KR20160013721A - Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst - Google Patents

Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst Download PDF

Info

Publication number
KR20160013721A
KR20160013721A KR1020140095902A KR20140095902A KR20160013721A KR 20160013721 A KR20160013721 A KR 20160013721A KR 1020140095902 A KR1020140095902 A KR 1020140095902A KR 20140095902 A KR20140095902 A KR 20140095902A KR 20160013721 A KR20160013721 A KR 20160013721A
Authority
KR
South Korea
Prior art keywords
catalyst
carbon dioxide
alkanolamine
reaction
yield
Prior art date
Application number
KR1020140095902A
Other languages
Korean (ko)
Inventor
박대원
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020140095902A priority Critical patent/KR20160013721A/en
Publication of KR20160013721A publication Critical patent/KR20160013721A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used

Abstract

The present invention relates to a preparation method of a five-membered carbonate compound using an alkanolamine catalyst having a hydroxyl group. The synthesis of a five-membered carbonate compound is environment-friendly and has a simple process. In addition, the alkanolamine catalyst has excellent reactivity and stability, and thus a five-membered carbonate compound can be synthesized at high yield under moderate reaction conditions through hydrogen bonding of the hydroxyl group and synergistic effect of the amine.

Description

알칸올아민을 촉매로 이용한 이산화탄소와 에폭시화합물로부터 5원환 탄산염의 제조방법{Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a five-membered carbonic acid carbonate from carbon dioxide and an epoxy compound using an alkanolamine as a catalyst,

본 발명은 암모니아의 수소원자가 지방족 알코올성의 OH기로 치환된 화합물인 알칸올아민(alkanolanime)을 촉매로 이용하여 온화한 반응조건에서 이산화탄소와 에폭시화합물로부터 5원환 탄산염 화합물을 용이하게 합성시킬 수 있는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법에 관한 것이다.
The present invention is characterized in that a 5-membered ring carbonate compound can be easily synthesized from carbon dioxide and an epoxy compound under mild reaction conditions using an alkanolanime, which is a compound in which the hydrogen atom of ammonia is substituted with an aliphatic alcoholic OH group, as a catalyst To a process for producing a 5-membered ring carbonate compound.

일반적으로 이산화탄소를 유기합성의 원료로 사용하는 기술은 오래전부터 연구되어 왔으며, 특히 에폭시화합물과 이산화탄소를 반응시켜 5원환 탄산염 화합물을 합성하는 기술은 기능성 고분자 재료의 단량체 제조 측면에서 많은 관심을 끌고 있다.
In general, the technique of using carbon dioxide as a raw material for organic synthesis has been studied for a long time. Especially, a technique of synthesizing a 5-membered ring carbonate compound by reacting an epoxy compound with carbon dioxide attracts much attention in terms of manufacturing monomers for functional polymer materials.

종래에는 5원환 탄산염 화합물을 높은 수율로 얻기 위해서 디올(diol)과 포스겐(phosgene)을 사용하는 방법을 이용하였으나 포스겐의 유독성으로 인해 취급하기가 곤란하여 공정상 많은 어려움이 따른다. 그러므로 안전한 조건에서 5원환 탄산염 화합물을 높은 수율로 합성하는 방법이 절실히 요구되고 있는 실정이다.
Conventionally, diol and phosgene are used in order to obtain a 5-membered ring carbonate compound in a high yield, but it is difficult to handle due to the toxicity of phosgene, which causes a lot of difficulties in the process. Therefore, a method for synthesizing a 5-membered ring carbonate compound at a high yield under a safe condition is desperately required.

한편, 5원환 탄산염 화합물을 고수율로 합성하는 방법의 기술들을 보면, 특허문헌 1에는 알킬아민, 디알킬아민, 트리에틸아민 등의 아민류를 촉매로 사용하여 이산화탄소와 에틸렌 옥사이드 또는 프로필렌 옥사이드로부터 에틸렌 카보네이트 또는 프로필렌 카보네이트를 합성하는 방법이 개시되어 있다. 그러나 이러한 합성반응의 조건은 반응압력이 34기압 이상, 반응온도가 100~400 ℃로 반응조건이 높은 편이다.
On the other hand, Patent Literature 1 discloses a technique of synthesizing a 5-membered ring carbonate compound at a high yield by using amines such as alkylamine, dialkylamine, triethylamine, etc. as a catalyst to convert carbon dioxide and ethylene oxide or propylene oxide into ethylene carbonate Or propylene carbonate is disclosed. However, the conditions of the synthesis reaction are higher than the reaction pressure of 34 atm and the reaction temperature of 100 ~ 400 ° C.

또한 비특허문헌 1에서 소가 등은 유기금속 화합물인 ZnEt2, AlCl3, Ti(OBu)4 등을 촉매로 사용하여 40기압, 120~180 ℃에서 프로필렌 옥사이드와 이산화탄소를 3일 동안 반응시켜 분자량 1800~3600 정도의 폴리프로필렌 카보네이트를 합성하였다고 보고한 것이 알려져 있다.
In Non-Patent Document 1, Soga et al. Have reacted propylene oxide with carbon dioxide for 3 days at a temperature of 120 to 180 ° C under a pressure of 40 atm using ZnTe 2 , AlCl 3 , Ti (OBu) 4 , It is known that polypropylene carbonate of about 1800 to 3600 is synthesized.

비특허문헌 2에서 키하라 등은 폴리글리시틸 메타크릴레이트를 기상의 이산화탄소와 120~160 ℃에서 반응시켜 폴리[(2-옥소-1,3-디옥소란-4-일)메틸 메타크릴레이트)](폴리 DOMA)를 합성하였다고 보고한 것이 알려져 있으며, 또한 비특허문헌 3에 폴리글리시딜 메타크릴레이트와 상압의 이산화탄소를 알칼리 금속 할로겐 화합물인 NaI와 트리페닐포스핀 혼합한 것을 촉매로 사용하여 100 ℃에서 반응시켜 폴리DOMA를 얻었다는 보고도 알려져 있다.
In Non-Patent Document 2, Kihara et al. Have reported that polyglycidyl methacrylate reacts with gaseous carbon dioxide at 120 to 160 ° C to form poly [(2-oxo-1,3-dioxolan-4-yl) (Non-Patent Document 3) discloses that polyglycidyl methacrylate and carbon dioxide at normal pressure are mixed with an alkali metal halogen compound, NaI, and triphenylphosphine, as catalysts It is also known that poly DOMA is obtained by reacting at 100 ° C using.

또한 비특허문헌 4에서 니시쿠보 등은 스티렌, 디비닐벤젠, 비닐벤젠클로라이드를 동시에 공중합시켜 제조한 폴리스티렌에 4급 염화암모늄 혹은 4급 염화인염을 부착시겨 촉매로 사용하고, 톨루엔을 용매로 사용하여 상압, 80 ℃에서 이산화탄소와 페닐글리시딜 에테르를 24시간 동안 반응시킨 결과 페녹시메틸 에틸렌 카보네이트의 수율을 30~95% 얻은 것으로 알려져 있지만 이 경우에도 촉매의 구조가 너무 조밀하여 확산저항을 유발함으로써 반응물이 촉매의 활성점에 접근하기가 어렵게 되므로 반응수율이 낮고 반응에 장시간이 소요되는 단점이 있었다.
In Non-Patent Document 4, Nishikubo et al. Used polystyrene prepared by co-copolymerizing styrene, divinylbenzene, and vinylbenzene chloride simultaneously with quaternary ammonium chloride or quaternary chloride salt as a catalyst, and using toluene as a solvent As a result of the reaction of carbon dioxide and phenylglycidyl ether at normal pressure and 80 ° C for 24 hours, it was known that the yield of phenoxymethylethylene carbonate was 30 to 95%. However, in this case, too, the structure of the catalyst was too dense, It is difficult for the reactant to approach the active site of the catalyst, so that the reaction yield is low and the reaction takes a long time.

전술한 바와 같은 종래의 에폭시화합물과 이산화탄소의 부가반응에는 주로 값비싼 유기금속 촉매를 이용하거나 반응조건이 높기 때문에 공정상의 비용이 많이 드는 문제점이 있고, 그리고 니시쿠보 등의 방법에 따라 제조된 촉매의 경우에도 반응물에 대한 확산저항이 심하고 안정성이 낮아 수율이 저하되는 등의 문제점이 있다.
The conventional addition reaction between the epoxy compound and carbon dioxide as described above has a problem in that a costly expensive organometallic catalyst is used or a process cost is high due to a high reaction condition. In addition, there is a problem in that the catalyst prepared according to the method of Nishikubo There is a problem that the diffusion resistance to the reactant is high and the stability is low and the yield is lowered.

한편, 특허문헌 2에서 3급 알칸올아민 화합물을 사용하여 효과적인 이산화탄소의 흡수제로 사용하였으며 비특허문헌 6에서 알칸올아민(alkanolanime)과 이산화탄소의 흡수반응은 이산화탄소 가수분해 염기촉매 반응으로 흡수가 일어난다고 잘 알려져 있다.On the other hand, in Patent Document 2, a tertiary alkanolamine compound is used as an effective absorbent for carbon dioxide. In non-patent reference 6, the absorption reaction of alkanolanime and carbon dioxide is absorbed by a carbon dioxide hydrolysis base catalytic reaction It is well known.

이와 같이 알칸올아민은 상용 공정에서 이산화탄소의 흡수제로 광범위하게 사용되고 있으나, 이산화탄소와 에폭시화합물의 부가반응에 촉매로 사용된 사례는 전혀 알려지지 않았다.
As described above, alkanolamine has been extensively used as an absorbent for carbon dioxide in a commercial process, but there is no known case that a catalyst is used as a catalyst for the addition reaction of carbon dioxide and an epoxy compound.

그리고 비특허문헌 5에서 선 등은 촉매의 수산기(hydroxyl group)의 수소결합(hydrogen bonding)은 할로겐 음이온과 상승효과(synergistic effect)에 의해 이산화탄소와 에폭시화합물의 부가반응에서 에폭시화합물의 고리열림(ring opening)을 촉진시켜 반응성이 증가한다고 보였다.
In the non-patent document 5, the hydrogen bonding of the hydroxyl group of the catalyst is caused by the synergistic effect with the halogen anion and the ring opening of the epoxy compound in the addition reaction of the carbon dioxide and the epoxy compound opening of the cells.

따라서 본 발명자는 수산기(hydroxyl group)를 보유한 알칸올아민(alkanolanime)을 에폭시화합물과 이산화탄소의 부가반응에 촉매로 사용하여 5원환 탄산염 화합물을 합성함으로써 본 발명을 완성하게 되었다.
Accordingly, the present inventors have completed the present invention by synthesizing a 5-membered ring carbonate compound by using an alkanolanime having a hydroxyl group as a catalyst in an addition reaction of an epoxy compound and carbon dioxide.

특허문헌 1 : 미국 등록특허공보 제2773881호(1956년 12월 11일 등록) 글리콜카보네이트Patent Document 1: United States Patent Publication No. 2773881 (registered on December 11, 1956) Glycol carbonate 특허문헌 2 : 대한민국 등록특허공보 제10-0259461호(2000년 3월 22일 등록) 반응활성제 첨가에 의한 제3급 알칸올아민의 이산화탄소 흡수성능을 개선한 흡수제Patent Document 2: Korean Registered Patent No. 10-0259461 (registered on March 22, 2000) An absorbent which improves the carbon dioxide absorption performance of a tertiary alkanolamine by addition of a reaction activator

비특허문헌 1 : Polymerization of propylene carbonate[(K. Soga 등, J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219]Non-Patent Document 1: Polymerization of propylene carbonate [(K. Soga et al., J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219] 비특허문헌 2 : Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure[N. Kihara 등, J. Chemical Society: Chemical Communication, (1994) 937]Non-Patent Document 2: Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly (glycidyl methacrylate) to carbonate-polymer under atomospheric pressure [N. Kihara et al., J. Chemical Society: Chemical Communication, (1994) 937] 비특허문헌 3 : Incorporation of Carbon Dioxide into Poly(glycidyl methacrylate)[N. Kihara 등, Macromolecules, 25 (1992) 4824]Non-Patent Document 3: Incorporation of Carbon Dioxide into Poly (glycidyl methacrylate) [N. Kihara et al., Macromolecules, 25 (1992) 4824] 비특허문헌 4 : Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide[T. Nishikubo 등, J. Polymer Science, 31 (1993) 939]Non-Patent Document 4: Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide [T. Nishikubo et al., J. Polymer Science, 31 (1993) 939] 비특허문헌 5 : Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun 등, Green Chem., 14 (2012) 14]Non-Patent Document 5: Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun et al., Green Chem., 14 (2012) 14] 비특허문헌 6 : The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant [S. J. Park 등, Korean Chem. Eng. Res., 50 (2012) 128]Non-Patent Document 6: The Operational Characteristics of CO2 5 ton / day Absorptive Separation Pilot Plant [S. J. Park et al., Korean Chem. Eng. Res., 50 (2012) 128]

상기와 같은 문제점을 해결하기 위하여 본 발명은 수산기(hydroxyl group)를 보유한 알칸올아민(alkanolamine)을 촉매로 이용한 비교적 낮은 압력과 낮은 온도 조건에서 높은 수율로 5원환 탄산염 화합물을 합성할 수 있도록 한 것을 특징으로 하는 알칸올아민(alkanolamine)을 촉매로 사용한 5원환 탄산염 화합물의 제조방법을 제공을 과제로 한다.
DISCLOSURE Technical Problem In order to solve the above problems, it is an object of the present invention to synthesize a 5-membered ring carbonate compound at a relatively low pressure and a low temperature using an alkanolamine having a hydroxyl group as a catalyst at a high yield And a method for producing a 5-membered cyclic carbonate compound using the alkanolamine as a catalyst.

상기의 과제를 해결하기 위한 본 발명은 수산기(hydroxyl group)를 보유한 알칸올아민(alkanolamine)을 촉매로 사용하여, 에폭시화합물과 이산화탄소를 부가반응시키는 것을 특징으로 하는 5원한 탄산염 화합물의 제조방법을 과제 해결 수단으로 한다.
In order to solve the above problems, the present invention provides a method for producing a five-membered carbonate compound characterized in that an epoxy compound and carbon dioxide are additionally reacted using an alkanolamine having a hydroxyl group as a catalyst As a solution.

상기 부가반응은 수산기(hydroxyl group)를 보유한 알칸올아민(alkanolamine) 촉매를 사용하여 이산화탄소의 초기압력이 0.8~2.0 MPa, 반응온도 110~140 ℃, 반응시간 2~4시간, 촉매 량 0.4~0.8 mmol%인 조건에서 반응시키며, The addition reaction is carried out by using an alkanolamine catalyst having a hydroxyl group at an initial pressure of 0.8 to 2.0 MPa, a reaction temperature of 110 to 140 ° C, a reaction time of 2 to 4 hours, a catalyst amount of 0.4 to 0.8 mmol < / RTI >

상기 알칸올아민은 N-메틸에탄올아민[N-methylethanolamine(MEA)], 트리에탄올아민[triethanolamine(TEA)], N,N-디메틸에탄올아민[N,N-dimethylethanolamine(DMEA)], N,N-디메틸프로판올아민[N,N-dimethylpropanolamine(DMPA)] 및 메틸디에탄올아민[methyldiethanolamine(MDEA)] 중에서 1종을 선택하는 것을 특징으로 하며,The alkanolamine is N - methyl ethanolamine [N -methylethanolamine (MEA)], triethanol amine [triethanolamine (TEA)], N , N - dimethylethanolamine [N, N -dimethylethanolamine (DMEA) ], N, N - (DMPA), and methyldiethanolamine (MDEA), and is characterized in that one of these solvents is selected from the group consisting of N , N- dimethylpropanolamine (DMPA) and methyldiethanolamine

상기 에폭시화합물은 프로필렌 옥사이드(propylene oxide), 클로로프로필렌 옥사이드(chloropropylene oxide), 알릴 글리시딜 에테르(allyl glycidyl ether), 1,2-에폭시-5-헥센(1,2-epoxy-5-hexene), 글리시딜 이소부틸 에테르(Glycidyl isobutyl ether), 스타이렌 옥사이드(styrene oxide) 중에서 1종을 선택하는 것을 특징으로 한다.
The epoxy compound may be selected from the group consisting of propylene oxide, chloropropylene oxide, allyl glycidyl ether, 1,2-epoxy-5-hexene, , Glycidyl isobutyl ether, and styrene oxide is selected from the group consisting of glycidyl isobutyl ether and styrene oxide.

이상의 과제 해결 수단에 의한 본 발명은 수산기(hydroxyl group)를 보유한 알칸올아민(alkanolamine)을 촉매로 사용하여 5원환 탄산염 화합물을 합성함으로써, 종래의 촉매 보다 반응성이 우수하고 보유한 수산기(hydroxyl group)와 수소결합(hydrogen bonding)은 아민과 상승효과(synergistic effect)로 인해 비교적 낮은 압력과 낮은 온도 조건에서 높은 수율로 5원환 탄산염 화합물을 합성할 수 있는 장점이 있다.
According to the present invention, by synthesizing a 5-membered ring carbonate compound using an alkanolamine having a hydroxyl group as a catalyst, it is possible to obtain a compound having a hydroxyl group Hydrogen bonding has an advantage of synthesizing a 5-membered ring carbonate compound at a relatively low pressure and a low temperature due to a synergistic effect with amines at a high yield.

상기 효과를 달성하기 위한 본 발명은 수산기(hydroxyl group)를 보유한 알칸올아민(alkanolamine)을 촉매를 이용한 에폭시화합물과 이산화탄소로부터 5원환 탄산염 화합물의 제조방법에 관한 것이다.
The present invention relates to a method for preparing a 5-membered cyclic carbonate compound from an epoxy compound and carbon dioxide by using an alkanolamine having a hydroxyl group as a catalyst.

본 발명에 사용된 알칸올아민(alkanolamine)의 종류는 N-메틸에탄올아민[N-methylethanolamine(MEA)], 트리에탄올아민[triethanolamine(TEA)], N,N-디메틸에탄올아민[N,N-dimethylethanolamine(DMEA)], N,N-디메틸프로판올아민[N,N-dimethylpropanolamine(DMPA)] 및 메틸디에탄올아민[methyldiethanolamine(MDEA)]이다.
Kind of the alkanolamines (alkanolamine) used in the present invention is N - methyl ethanolamine [N -methylethanolamine (MEA)], triethanol amine [triethanolamine (TEA)], N , N - dimethylethanolamine [N, N -dimethylethanolamine (DMEA)], N, N - dimethyl propanol amine [N, N -dimethylpropanolamine (DMPA) ] and methyl diethanol amine [methyldiethanolamine (MDEA)].

본 발명에 사용된 알칸올아민(alkanolamine) 촉매는 수산기의 수소결합과 아민의 상승효과(synergistic effect)에 의해 온화한 반응조건에서도 반응성이 높은 것이 특징이다.
The alkanolamine catalyst used in the present invention is characterized in that it has high reactivity under mild reaction conditions due to the synergistic effect of the hydrogen bond of the hydroxyl group and the amine.

상기 촉매를 사용하여 어떠한 용매의 사용 없이 에폭시화합물과 이산화탄소만을 사용하는 것이 특징이며 부가반응에 의해 5원환 탄산염 화합물의 제조방법은 다음과 같다.
It is characterized by using only the epoxy compound and carbon dioxide without using any solvent by using the catalyst, and the production method of the 5-membered ring carbonate compound by the addition reaction is as follows.

본 발명에서 첨가하는 촉매인 알칸올아민(alkanolamine)은 에폭시화합물 대 촉매의 mol비가 100 대 0.4~0.8의 비율로 첨가한다. 상기에서 첨가하는 촉매의 양이 0.4 미만이 될 경우에는 이산화탄소와 에폭시화합물이 충분히 반응하지 아니하여 미반응의 에폭시화합물이 반응물 내에 잔류할 우려가 있고, 촉매의 양이 0.8 를 초과할 경우에는 반응물과 촉매의 혼합이 좋지 않아 촉매 활성이 감소할 우려가 있다.
The alkanolamine, which is a catalyst added in the present invention, is added in a molar ratio of epoxy compound to catalyst of 100 to 0.4 to 0.8. If the amount of the added catalyst is less than 0.4, the carbon dioxide and the epoxy compound do not sufficiently react with each other, so that the unreacted epoxy compound may remain in the reactant. When the amount of the catalyst exceeds 0.8, The mixing of the catalyst is poor and the catalytic activity may decrease.

상기에서 5원환 탄산염 화합물 합성의 반응조건은 110~140 ℃, 0.8~2.0 MPa(이산화탄소의 초기압력)의 조건에서 2~4시간 반응시키는 것이 바람직하며, 이산화탄소의 초기압력, 반응온도 또는 반응시간이 상기에서 한정한 범위 미만이 될 경우에는 생성물의 수율이 감소할 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 생성물이 분해하거나 수율이 감소할 우려가 있다.
The reaction conditions for the synthesis of the 5-membered cyclic carbonate compound are preferably 2 to 4 hours at 110 to 140 ° C and 0.8 to 2.0 MPa (initial pressure of carbon dioxide), and the initial pressure, reaction temperature or reaction time of carbon dioxide If the amount is less than the above-mentioned range, there is a fear that the yield of the product is reduced. If the amount is exceeded, the product may be decomposed or the yield may decrease.

상기 반응에서 사용 가능한 에폭시화합물은 프로필렌 옥사이드(propylene oxide), 클로로프로필렌 옥사이드(chloropropylene oxide), 알릴 글리시딜 에테르(allyl glycidyl ether), 1,2-에폭시-5-헥센(1,2-epoxy-5-hexene), 글리시딜 이소부틸 에테르(Glycidyl isobutyl ether), 스타이렌 옥사이드(styrene oxide) 중에서 1종을 선택하여 사용하는 것이 바람직하다.
The epoxy compounds which can be used in the above reaction include propylene oxide, chloropropylene oxide, allyl glycidyl ether, 1,2-epoxy- 5-hexene, glycidyl isobutyl ether, styrene oxide, and the like.

이하 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 단, 본 발명의 범위가 이들 실시예로만 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the scope of the present invention is not limited to these examples.

수산기(hydroxyl group)를 보유한 알칸올아민(alkanolamine)을 사용하여 촉매의 구조에 따른 영향을 관찰하기 위해 용매를 사용하지 않고 프로필렌 옥사이드와 이산화탄소의 부가반응에 의해 5원환 탄산염 화합물을 합성하는 반응을 진행하였다.
In order to observe the effect of the alkanolamine having a hydroxyl group on the structure of the catalyst, a reaction of synthesizing a 5-membered ring carbonate compound by the addition reaction of propylene oxide with carbon dioxide was carried out without using a solvent Respectively.

(실시예 1~5 및 비교예 1) (Examples 1 to 5 and Comparative Example 1)

실시예 1~5 및 비교예 1은 아래 [표 1]에 기재된 바와 같이 알칸올아민계 촉매로서, 실시예 1은 N,N-디메틸에탄올아민[N,N-dimethylethanolamine(DMEA)], 실시예 2는 N,N-디메틸프로판올아민[N,N-dimethylpropanolamine(DMPA)], 실시예 3은 메틸디에탄올아민[methyldiethanolamine(MDEA)], 실시예 4는 트리에탄올아민[triethanolamine(TEA)], 실시예 5는 N-메틸에탄올아민[N-methylethanolamine(MEA)] 및 비교예 1은 에탄올아민[ethanolamine(EA)]의 촉매를 각각 사용하였다.
Examples 1 to 5 and Comparative Example 1 [Table 1] as an alkanolamine-containing catalyst as described in Example 1, is N, N - dimethylethanolamine [N, N -dimethylethanolamine (DMEA)], Example 2 N, N - dimethyl propanol amine [N, N -dimethylpropanolamine (DMPA) ], example 3 is methyl diethanolamine [methyldiethanolamine (MDEA)], example 4 triethanolamine [triethanolamine (TEA)], example 5 is N - methyl ethanolamine [N -methylethanolamine (MEA)] and Comparative example 1 was used as the catalyst of the ethanolamine [ethanolamine (EA)], respectively.

실시예 1~5 및 비교예 1은 아래 [표 1]에 기재된 바와 같은 촉매 0.8 mol% [프로필렌 옥사이드(propylene oxide, PO) 기준]을 각각 사용하여 42.8 mmol의 프로필렌 옥사이드를 120 ℃, 1.0 MPa(이산화탄소의 초기압력)에서 3시간동안 반응하여 프로필렌 카보네이트(propylene carbonate, PC)를 합성한 실험한 결과를 아래 [표 1]에 나타내었다.
Examples 1 to 5 and Comparative Example 1 were prepared by dissolving 42.8 mmol of propylene oxide at 120 ° C and 1.0 MPa (molar ratio) using 0.8 mol% catalyst (propylene oxide, PO) (Initial pressure of carbon dioxide) for 3 hours to synthesize propylene carbonate (PC). The results are shown in Table 1 below.

실시예Example 촉매catalyst PC 수율 (%)PC yield (%) 실시예 1Example 1 DMEADMEA 8282 실시예 2Example 2 DMPADMPA 9191 실시예 3Example 3 MDEAMDEA 7676 실시예 4Example 4 TEATEA 9393 실시예 5 Example 5 MEAMEA 7171 비교예 1Comparative Example 1 EAEA 5050

상기 [표1]에서 알 수 있는 바와 같이, 알칸올아민(alkanolamine) 중 1급 아민에서 3급 아민으로 전자밀도(electron density)가 증가 할수록 염기성이 커져 높은 반응성을 나타내었으며 그리고 수산기의 수가 많을수록 수소결합의 수가 증가하기 때문에 높은 수율을 보였다.
As can be seen from the above Table 1, as the electron density was increased from the primary amine to the tertiary amine in the alkanolamine, the basicity became higher and the higher reactivity was shown. As the number of hydroxyl groups increased, the hydrogen As the number of bonds increased, the yield was high.

(실시예 6~9)(Examples 6 to 9)

실시예 2와 동일한 조건으로 반응을 수행하되, 이산화탄소의 초기압력을 변화시켜 PC의 수율을 측정한 결과를 아래 [표 2]에 나타내었다.
The reaction was carried out under the same conditions as in Example 2, but the yield of PC was measured by changing the initial pressure of carbon dioxide. The results are shown in Table 2 below.

실시예Example 이산화탄소 초기압력 (MPa)Carbon dioxide initial pressure (MPa) PC 수율 (%)PC yield (%) 실시예 6 Example 6 0.80.8 8888 실시예 2Example 2 1.01.0 9191 실시예 7 Example 7 1.21.2 9393 실시예 8 Example 8 1.41.4 9393 실시예 9 Example 9 2.02.0 9292

상기 [표 2]에서 알 수 있는 바와 같이, 이산화탄소의 압력이 0.8 MPa에서 1.4 MPa로 증가할수록 이산화탄소의 흡수량이 증가하여 PC의 수율이 증가하였으나, 압력이 더 높으면 이산화탄소가 반응물인 PO와 담지 촉매와의 접촉을 오히려 방해하는 희석 효과(dilution effect)에 의해 PC의 수율이 감소하였다.
As can be seen from the above Table 2, as the pressure of carbon dioxide increases from 0.8 MPa to 1.4 MPa, the absorption of carbon dioxide increases and the yield of PC increases. If the pressure is higher, the carbon dioxide reacts with PO, The yield of PC was decreased by the dilution effect which interferes with the contact of the PC.

(실시예 10~12)(Examples 10 to 12)

실시예 2와 동일한 조건으로 반응을 수행하되, 반응온도를 변화시켜 PC의 수율을 측정한 결과를 아래 [표 3]에 나타내었다.
The reaction was carried out under the same conditions as in Example 2, and the yield of PC was measured by varying the reaction temperature. The results are shown in Table 3 below.

실시예Example 반응 온도 (℃)Reaction temperature (캜) PC 수율 (%)PC yield (%) 실시예 10Example 10 110110 8484 실시예 2Example 2 120120 9191 실시예 11Example 11 130130 9595 실시예 12Example 12 140140 9292

상기 [표 3]에서 알 수 있는 바와 같이, 반응온도가 110 ℃에서 130 ℃까지는 PC의 수율이 증가하였으나 140 ℃ 이상에서는 이 수율이 오히려 감소하였는데, 이것은 생성된 PC가 고온에서는 분해되기 때문으로 판단된다.
As can be seen from the above Table 3, the yield of PC increased from 110 ° C to 130 ° C, but the yield decreased more than 140 ° C because the generated PC was decomposed at high temperatures do.

(실시예 13~16)(Examples 13 to 16)

실시예 2와 동일한 조건으로 반응을 수행하되, 반응시간을 변화시켜 PC의 수율을 측정한 결과를 아래 [표 4]에 나타내었다.
The reaction was carried out under the same conditions as in Example 2, and the yield of PC was measured by varying the reaction time. The results are shown in Table 4 below.

실시예Example 반응시간 (시간)Reaction time (hours) PC 수율 (%)PC yield (%) 실시예 13Example 13 22 8080 실시예 14Example 14 2.52.5 8989 실시예 2Example 2 33 9191 실시예 15Example 15 3.53.5 9393 실시예 16Example 16 44 9393

상기 [표 4]에서 알 수 있는 바와 같이, 반응 시간이 3.5시간까지 꾸준히 증가한다. 그러나 3.5시간 이상에서는 거의 일정한 수율을 나타내어 평형반응에 도달한 것으로 판단된다.
As can be seen in Table 4, the reaction time steadily increases until 3.5 hours. However, when the reaction time was more than 3.5 hours, the equilibrium reaction was reached.

(실시예 17~19)(Examples 17 to 19)

실시예 2와 동일한 조건으로 반응을 수행하되, 촉매의 양을 변화시켜 PC의 수율을 측정한 결과를 아래 [표 5]에 나타내었다.
The reaction was carried out under the same conditions as in Example 2, and the yield of PC was measured by varying the amount of the catalyst, and the results are shown in Table 5 below.

실시예Example 촉매 mol%The catalyst mol% PC 수율 (%)PC yield (%) 실시예 17Example 17 0.40.4 7979 실시예 18Example 18 0.50.5 8888 실시예 19Example 19 0.60.6 9090 실시예 2Example 2 0.80.8 9191

상기 [표 5]로부터 알 수 있는 바와 같이, 촉매의 양이 증가함에 따라 0.6 mol%(실시예 19)까지 반응성이 증가하였고 이 후 촉매의 양이 증가함에 따라 반응성은 크게 증가하지 않음을 보여준다. 이는 프로필렌 옥사이드와 이산화탄소의 부가반응에 의한 프로필렌 카보네이트의 합성에 있어 DMPA의 양이 0.6 mmol%이면 충분하다고 판단된다.
As can be seen from the above Table 5, the reactivity was increased up to 0.6 mol% (Example 19) as the amount of the catalyst was increased, and the reactivity was not greatly increased as the amount of the catalyst was increased thereafter. It is considered that the amount of DMPA in the synthesis of propylene carbonate by the addition reaction of propylene oxide with carbon dioxide is 0.6 mmol%.

(실시예 20~24)(Examples 20 to 24)

실시예 2와 동일한 조건으로 반응을 수행하되, 사용한 에폭시화합물을 변화시켜 5원환 탄산염 화합물을 제조하여 수율을 아래 [표 6]에 나타내었다.The reaction was carried out under the same conditions as in Example 2 except that the 5-membered ring carbonate compound was prepared by changing the epoxy compound used and the yield was shown in Table 6 below.

실시예Example 에폭시화합물Epoxy compound 5원환 탄산염의 수율 (%)Yield of 5-membered carbonates (%) 실시예 2Example 2 프로필렌 옥사이드Propylene oxide 9191 실시예 20Example 20 클로로프로필렌 옥사이드Chloropropylene oxide 9292 실시예 21Example 21 알릴글리시딜 에테르Allyl glycidyl ether 8787 실시예 22Example 22 1,2-에폭시-5-헥센1,2-epoxy-5-hexene 8282 실시예 23Example 23 글리시딜 이소부틸 에테르Glycidyl isobutyl ether 8888 실시예 24Example 24 스타이렌 옥사이드Styrene oxide 8383

상기 [표 6]에 나타난 바와 같이, 본 DMPA 촉매는 여러 가지 형태의 에폭시화합물과 이산화탄소의 부가반응에 효율적임을 알 수 있다.
As shown in Table 6, it can be seen that the DMPA catalyst is effective for the addition reaction of various types of epoxy compounds with carbon dioxide.

(비교예 2~4)(Comparative Examples 2 to 4)

본 비교예 2~4에서는 알칸올아민(alkanolamine)의 수산기(hydroxyl group)의 역할을 규명하기위해 실시예 2와 동일한 조건으로 반응을 수행하고 수산기가 없는 3급 아민인 트리메틸아민(0.8 mol% PO 기준)을 단독 또는 H2O(1.1 mol% PO 기준) 및 메탄올(0.8 mol% PO 기준)을 혼합한 촉매를 사용하여 5원환 탄산염 화합물을 제조하였고 그 수율을 측정비교하여 아래 [표 7]에 나타내었다.
In the present Comparative Examples 2 to 4, the reaction was carried out under the same conditions as in Example 2 to identify the hydroxyl group of the alkanolamine. Trimethylamine (0.8 mol% PO 5-membered cyclic carbonate compound was prepared by using a catalyst prepared by mixing either H 2 O (based on 1.1 mol% based on PO) and methanol (based on 0.8 mol% based on PO), and comparing the measured yields, Respectively.

비교예Comparative Example 촉매catalyst PC 수율 (%)PC yield (%) 22 트리메틸아민Trimethylamine 88 33 트리메틸아민/H2OTrimethylamine / H 2 O 5555 44 트리메틸아민/메탄올Trimethylamine / methanol 6969

상기 [표 7]로부터 알 수 있는 바와 같이, 일반 2급 및 3급 아민을 단독(비교예 2)으로 사용하였을 경우와 H2O(비교예 3) 또는 메탄올(비교예 4)을 혼합하여 사용하였을 비교예 3과 4의 경우가 더 높은 PC의 수율을 보여주며 이는 H2O 및 메탄올의 수소결합과 아민의 상승효과에 의해 에폭시화합물의 고리 열림을 촉진하여 반응성이 증가하기 때문이다. 여기서 실시예 2를 비교하면 비교예 4 보다 더 높은 수율로 PC을 합성하는 것을 알 수 있는데 이는 수산기를 함께 보유한 DMPA가 에폭시화합물과 이산화탄소의 부가반응에 더 유리 하다고 판단된다.
As can be seen from the above Table 7, the use of the common secondary and tertiary amines alone (Comparative Example 2) and the use of H 2 O (Comparative Example 3) or methanol (Comparative Example 4) Comparative Examples 3 and 4 show a higher yield of PC because the reaction is accelerated by promoting the ring opening of the epoxy compound by the hydrogen bonding of H 2 O and methanol and the synergistic effect of amine. Here, the comparison of Example 2 shows that PC is synthesized at a higher yield than that of Comparative Example 4, indicating that DMPA having a hydroxyl group together is more advantageous in addition reaction of an epoxy compound with carbon dioxide.

따라서 상기 실시예를 통해 살펴본 바와 같이 알칸올아민(alkanolamine) 촉매는 반응성과 안정성이 우수하고, 보유한 수산기(hydroxyl group)의 수소결합(hydrogen bonding)과 아민의 상승효과(synergistic effect)에 의해 낮은 온도와 낮은 압력에서 높은 수율로 5원환 탄산염 화합물을 합성할 수 있음이 확인되었다.
Therefore, as shown in the above examples, the alkanolamine catalyst is excellent in reactivity and stability, and has a low temperature due to the hydrogen bonding of the hydroxyl group and the synergistic effect of amine And it was confirmed that a 5 - membered ring carbonate compound can be synthesized with a high yield at a low pressure.

상기에서 설명 드린 본 발명은 상기의 구성에 의해서만 반드시 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다.The present invention described above is not necessarily limited to the above configuration, and various substitutions, modifications, and changes may be made without departing from the technical spirit of the present invention.

Claims (5)

수산기(hydroxyl group)을 보유한 알칸올아민(alkanolamine) 촉매를 사용하여 이산화탄소와 에폭시화합물을 부가반응시키는 것을 특징으로 하는 5원환 탄산염의 제조방법.
Wherein an alkanolamine catalyst having a hydroxyl group is used to cause addition reaction of carbon dioxide and an epoxy compound.
제 1항에 있어서,
상기 알칸올아민은 트리에탄올아민(triethanolamine), N,N-디메틸에탄올아민(N,N-dimethylethanolamine), N,N-디메틸프로판올아민(N,N-dimethylpropanolamine), 메틸디에탄올아민(methyldiethanolamine), N-메틸에탄올아민(N-methylethanolamine) 중에서 1종을 선택하여 촉매로 사용한 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
The method according to claim 1,
The alkanolamine is triethanolamine (triethanolamine), N, N - dimethylethanolamine (N, N -dimethylethanolamine), N , N - dimethyl propanol amine (N, N -dimethylpropanolamine), methyl diethanolamine (methyldiethanolamine), N -methyl ethanolamine process for producing a five-membered carbonate compound selected from one or (N -methylethanolamine), characterized in that used as the catalyst.
제 1항 내지 제 2항 중 어느 한 항에 있어서,
상기 부가반응은 110~140 ℃의 온도, 0.8~2.0 MPa의 이산화탄소 압력에서 2~4시간 반응시키는 것을 특징으로 하는 5원환 탄산염의 제조방법.
3. The method according to any one of claims 1 to 2,
Wherein the addition reaction is carried out at a temperature of 110 to 140 占 폚 and a carbon dioxide pressure of 0.8 to 2.0 MPa for 2 to 4 hours.
제 1항에 있어서,
상기 알칸올아민(alkanolamine) 촉매의 첨가량은 에폭시화합물 대 촉매의 mol비가 100 대 0.4~0.8인 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
The method according to claim 1,
Wherein the amount of the alkanolamine catalyst to be added is such that the molar ratio of the epoxy compound to the catalyst is 100 to 0.4 to 0.8.
제 1항에 있어서,
상기 에폭시화합물은 에폭사이드 유도체로서, 프로필렌 옥사이드, 클로로프로필렌 옥사이드, 알릴 글리시딜 에테르, 1,2-에폭시-5-헥센, 글리시딜 이소부틸 에테르, 스타이렌 옥사이드 중에서 1종을 선택하는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
The method according to claim 1,
The epoxy compound is preferably an epoxide derivative selected from the group consisting of propylene oxide, chloropropylene oxide, allyl glycidyl ether, 1,2-epoxy-5-hexene, glycidyl isobutyl ether and styrene oxide To obtain a 5-membered cyclic carbonate compound.
KR1020140095902A 2014-07-28 2014-07-28 Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst KR20160013721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140095902A KR20160013721A (en) 2014-07-28 2014-07-28 Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140095902A KR20160013721A (en) 2014-07-28 2014-07-28 Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst

Publications (1)

Publication Number Publication Date
KR20160013721A true KR20160013721A (en) 2016-02-05

Family

ID=55353540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140095902A KR20160013721A (en) 2014-07-28 2014-07-28 Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst

Country Status (1)

Country Link
KR (1) KR20160013721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067301A (en) * 2016-11-15 2018-05-25 中国科学院大连化学物理研究所 A kind of quaternary ammonium salt ionic liquid polyalcohol catalyst is in CO2It is applied in cycloaddition reaction
KR20230071298A (en) 2021-11-16 2023-05-23 박준희 Server and method for making a promissory note through mediation between creditor and debtor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067301A (en) * 2016-11-15 2018-05-25 中国科学院大连化学物理研究所 A kind of quaternary ammonium salt ionic liquid polyalcohol catalyst is in CO2It is applied in cycloaddition reaction
KR20230071298A (en) 2021-11-16 2023-05-23 박준희 Server and method for making a promissory note through mediation between creditor and debtor

Similar Documents

Publication Publication Date Title
CN105949129A (en) Imidazolium bromide ionic liquid containing amine groups and preparation method and application of ionic liquid
JP6786811B2 (en) Compositions containing organic base compounds, Lewis acids and active hydrogen-containing compounds
JP6878861B2 (en) A composition containing a phosphazenium compound, a Lewis acid, and an active hydrogen-containing compound.
CN102336735B (en) Method for preparing cyclic carbonate by catalyzing with ionic liquid
Ravi et al. Organic sulphonate salts tethered to mesoporous silicas as catalysts for CO 2 fixation into cyclic carbonates
KR100999360B1 (en) Preparation of immobilized ionic liquid catalyst on porous amorphous silica and its use for the synthesis of five-membered cyclic carbonates
KR101536351B1 (en) Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts
EP3626760B1 (en) Catalyst for synthesizing polyethylene oxide polymer and synthesis method thereof
CN106045913B (en) A kind of imidazoles perrhenate ions liquid and its preparation method and application with amino
KR20090079120A (en) Preparation of immobilized ionic liquid catalyst on mesoporous hybrid mcm-41 and its use for the synthesis of five member cyclic carbonates
KR20160013721A (en) Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst
KR101368349B1 (en) Method of preparation of glycerol carbonate by using the metal organic frameworks as catalysts
KR20180103189A (en) Reactive recovery of dimethyl carbonate from dimethyl carbonate/methanol mixtures
KR101545257B1 (en) Method of preparation of glycerol carbonate by using the zirconium containing metal organic frameworks as catalysts
KR20200023037A (en) Polystyrene immobilized metal containing ionic liquid catalysts, a preparation method and use thereof
CN110885314B (en) Metal ion liquid, preparation method thereof and application of metal ion liquid in preparation of cyclic carbonate by catalyzing carbon dioxide cycloaddition reaction
CN115108912B (en) Strong alkaline ionic liquid catalytic CO 2 Method for synthesizing dimethyl carbonate
KR101635756B1 (en) Method of preparation of five-membered cyclic carbonates by using the zinc-glutamate metal organic frameworks as catalysts
CN111185239A (en) CO (carbon monoxide)2Preparation method and application of epoxidation fixed catalyst
TWI654178B (en) Method for preparing dialkyl carbonate
CN112745267A (en) Imidazolyl ionic liquid and application thereof
KR101855297B1 (en) Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
KR20170116768A (en) Method of preparation of five-membered cyclic carbonates by using the copper-aspartate-bisimidazole metal organic frameworks as catalysts
CN109289921B (en) Catalytic system based on phytic acid and used for synthesizing cyclic carbonate
KR102627604B1 (en) Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application