Ferulic acidFerulic acid 194.0579194.0579 N2-MethylguanosineN2-Methylguanosine 297.1073297.1073 N3,N4-Dimethyl-L-arginineN3,N4-Dimethyl-L-arginine 202.1429202.1429 DiosmetinDiosmetin 300.0633300.0633 IsotretinoinIsotretinoin 300.2088300.2088 N-AcetylsphingosineN-Acetylsphingosine 341.2929341.2929 L-Glutathione (reduced)L-Glutathione (reduced) 307.0836307.0836 α-Lactoseα-Lactose 342.116342.116 IsorhamnetinIsorhamnetin 316.0581316.0581 Adenosine 5'-monophosphateAdenosine 5'-monophosphate 347.0629347.0629 2-Amino-1,3,4-octadecanetriol2-Amino-1,3,4-octadecanetriol 317.2929317.2929 S-AdenosylhomocysteineS-Adenosylhomocysteine 384.1215384.1215 15-Deoxy-Δ12,14-prostaglandin A115-Deoxy-Δ12,14-prostaglandin A1 318.2194318.2194 NobiletinNobiletin 402.131402.131 Adenosine 3'5'-cyclic monophosphateAdenosine 3'5'-cyclic monophosphate 329.0524329.0524 KuromaninKuromanin 448.1003448.1003 Aflatoxin G2Aflatoxin G2 330.0739330.0739 Glycerophospho-N-palmitoyl ethanolamineGlycerophospho-N-palmitoyl ethanolamine 453.2853453.2853 Prostaglandin B1Prostaglandin B1 336.2299336.2299 ScutellarinScutellarin 462.0797462.0797 18-β-Glycyrrhetinic acid18-β-Glycyrrhetinic acid 470.3394470.3394 D-RaffinoseD-Raffinose 504.1687504.1687

실시예 3. FT-IR 기반 대사체 분석Example 3. FT-IR based metabolite analysis

3-1. 참깨 시료의 전처리 방법 확립3-1. Establishment of sesame sample preparation

본 발명자들은 액체 질소(Liquid nitrogen) 사용유무에 따른 스펙트럼 상의 차이를 확인하고자, 참깨를 액체 질소에 10초간 담근 후 바로 꺼내어 분쇄기에 넣고 20초간 분쇄한 후 동결건조하였고, 비교 대조군인 참깨는 아무 처리를 하지 않고 분쇄기에서 20초간 분쇄한 후 동결건조하여 사용하였다. In order to check the difference in spectrum depending on the use of liquid nitrogen, the present inventors were immersed in liquid nitrogen for 10 seconds, then immediately taken out, put in a grinder, pulverized for 20 seconds, and then freeze-dried. It was pulverized for 20 seconds in a grinder without using and then lyophilized and used.

3-2. FT-IR 가동조건 확립3-2. Establishment of FT-IR operating conditions

본 발명자들은 ATR 모드를 적용함으로써 투과/반사법에 비해 샘플두께 제한이 없어 샘플 전처리를 간소화하였으며, 견고한 재질인 diamond plate를 사용함으로써 분석의 재현성을 높였다. Bruker사 기기(TENSOR27)를 활용하였고 scan수 32, 측정범위 400-4,000 cm-1, resolution 4 cm-1을 적용함. 샘플 분석 전 background scan을 측정하여 H2O와 CO2 피크를 제거함으로써 백그라운드 노이즈를 감소시키고 시그널에 대한 비율 값을 증가시켰다.By applying the ATR mode, the present inventors simplified sample pretreatment because there was no limitation in sample thickness compared to the transmission/reflection method, and improved reproducibility of the analysis by using a diamond plate, which is a solid material. Bruker's device (TENSOR27) was used and the number of scans was 32, the measurement range was 400-4,000 cm-1, and the resolution 4 cm-1 was applied. Background scan was measured before sample analysis to remove H 2 O and CO 2 peaks, thereby reducing background noise and increasing the ratio of the signal.

3-3. 대사체 동정 방법 확립3-3. Establishment of metabolite identification method

본 발명자들은 대사체 동정 방법을 확립하기 위해 OMNIC 소프트웨어 및 참고문헌을 이용하였다.We used OMNIC software and references to establish a metabolite identification method.

그 결과, 도 6에 나타낸 바와 같이, 참깨 시료의 전처리 시 액체질소 사용 유무에 따른 스펙트럼 상 나타나는 피크의 종류와 크기의 차이는 거의 없었으나, 참깨 내 존재하는 효소 작용 억제를 위해 액체 질소를 사용하여 분쇄한 샘플을 본 실험에 사용하였다. As a result, as shown in FIG. 6, there was little difference in the type and size of the peaks appearing on the spectrum according to the presence or absence of liquid nitrogen during pretreatment of the sesame sample, but liquid nitrogen was used to inhibit the enzyme action present in the sesame seeds. The pulverized sample was used in this experiment.

또한, 도 7에 나타낸 바와 같이, 참깨 시료에서 나타난 주요 대사체 작용기는 에스테르류(esters), 아류민(amines), 카르복실산류(carboxylic acids), 방향족 화합물류(aromatics), 페놀류(phenols) 등으로 나타났다. 작용기별로 ① C-H stretching region (3,050-2,800 cm-1), ② C=O stretching region (1,800-1,600 cm-1), ③ C-O-C stretching and C-H bending region (1,600-650 cm-1)으로 구별이 가능했다. In addition, as shown in Figure 7, the main metabolite functional groups shown in the sesame sample are esters, amines, carboxylic acids, aromatics, phenols, etc. Appeared. By functional group, ① CH stretching region (3,050-2,800 cm-1), ② C=O stretching region (1,800-1,600 cm-1), and ③ COC stretching and CH bending region (1,600-650 cm-1). .

3-4. 데이터 전처리 및 다변량 통계분석3-4. Data preprocessing and multivariate statistical analysis

본 발명자들은 다양한 정규화(normalization) 방법(area, min-max, amide, vector 1차, vector 2차)별 전처리 데이터를 SIMCA P+, Metaboanalyst를 이용하여 다변량 통계 분석을 실시하였다. 다변량 통계 분석 방법 중 하나인 PCA, PLS-DA, OPLS-DA를 이용하여 국내산과 중국산 참깨 시료의 분리 여부를 확인하였다. The present inventors performed multivariate statistical analysis using SIMCA P+ and Metaboanalyst for preprocessing data for various normalization methods (area, min-max, amide, vector first order, vector second order). One of the multivariate statistical analysis methods, PCA, PLS-DA, and OPLS-DA, was used to determine whether sesame samples from Korea and China were separated.

그 결과, 도 8에 나타낸 바와 같이, FT-IR spectrum의 전체 영역 (4,000~400 cm-1)을 사용하였을 때 각 normalization방법별로 PCA와 PLS-DA분석 시 모델의 적합성과 예측력 지표, component value, score plot상 observations의 분리도 및 validation parameter의 부적합으로 인해 국내산과 중국산 참깨 시료의 분리가 불충분함을 확인하였다. As a result, as shown in FIG. 8, when the entire area of the FT-IR spectrum (4,000 to 400 cm-1) is used, model suitability and predictive power index, component value, and component values for PCA and PLS-DA analysis for each normalization method are used. It was confirmed that the separation of domestic and Chinese sesame samples was insufficient due to the degree of separation of observations on the score plot and inadequate validation parameters.

이에 따라, 작용기 별 영역을 나누어 분석을 진행하였고, 그 결과, 도 9에 나타낸 바와 같이, 1번 작용기 영역 (C-H stretching region, 3,050-2,800 cm-1)에서 PCA, PLS-DA 및 OPLS-DA분석 시 score plot상 분포도, PCA모델의 R2X, Q2X값 (0.891, 0.840), PLS-DA모델의 R2Y, Q2Y값 (0.708, 0.614) OPLS-DA모델의 R2Y, Q2Y값 (0.759, 0.641), 및 permutation test 적합으로 인해 국내산과 중국산의 분리가 가능함을 확인하였다. Accordingly, the analysis was carried out by dividing the region for each functional group. As a result, as shown in FIG. 9, PCA, PLS-DA and OPLS-DA analysis in the first functional group region (CH stretching region, 3,050-2,800 cm-1) Distribution chart on the score plot, PCA model R2X, Q2X values (0.891, 0.840), PLS-DA model R2Y, Q2Y values (0.708, 0.614) OPLS-DA model R2Y, Q2Y values (0.759, 0.641), and permutation It was confirmed that domestic and Chinese products could be separated due to the test fit.

실시예 4. NMR 기반 대사체 분석Example 4. NMR-based metabolite analysis

4-1. NMR 기반 참깨 유래 대사체 분석을 위한 시료 추출법 및 분석법의 최적화4-1. Optimization of sample extraction and analysis methods for analysis of metabolites derived from sesame seeds based on NMR

본 발명자들은 NMR 기반 참깨 유래 대사체 분석을 위한 시료 추출법 및 분석법을 최적화하였다.The present inventors have optimized a sample extraction method and an analysis method for analysis of metabolites derived from sesame seeds based on NMR.

간략하게, NMR을 이용한 참깨의 대사체 분석을 위한 전처리 방법으로 참깨를 액체 질소에 10초간 담근 후 바로 꺼내어 분쇄기에 넣고 20초간 분쇄한 후 동결건조하여 사용하였다. 참깨의 수용성 대사체 성분분석을 위해 메탄올, 물을 용매로 이용하여 수용성 성분을 단독추출하는 방법과 메탄올, 클로로포름, 물을 용매로 이용하여 수용성과 지용성 성분을 혼합추출하는 Bligh & Dyer 분석법을 사용하여 수용성 대사체 성분의 검출도를 비교하였다. Briefly, as a pretreatment method for metabolite analysis of sesame seeds using NMR, sesame seeds were immersed in liquid nitrogen for 10 seconds, taken out immediately, placed in a grinder, pulverized for 20 seconds, and lyophilized for use. For the analysis of the components of water-soluble metabolites of sesame seeds, methanol and water are used as solvents to extract water-soluble components alone, and methanol, chloroform, and water are used as solvents to mix and extract water-soluble and fat-soluble components. The degree of detection of the water-soluble metabolite component was compared.

단독추출법은 동결건조된 참깨 0.1 g에 methanol-d (0.05% 3-(tetramethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP))와 D2O를 4:1의 비율로 넣은 후 1분간 vortexing하고, 10분간 sonication한 후 원심분리하여 상등액을 0.45 μm PTFE syringe filter로 여과하여 여과액 600 μL를 5 mm NMR tube에 옮겼다. The sole extraction method was to add methanol-d (0.05% 3-(tetramethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP)) and D2O in a ratio of 4:1 to 0.1 g of lyophilized sesame seeds. After vortexing for 1 minute, sonication for 10 minutes, centrifugation, the supernatant was filtered with a 0.45 μm PTFE syringe filter, and 600 μL of the filtrate was transferred to a 5 mm NMR tube.

Bligh & Dyer 분석법은 동결건조된 참깨 0.10g에 cold mixture solvent (cold mixture (CHCl3:MeOH:H2O=2:2:1) 1.8 mL를 넣고 1분간 vortexing 하였다. 4℃ 에서 1시간 반응 후 원심분리하여 상층액(hyrosoluble phase)과 하층액(organic phase)을 각각 따로 채취하고 추출액을 0.45 μm PTFE syringe filter로 여과하였다. 여과액을 300~500 μL 씩 질소가스로 건조시키고, 건조가 완료되면 D2O, CDCl3를 각각 500 μL 넣고 재용해 한 후 500 μL를 NMR tube에 옮겼다. NMR 측정 시 signal이 이동하는 것을 방지하기 위하여 D2O에 인산칼륨을 첨가한 buffer 용액을 만들어주고, 1 N NaOD를 첨가하여 D2O의 pH를 6으로 조정하였다. MeOD용매 안에 함유된 0.05% 3-(tetramethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP)는 내부표준물질로서 NMR shift의 교정 기준(calibration reference)으로서 사용하였다.Bligh & Dyer analysis was performed by adding 1.8 mL of a cold mixture solvent (cold mixture (CHCl3:MeOH:H2O=2:2:1) to 0.10 g of lyophilized sesame seeds and vortexing for 1 minute. After reaction at 4℃ for 1 hour, centrifugation was performed. The supernatant (hyrosoluble phase) and the lower layer (organic phase) were collected separately, and the extract was filtered through a 0.45 μm PTFE syringe filter, and the filtrate was dried with nitrogen gas in 300-500 μL increments, and when drying was completed, D2O, CDCl3 500 μL of each was added and re-dissolved, and then 500 μL was transferred to an NMR tube To prevent signal movement during NMR measurement, a buffer solution was prepared by adding potassium phosphate to D2O, and 1 N NaOD was added to the pH of D2O. Was adjusted to 6. 0.05% 3-(tetramethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) contained in the MeOD solvent is an internal standard, and is the calibration reference for NMR shift. Was used as.

4-2. NMR 가동조건 확립4-2. Establishment of NMR operating conditions

본 발명자들은 펄스 시퀀스를 적용함으로서 참깨시료 내에 포함된 물이 불필요한 피크를 형성시켜 다른 대사체의 피크 감도를 낮추는 것을 방지하고 재현성을 높였다. 1D 1H-NMR 가동조건으로 NMR spectometer는 JNM-ECZ 600R (600.17 MHz, Jeol사) 기기를 활용하였다. 참깨 시료 추출물은 298 K (25 ℃)에서 측정하였다. Pulse sequence로서 물 피크를 저하시키는 zqpr presaturation pulse sequence를 이용하였으며, relaxation delay는 5초, 128 스캔수, 9,024.4 Hz의 spectral width를 적용하였다. The present inventors prevented lowering the peak sensitivity of other metabolites and improved reproducibility by forming unnecessary peaks of water contained in the sesame sample by applying the pulse sequence. As 1D 1H-NMR operating conditions, the JNM-ECZ 600R (600.17 MHz, Jeol company) instrument was used as the NMR spectometer. The sesame sample extract was measured at 298 K (25° C.). As the pulse sequence, a zqpr presaturation pulse sequence that lowers the water peak was used, and the relaxation delay was 5 seconds, 128 scans, and a spectral width of 9,024.4 Hz was applied.

4-3. 대사체 동정 방법 확립4-3. Establishment of metabolite identification method

본 발명자들은 Chenomx software program 내에 구축되어 있는 대사체 library, HMDB web site 등을 이용하여 각 metabolite들의 정성 분석을 수행하였다. 또한, Mestrenova software program을 이용하여 대사체들의 chemical shift(δ), splitting pattern, integral, 예상 농도 정보 등을 matching 시킴으로써 참깨 시료 내에 함유된 대사체의 정성분석을 수행하였다. The present inventors performed a qualitative analysis of each metabolite using a metabolite library, HMDB web site, etc. constructed in the Chenomx software program. In addition, qualitative analysis of metabolites contained in sesame samples was performed by matching the chemical shift (δ), splitting pattern, integral, and expected concentration information of metabolites using the Mestrenova software program.

그 결과, 도 10에 나타낸 바와 같이, 참깨의 분석법 확립을 위한 예비실험 결과 수용성 성분의 경우, 두 가지 추출법의 스펙트럼의 비교 시 단독 추출 시 피크의 세기가 더 큰 것으로 나타났고 지용성 성분의 경우, 피크 개수와 세기에 큰 차이는 없었다.As a result, as shown in FIG. 10, as a result of a preliminary experiment for establishing an analysis method for sesame seeds, in the case of the water-soluble component, when comparing the spectra of the two extraction methods, the peak intensity was found to be greater when extracted alone, and in the case of the fat-soluble component There was no significant difference in number and strength.

또한, 하기 표 5에 나타낸 바와 같이, NMR 기반 단독추출법과 Bligh & Dyer추출법으로 추출한 참깨 내 수용성 대사체 성분 리스트(예비실험 결과)에서, 피크의 세기 차이가 있었던 수용성 대사체 성분의 동정 결과 단독 추출 방법에서는 58개의 수용성 대사체 성분이 검출되었고, Bligh & Dyer 분석법을 사용하였을 때는, 64개의 수용성 대사체 성분이 검출되었다. In addition, as shown in Table 5 below, from the list of water-soluble metabolite components in sesame seeds extracted by the NMR-based single extraction method and the Bligh & Dyer extraction method (preliminary experiment results), the result of identification of the water-soluble metabolite component having a difference in peak intensity alone extraction 58 water-soluble metabolite components were detected in the method, and 64 water-soluble metabolite components were detected when the Bligh & Dyer assay was used.

따라서, Bligh & Dyer 분석법을 사용하였을 때, 수용성 성분과 지용성 성분을 분리추출하여 artifacts를 최소화함으로써 metabolite의 identification이 더욱 효과적임을 확인할 수 있었다. Therefore, when using the Bligh & Dyer analysis method, it was confirmed that the identification of metabolite was more effective by minimizing artifacts by separating and extracting the water-soluble component and the fat-soluble component.

이에, 국가별 참깨 대사체를 분석하는 본 실험에서는 Bligh & Dyer 분석법을 사용하였고, 최종적으로 확립한 분석법은 다음과 같다:Therefore, in this experiment to analyze sesame metabolites by country, the Bligh & Dyer analysis method was used, and the finally established analysis method is as follows:

동결건조된 참깨 0.10g에 cold mixture solvent (cold mixture (CHCl3:MeOH=1:1) 1.6 mL를 넣고 1분간 볼텍싱하였다. 쉐이커에서 4℃, 1시간동안 추출한 후 원심분리(10,000 Xg, 4℃, 10분)하여 상층액을 채취하고, 물 400 μL를 첨가하여 층을 분리하였다. 상층액 (hydrosoluble phase)을 0.45 μm PTFE 실린지 필터로 여과 시킨 후, 여과액 600 μL를 질소건조하고, 건조가 완료되면 70% 메탄올-d (D2O:MeOD (0.05% 3-(tetramethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP)), pH 6) 600 μL을 첨가하여 재용해하여 5 mm NMR 튜브에 옮겼다. To 0.10 g of freeze-dried sesame seeds, 1.6 mL of cold mixture solvent (cold mixture (CHCl3:MeOH=1:1) was added and vortexed for 1 minute. After extraction with a shaker at 4℃ for 1 hour, centrifugation (10,000 Xg, 4℃) , 10 minutes), the supernatant was collected, and 400 μL of water was added to separate the layers After filtering the supernatant (hydrosoluble phase) with a 0.45 μm PTFE syringe filter, 600 μL of the filtrate was dried with nitrogen and dried. After completion, add 600 μL of 70% methanol-d (D2O:MeOD (0.05% 3-(tetramethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP)), pH 6) to re-dissolve. And transferred to a 5 mm NMR tube.

상술한 최종 확립한 추출방법을 토대로 한국과 중국산 참깨를 1H NMR (600MHz)을 통해 검출된 대사체 목록을 분석한 결과, 하기 표 6 및 도 11에 나타낸 바와 같이, 총 28개의 수용성 대사체가 검출되었고, 그 중 아미노산 11 종(Isoleucine, Leucine, Valine, Alanine, Proline, Asparagine, Betaine, Threonine, Tyrosine, Phenylalanine, Tryptophan), 유기산(Oranic acids) 7 종 (Valerate, Acetate, Malate, Succinate, Ascorbate, Gallate, Formate), 탄수화물류(Carbohydrates) 5 종(Glucose, Xylose, Glyerol, Sucrose, Arabinose), 기타 5 종(Butyrate, Choline, Indol-3-acetate, Uridine, Trigonelline)으로 나타났다. As a result of analyzing the list of metabolites detected through 1 H NMR (600MHz) of sesame seeds from Korea and China based on the final established extraction method described above, a total of 28 water-soluble metabolites were detected as shown in Table 6 and FIG. Among them, 11 kinds of amino acids (Isoleucine, Leucine, Valine, Alanine, Proline, Asparagine, Betaine, Threonine, Tyrosine, Phenylalanine, Tryptophan), 7 kinds of organic acids (Valerate, Acetate, Malate, Succinate, Ascorbate, Gallate , Formate), carbohydrates, 5 species (Glucose, Xylose, Glyerol, Sucrose, Arabinose), and 5 other species (Butyrate, Choline, Indol-3-acetate, Uridine, Trigonelline).

CompoundsCompounds Bligh&Dyer (64)Bligh&Dyer (64) 단독추출 (58)Sole extraction (58) AlcoholAlcohol Myo-InositolMyo-Inositol Myo-InositolMyo-Inositol EthanolEthanol EthanolEthanol Ethylene glycolEthylene glycol Ethylene glycolEthylene glycol Amino acidsAmino acids 2-Aminoadipate2-Aminoadipate 2-Aminoadipate2-Aminoadipate 5-Hydroxytryptophan5-Hydroxytryptophan 5-Hydroxytryptophan5-Hydroxytryptophan AlanineAlanine AlanineAlanine AnserineAnserine NDND ArginineArginine ArginineArginine AsparagineAsparagine AsparagineAsparagine AspartateAspartate AspartateAspartate BetaineBetaine BetaineBetaine CysteineCysteine CysteineCysteine GlutamateGlutamate GlutamateGlutamate GuanidoacetateGuanidoacetate GuanidoacetateGuanidoacetate HomoserineHomoserine NDND IsoleucineIsoleucine NDND N-AcetylglutamateN-Acetylglutamate N-AcetylglutamateN-Acetylglutamate N-AcetylglycineN-Acetylglycine N-AcetylglycineN-Acetylglycine PhenylalaninePhenylalanine PhenylalaninePhenylalanine ProlineProline ProlineProline PyroglutamatePyroglutamate PyroglutamatePyroglutamate SerineSerine NDND S-SulfocysteineS-Sulfocysteine S-SulfocysteineS-Sulfocysteine ThreonineThreonine ThreonineThreonine trans-4-Hydroxy-L-prolinetrans-4-Hydroxy-L-proline trans-4-Hydroxy-L-prolinetrans-4-Hydroxy-L-proline TryptophanTryptophan TryptophanTryptophan ValineValine ValineValine Benzoic aicdsBenzoic aicds AnthranilateAnthranilate AnthranilateAnthranilate ProtocatechuateProtocatechuate ProtocatechuateProtocatechuate Fatty acidsFatty acids 2-Hydroxy-3-methylvalerate2-Hydroxy-3-methylvalerate 2-Hydroxy-3-methylvalerate2-Hydroxy-3-methylvalerate 2-Octenoate2-Octenoate 2-Octenoate2-Octenoate 3-Hydroxy-3-methylglutarate3-Hydroxy-3-methylglutarate 3-Hydroxy-3-methylglutarate3-Hydroxy-3-methylglutarate CaprylateCaprylate CaprylateCaprylate NDND IsobutyrateIsobutyrate ImidazolesImidazoles ImidazoleImidazole ImidazoleImidazole UrocanateUrocanate UrocanateUrocanate Organic acidOrganic acid 2-Oxoglutarate2-Oxoglutarate 2-Oxoglutarate2-Oxoglutarate AcetateAcetate AcetateAcetate cis-Aconitatecis-Aconitate cis-Aconitatecis-Aconitate FumarateFumarate FumarateFumarate GallateGallate GallateGallate LactateLactate LactateLactate MalateMalate NDND O-PhosphoethanolamineO-Phosphoethanolamine NDND PyruvatePyruvate PyruvatePyruvate SuccinateSuccinate NDND trans-Aconitatetrans-Aconitate trans-Aconitatetrans-Aconitate PurinesPurines 1,7-Dimethylxanthine1,7-Dimethylxanthine 1,7-Dimethylxanthine1,7-Dimethylxanthine OxypurinolOxypurinol OxypurinolOxypurinol SugarsSugars FructoseFructose FructoseFructose SucroseSucrose SucroseSucrose NDND XylitolXylitol FructoseFructose NDND Sugar acidsSugar acids 2-Phosphoglycerate2-Phosphoglycerate 2-Phosphoglycerate 2-Phosphoglycerate ThreonateThreonate ThreonateThreonate Sugar alcoholsSugar alcohols GlycerolGlycerol GlycerolGlycerol GlucitolGlucitol NDND OthersOthers 1,6-Anhydro-β-D-glucose1,6-Anhydro-β-D-glucose 1,6-Anhydro-β-D-glucose1,6-Anhydro-β-D-glucose 2'-Deoxyadenosine2'-Deoxyadenosine 2'-Deoxyadenosine2'-Deoxyadenosine 3,4-Dihydroxymandelate3,4-Dihydroxymandelate 3,4-Dihydroxymandelate3,4-Dihydroxymandelate CytosineCytosine CytosineCytosine EpicatechinEpicatechin NDND EthanolamineEthanolamine EthanolamineEthanolamine MandelateMandelate NDND NDND GlucarateGlucarate NDND AcetoneAcetone NDND N-AcetylglucosamineN-Acetylglucosamine NDND AcetoinAcetoin NicotinateNicotinate NDND O-PhosphocholineO-Phosphocholine O-PhosphocholineO-Phosphocholine TrigonellineTrigonelline TrigonellineTrigonelline

NO.NO. CompoundCompound Chemical shiftChemical shift Assignment methodAssignment method ReferenceReference 1One ValerateValerate 0.87(t), 1.28-1.32(m), 2.14(t)0.87(t), 1.28-1.32(m), 2.14(t) 1D1D Pabio Scuibba et al., 2014Pabio Scuibba et al ., 2014 22 ButyrateButyrate 0.88(t), 2.15(t)0.88(t), 2.15(t) 1D1D Roverto consonni et al., 2012Roverto consonni et al., 2012 33 IsoleucineIsoleucine 0.94(t), 0.99(d)0.94(t), 0.99(d) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
A. I. Olagunju et al., 2013
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
AI Olagunju et al ., 2013
44 LeucineLeucine 0.96(t)0.96(t) 1D1D Pabio Scuibba et al., 2014Augusta Scuibba et al., 2014
A. I. Olagunju et al., 2013
Pabio Scuibba et al ., 2014 Augusta Scuibba et al ., 2014
AI Olagunju et al ., 2013
55 ValineValine 0.96(d), 1.02(d), 3.60(d)0.96(d), 1.02(d), 3.60(d) 1D1D Pabio Scuibba et al., 2014Augusta Scuibba et al., 2014
A. I. Olagunju et al., 2013
Pabio Scuibba et al ., 2014 Augusta Scuibba et al ., 2014
AI Olagunju et al ., 2013
66 ThreonineThreonine 1.33(d), 3.60(d)1.33(d), 3.60(d) 1D1D Hong-Seok Son et al., 2009
Xiangyu Wu et al., 2014
Hong-Seok Son et al ., 2009
Xiangyu Wu et al ., 2014
77 AlanineAlanine 1.48(d), 3.79(q)1.48(d), 3.79(q) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
A. I. Olagunju et al., 2013
Xiangyu Wu et al., 2014
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
AI Olagunju et al ., 2013
Xiangyu Wu et al ., 2014
88 AcetateAcetate 1.90(s)1.90(s) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
99 ProlineProline 2.01-2.07(m), 2.00-2.07(m), 2.37-2.29(m)2.01-2.07(m), 2.00-2.07(m), 2.37-2.29(m) 1D1D Pabio Scuibba et al., 2014A. I. Olagunju et al., 2013Pabio Scuibba et al ., 2014 A. I. Olagunju et al ., 2013 1010 MalateMalate 2.38(dd), 2.67(dd)2.38(dd), 2.67(dd) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Hong-Seok Son et al., 2009
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
Hong-Seok Son et al ., 2009
1111 SuccinateSuccinate 2.39(s)2.39(s) 1D1D Augusta Scuibba et al., 2014
Xiangyu Wu et al., 2014
Augusta Scuibba et al ., 2014
Xiangyu Wu et al ., 2014
1212 AsparagineAsparagine 2.92-2.98(m)2.92-2.98(m) 1D1D Pabio Scuibba et al., 2014Augusta Scuibba et al., 2014Pabio Scuibba et al ., 2014 Augusta Scuibba et al ., 2014 1313 CholineCholine 3.22(s), 3.48-3.51(m)3.22(s), 3.48-3.51(m) 1D1D Augusta Scuibba et al., 2014Augusta Scuibba et al ., 2014 1414 BetaineBetaine 3.24(s), 3.89(s)3.24(s), 3.89(s) 1D1D Xiangyu Wu et al., 2014Xiangyu Wu et al ., 2014 1515 GlucoseGlucose 3.38-3.42(m), 3.40-3.44(m),
3.51-3.55(dd), 3.82-3.86(m)
3.38-3.42(m), 3.40-3.44(m),
3.51-3.55(dd), 3.82-3.86(m)
1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Hong-Seok Son et al., 2009
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
Hong-Seok Son et al ., 2009
1616 XyloseXylose 3.41(t)3.41(t) 1D1D Pabio Scuibba et al., 2014Pabio Scuibba et al ., 2014 1717 GlycerolGlycerol 3.51-3.55(m)3.51-3.55(m) 1D1D Augusta Scuibba et al., 2014
Hong-Seok Son et al., 2009
Augusta Scuibba et al ., 2014
Hong-Seok Son et al ., 2009
1818 Indol-3-acetateIndol-3-acetate 3.64(s)3.64(s) 1D1D Augusta Scuibba et al., 2014Augusta Scuibba et al ., 2014 1919 AscorbateAscorbate 3.70-3.76(m)3.70-3.76(m) 1D1D Pabio Scuibba et al., 2014Pabio Scuibba et al ., 2014 2020 SucroseSucrose 3.75(t), 3.79-3.84(m), 3.81-3.85(m), 3.82-3.87(m), 4.02(t), 5.40(d)3.75(t), 3.79-3.84(m), 3.81-3.85(m), 3.82-3.87(m), 4.02(t), 5.40(d) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
2121 ArabinoseArabinose 3.77(dd), 3.80(dd), 4.00-4.04(m)3.77(dd), 3.80(dd), 4.00-4.04(m) 1D1D Xiangyu Wu et al., 2014Xiangyu Wu et al ., 2014 2222 TrigonellineTrigonelline 4.45(s), 9.11(s)4.45(s), 9.11(s) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
2323 UridineUridine 5.88(d), 5.89(d), 7.84(d)5.88(d), 5.89(d), 7.84(d) 1D1D Pabio Scuibba et al., 2014Augusta Scuibba et al., 2014Pabio Scuibba et al ., 2014 Augusta Scuibba et al ., 2014 2424 TyrosineTyrosine 6.88-6.91(m), 7.15-7.18(m)6.88-6.91(m), 7.15-7.18(m) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
A. I. Olagunju et al., 2013
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
AI Olagunju et al ., 2013
2525 GallateGallate 7.03(s)7.03(s) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
2626 PhenylalaninePhenylalanine 7.33(d), 7.35-7.40(m)7.33(d), 7.35-7.40(m) 1D1D Pabio Scuibba et al., 2014Xiangyu Wu et al., 2014Pabio Scuibba et al ., 2014 Xiangyu Wu et al ., 2014 2727 TryptophanTryptophan 7.15-7.19(m), 7.32(s),7.53(d), 7.71(d)7.15-7.19(m), 7.32(s),7.53(d), 7.71(d) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
A. I. Olagunju et al., 2013
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014
AI Olagunju et al ., 2013
2828 FormateFormate 8.45(s)8.45(s) 1D1D Pabio Scuibba et al., 2014
Augusta Scuibba et al., 2014
Pabio Scuibba et al ., 2014
Augusta Scuibba et al ., 2014

4-4. 다변량 통계분석4-4. Multivariate statistical analysis

본 발명자들은 SIMCA P+, Metaboanalyst를 이용하여 다변량 통계 분석을 실시하였다. 다변량 통계 분석 방법으로 PCA, PLS-DA, OPLS-DA를 이용하여 국가별 (한국, 중국), 국가 내 참깨의 분리를 확인하였다. The present inventors performed multivariate statistical analysis using SIMCA P+ and Metaboanalyst. Separation of sesame seeds by country (Korea, China) and within countries was confirmed using PCA, PLS-DA, and OPLS-DA as a multivariate statistical analysis method.

그 결과, 도 12에 나타낸 바와 같이, 한국산과 중국산 참깨 분리 시 총 정규화(total (area) normalization)을 사용하였고, PCA 스코어 plot상에서는 분리가 잘 되지 않았으나, PLS-DA와 OPLS-DA 분석 시에는 분리가 되는 것을 확인하였다. As a result, as shown in FIG. 12, total (area) normalization was used to separate sesame seeds from Korea and China, and separation was not well performed on the PCA score plot, but separation was performed when analyzing PLS-DA and OPLS-DA. It was confirmed that it became.

또한, 도 13에 나타낸 바와 같이, 한국 내에서 지역 분리 시에는 표준 정규화를 사용하였고, PCA, PLS-DA 분석 결과 5개 도(강원도, 경기도, 충청도, 경상도 및 전라도)로 분리되는 것을 확인하였다. In addition, as shown in FIG. 13, standard normalization was used for regional separation in Korea, and as a result of PCA and PLS-DA analysis, it was confirmed that it was divided into 5 provinces (Gangwon-do, Gyeonggi-do, Chungcheong-do, Gyeongsang-do and Jeolla-do).

또한, 도 14에 나타낸 바와 같이, 중국 내에서 지역 분리 시에는 표준 정규화를 사용하였고, PCA, PLS-DA 분석 결과 북부 지역(northest region), 중부 지역(middle region), 남부 지역(south region)의 3 지역으로 분리가 되는 것을 확인하였다. In addition, as shown in Fig. 14, standard normalization was used when separating regions within China, and PCA and PLS-DA analysis results showed that the northern region, the middle region, and the south region were It was confirmed that it was divided into 3 regions.

또한, 한국과 중국산 참깨 대사체 분리에 관여하는 주요 바이오마커 탐색을 위해 PLS-DA model에 사용된 조건(Total area normalization, Pareto scaling, 6 components)을 적용하여 VIP value에 따른 최적의 PLS-DA model을 선정하였다.In addition, the optimal PLS-DA model according to VIP value by applying the conditions used in the PLS-DA model (Total area normalization, Pareto scaling, 6 components) to search for major biomarkers involved in the separation of sesame metabolites from Korea and China. Was selected.

표 7에 한국과 중국산 참깨의 원산지 판별을 위해 VIP(Variable Importance of Projection)로 얻은 PLS 모델 매개변수(parameter)를 나타내었다.Table 7 shows PLS model parameters obtained by VIP (Variable Importance of Projection) to determine the origin of sesame seeds from Korea and China.

그 결과, 하기 표 7에 나타낸 바와 같이, VIP cut-off value 0.4로 지정하여 선정된 최종 바이오마커는 valerate, sucrose, arabinose, proline, valine, indol-3-acetate, alanine, xylose, betaine, glucose, choline, tyrosine, asparagine, threonine, succinate, butyrate, malate, ascorbate, acetate, isoleucine, glycerol, leucine, trigonelline 및 tryptophan의 총 24 종으로 나타났다. As a result, as shown in Table 7 below, the final biomarkers selected by designating a VIP cut-off value of 0.4 were valerate, sucrose, arabinose, proline, valine, indol-3-acetate, alanine, xylose, betaine, glucose, A total of 24 species were found: choline, tyrosine, asparagine, threonine, succinate, butyrate, malate, ascorbate, acetate, isoleucine, glycerol, leucine, trigonelline and tryptophan.

또한, HCA(Hierarchical Cluster AnalysisA)를 이용하여 국가별(한국, 중국) 분리를 확인하여 표 8에 한국과 중국산 참깨의 원산지 판별을 위한 바이오 마커 목록을 나타내었다.In addition, the separation by country (Korea, China) was confirmed using HCA (Hierarchical Cluster AnalysisA), and Table 8 shows a list of biomarkers for determining the origin of sesame seeds from Korea and China.

그 결과, 하기 도 12에 나타낸 바와 같이, HCA 분석결과에서 한국과 중국 내 참깨가 뚜렷하게 분리됨을 볼 수 있었으나, 한국 내 그리고 중국 내 참깨의 분리는 뚜렷하지 못했다.As a result, as shown in FIG. 12 below, it could be seen that sesame seeds in Korea and China were clearly separated from the HCA analysis results, but sesame seeds in Korea and China were not clearly separated.

VIP cutoffVIP cutoff RR 22 YY QQ 22 YY RR 22 Y interceptY intercept QQ 22 Y interceptY intercept Total normalization (Pareto Scaling, 6 components)Total normalization (Pareto Scaling, 6 components) 0.20.2 0.9150.915 0.8210.821 0.3350.335 -0.702-0.702 0.30.3 0.9150.915 0.8220.822 0.2930.293 -0.722-0.722 0.40.4 0.9170.917 0.8250.825 0.2730.273 -0.803-0.803 0.50.5 0.9160.916 0.8210.821 0.2110.211 -0.801-0.801 0.70.7 0.9030.903 0.8130.813 0.2210.221 -0.792-0.792 0.80.8 0.8750.875 0.7760.776 0.2350.235 -0.798-0.798 0.90.9 0.8850.885 0.7950.795 0.1790.179 -0.833-0.833 1.01.0 0.7840.784 0.6240.624 0.1090.109 -0.78-0.78

NoNo CompoundCompound VIP valueVIP value 1One ValerateValerate 2.0172.017 22 SucroseSucrose 1.7391.739 33 ArbinoseArbinose 1.6131.613 44 ProlineProline 1.3281.328 55 ValineValine 1.2741.274 66 Indol-3-acetateIndol-3-acetate 1.2071.207 77 AlanineAlanine 1.1821.182 88 XyloseXylose 1.0951.095 99 BetaineBetaine 1.0661.066 1010 GlucoseGlucose 1.0491.049 1111 CholineCholine 0.9840.984 1212 TyrosineTyrosine 0.9310.931 1313 AsparagineAsparagine 0.9110.911 1414 ThreonineThreonine 0.9100.910 1515 SuccinateSuccinate 0.9090.909 1616 ButyrateButyrate 0.8960.896 1717 MalateMalate 0.8890.889 1818 AscorbateAscorbate 0.8450.845 1919 AcetateAcetate 0.7530.753 2020 IsoleucineIsoleucine 0.5440.544 2121 GlycerolGlycerol 0.5200.520 2222 LeucineLeucine 0.4720.472 2323 TrigonellineTrigonelline 0.4610.461 2424 TryptophanTryptophan 0.4060.406

결론적으로, 본 발명을 통해 선정된 참깨 원산지 판별 대사체 마커들은 신속하고 높은 정확도로 수입산, 특히 중국산 참깨 원산지를 판별할 수 있으며, 향후 국내 참깨 산업 유통체계의 혼란을 막는데 도움을 줄 수 있는 바이오마커 개발의 초석이 될 것으로 사료된다.In conclusion, the sesame origin determination metabolite markers selected through the present invention can quickly and accurately determine the origin of imported sesame seeds, particularly Chinese sesame seeds, and can help prevent confusion in the distribution system of the domestic sesame industry in the future. It is believed to be the cornerstone of marker development.

Claims (9)

한국산 및 수입산 참깨의 원산지별로 발현량에서 차이를 나타내는 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)로 이루어진 군으로부터 선택된 1 종 이상의 대사체를 포함하는, 참깨의 원산지 판별용 바이오마커 조성물.
Valine, L-Glutathione, 2-amino-1,3,4-octadecantriol (2-Amino-1,) showing differences in expression levels by country of origin of Korean and imported sesame seeds. 3,4-octadecanetriol), adenosine 5'-monophosphate (Adenosine 5'-monophosphate) and D-Raffinose (D-Raffinose) containing at least one metabolite selected from the group consisting of, sesame origin determination bio Marker composition.
제1항에 있어서,
상기 수입산은 중국산인 것을 특징으로 하는, 참깨의 원산지 판별용 바이오마커 조성물.
The method of claim 1,
The biomarker composition for determining the origin of sesame seeds, characterized in that the imported product is made in China.
제1항에 있어서,
상기 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올 및 아데노신 5'-모노포스페이트의 발현량은 수입산 참깨와 비교하여 한국산에서 증가하는 것을 특징으로 하는, 참깨의 원산지 판별용 바이오마커 조성물.
The method of claim 1,
The expression levels of valine, L-glutacion, 2-amino-1,3,4-octadecantriol and adenosine 5'-monophosphate are increased in Korean production compared to imported sesame seeds. Biomarker composition for determining the country of origin.
제1항에 있어서,
상기 D-라피노즈의 발현량은 한국산 참깨와 비교하여 중국산에서 증가하는 것을 특징으로 하는, 참깨의 원산지 판별용 바이오마커 조성물.
The method of claim 1,
The expression level of the D-Raffinose is characterized in that the increase in Chinese production compared to the Korean sesame seeds, biomarker composition for determining the origin of sesame seeds.
제1항의 참깨 원산지 판별용 바이오마커 조성물을 포함하는, 참깨의 원산지 판별용 키트.
A kit for determining the origin of sesame seeds, comprising the biomarker composition for determining the origin of sesame seeds of claim 1.
다음 단계를 포함하는 참깨의 원산지 판별방법:
(a) 참깨로부터 대사체를 추출하는 단계;
(b) 상기 (a) 단계에서 추출된 대사체 중 발린(Valine), L-글루타시온(L-Glutathione), 2-아미노-1,3,4-옥타데칸트리올(2-Amino-1,3,4-octadecanetriol), 아데노신 5'-모노포스페이트(Adenosine 5'-monophosphate) 및 D-라피노즈(D-Raffinose)로 이루어진 군으로부터 선택된 1 종 이상의 대사체를 액체 크로마토그래피-질량분석기(LC-MS)로 분석하는 단계; 및
(c) 상기 (b) 단계의 대사체들 간의 발현 수준 차이로 한국산 및 수입산 참깨의 원산지를 판정하는 단계.
Method for determining the origin of sesame seeds comprising the following steps:
(a) extracting metabolites from sesame seeds;
(b) Among the metabolites extracted in step (a), Valine, L-Glutathione, 2-amino-1,3,4-octadecantriol (2-Amino-1) ,3,4-octadecanetriol), adenosine 5'-monophosphate (Adenosine 5'-monophosphate) and at least one metabolite selected from the group consisting of D-Raffinose was analyzed by liquid chromatography-mass spectrometry (LC -MS) analysis; And
(c) determining the origin of Korean and imported sesame seeds based on the difference in expression levels between metabolites in step (b).
제6항에 있어서,
상기 수입산은 중국산인 것을 특징으로 하는, 참깨의 원산지 판별방법.
The method of claim 6,
The method for determining the origin of sesame seeds, characterized in that the imported products are made in China.
제6항에 있어서,
상기 발린, L-글루타시온, 2-아미노-1,3,4-옥타데칸트리올 및 아데노신 5'-모노포스페이트의 발현량은 수입산 참깨와 비교하여 한국산에서 증가하는 것을 특징으로 하는, 참깨의 원산지 판별방법.
The method of claim 6,
The expression levels of valine, L-glutacion, 2-amino-1,3,4-octadecantriol and adenosine 5'-monophosphate are increased in Korean production compared to imported sesame seeds. How to determine the country of origin.
제6항에 있어서,
상기 D-라피노즈의 발현량은 한국산 참깨와 비교하여 중국산에서 증가하는 것을 특징으로 하는, 참깨의 원산지 판별방법.


The method of claim 6,
The expression level of the D-rapinose is characterized in that the increase in Chinese-made compared to the Korean sesame, the method for determining the origin of sesame seeds.


KR1020190062507A 2019-05-28 2019-05-28 Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same KR102202225B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190062507A KR102202225B1 (en) 2019-05-28 2019-05-28 Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190062507A KR102202225B1 (en) 2019-05-28 2019-05-28 Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same

Publications (2)

Publication Number Publication Date
KR20200136669A true KR20200136669A (en) 2020-12-08
KR102202225B1 KR102202225B1 (en) 2021-01-13

Family

ID=73779164

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190062507A KR102202225B1 (en) 2019-05-28 2019-05-28 Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same

Country Status (1)

Country Link
KR (1) KR102202225B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552251A (en) * 2021-07-01 2021-10-26 浙江义谱检验检测技术服务有限公司 Method for detecting nucleotide in dietary supplement product based on nucleotide rapid nutrition supplement
KR20230020088A (en) 2021-08-03 2023-02-10 중앙대학교 산학협력단 Biomarker for the discriminating geographical origins of sesame seeds and method for discriminating geographical origin using the same
CN117106031A (en) * 2023-10-20 2023-11-24 山东省食品药品检验研究院 Common characteristic peptide segment of reindeer horn, camel horn and deer horn and application thereof
KR20240000120A (en) 2022-06-23 2024-01-02 한국식품연구원 Biomarker for the discriminating geographical origins of codonopsis lanceolata and method for discriminating geographical origin using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038179B1 (en) * 2009-12-29 2011-05-31 경북대학교 산학협력단 Sesame oil making system of distinguishing habitat of sesame seeds
KR20130075984A (en) * 2011-12-28 2013-07-08 대한민국(관리부서:농촌진흥청장) Primer for the identification of sesame cultivar and method for identifying sesame cultivar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038179B1 (en) * 2009-12-29 2011-05-31 경북대학교 산학협력단 Sesame oil making system of distinguishing habitat of sesame seeds
KR20130075984A (en) * 2011-12-28 2013-07-08 대한민국(관리부서:농촌진흥청장) Primer for the identification of sesame cultivar and method for identifying sesame cultivar

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
노정해 외., 한국식품과학회지, Vol. 34, No. 6, 2002, pp. 1062-1066. *
농림축산식품부, '현장 이동형 농산물 원산지 판별기 개발 최종보고서', 2016. *
최진영 외., 한국식품과학회지, Vol. 44, No. 5, 2012, pp. 503-525. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552251A (en) * 2021-07-01 2021-10-26 浙江义谱检验检测技术服务有限公司 Method for detecting nucleotide in dietary supplement product based on nucleotide rapid nutrition supplement
KR20230020088A (en) 2021-08-03 2023-02-10 중앙대학교 산학협력단 Biomarker for the discriminating geographical origins of sesame seeds and method for discriminating geographical origin using the same
KR20240000120A (en) 2022-06-23 2024-01-02 한국식품연구원 Biomarker for the discriminating geographical origins of codonopsis lanceolata and method for discriminating geographical origin using the same
CN117106031A (en) * 2023-10-20 2023-11-24 山东省食品药品检验研究院 Common characteristic peptide segment of reindeer horn, camel horn and deer horn and application thereof
CN117106031B (en) * 2023-10-20 2024-01-02 山东省食品药品检验研究院 Common characteristic peptide segment of reindeer horn, camel horn and deer horn and application thereof

Also Published As

Publication number Publication date
KR102202225B1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
KR102202225B1 (en) Biomarker for the Discriminating Geographical Origins of Sesame and Method for Discriminating Geographical Origin Using the Same
Caligiani et al. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy
Teixeira et al. Validated method for the simultaneous determination of Δ9-THC and Δ9-THC-COOH in oral fluid, urine and whole blood using solid-phase extraction and liquid chromatography–mass spectrometry with electrospray ionization
KR102166979B1 (en) Biomarker for the discrimination of geographical origins of the soybeans and method for discriminating of geographical origin using the same
Magi et al. Characterization of cocoa liquors by GC–MS and LC–MS/MS: focus on alkylpyrazines and flavanols
Kowalczyk et al. Determination of pyrrolizidine alkaloids in honey with sensitive gas chromatography-mass spectrometry method
Wang et al. Comparison of volatile compositions of 15 different varieties of Chinese jujube (Ziziphus jujuba Mill.)
Zhou et al. Chromatographic fingerprint study on Evodia rutaecarpa (Juss.) Benth by HPLC/DAD/ESI‐MSn technique
Gatti et al. Determination of octopamine and tyramine traces in dietary supplements and phytoextracts by high performance liquid chromatography after derivatization with 2, 5-dimethyl-1H-pyrrole-3, 4-dicarbaldehyde
Yao et al. Direct determination of underivatized amino acids from Ginkgo biloba leaves by using hydrophilic interaction ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry
Wang et al. Development and validation of a hydrophilic interaction ultra‐high‐performance liquid chromatography with triple quadrupole MS/MS for the absolute and relative quantification of amino acids in Sophora alopecuroides L.
Dai et al. Simultaneous chemical fingerprint and quantitative analysis of Rhizoma Smilacis Glabrae by accelerated solvent extraction and high‐performance liquid chromatography with tandem mass spectrometry
CN104422741A (en) Amino-acid-based method for determining quality of fresh tobacco leaf samples in tobacco metabonomics
CN107192770B (en) Analytical method for identifying vitex negundo honey and syrup adulterated vitex negundo honey
Du et al. Simultaneous qualitative and quantitative analysis of 28 components in Isodon rubescens by HPLC‐ESI‐MS/MS
Avula et al. Identification and quantification of 1, 3-dimethylbutylamine (DMBA) from Camellia sinensis tea leaves and dietary supplements
KR102271698B1 (en) Biomarker for the discrimination of geographical origins of the soybeans and method for discriminating of geographical origin using the same
CN112114079B (en) Method for simultaneously detecting 9 chemical components in quisqualis indica
Ren et al. HPLC and 1 H-NMR combined with chemometrics analysis for rapid discrimination of floral origin of honey
CN111257452B (en) Method for detecting addition of synthetic acetic acid into Zhenjiang aromatic vinegar
CN110333308B (en) Method for simultaneously determining NNAL and cotinine in urine with high sensitivity and accuracy
Yao et al. HILIC‐UPLC‐MS/MS combined with hierarchical clustering analysis to rapidly analyze and evaluate nucleobases and nucleosides in Ginkgo biloba leaves
Llorente et al. Experimental design applied to the analysis of volatile compounds in apple juice by headspace solid‐phase microextraction
Zan et al. Simultaneous determination of eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum by ultra high performance liquid chromatography tandem mass spectrometry and risk assessments based on a real‐life exposure scenario
Wang et al. A simple and fast quantitative analysis of quinolizidine alkaloids and their biosynthetic precursor, lysine, in Sophora alopecuroides by hydrophilic interaction chromatography coupled with triple‐quadrupole tandem mass spectroscopy

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant