KR20200132314A - Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst - Google Patents

Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst Download PDF

Info

Publication number
KR20200132314A
KR20200132314A KR1020190057630A KR20190057630A KR20200132314A KR 20200132314 A KR20200132314 A KR 20200132314A KR 1020190057630 A KR1020190057630 A KR 1020190057630A KR 20190057630 A KR20190057630 A KR 20190057630A KR 20200132314 A KR20200132314 A KR 20200132314A
Authority
KR
South Korea
Prior art keywords
compound
zinc
organic
metal
catalyst
Prior art date
Application number
KR1020190057630A
Other languages
Korean (ko)
Other versions
KR102627604B1 (en
Inventor
조득희
박대원
김동우
Original Assignee
한국전력공사
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 한국화학연구원 filed Critical 한국전력공사
Priority to KR1020190057630A priority Critical patent/KR102627604B1/en
Publication of KR20200132314A publication Critical patent/KR20200132314A/en
Application granted granted Critical
Publication of KR102627604B1 publication Critical patent/KR102627604B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention relates to a novel zinc-containing metal-organic framework compound, which is a porous inorganic coordination compound, and a method for preparing a 5-membered cyclic carbonate compound using the same as a catalyst. More particularly, zinc hydrate is selected as a metal source constituting the framework, and adenine or a nucleobase as an organic linking agent and stilbenedicarboxylic acid as a structural linking agent are used to prepare a zinc-containing metal-organic framework compound, wherein the zinc-containing metal-organic framework compound is a stable porous catalyst with a regular structure and a large surface area. Thus, the zinc-containing metal-organic framework compound can be used as a catalyst to synthesize a 5-membered cyclic carbonate compound through carbonylation of carbon dioxide and an epoxy compound under relatively low temperature and pressure conditions.

Description

신규한 아연 함유 금속유기골격체 화합물 및 이의 제조방법, 신규한 아연 함유 금속유기골격체 화합물을 촉매로 사용한 5원환 탄산염 화합물의 제조방법{NOVEL ZINC METAL ORGANIC FRAMEWORKS COMPOUND AND METHOD OF PREPARATION OF FIVE-MEMBERED CYCLIC CARBONATES BY USING THE SAME AS CATALYST}A novel zinc-containing metal-organic skeleton compound and its preparation method, and a five-membered ring carbonate compound using a novel zinc-containing metal-organic skeleton compound as a catalyst {NOVEL ZINC METAL ORGANIC FRAMEWORKS COMPOUND AND METHOD OF PREPARATION OF FIVE-MEMBERED CYCLIC CARBONATES BY USING THE SAME AS CATALYST}

본 발명은 다공성 무기배위화합물로 신규한 아연 함유 금속유기골격체 화합물을 제조하고, 상기 아연 함유 금속유기골격체 화합물을 촉매로 이용하여 이산화탄소와 에폭시화합물을 반응시켜 5원환 탄산염 화합물을 제조하는 신규한 아연 함유 금속유기골격체 화합물 및 이를 촉매로 사용한 5원환 탄산염 화합물의 제조방법에 관한 것이다.In the present invention, a novel zinc-containing metal-organic skeleton compound is prepared as a porous inorganic coordination compound, and a five-membered ring carbonate compound is prepared by reacting carbon dioxide and an epoxy compound using the zinc-containing metal-organic skeleton compound as a catalyst. It relates to a zinc-containing metal-organic framework compound and a method for preparing a 5-membered ring carbonate compound using the same as a catalyst.

일반적으로 이산화탄소를 유기합성의 원료로 사용하는 기술에 있어서, 에폭시화합물과 이산화탄소를 반응시켜 5원환 탄산염 화합물을 합성하는 기술은 기능성 고분자 재료의 단량체 제조 측면에서 많은 관심을 끌고 있다.In general, in a technology using carbon dioxide as a raw material for organic synthesis, a technology for synthesizing a 5-membered cyclic carbonate compound by reacting an epoxy compound and carbon dioxide has attracted a lot of attention in terms of preparing a monomer of a functional polymer material.

5원환 탄산염 화합물을 높은 수율로 얻기 위해서 디올(diol)과 포스겐(phosgene)을 사용하는 방법을 이용하였으나 포스겐의 유독성으로 인해 취급하기가 곤란하여 공정상 많은 어려움 있어 보다 안전한 조건에서 5원환 탄산염 화합물을 높은 수율로 합성할 수 있는 새로운 방법이 요구되었다.In order to obtain the 5-membered cyclic carbonate compound in high yield, a method using diol and phosgene was used, but due to the toxicity of phosgene, it is difficult to handle and there are many difficulties in the process. A new method capable of synthesizing in high yield was required.

구체적으로 5원환 탄산염 화합물을 합성하는 방법의 종래 기술들을 보면, 특허문헌 1에는 알킬아민, 디알킬아민, 트리에틸아민 등의 아민류를 촉매로 사용하여 이산화탄소와 에틸렌 옥사이드 또는 프로필렌 옥사이드로부터 에틸렌 카보네이트 또는 프로필렌 카보네이트를 합성하는 방법이 개시되어 있다. 그러나 이러한 합성반응의 조건은 반응압력이 34 기압 이상, 반응온도가 100℃ 내지 400℃로 반응조건이 높은 편이다.Specifically, looking at the conventional techniques of a method for synthesizing a 5-membered ring carbonate compound, Patent Document 1 discloses ethylene carbonate or propylene from carbon dioxide and ethylene oxide or propylene oxide using amines such as alkylamine, dialkylamine, and triethylamine as a catalyst. A method of synthesizing carbonates is disclosed. However, the reaction conditions are high as the reaction pressure is 34 atm or higher and the reaction temperature is 100°C to 400°C.

또한 비특허문헌 1에서 소가(K. Soga) 등은 유기금속 화합물인 디에틸아연( C4H10Zn), 염화알루미늄(AlCl3), 티타늄부톡사이드(Ti(OBu)4) 등을 촉매로 사용하여 40 기압, 120℃ 내지 180℃에서 프로필렌 옥사이드와 이산화탄소를 3일 동안 반응시켜 분자량 1800 내지 3600 정도의 폴리프로필렌 카보네이트를 합성하였다고 보고한 것이 알려져 있다.In addition, in Non-Patent Document 1, Soga (K. Soga), etc., catalyzes organometallic compounds such as diethylzinc (C 4 H 10 Zn), aluminum chloride (AlCl 3 ), titanium butoxide (Ti(OBu) 4 ), etc. It is known that a polypropylene carbonate having a molecular weight of about 1800 to 3600 was synthesized by reacting propylene oxide and carbon dioxide at 40 atmospheres and 120°C to 180°C for 3 days.

비특허문헌 2에서 키하라(N. Kihara) 등은 폴리글리시틸 메타크릴레이트를 기상의 이산화탄소와 120℃ 내지 160℃에서 반응시켜 폴리[(2-옥소-1,3-디옥소란-4-일)메틸 메타크릴레이트)](이하, '폴리 DOMA'라 함)를 합성하였다고 보고한 것이 알려져 있으며, 또한 비특허문헌 3에서 폴리글리시딜 메타크릴레이트와 상압의 이산화탄소를 알칼리 금속 할로겐 화합물인 요오드화나트륨(NaI)와 트리페닐포스핀 혼합한 것을 촉매로 사용하여 100 ℃에서 반응시켜 폴리 DOMA를 얻었다는 보고도 알려져 있다.In Non-Patent Document 2, N. Kihara et al. reacted polyglycityl methacrylate with gaseous carbon dioxide at 120°C to 160°C to obtain poly[(2-oxo-1,3-dioxolane-4). -Yl) methyl methacrylate)] (hereinafter referred to as'poly DOMA') is known to have been synthesized, and in Non-Patent Document 3, polyglycidyl methacrylate and carbon dioxide at atmospheric pressure were used as alkali metal halide compounds. It is also known that a mixture of phosphorus sodium iodide (NaI) and triphenylphosphine was used as a catalyst to react at 100°C to obtain poly DOMA.

또한, 비특허문헌 4에서 니시쿠보(T. Nishikubo) 등은 스티렌, 디비닐벤젠, 비닐벤젠클로라이드를 동시에 공중합시켜 제조한 폴리스티렌에 4급 염화암모늄 혹은 4급 염화인염을 부착시겨 촉매로 사용하고, 톨루엔을 용매로 사용하여 상압, 80 ℃에서 이산화탄소와 페닐글리시딜 에테르를 24 시간 동안 반응시킨 결과 페녹시메틸 에틸렌 카보네이트의 수율을 30~95% 얻은 것으로 알려져 있지만 이 경우에도 촉매의 구조가 너무 조밀하여 확산저항을 유발함으로써 반응물이 촉매의 활성점에 접근하기가 어렵게 되므로 반응수율이 낮고 반응에 장시간이 소요되는 단점이 있었다.In addition, in Non-Patent Document 4, T. Nishikubo et al. are used as catalysts by attaching quaternary ammonium chloride or quaternary phosphorus chloride to polystyrene prepared by simultaneously copolymerizing styrene, divinylbenzene, and vinylbenzene chloride. And, as a result of reacting carbon dioxide and phenylglycidyl ether for 24 hours at 80°C at atmospheric pressure using toluene as a solvent, it is known that the yield of phenoxymethyl ethylene carbonate was obtained 30-95%. Since the reaction product is too dense to cause diffusion resistance, it becomes difficult for the reactant to approach the active point of the catalyst, so the reaction yield is low and the reaction takes a long time.

한편, 비특허문헌 5에서 선(J. Sun) 등은 촉매의 수산기(hydroxyl group)의 수소결합(hydrogen bonding)은 할로겐 음이온과 상승효과(synergistic effect)에 의해 이산화탄소와 에폭시화합물의 부가반응에서 에폭시화합물의 고리열림(ring opening)을 촉진시켜 반응성이 증가한다고 보고하였다.On the other hand, in Non-Patent Document 5, J. Sun et al. indicate that the hydrogen bonding of the hydroxyl group of the catalyst is a synergistic effect with the halogen anion in the addition reaction of carbon dioxide and the epoxy compound. It was reported that the reactivity was increased by promoting the ring opening of the compound.

전술한 바와 같이 5원환 탄산염 화합물을 높은 수율로 얻기 위해서 다양한 방법을 제시하였으나, 반응 수율이 낮거나 반응 수행조건이 어렵다는 문제가 있었다. 이에 또 다른 방법으로 금속의 종류, 금속 클러스터 여부와 유기물의 종류 및 배위결합정도에 따라 금속과 유기물간의 조합이 다양하게 가능하고, 열적 안정성이 우수하고 표면적이 매우 넓은 다공성 물질인 금속유기골격체(metal organic frameworks, 이하 'MOF'라고도 함)를 촉매로 이용한 5원환 탄산염 화합물 제조방법에 대해 제시되었으나, 아직 이에 대한 연구는 미흡한 실정이다.As described above, various methods have been proposed to obtain the 5-membered cyclic carbonate compound in high yield, but there is a problem that the reaction yield is low or the conditions for performing the reaction are difficult. As another method, according to the type of metal, the presence of metal clusters, the type of organic material, and the degree of coordination, various combinations of metal and organic materials are possible, and a metal-organic skeleton (a porous material with excellent thermal stability and a very large surface area) A method for preparing a 5-membered ring carbonate compound using metal organic frameworks (hereinafter also referred to as'MOF') as a catalyst has been proposed, but research on this has been insufficient.

Polymerization of propylene carbonate[(K. Soga 등, J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219]Polymerization of propylene carbonate [(K. Soga et al., J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219] Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure[N. Kihara 등, J. Chemical Society: Chemical Communication, (1994) 937]Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure [N. Kihara et al., J. Chemical Society: Chemical Communication, (1994) 937] Incorporation of Carbon Dioxide into Poly(glycidyl methacrylate)[N. Kihara 등, Macromolecules, 25 (1992) 4824]Incorporation of Carbon Dioxide into Poly(glycidyl methacrylate) [N. Kihara et al., Macromolecules, 25 (1992) 4824] Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide[T. Nishikubo 등, J. Polymer Science, 31 (1993) 939]Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide[T. Nishikubo et al., J. Polymer Science, 31 (1993) 939] Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun 등, Green Chem., 14 (2012) 14]Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun et al., Green Chem., 14 (2012) 14]

상기와 같은 점을 감안한 본 발명은 다공성 배위화합물인 아연(Zn) 함유 금속유기골격체 화합물에서 골격을 이루는 금속원으로 아연수화물을 사용하고, 유기 연결제로 핵염기(nucleobase)인 아데닌(Adenine 또는 6-aminopurine, 이하 'HAde'라고도 함)과, 구조 연결제로 스틸벤디카르복실산(4,4'-stilbenedicarboxylic acid, 이하 'H2stdb'이라고도 함)을 사용하여 제조된 신규한 아연 함유 금속유기골격체 화합물 및 이의 제조방법을 제공하는 것을 목적으로 한다.In view of the above, the present invention uses zinc hydrate as a metal source forming a skeleton in a metal-organic skeleton compound containing zinc (Zn), which is a porous coordination compound, and adenine, a nucleobase, as an organic linking agent. -A novel zinc-containing metal organic prepared using aminopurine (hereinafter also referred to as'HAde') and stilbenedicarboxylic acid (4,4'-stilbenedicarboxylic acid, hereinafter also referred to as'H 2 stdb') as a structural linking agent It is an object to provide a skeleton compound and a method for producing the same.

또한, 본 발명은 상술한 신규한 아연 함유 금속유기골격체 화합물을 촉매로 이용하여 이산화탄소와 에폭시화합물을 보다 낮은 온도와 압력 조건하에서 카르보닐화 반응시켜 5원환 탄산염 화합물을 제조하는 방법을 제공하는 것을 목적으로 한다.In addition, the present invention provides a method for producing a 5-membered cyclic carbonate compound by carbonylating carbon dioxide and an epoxy compound under lower temperature and pressure conditions using the novel zinc-containing metal-organic framework compound as a catalyst. The purpose.

상기와 같은 목적을 달성하기 위해 본 발명의 아연 함유 금속유기골격체 화합물은 골격을 이루는 금속원으로 아연수화물, 유기연결제로 아데닌(Adenine), 구조연결제로 스틸벤디카르볼실산(4,4'-stilbenedicarboxylic acid)을 사용하여 합성된 금속유기골격체 화합물로써, 하기 화학식 1로 표시되는 구조 단위가 반복되어 이루어져 3차원의 망상 구조를 형성하고 있는 금속유기골격체 화합물인 것을 특징으로 한다.In order to achieve the above object, the zinc-containing metal-organic skeleton compound of the present invention is used as a metal source forming a skeleton, zinc hydrate, adenine as an organic linking agent, and stilbenedicarboxylic acid (4,4'- Stilbenedicarboxylic acid) is a metal-organic skeletal compound synthesized using a metal-organic skeletal compound that is formed by repeating structural units represented by the following formula (1) to form a three-dimensional network structure.

[화학식 1][Formula 1]

[Zn2(H2O)(stdb)2(5HAde)(9HAde)2]n [Zn 2 (H 2 O)(stdb) 2 (5HAde)(9HAde) 2 ] n

상기 화학식 1에서, stdb은 스틸벤디카르복실산(4,4'-stilbenedicarboxylic acid)이고, HAde은 아데닌이고, n은 1 내지 10의 정수이다.In Formula 1, stdb is stilbenedicarboxylic acid (4,4'-stilbenedicarboxylic acid), HAde is adenine, and n is an integer of 1 to 10.

또한, 상기와 같은 목적을 달성하기 위해 본 발명의 아연 함유 금속유기골격체 화합물 제조방법은, 금속유기골격체의 금속원으로 아연수화물, 유기연결제로 아데닌(Adenine), 구조연결제로 스틸덴디카르복실산(4,4'-stilbenedicarboxylic acid) 및 용매를 혼합하여 반응물 혼합액을 제조한 후, 합성 반응시켜 상기 화학식 1의 아연 함유 금속유기골격체 화합물을 합성하는 합성 단계를 포함할 수 있다.In addition, in order to achieve the above object, the method for producing a zinc-containing metal-organic skeleton compound of the present invention includes zinc hydrate as a metal source of the metal-organic skeleton, adenine as an organic linking agent, and steel dendicar as a structural linking agent. It may include a synthesis step of preparing a mixture of reactants by mixing an acid (4,4'-stilbenedicarboxylic acid) and a solvent, and then performing a synthetic reaction to synthesize the zinc-containing metal-organic skeleton compound of Formula 1.

본 발명의 아연 함유 금속유기골격체 화합물 제조방법에서 합성 단계는 용매열 합성법, 마이크로파 합성법 및 초음파화학적 합성법 중에서 선택되는 어느 하나의 합성방법을 통해 아연 함유 금속유기골격체 화합물의 합성방법을 수행할 수 있다.In the method for preparing a zinc-containing metal-organic skeleton compound of the present invention, the synthesis step may be performed through a method of synthesizing a zinc-containing metal-organic skeleton compound through any one of a solvent heat synthesis method, a microwave synthesis method, and an ultrasonic chemical synthesis method. have.

상기 아연수화물은 질산아연수화물(Zn(NO3)2·nH2O), 아세트산아연수화물(Zn(CH3(COO)2·nH2O) 및 아연아세틸아세토네이트수화물(Zn(CH3COCHCOCH3)2·nH2O) 중에 선택되는 어느 하나인 것을 특징으로 한다.The zinc hydrate is zinc nitrate hydrate (Zn(NO 3 ) 2 ·nH 2 O), zinc acetate hydrate (Zn(CH 3 (COO) 2 ·nH 2 O) and zinc acetylacetonate hydrate (Zn(CH 3 COCHCOCH 3 ) 2 ·nH 2 O) is characterized in that any one selected from.

그리고 상기와 같은 목적을 달성하기 위해 본 발명의 아연 함유 금속유기골격체 화합물을 촉매로 사용한 5원환 탄산염 화합물의 제조방법은, 앞서 설명한 상기 화학식 1로 표시되는 금속유기골격체 화합물을 촉매로 사용하여 이산화탄소와 에폭시화합물을 카르보닐화 반응시켜 제조된다.And in order to achieve the above object, the method for preparing a five-membered cyclic carbonate compound using the zinc-containing metal-organic skeleton compound as a catalyst of the present invention uses the metal-organic skeleton compound represented by Chemical Formula 1 as a catalyst. It is prepared by carbonylating carbon dioxide and an epoxy compound.

상기 카르보닐화 반응은, 에폭시화합물을 반응온도가 80℃ 내지 150℃이고, 이산화탄소 압력이 0.8MPa 내지 1.6MPa인 조건에서 4시간 내지 20시간 동안 반응시키는 것이 바람직하다.In the carbonylation reaction, it is preferable to react the epoxy compound for 4 to 20 hours under conditions of a reaction temperature of 80°C to 150°C and a carbon dioxide pressure of 0.8 MPa to 1.6 MPa.

또한, 상기 카르보닐화 반응에서 상기 에폭시화합물과 상기 아연 함유 금속유기골격체 촉매의 몰비가 100:0.5 내지 100:5 비율이 되도록 첨가하는 것이 바람직하다.Further, in the carbonylation reaction, it is preferable to add the epoxy compound and the zinc-containing metal-organic skeleton catalyst in a molar ratio of 100:0.5 to 100:5.

상기 에폭시화합물은 에폭사이드 유도체로서, 프로필렌옥사이드, 에피클로로히드린, 알릴글리시딜 에테르, 페닐글리시딜에테르 및 비닐싸이클로헥센 옥사이드 중에서 선택되는 어느 하나인 것을 사용할 수 있다.The epoxy compound is an epoxide derivative, and any one selected from propylene oxide, epichlorohydrin, allyl glycidyl ether, phenyl glycidyl ether and vinylcyclohexene oxide may be used.

이상의 과제 해결 수단에 의해 본 발명은 구조가 규칙적이고 표면적이 크며 안정한 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물을 제조하고, 이를 이산화탄소와 에폭시화합물을 카르보닐화 반응의 촉매로 사용하였을 경우, 유기 연결제로 사용한 아데닌의 질소 원자가 이산화탄소의 흡착을 촉진시키므로 종래에 알려진 아연 함유 금속유기골격체 촉매에 비해 반응성과 안정성이 아주 우수하고, 그리고 비교적 낮은 압력, 낮은 온도 조건, 그리고 짧은 반응시간의 조건에서도 높은 수율로 5원환 탄산염 화합물을 합성할 수 있는 효과가 있다.In the case of preparing a zinc-containing metal-organic skeleton compound, a novel porous coordination compound having a regular structure, a large surface area, and a stable structure, and using the carbon dioxide and an epoxy compound as a catalyst for the carbonylation reaction, As the nitrogen atom of adenine used as an organic linking agent promotes the adsorption of carbon dioxide, it has excellent reactivity and stability compared to conventionally known zinc-containing metal-organic skeleton catalysts, and conditions of relatively low pressure, low temperature conditions, and short reaction time. Also, there is an effect of synthesizing a 5-membered cyclic carbonate compound in high yield.

또한, 재생가능한 천연 핵염기인 아데닌을 유기 연결제로 사용함으로써 기존 알려진 아연 함유 금속유기골격체 촉매보다 친환경적으로 5원환 탄산염 화합물을 합성할 수 있는 효과가 있다.In addition, by using adenine, which is a natural renewable nucleobase, as an organic linking agent, there is an effect of synthesizing a five-membered cyclic carbonate compound more environmentally friendly than conventionally known zinc-containing metal organic skeleton catalysts.

도 1은 본 발명의 일 실시예에 따른 아연 함유 금속유기골격체 화합물의 골격구조를 나타낸 모식도이다.
도 2는 본 발명의 일 실시예에 따른 아연 함유 금속유기골격체 화합물의 제조방법을 간략하게 나타낸 순서도이다.
도 3은 본 발명의 일 실시예에 따른 5원환 탄산염 화합물의 제조방법을 간략하게 나타낸 순서도이다.
1 is a schematic diagram showing a skeleton structure of a zinc-containing metal-organic skeleton compound according to an embodiment of the present invention.
Figure 2 is a flow chart briefly showing a method for producing a zinc-containing metal-organic skeleton compound according to an embodiment of the present invention.
3 is a flow chart schematically showing a method of preparing a 5-membered cyclic carbonate compound according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시예에 따른 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물 및 이를 촉매로 이용한 5원환 탄산염 화합물의 제조방법을 상세히 설명하며, 이러한 설명은 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 것에 한정되지 않는다.Hereinafter, a novel porous coordination compound, a zinc-containing metal-organic framework compound according to a preferred embodiment of the present invention, and a method for preparing a 5-membered cyclic carbonate compound using the same as a catalyst will be described in detail. Since those of ordinary skill in the field may be implemented in various different forms, it is not limited to those described herein.

도 1은 본 발명의 일 실시예에 따른 아연 함유 금속유기골격체 화합물의 구조를 나타낸 것으로, 도 1에서 녹색은 아연(Zn), 적색은 산소(O), 황색은 탄소(C), 보라색은 질소(N), 흰색은 수소(H) 원자를 각각 의미한다.1 shows the structure of a zinc-containing metal-organic skeleton compound according to an embodiment of the present invention. In FIG. 1, green is zinc (Zn), red is oxygen (O), yellow is carbon (C), and purple is Nitrogen (N) and white represent hydrogen (H) atoms, respectively.

도 1에서와 도시된 것과 같은 본 발명의 아연 함유 금속유기골격체 화합물(이하, 'PNU-21(Zn)'라고도 함)은 하기 화학식 1의 화합물의 구조단위가 반복되어 3차원의 망상 구조를 갖는 다공성 배위화합물인 것을 특징으로 한다.The zinc-containing metal-organic skeleton compound of the present invention as shown in FIG. 1 (hereinafter, also referred to as'PNU-21(Zn)') has a three-dimensional network structure by repeating the structural units of the compound of Formula 1 below. It is characterized in that it is a porous coordination compound having.

[화학식 1][Formula 1]

[Zn2(H2O)(stdb)2(Ade)(HAde)2]n [Zn 2 (H 2 O)(stdb) 2 (Ade)(HAde) 2 ] n

상기 화학식 1에서, stdb은 스틸벤디카르복실산(4,4'-stilbenedicarboxylic acid)이고, HAde은 아데닌이고, n은 1 내지 10의 정수이다.In Formula 1, stdb is stilbenedicarboxylic acid (4,4'-stilbenedicarboxylic acid), HAde is adenine, and n is an integer of 1 to 10.

상기 PNU-21(Zn) 촉매는 구조가 규칙적이고 결정도가 높은 배위화합물로서 PNU-21(Zn)는 산성과 염기성을 동시에 가지며, 반응성과 안정성이 우수하여 5원환 탄산염 화합물의 합성 반응에 촉매로 사용할 경우 종래의 아연 함유 금속유기골격체 촉매보다 더 환경친화적이며, 이산화탄소가 아데닌의 질소 원자에 더 잘 흡착될 수 있어서 반응성이 우수한 것이 특징이다.The PNU-21 (Zn) catalyst is a coordination compound having a regular structure and high crystallinity, and PNU-21 (Zn) has both acidity and basicity, and has excellent reactivity and stability, so it can be used as a catalyst for the synthesis reaction of a 5-membered cyclic carbonate compound. In this case, it is more environmentally friendly than the conventional zinc-containing metal-organic skeleton catalyst, and has excellent reactivity because carbon dioxide can be better adsorbed to the nitrogen atom of adenine.

이와 같은 구조를 갖는 본 발명의 아연 함유 금속유기골격체 화합물(PNU-21(Zn))은 도 2에서 나타낸 바와 같은 방법으로 제조될 수 있다.The zinc-containing metal-organic skeleton compound (PNU-21(Zn)) of the present invention having such a structure can be prepared by a method as shown in FIG. 2.

도 2에 나타낸 바와 같이, 본 발명의 금속유기골격체 화합물을 합성과정(S100)은 아연수화물, 아데닌, 스틸덴디카르복실산 및 용매를 혼합하여 반응물 혼합액을 제조하고(S110), 상기 반응물 혼합액을 합성 반응시켜 아연 함유 금속유기골격체 화합물을 합성한다(S120).As shown in FIG. 2, in the synthesis process (S100) of the metal-organic skeleton compound of the present invention, a reaction mixture was prepared by mixing zinc hydrate, adenine, stildenedicarboxylic acid and a solvent (S110), and the reaction mixture was Synthesis reaction to synthesize a zinc-containing metal-organic skeleton compound (S120).

상기 S110 단계에서 반응물 혼합액에 포함되는 금속유기골격체의 골격을 형성하는 금속원으로써 아연수화물은 질산아연수화물(zincnitrate hexahydrate, Zn(NO3)2·nH2O), 아세트산아연수화물(Zn(CH3(COO)2·nH2O) 및 아연아세틸아세토네이트수화물(Zn(CH3COCHCOCH3)2·nH2O) 중에 선택되는 어느 하나를 사용할 수 있으나, 이 중에서 질산아연수화물(Zn(NO3)2?nH2O)을 사용하는 것이 바람직하다.As a metal source forming the skeleton of the metal-organic skeleton contained in the reaction mixture in step S110, zinc hydrate is zinc nitrate hexahydrate (Zn(NO 3 ) 2 ·nH 2 O), zinc acetate hydrate (Zn(CH 3 (COO) 2 ·nH 2 O) and zinc acetylacetonate hydrate (Zn(CH 3 COCHCOCH 3 ) 2 ·nH 2 O) can be used, but among them zinc nitrate hydrate (Zn(NO 3 ) It is preferable to use 2 ?nH 2 O).

또한, 반응물 혼합액에서 사용되는 용매로는 메탄올, 에탄올, 다이메틸포름아마이드(DMF), 테트라하이드로퓨란, 물 중에서 선택된 비 디아민(non-diamine) 계열 용매이거나, 또는 에틸렌디아민, 디메틸에틸렌디아민, 피페라진, N,N-디메틸에틸렌디아민, N-에틸에틸렌디아민, N-아이소프로필에틸렌디아민 등 여러 종류의 디아민 중에서 선택된 디아민 계열 용매를 사용할 수 있으나, 바람직하게 디메틸포름아마이드를 사용할 수 있다. 그러나 사용 용매의 종류는 이에 한정되지 않고 본 발명에 속하는 기술 분야에서 통상의 지식을 가진자가 사용할 수 있는 다양한 용매가 사용될 수 있다.In addition, the solvent used in the reactant mixture is a non-diamine series solvent selected from methanol, ethanol, dimethylformamide (DMF), tetrahydrofuran, and water, or ethylenediamine, dimethylethylenediamine, piperazine , N,N-dimethylethylenediamine, N-ethylethylenediamine, N-isopropylethylenediamine, and other diamine-based solvents selected from various diamines may be used, but dimethylformamide may be preferably used. However, the type of the solvent to be used is not limited thereto, and various solvents that can be used by those of ordinary skill in the art pertaining to the present invention may be used.

그 다음 아연 함유 금속유기골격체 화합물을 합성하는 단계(S120)는, 용매열 합성법, 마이크로파 합성법 및 초음파화학적 합성법 중에서 선택되는 어느 하나의 합성방법을 통해 아연 함유 금속유기골격체 화합물의 합성할 수 있으며, 이 중에서 용매열 합성법을 이용하는 것이 바람직하다.Then, in the step of synthesizing the zinc-containing metallic-organic skeleton compound (S120), the zinc-containing metallic-organic skeleton compound can be synthesized through any one synthesis method selected from a solvent heat synthesis method, a microwave synthesis method, and an ultrasonic chemical synthesis method. Among these, it is preferable to use a solvent heat synthesis method.

구체적으로 본 발명의 신규한 다공성 배위화합물인 PNU-21(Zn)는 골격을 이루는 금속원으로 질산아연수화물(zincnitrate hexahydrate)을 사용하고, 유기연결제로 아데닌, 구조 연결제인 스틸벤디카르복실산을 사용하여 용매열 합성법에 의해 제조한다.Specifically, PNU-21 (Zn), a novel porous coordination compound of the present invention, uses zinc nitrate hexahydrate as a metal source forming a skeleton, adenine as an organic linking agent, and stilbenedicarboxylic acid as a structural linking agent. And prepared by a solvent heat synthesis method.

금속원인 질산아연수화물 4 mmol, 유기연결제로 아데닌 4 mmol, 구조 연결제인 스틸벤디카르복실산 2 mmol을 50 mL의 디메틸포름아마이드(DMF) 용매에 넣고 교반하여 녹인 후 100 mL의 테프론 코팅된 오토클레이브에 넣고 합성 온도 140℃ 내지 150℃에서 72 시간 내지 96 시간 동안 용매열 합성법으로 제조된 생성물을 여과하고 증류수와 메탄올로 충분히 세척을 한 다음 120℃ 내지 140℃에서 10 mmHg 내지 20 mmHg의 진공 압력으로 12 시간 내지 14 시간 동안 진공 건조하여 제조한다.Add 4 mmol of zinc nitrate hydrate as a metal, 4 mmol of adenine as an organic linking agent, and 2 mmol of stilbenedicarboxylic acid as a structural linking agent in 50 mL of dimethylformamide (DMF) solvent, dissolve by stirring, and then dissolve 100 mL of Teflon-coated auto Put in a clave and filter the product prepared by solvent heat synthesis at a synthesis temperature of 140°C to 150°C for 72 to 96 hours, thoroughly wash with distilled water and methanol, and then vacuum pressure of 10 mmHg to 20 mmHg at 120°C to 140°C It is prepared by vacuum drying for 12 to 14 hours.

상기에서 아연 함유 금속유기골격체 화합물의 합성조건에서 질산아연수화물에 대한 유기연결제인 아데닌, 구조 연결제인 스틸벤디카르복실산 및 용매인 디메틸포름아마이드의 사용량이 제시된 한정한 범위를 벗어날 경우에는 PNU-21(Zn) 금속유기골격체 화합물의 수율이 감소할 우려가 있다.If the amount of adenine as an organic linking agent for zinc nitrate hydrate, stilbenedicarboxylic acid as a structural linking agent, and dimethylformamide as a solvent in the synthesis conditions of the zinc-containing metal-organic framework compound is outside the suggested limited range, PNU There is a concern that the yield of the -21(Zn) metal-organic skeleton compound may decrease.

또한 용매열 합성법에 의한 아연 함유 금속유기골격체 화합물의 합성 시 상기에서 한정한 반응조건 미만이 될 경우에는 아연 함유 금속유기골격체 화합물의 수율이 감소할 우려가 있고, 상기에서 한정한 반응조건을 초과할 경우에는 생성물이 분해하거나 수율이 감소할 우려가 있다.In addition, if the reaction conditions are less than the above-defined reaction conditions when synthesizing the zinc-containing metal-organic skeleton compound by the solvent heat synthesis method, the yield of the zinc-containing metal-organic skeleton compound may decrease, and the reaction conditions defined above are If it exceeds, the product may be decomposed or the yield may decrease.

반응 후 합성된 생성물은 필터 여과 등과 같은 통상적인 방법에 의해 여과한 다음 증류수와 메탄올로 충분히 세척을 한 다음 120℃ 내지 140℃에서 10 mmHg 내지 20 mmHg의 압력으로 진공건조 시킨다.After the reaction, the synthesized product is filtered by a conventional method such as filter filtration, thoroughly washed with distilled water and methanol, and then vacuum-dried at 120°C to 140°C at a pressure of 10 mmHg to 20 mmHg.

이때 진공건조 조건이 상기에서 한정한 조건 미만이 될 경우에는 생성된 금속유기골격체가 충분하게 건조되지 않을 우려가 있고, 상기에서 한정한 조건을 초과할 경우에는 급격한 건조로 생성물이 유실될 우려가 있다.At this time, if the vacuum drying conditions are less than the conditions defined above, there is a risk that the generated metal-organic skeleton may not be sufficiently dried, and if the conditions defined above are exceeded, the product may be lost due to rapid drying. .

한편, 본 발명은 상기 설명한 바와 같은 화학식 1로 표기되는 구조단위에 의해 3차원 구조를 가지는 아연 함유 금속유기골격체 화합물인 PNU-21(Zn)를 촉매로 사용하여 이산화탄소와 에폭시화합물을 부가반응시켜 5원환 탄산염 화합물을 제조할 수 있다.Meanwhile, the present invention uses PNU-21 (Zn), which is a zinc-containing metal-organic skeleton compound having a three-dimensional structure by the structural unit represented by Chemical Formula 1 as described above, as a catalyst to add carbon dioxide and an epoxy compound. Five-membered cyclic carbonate compounds can be prepared.

특히, 본 발명은 이산화탄소와 에폭시화합물만을 사용하여 5원환 탄산염 화합물 제조 반응을 시키며, 추가의 용매를 사용하지 않는 것이 특징이다.In particular, the present invention is characterized in that a reaction for preparing a 5-membered cyclic carbonate compound is performed using only carbon dioxide and an epoxy compound, and no additional solvent is used.

도 3은 본 발명의 일 실시예에 따른 5원환 탄산염 화합물의 제조방법을 간략하게 나타낸 순서도이다.3 is a flowchart schematically showing a method of preparing a 5-membered cyclic carbonate compound according to an embodiment of the present invention.

도 3에 도시된 바와 같이, 본 발명에 따른 아연 함유 금속유기골격체 화합물을 촉매로 사용한 5원환 탄산염 화합물의 제조방법은, 금속유기골격체 화합물을 합성하고(S100), 합성된 아연 함유 금속유기골격체 화합물을 촉매로 사용하여 이산화탄소와 에폭시화합물을 카르보닐화 반응을 수행하고(S200), 최종적으로 5원환 탄산염 화합물을 제조할 수 있다(S300).As shown in Figure 3, the method for producing a 5-membered cyclic carbonate compound using the zinc-containing metal-organic skeleton compound as a catalyst according to the present invention is to synthesize a metal-organic skeleton compound (S100), and the synthesized zinc-containing metal-organic Using the skeleton compound as a catalyst, carbon dioxide and the epoxy compound may be subjected to a carbonylation reaction (S200), and finally a 5-membered cyclic carbonate compound may be prepared (S300).

상기 이산화탄소와 에폭시화합물의 카르보닐화 반응을 수행하는 단계(S200)는 80℃ 내지 150℃의 온도, 0.8 MPa 내지 1.6 MPa의 이산화탄소 압력에서 4 시간 내지 20 시간 반응시키는 것이 바람직하며, 카르보닐화 반응조건이 상기에서 한정한 범위 미만이 될 경우에는 생성물의 수율이 감소할 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 생성물이 분해하거나 수율이 감소할 우려가 있다.The step of performing the carbonylation reaction of the carbon dioxide and the epoxy compound (S200) is preferably reacted for 4 to 20 hours at a temperature of 80°C to 150°C and a carbon dioxide pressure of 0.8 MPa to 1.6 MPa, and the carbonylation reaction If the conditions are less than the above-limited range, there is a concern that the yield of the product may decrease, and if it exceeds the above-limited range, the product may be decomposed or the yield may decrease.

상기 카르보닐화 반응에서 상기 아연 함유 금속유기골격체 화합물은 에폭시화합물 및 아연 함유 금속유기골격체 화합물의 몰비가 100:0.5 부터 100:5 까지의 비율이 되도록 첨가할 수 있다.In the carbonylation reaction, the zinc-containing metal-organic skeleton compound may be added so that the molar ratio of the epoxy compound and the zinc-containing metal-organic skeleton compound is in a ratio of 100:0.5 to 100:5.

상기 카르보닐화 반응에서 촉매로 참가하는 아연 함유 금속유기골격체 화합물의 양이 0.5 미만이 될 경우에는 이산화탄소와 에폭시화합물이 충분히 반응하지 아니하여 미반응의 에폭시화합물이 반응물 내에 잔류할 우려가 있고, 촉매의 양이 5를 초과할 경우에는 반응물과 촉매의 혼합이 좋지 않아 촉매 활성이 감소할 우려가 있다.When the amount of the zinc-containing metal-organic framework compound participating as a catalyst in the carbonylation reaction is less than 0.5, carbon dioxide and the epoxy compound do not react sufficiently, and there is a risk that an unreacted epoxy compound remains in the reaction product, When the amount of the catalyst exceeds 5, there is a concern that the catalyst activity may decrease due to poor mixing of the reactant and the catalyst.

또한, 상기 카르보닐화 반응에서 조촉매를 첨가할 수 있으며, 상기 조촉매로 테트라부틸암모늄브롬화물(tetrabutylammonium bromide, 이하, 'TBAB'라 한다)을 아연 함유 금속유기골격체 화합물 및 TBAB의 몰비가 1:1 내지 1:3의 비율이 되도록 첨가할 수 있다.In addition, in the carbonylation reaction, a cocatalyst may be added, and as the cocatalyst, tetrabutylammonium bromide (hereinafter referred to as'TBAB') is the molar ratio of the zinc-containing metal-organic skeleton compound and TBAB. It can be added so that the ratio of 1:1 to 1:3.

만약 첨가되는 조촉매인 TBAB의 양이 1 미만이 될 경우에는 이산화탄소와 에폭시화합물이 충분히 반응하지 아니하여 미반응의 에폭시화합물이 반응물 내에 잔류할 우려가 있고, 조촉매인 TBAB의 양이 3을 초과할 경우에는 반응물과 촉매의 혼합이 좋지 않아 촉매 활성이 감소할 우려가 있다.If the amount of TBAB added as a cocatalyst is less than 1, carbon dioxide and the epoxy compound do not react sufficiently, and there is a risk that an unreacted epoxy compound may remain in the reaction product, and the amount of TBAB as a cocatalyst exceeds 3. In this case, there is a concern that the catalytic activity may decrease due to poor mixing of the reactant and the catalyst.

그리고 상기 5원환 탄산염 화합물의 합성 시 사용하는 이산화탄소의 사용량은 에폭시화합물의 몰비와 동일한 몰비가 소요된다. 본 발명에 있어서는 반응기 내에 충진시킨 이산화탄소는 반응기 내에 가압 충진시킨 상태가 되므로 이산화탄소의 몰수는 특별히 한정되지 아니하며, 이때 이산화탄소와 반응시키고자 하는 에폭시화합물은 반응기 내에 충진된 이산화탄소의 몰수를 고려하여 반응기 내에 적절히 공급하면 된다.In addition, the amount of carbon dioxide used in the synthesis of the 5-membered cyclic carbonate compound is the same as the molar ratio of the epoxy compound. In the present invention, the number of moles of carbon dioxide is not particularly limited, since the carbon dioxide filled in the reactor is in a state of being pressurized and filled in the reactor. At this time, the epoxy compound to be reacted with carbon dioxide is appropriately inside the reactor in consideration of the number of moles of carbon dioxide filled in the reactor. Just supply it.

앞서 설명한 바와 같이, 상기 에폭시화합물은 에폭사이드 유도체로서, 프로필렌옥사이드(propylene oxide), 에피클로로히드린(epichlorohydrin), 알릴글리시딜 에테르(allyl glycidyl ether), 페닐글리시딜 에테르(phenyl glycidyl ether), 및 비닐싸이클로헥센 옥사이드(vinylcyclohexen oxide) 중에서 선택된 어느 하나를 사용하는 것이 바람직하다.As described above, the epoxy compound is an epoxide derivative, such as propylene oxide, epichlorohydrin, allyl glycidyl ether, and phenyl glycidyl ether. , And it is preferable to use any one selected from among vinylcyclohexen oxide.

이하 실시예 및 비교예를 통하여 본 발명을 보다 구체적으로 설명하기로 한다. 단, 본 발명의 범위가 이들 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples. However, the scope of the present invention is not limited to these examples.

하기 실시예 및 비교예에서 사용하는 아연 함유 금속유기골격체 화합물로 PNU-21(Zn)는 다음 설명되는 것과 같은 방법으로 제조된다.PNU-21 (Zn) as a zinc-containing metal-organic skeleton compound used in the following Examples and Comparative Examples was prepared in the same manner as described below.

금속원인 질산아연수화물 4 mmol, 유기연결제로 아데닌(HAde) 4 mmol, 구조 연결제인 스틸벤디카르복실산(H2stdb) 2 mmol을 50 mL의 디메틸포름아마이드(DMF) 용매에 넣고 교반하여 녹인 후 100 mL의 테프론 코팅된 오토클레이브에 넣고 합성 온도 140℃ 내지 150℃에서 72 시간 내지 96 시간 동안 용매열 합성법으로 제조한다. 제조된 생성물을 여과하고 증류수와 메탄올로 충분히 세척을 한 다음 120℃ 내지 140℃에서 10 mmHg 내지 20 mmHg의 진공 압력으로 12 시간 내지 14 시간 동안 진공 건조를 하여 최종적으로 연한 노랑색의 고체로 아연 함유 금속유기골격체 화합물인 PNU-21(Zn)를 제조하였다.Add 4 mmol of zinc nitrate hydrate as a metal source, 4 mmol of adenine (HAde) as an organic linking agent, and 2 mmol of stilbenedicarboxylic acid (H2stdb) as a structural linking agent in 50 mL of dimethylformamide (DMF) solvent, stir to dissolve 100 Into mL of Teflon-coated autoclave, it is prepared by solvent heat synthesis at a synthesis temperature of 140°C to 150°C for 72 to 96 hours. The prepared product was filtered, sufficiently washed with distilled water and methanol, and then vacuum-dried at 120°C to 140°C at a vacuum pressure of 10 mmHg to 20 mmHg for 12 to 14 hours to form a light yellow solid. PNU-21 (Zn), an organic skeletal compound, was prepared.

상기 제조된 PNU-21(Zn)으로 C42H32N10O9Zn2(%)를 원소분석기(Elemental Analyzer, Vario-Micro cube system, Germany)를 이용하여 원소를 분석하였으며, 측정한 화학 조성물의 구성 성분비로 이론적 계산값과, 측정값은 아래 원소 분석 결과와 같다.The prepared PNU-21 (Zn) C 42 H 32 N 10 O 9 Zn 2 (%) was analyzed using an elemental analyzer (Elemental Analyzer, Vario-Micro cube system, Germany), the measured chemical composition The theoretical calculated value and measured value with the component ratio of are as the result of elemental analysis below.

구체적으로 PNU-21(Zn)의 정제 화학 조성물인 C42H32N10O9Zn2(%)의 원소 분석 결과, 이론적 계산값은 C: 53.02, H: 3.39, N: 14.72 이며, 측정값은 C: 52.51, H: 3.69, N: 14.24.이다.Specifically, as a result of elemental analysis of C 42 H 32 N 10 O 9 Zn 2 (%), a refined chemical composition of PNU-21 (Zn), the theoretical calculated values are C: 53.02, H: 3.39, N: 14.72, and the measured values Is C: 52.51, H: 3.69, N: 14.24.

상기 일 실시예에 따라 제조된 본 발명에 따른 PNU-21(Zn)의 구조는 부산대학교 부설 공동실험실습센터에서 분석한 PNU-21(Zn) 시료를 상기 원소 분석결과를 기초로 구조를 예측하였다. 그 결과 도 1에 도시된 바와 같은 단위구조를 갖는 3차원 구조의 금속유기골격체 화합물로서, 상기 단위구조들이 결합되어 전체적으로는 3차원 망상구조를 갖는다. 도 1에 도시된 화합물에서 적색은 산소, 녹색은 아연, 보라색은 질소, 황색은 탄소, 흰색은 수소를 나타낸다.The structure of the PNU-21 (Zn) according to the present invention prepared according to the above example was predicted based on the elemental analysis result of the PNU-21 (Zn) sample analyzed at the joint laboratory laboratory center affiliated with Pusan National University. . As a result, as a metal-organic skeleton compound having a three-dimensional structure having a unit structure as shown in FIG. 1, the unit structures are combined to have a three-dimensional network structure as a whole. In the compound shown in FIG. 1, red represents oxygen, green represents zinc, purple represents nitrogen, yellow represents carbon, and white represents hydrogen.

상기 제조된 PNU-21(Zn)를 촉매로 사용하여 5원환 탄산염 화합물의 제조에 대해 하기 실시예 1 내지 실시예 5, 비교예 1 내지 비교예 4를 통해 보다 상세히 설명한다.The preparation of a 5-membered cyclic carbonate compound using the prepared PNU-21 (Zn) as a catalyst will be described in more detail through Examples 1 to 5 and Comparative Examples 1 to 4 below.

실시예 1은 아연 함유 금속유기골격체 화합물인 PNU-21(Zn) 촉매 0.3 mmol을 사용하고 조촉매 TBAB 0.3 mmol을 사용하여 비교적 낮은 온도인 80 ℃를 유지하며, 용량이 1 L인 반응기 내에 낮은 압력인 1.0 MPa의 압력의 반응조건이 되게 이산화탄소를 충진한 다음 용매를 사용하지 않고, 에폭시화합물인 프로필렌옥사이드(PO) 40 mmol을 이산화탄소와 6 시간 동안 부가반응시켜 5원환 탄산염 화합물인 프로필렌 카보네이트(propylene carbonate, PC)를 합성하였다.Example 1 uses 0.3 mmol of the PNU-21 (Zn) catalyst, which is a zinc-containing metal-organic skeleton compound, and uses 0.3 mmol of TBAB as a cocatalyst to maintain a relatively low temperature of 80°C. After filling carbon dioxide so that the reaction condition is at a pressure of 1.0 MPa, which is a pressure, 40 mmol of propylene oxide (PO), an epoxy compound, is added to carbon dioxide for 6 hours without using a solvent to produce propylene carbonate, a 5-membered ring carbonate compound. carbonate, PC) was synthesized.

실시예 2 내지 실시예 5는 상기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물인 프로필렌 카보네이트(PC) 합성 반응을 진행하되, 하기 표 1에 기재된 내용과 같이 반응온도만을 100℃, 120℃, 140℃, 150℃로 각각 변화시켜 프로필렌 카보네이트(PC)를 합성하였다.In Examples 2 to 5, the synthesis reaction of propylene carbonate (PC), which is a 5-membered cyclic carbonate compound, was conducted in the same manner as in Example 1, but only the reaction temperature was 100°C, 120°C, 140 as described in Table 1 below. By changing each of ℃ and 150 ℃ was synthesized propylene carbonate (PC).

비교예 1은 상기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물인 프로필렌 카보네이트(PC) 합성 반응을 진행하되, 하기 표 1에 기재된 내용과 같이 반응온도만 60℃로 변화시켜 프로필렌 카보네이트(PC)를 합성하였다.Comparative Example 1 proceeds the synthesis reaction of propylene carbonate (PC), which is a 5-membered cyclic carbonate compound, in the same manner as in Example 1, but by changing only the reaction temperature to 60°C as described in Table 1 below, propylene carbonate (PC) was prepared. Synthesized.

상기 실시예 1 내지 실시예 5, 및 비교예 1을 통해 합성된 프로필렌 카보네이트(PC)의 합성 수율은 하기 표 1에 나타내었다.The synthetic yields of propylene carbonate (PC) synthesized through Examples 1 to 5, and Comparative Example 1 are shown in Table 1 below.

구분division 반응온도 (℃)Reaction temperature (℃) PC 수율 (%)PC yield (%) 비교예 1 Comparative Example 1 6060 89 89 실시예 1 Example 1 8080 9696 실시예 2 Example 2 100100 9797 실시예 3 Example 3 120120 9898 실시예 4 Example 4 140140 97 97 실시예 5 Example 5 150150 9494

상기 표 1에서 알 수 있는 바와 같이, 실시예 1 내지 실시예 5는 반응온도 80℃ 내지 150℃의 범위 내에서는 프로필렌 카보네이트(PC) 수율이 94% 이상이었고, 특히 반응온도 120℃로 진행하였을 경우, 가장 높은 수율을 나타내었다. 이와 같은 결과는 온도가 너무 높으면 합성된 프로필렌 카보네이트(PC)가 올리고머로 전환되는 부반응이 진행되기 때문이다.As can be seen from Table 1, in Examples 1 to 5, the propylene carbonate (PC) yield was 94% or more within the range of the reaction temperature of 80°C to 150°C, and in particular, when the reaction temperature was performed at 120°C. , Showed the highest yield. This is because when the temperature is too high, a side reaction in which the synthesized propylene carbonate (PC) is converted into an oligomer proceeds.

실시예 6 내지 실시예 8은 상기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물인 프로필렌 카보네이트(PC) 합성 반응을 진행하되, 하기 표 2에 기재된 내용과 같이 반응시간만 9시간, 12시간, 및 15시간으로 각각 변화시켜 프로필렌 카보네이트(PC)를 합성하였다.In Examples 6 to 8, the synthesis reaction of propylene carbonate (PC), which is a 5-membered cyclic carbonate compound, was conducted in the same manner as in Example 1, but the reaction time was 9 hours, 12 hours, and only as described in Table 2 below. Each was changed to 15 hours to synthesize propylene carbonate (PC).

비교예 2는 기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물인 프로필렌 카보네이트(PC) 합성 반응을 진행하되, 하기 표 2에 기재된 내용과 같이 반응시간만 3시간으로 변화시켜 프로필렌 카보네이트(PC)를 합성하였다.In Comparative Example 2, the synthesis reaction of propylene carbonate (PC), which is a 5-membered cyclic carbonate compound, was performed in the same manner as in Example 1, but as described in Table 2 below, only the reaction time was changed to 3 hours to obtain propylene carbonate (PC). Synthesized.

상기 실시예 1, 실시예 6 내지 실시예 8, 및 비교예 2를 통해 합성된 프로필렌 카보네이트(PC)의 합성 수율은 하기 표 1에 나타내었다.Synthesis yields of propylene carbonate (PC) synthesized through Example 1, Examples 6 to 8, and Comparative Example 2 are shown in Table 1 below.

구분division 반응시간 (시간)Reaction time (hours) PC 수율 (%)PC yield (%) 비교예 2 Comparative Example 2 3 3 8282 실시예 1 Example 1 6 6 9696 실시예 6 Example 6 99 9797 실시예 7 Example 7 1212 9797 실시예 8 Example 8 1515 9797

상기 표 2에서 알 수 있는 바와 같이, 실시예 1, 실시예 6 내지 실시예 8의 조건으로 반응 시간이 6시간 내지 15시간의 범위 내에서 프로필렌 카보네이트(PC) 수율이 96% 이상이었다. 특히 반응 시간이 4시간 이후 9시간까지 프로필렌 카보네이트(PC) 수율이 꾸준히 증가하였으나, 9시간 이상의 반응시간 조건에서는 프로필렌 카보네이트(PC) 수율이 97% 정도로 거의 일정한 수율을 나타내므로 평형반응에 도달한 것으로 판단된다.As can be seen in Table 2, under the conditions of Example 1 and Examples 6 to 8, the propylene carbonate (PC) yield was 96% or more within the range of 6 to 15 hours of reaction time. In particular, the propylene carbonate (PC) yield steadily increased from 4 hours to 9 hours after the reaction time, but in the reaction time conditions of 9 hours or longer, the propylene carbonate (PC) yield was approximately 97%, indicating that the equilibrium reaction was reached. Is judged.

실시예 9 내지 실시예 12는 상기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물인 프로필렌 카보네이트(PC) 합성 반응을 진행하되, 하기 표 3에 기재된 내용과 같이 이산화탄소 압력만을 0.8MPa, 1.2MPa, 1.4MPa, 1.6MPa로 각각 변화시켜 프로필렌 카보네이트(PC)를 합성하였다.In Examples 9 to 12, the synthesis reaction of propylene carbonate (PC), which is a 5-membered cyclic carbonate compound, was performed in the same manner as in Example 1, but only the carbon dioxide pressure was 0.8 MPa, 1.2 MPa, 1.4 as described in Table 3 below. By changing MPa and 1.6 MPa, respectively, propylene carbonate (PC) was synthesized.

구분division 이산화탄소 압력 (MPa)Carbon dioxide pressure (MPa) PC 수율 (%)PC yield (%) 실시예 9 Example 9 0.80.8 9494 실시예 10 Example 10 1.21.2 9797 실시예 11 Example 11 1.41.4 9898 실시예 12 Example 12 1.61.6 9595

상기 표 3에서 알 수 있는 바와 같이, 실시예 9 내지 실시예 11의 조건으로 이산화탄소 압력이 1.4MPa까지 증가할수록 프로필렌 카보네이트(PC) 수율이 98%로 증가하였다. 그러나 이산화탄소 압력이 1.6MPa인 실시예 12에서는 프로필렌 카보네이트(PC) 수율이 95%로 다소 감소하였다. 이와 같은 결과는 이산화탄소의 고압에서는 촉매와 에폭시화합물인 프로필렌옥사이드(PO)의 접촉이 원활하지 않은 희석효과에 의한 것으로 판단된다.As can be seen from Table 3, as the carbon dioxide pressure increased to 1.4 MPa under the conditions of Examples 9 to 11, the propylene carbonate (PC) yield increased to 98%. However, in Example 12, where the carbon dioxide pressure was 1.6 MPa, the propylene carbonate (PC) yield was slightly reduced to 95%. This result is considered to be due to the dilution effect that the catalyst and propylene oxide (PO), which is an epoxy compound, are not smoothly contacted at high pressure of carbon dioxide.

실시예 13 내지 실시예 16은 상기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물의 합성 반응을 진행하되, 사용한 에폭사이드 종류를 변화시켜 프로필렌 카보네이트(PC) 합성한다. 하기 표 4에 기재된 내용과 같이 실시예 13은 에피클로로히드린을 사용하고, 실시예 14는 페닐글리시딜에테르를 사용하고, 실시예 15는 알릴글리시딜에테르를 사용하며, 실시예 16은 비닐싸이클로헥센옥사이드를 각각 사용하여 5원환 탄산염 화합물을 합성한 후, 에폭사이드 종류에 따른 5원환 탄산염 화합물의 수율을 측정하여 아래 표 4에 나타내었다.In Examples 13 to 16, the synthesis reaction of the 5-membered cyclic carbonate compound was performed in the same manner as in Example 1, but propylene carbonate (PC) was synthesized by changing the type of epoxide used. As described in Table 4 below, Example 13 uses epichlorohydrin, Example 14 uses phenylglycidyl ether, Example 15 uses allyl glycidyl ether, and Example 16 After synthesizing a 5-membered cyclic carbonate compound using each of the vinylcyclohexene oxide, the yield of the 5-membered cyclic carbonate compound according to the epoxide type was measured and shown in Table 4 below.

구분division 에폭사이드Epoxide 5원환 탄산염의 수율 (%)Yield of 5-membered cyclic carbonate (%) 실시예 1Example 1 프로필렌옥사이드Propylene oxide 9696 실시예 13Example 13 에피클로로히드린Epichlorohydrin 9696 실시예 14Example 14 페닐글리시딜에테르Phenylglycidyl ether 9696 실시예 15Example 15 알릴글리시딜에테르Allyl glycidyl ether 9797 실시예 16Example 16 비닐싸이클로헥센옥사이드Vinyl cyclohexene oxide 9292

상기 표 4에 나타난 바와 같이, 본 발명의 아연 함유 금속유기골격체 화합물인 PNU-21(Zn) 촉매는 여러 가지 형태의 에폭사이드와 이산화탄소의 부가반응에 효율적임을 알 수 있다.As shown in Table 4, it can be seen that the PNU-21 (Zn) catalyst, which is a zinc-containing metal-organic skeleton compound, of the present invention is effective in addition reactions of various types of epoxides and carbon dioxide.

비교예 3 및 비교예 4는 상기 실시예 1과 동일한 방법으로 5원환 탄산염 화합물인 프로필렌 카보네이트(PC) 합성 반응을 진행하되, PNU-21(Zn) 촉매 대신에 실리카(SiO2) 또는 알루미나(γ-Al2O3) 담체에 테트라부릴암모늄브로마이드 이온성 액체를 담지시켜 얻은 촉매를 사용하여 프로필렌 카보네이트(PC) 합성한 후, 촉매에 따른 프로필렌 카보네이트(PC)의 수율을 측정하여 아래 표 5에 나타내었다.In Comparative Examples 3 and 4, the synthesis reaction of propylene carbonate (PC), a 5-membered cyclic carbonate compound, was performed in the same manner as in Example 1, but instead of the PNU-21 (Zn) catalyst, silica (SiO 2 ) or alumina (γ -Al 2 O 3 ) After synthesis of propylene carbonate (PC) using a catalyst obtained by supporting a tetraburyl ammonium bromide ionic liquid on a carrier, the yield of propylene carbonate (PC) according to the catalyst was measured and shown in Table 5 below. Done.

구분division 담체carrier PC 수율 (%)PC yield (%) 비교예 3 Comparative Example 3 SiO2 SiO 2 7373 비교예 4 Comparative Example 4 γ-Al2O3 γ-Al 2 O 3 6262

상기 표 5에 나타낸 바와 같이, 실리카나(SiO2) 담체와 알루미나(γ-Al2O3) 담체에 테트라부틸암모늄브로마이드 이온성 액체를 담지시켜 얻은 촉매를 사용하는 경우에는 프로필렌 카보네이트(PC) 수율이 각각 73%와 62%로, 앞서 설명한 바와 같이 90% 이상의 수율을 보이는 본 발명에 따른 PNU-21(Zn) 금속유기골격체 화합물의 촉매를 사용한 경우보다 PC의 수율이 훨씬 떨어졌다.As shown in Table 5, in the case of using a catalyst obtained by supporting a tetrabutylammonium bromide ionic liquid on a silica or (SiO 2 ) support and an alumina (γ-Al 2 O 3 ) support, propylene carbonate (PC) yield These were 73% and 62%, respectively, and the yield of PC was much lower than the case of using the catalyst of the PNU-21(Zn) metal-organic skeleton compound according to the present invention, which showed a yield of 90% or more as described above.

전술된 바와 같이, 본 발명에 따라 제조된 아연 함유 금속유기골격체 화합물(PNU-21(Zn))은 구조가 규칙적이고 표면적이 크며 안정하며, 재생가능한 천연 핵염기인 아데닌을 유기 연결제로 사용함으로써 친환경적일 뿐만 아니라, 이산화탄소와 에폭시화합물을 카르보닐화 반응의 촉매로 사용하였을 경우, 유기 연결제로 사용한 아데닌의 질소 원자가 이산화탄소의 흡착을 촉진시키므로 종래에 알려진 아연 함유 금속유기골격체 촉매에 보다 반응성과 안정성이 아주 우수하며 비교적 온화한 반응조건에서 높은 수율로 5원환 탄산염 화합물을 합성할 수 있음이 확인되었다.As described above, the zinc-containing metal-organic skeleton compound (PNU-21(Zn)) prepared according to the present invention has a regular structure, a large surface area, and a stable, renewable natural nucleobase, adenine, as an organic linking agent. In addition to being eco-friendly, when carbon dioxide and epoxy compounds are used as catalysts for the carbonylation reaction, the nitrogen atom of adenine used as an organic linking agent promotes the adsorption of carbon dioxide, so it is more reactive and stable to the known zinc-containing metal-organic skeleton catalyst. It was confirmed that this is very excellent and that a 5-membered cyclic carbonate compound can be synthesized in high yield under relatively mild reaction conditions.

상기에서 설명 드린 본 발명은 상기의 구성에 의해서만 반드시 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다.The present invention described above is not necessarily limited only by the above configuration, and various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention.

Claims (9)

골격을 이루는 금속원으로 아연수화물, 유기연결제로 아데닌(Adenine), 구조연결제로 스틸벤디카르볼실산(4,4'-stilbenedicarboxylic acid)을 사용하여 합성된 금속유기골격체 화합물인 것을 특징으로 하는 아연 함유 금속유기골격체 화합물.Zinc is a metal-organic skeletal compound synthesized using zinc hydrate as a metal source forming a skeleton, adenine as an organic linking agent, and stilbenedicarboxylic acid (4,4'-stilbenedicarboxylic acid) as a structural linking agent. Contains metal-organic skeleton compounds. 제1항에 있어서,
상기 금속유기골격체 화합물은,
하기 화학식 1로 표시되는 구조 단위가 반복되어 3차원 망상 구조를 형성하는 것을 특징으로 하는 아연 함유 금속유기골격체 화합물.
[화학식 1]
[Zn2(H2O)(stdb)2(5HAde)(9HAde)2]n
(상기 화학식 1에서, stdb은 스틸벤디카르복실산이고, HAde은 아데닌이고, n은 1 내지 10의 정수임)
The method of claim 1,
The metal-organic skeleton compound,
Zinc-containing metal-organic skeleton compound, characterized in that the structural unit represented by the following formula (1) is repeated to form a three-dimensional network structure.
[Formula 1]
[Zn 2 (H 2 O)(stdb) 2 (5HAde)(9HAde) 2 ] n
(In Formula 1, stdb is stilbenedicarboxylic acid, HAde is adenine, and n is an integer of 1 to 10)
금속원으로 아연수화물, 유기연결제로 아데닌(Adenine), 구조연결제로 스틸벤디카르복실산(4,4'-stilbenedicarboxylic acid) 및 용매를 혼합하여 반응물 혼합액을 제조한 후, 합성 반응시켜 하기 화학식 1로 표시되는 구조 단위가 반복되어 이루어지는 아연 함유 금속유기 골격체 화합물을 합성하는 합성 단계;를 포함하는 것을 특징으로 아연 함유 금속유기골격체 화합물의 제조방법.
[화학식 1]
[Zn2(H2O)(stdb)2(5HAde)(9HAde)2]n
(상기 화학식 1에서, stdb은 스틸벤디카르복실산이고, HAde은 아데닌이고, n은 1 내지 10의 정수임)
Zinc hydrate as a metal source, adenine as an organic linking agent, stilbenedicarboxylic acid (4,4'-stilbenedicarboxylic acid) as a structural linking agent, and a solvent were mixed to prepare a mixture of reactants, followed by a synthetic reaction, Synthetic step of synthesizing a zinc-containing metal-organic framework compound consisting of repeating structural units represented by the; method for producing a zinc-containing metal-organic framework compound.
[Formula 1]
[Zn 2 (H 2 O)(stdb) 2 (5HAde)(9HAde) 2 ] n
(In Formula 1, stdb is stilbenedicarboxylic acid, HAde is adenine, and n is an integer of 1 to 10)
제3항에 있어서,
상기 합성 단계는,
용매열 합성법, 마이크로파 합성법 및 초음파화학적 합성법 중에서 선택되는 어느 하나의 합성방법을 수행하는 것을 특징으로 아연 함유 금속유기골격체 화합물의 제조방법.
The method of claim 3,
The synthesis step,
A method for producing a zinc-containing metal-organic skeleton compound, characterized in that performing any one of a solvent heat synthesis method, a microwave synthesis method, and an ultrasonic chemical synthesis method.
제3항에 있어서,
상기 아연수화물은,
질산아연수화물, 아세트산아연수화물, 및 아연아세틸아세토네이트수화물 중에 선택되는 어느 하나인 것을 특징으로 하는 아연 함유 금속유기골격체 화합물의 제조방법.
The method of claim 3,
The zinc hydrate,
Zinc nitrate hydrate, zinc acetate hydrate, and zinc acetylacetonate hydrate.
아연 함유 금속유기골격체 촉매로서 하기 화학식 1로 표시되는 구조 단위가 반복되어 이루어진 금속유기골격체 화합물을 촉매로 사용하여 이산화탄소와 에폭시화합물을 카르보닐화 반응시키는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
[화학식 1]
[Zn2(H2O)(stdb)2(5HAde)(9HAde)2]n
(상기 화학식 1에서, stdb은 스틸벤디카르복실산이고, HAde은 아데닌이고, n은 1 내지 10의 정수임)
Preparation of a 5-membered ring carbonate compound characterized in that carbon dioxide and an epoxy compound are subjected to carbonylation reaction using a metal-organic skeleton compound consisting of repeating structural units represented by the following formula (1) as a zinc-containing metallic-organic skeleton catalyst. Way.
[Formula 1]
[Zn 2 (H 2 O)(stdb) 2 (5HAde)(9HAde) 2 ] n
(In Formula 1, stdb is stilbenedicarboxylic acid, HAde is adenine, and n is an integer of 1 to 10)
제6항에 있어서,
상기 카르보닐화 반응은,
반응온도가 80℃ 내지 150℃이고, 이산화탄소 압력이 0.8MPa 내지 1.6MPa인 조건에서 4시간 내지 20시간 동안 반응시키는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
The method of claim 6,
The carbonylation reaction,
A method for producing a 5-membered cyclic carbonate compound, characterized in that the reaction is carried out for 4 to 20 hours under conditions of a reaction temperature of 80°C to 150°C and a carbon dioxide pressure of 0.8 MPa to 1.6 MPa.
제6항에 있어서,
상기 카르보닐화 반응에서 상기 에폭시화합물과 상기 아연 함유 금속유기골격체 촉매의 몰비가 100:0.5 내지 100:5로 첨가하는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
The method of claim 6,
In the carbonylation reaction, the molar ratio of the epoxy compound and the zinc-containing metal-organic skeleton catalyst is added in a range of 100:0.5 to 100:5.
제6항에 있어서,
상기 에폭시화합물은 프로필렌옥사이드, 에피클로로히드린, 알릴글리시딜 에테르, 페닐글리시딜에테르 및 비닐싸이클로헥센 옥사이드 중에서 선택되는 어느 하나인 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.


The method of claim 6,
The epoxy compound is any one selected from propylene oxide, epichlorohydrin, allyl glycidyl ether, phenyl glycidyl ether, and vinylcyclohexene oxide.


KR1020190057630A 2019-05-16 2019-05-16 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst KR102627604B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190057630A KR102627604B1 (en) 2019-05-16 2019-05-16 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190057630A KR102627604B1 (en) 2019-05-16 2019-05-16 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst

Publications (2)

Publication Number Publication Date
KR20200132314A true KR20200132314A (en) 2020-11-25
KR102627604B1 KR102627604B1 (en) 2024-01-24

Family

ID=73645831

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190057630A KR102627604B1 (en) 2019-05-16 2019-05-16 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst

Country Status (1)

Country Link
KR (1) KR102627604B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150070674A (en) * 2013-12-17 2015-06-25 부산대학교 산학협력단 Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150070674A (en) * 2013-12-17 2015-06-25 부산대학교 산학협력단 Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun 등, Green Chem., 14 (2012) 14]
Incorporation of Carbon Dioxide into Poly(glycidyl methacrylate)[N. Kihara 등, Macromolecules, 25 (1992) 4824]
Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide[T. Nishikubo 등, J. Polymer Science, 31 (1993) 939]
Journal of Materials Chemistry C, Vol.4, pp.4259-4268, 2016* *
Polymerization of propylene carbonate[(K. Soga 등, J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219]
Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure[N. Kihara 등, J. Chemical Society: Chemical Communication, (1994) 937]

Also Published As

Publication number Publication date
KR102627604B1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
CN112341394B (en) Method for preparing cyclic carbonate ester by catalysis of hydrogen bond donor functionalized polymeric ionic liquid
CN109134420B (en) Preparation method of cyclic carbonate
KR100911494B1 (en) Preparation of immobilized ionic liquid catalyst on mesoporous hybrid MCM-41 and its use for the synthesis of five member cyclic carbonates
CN107537569A (en) The covalent organic frame catalyst of ion and preparation method and catalytic applications
KR102235012B1 (en) Heterogeneous Organic Catalyst Based on Imidazoline and Method of Preparing Cyclic Carbonate Using the Same
KR101536351B1 (en) Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts
KR20100052000A (en) Preparation of immobilized ionic liquid catalyst on porous amorphous silica and its use for the synthesis of five-membered cyclic carbonates
CN111303204B (en) Two-dimensional metal organic complex containing thiazole functional group and preparation method and application thereof
KR101368349B1 (en) Method of preparation of glycerol carbonate by using the metal organic frameworks as catalysts
CN112169836A (en) Porous ionic polymer heterogeneous catalyst and method for catalytically synthesizing N-formamide by using same
CN114276322A (en) Method for preparing cyclic carbonate by photo-initiated polymerization of ionic liquid material
CN111185239B (en) CO (carbon monoxide)2Preparation method and application of epoxidation fixed catalyst
KR101545257B1 (en) Method of preparation of glycerol carbonate by using the zirconium containing metal organic frameworks as catalysts
KR101825671B1 (en) Method of preparation of five-membered cyclic carbonates by using the copper-aspartate-bisimidazole metal organic frameworks as catalysts
KR101855297B1 (en) Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
KR102627604B1 (en) Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
KR101635756B1 (en) Method of preparation of five-membered cyclic carbonates by using the zinc-glutamate metal organic frameworks as catalysts
US20240189802A1 (en) Spirocyclic compound containing catalyst for use in catalyzing reaction of epoxide compound and carbon dioxide
CN114797978B (en) Carboxylated triazine polyion liquid catalyst and preparation method and application thereof
KR20220028804A (en) Novel copper metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
CN114433228A (en) Method for synthesizing cyclic carbonate ester by catalyzing core-shell type polymeric ionic liquid
KR20160013721A (en) Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst
KR20170048739A (en) Method of preparation of five-membered cyclic carbonates by using the copper-aspartate-bipyridine metal organic frameworks as catalysts
CN115504954B (en) Method for synthesizing cyclic carbonate based on high ion density type polyion liquid catalysis
CN111393460B (en) Zinc coordination compound of flavone derivative and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right