KR20200129615A - Plastic vacuum deposition coating system capable of coating with uniform thickness - Google Patents

Plastic vacuum deposition coating system capable of coating with uniform thickness Download PDF

Info

Publication number
KR20200129615A
KR20200129615A KR1020190054291A KR20190054291A KR20200129615A KR 20200129615 A KR20200129615 A KR 20200129615A KR 1020190054291 A KR1020190054291 A KR 1020190054291A KR 20190054291 A KR20190054291 A KR 20190054291A KR 20200129615 A KR20200129615 A KR 20200129615A
Authority
KR
South Korea
Prior art keywords
coating
vacuum
uniform thickness
plastic
jig
Prior art date
Application number
KR1020190054291A
Other languages
Korean (ko)
Inventor
이호섭
Original Assignee
이호섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이호섭 filed Critical 이호섭
Priority to KR1020190054291A priority Critical patent/KR20200129615A/en
Publication of KR20200129615A publication Critical patent/KR20200129615A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/355Introduction of auxiliary energy into the plasma using electrons, e.g. triode sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a plastic vacuum deposition coating device capable of uniform thickness coating. The plastic vacuum deposition coating device capable of uniform thickness coating comprises a vacuum chamber (33), a mobile cart (36), an external jig (39), an inner jig (40), a plurality of water-cooled plasma electrodes (50), a plurality of magnetron sputtering sources (60), an exhaust pipe (82), a diffusion pump (85), a booster pump (88), a rotary pump (86), and a vacuum exhaust system (80). According to the present invention, the quality of a coated product can be increased.

Description

균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치{Plastic vacuum deposition coating system capable of coating with uniform thickness}Plastic vacuum deposition coating system capable of coating with uniform thickness}

본 발명은 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 관한 것으로서 더욱 상세하게는 플라스틱 제품의 표면에 전도성 실드박막층을 용이하게 코팅할 수 있도록 한 장치의 제공에 관한 것이다.The present invention relates to a plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness, and more particularly, to the provision of an apparatus capable of easily coating a conductive shield thin film layer on the surface of a plastic product.

플라스틱은 탄소, 수소로 구성된 유기물질로서 그 화학적 구조상 전기적 중성으로 뚜렷한 절연성을 가지고 있지만, 내열성은 낮고 코팅에는 미약한 밀착력을 갖고 있다.Plastic is an organic material composed of carbon and hydrogen, and its chemical structure is electrically neutral and has distinct insulation, but has low heat resistance and a weak adhesion to the coating.

플라스틱 제품은 휴대폰이나 컴퓨터, 가전제품 및 기타 산업용 전기 전자제품들의 케이스로 많이 사용되고 있다.Plastic products are widely used as cases for mobile phones, computers, home appliances, and other industrial electrical and electronic products.

현재 플라스틱 제품에 대한 코팅은 대부분이 화학적 건식 동코팅 후 습식 코팅을 진행하거나 혹은 스프레이 코팅방식을 채택하고 있는 실정이다.Currently, most of the coatings for plastic products are chemically dry copper coating followed by wet coating or spray coating.

이러한 코팅방식은 조작이 복잡하고 막두께의 불균일성과 환경오염을 가중시키고 시간이 경과함에 따라 코팅층이 분리되는 등의 문제점들이 발생하고 있다.This coating method is complicated to operate, increases non-uniformity in film thickness and environmental pollution, and causes problems such as separation of the coating layer over time.

일반적으로 널리 사용되고 있는 전기, 전자, 통신기기의 부품은 정밀코팅 또는 유해 전자파를 차단하기 위한 실드코팅을 수행하고 있는 데, 이러한 코팅에 스프레이 방식의 경우에는 전도성 금속분말을 섞어서 스프레이하게 되므로 작업성이 좋지 않게 되고 전기 저항이 크므로 코팅두께를 두껍게 하여야 하는 문제점과 더불어 코팅된 두께가 불균일하게 되는 등의 문제점이 있다.In general, parts of electric, electronic and communication devices that are widely used are precision coating or shield coating to block harmful electromagnetic waves.In the case of spraying, conductive metal powder is mixed and sprayed with such coating, so workability Since it is not good and the electrical resistance is large, there are problems such as a problem in that the coating thickness needs to be thickened, and the coated thickness becomes uneven.

최근에 들어서는 진공챔버 내에서 플라스틱 제품을 저온 이온빔 처리하거나 알에프(RF)플라즈마 처리를 거친 후 진공증착을 수행하는 진공코팅장치가 개발되어 사용되고 있다.Recently, a vacuum coating device has been developed and used to perform vacuum deposition after a plastic product undergoes low-temperature ion beam treatment or RF plasma treatment in a vacuum chamber.

이러한 진공코팅장치는 이온빔장치와 알에프(RF)파워 등의 장치가 고가인 단점과 더불어, 종래의 진공코팅장치에 사용되는 평면 마그네트론스퍼터링소스는 증발각도가 제한(한정)되기 때문에 복잡한 구조물을 코팅하는 경우에는 불균일코팅 또는 비코팅면이 발생되어 효율성과 생산성 등이 저하되는 여러 문제점들이 있었다.In addition to the disadvantage that devices such as an ion beam device and RF power are expensive, such a vacuum coating device can coat complex structures because the flat magnetron sputtering source used in the conventional vacuum coating device has a limited (limited) evaporation angle. In this case, there are various problems in that efficiency and productivity are deteriorated due to the occurrence of non-uniform coated or uncoated surfaces.

이에 본 발명에서는 상기와 같은 문제점들을 해결하기 위하여 발명한 것으로서 플라스틱 제품의 표면을 진공상태에서 플라즈마 처리를 하여 플라스틱 제품의 표면이 에칭, 또는 활성화 되어 물리적 부착이 강화되는 것은 물론, 표면분자가 부분적으로 과산화구조로 전환되어 화학적 부착도 가능하게 되는 점을 감안하여, 본 발명에서는 저렴하면서도 안전한 플라즈마 처리를 위하여 3상 저온 플라즈마를 이용하여 뚜렷한 밀착력을 가지도록 하고, 전방향(360°)에 대한 증발각도를 가지는 원주형 마그네트론스퍼터링소스를 사용하는 코팅장치를 제공하는 것을 특징으로 한다.Accordingly, in the present invention, as invented to solve the above problems, the surface of the plastic product is subjected to plasma treatment in a vacuum state, so that the surface of the plastic product is etched or activated to enhance physical adhesion, as well as partially In consideration of the fact that chemical adhesion is also possible due to conversion into a peroxidation structure, in the present invention, for inexpensive and safe plasma treatment, a three-phase low-temperature plasma is used to have a distinct adhesion, and the evaporation angle in all directions (360°) It characterized in that it provides a coating apparatus using a columnar magnetron sputtering source having a.

상기 코팅장치를 사용하여 코팅하고자 하는 플라스틱 제품의 구조에 관계없이 전 영역에 걸쳐 균일한 코팅이 가능하도록 함으로서 코팅된 제품의 품질을 향상시킬 수 있도록 하는 데 가장 큰 목적을 가진다.The main purpose is to improve the quality of the coated product by enabling uniform coating over the entire area regardless of the structure of the plastic product to be coated using the coating device.

이상과 같은 본 발명은 3상 저온 플라즈마전극을 이용하여 플라스틱제품의 표면을 활성화 한 후, 마그네트왕복 및 마그네트회전타입의 원주형 마그네트론소슬를 이용하여 실드박막을 진공증착할 수 있는 저비용 고품질의 코팅장치를 제공하여 제품의 구조에 관계없이 균일한 두께로 코팅이 가능하게 됨으로서 생산성의 향상과 더불어 품질향상에 기여할 수 있는 등 산업발전에 상당한 기여가 있는 발명이다.The present invention as described above provides a low-cost high-quality coating device capable of vacuum depositing a shield thin film using a magnet reciprocating and magnet rotation type cylindrical magnetron source after activating the surface of a plastic product using a three-phase low-temperature plasma electrode. It is an invention that contributes significantly to industrial development, such as improving productivity and improving quality by providing coating with a uniform thickness regardless of the structure of the product.

도 1은 본 발명의 기술이 적용된 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치를 도시한 구성도.
도 2는 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 사용되는 3상 저온 플라즈마 전극의 전기적 구성도.
도 3은 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 적용되는 원주형 마그네트론 스퍼터링 소스의 구성도.
도 4는 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 적용되는 원주형 마그네트론 스퍼터링 소스의 다른 구성도.
도 5는 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 적용되는 진공배기관계를 도시한 구성도.
1 is a block diagram showing a plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness to which the technology of the present invention is applied.
2 is an electrical configuration diagram of a three-phase low-temperature plasma electrode used in a plastic vacuum deposition coating apparatus capable of coating with a uniform thickness of the present invention.
3 is a configuration diagram of a columnar magnetron sputtering source applied to the present inventors a plastic vacuum deposition coating apparatus capable of coating with a uniform thickness.
Figure 4 is another configuration diagram of a columnar magnetron sputtering source applied to the present inventors a plastic vacuum evaporation coating apparatus that can be coated with a uniform thickness.
5 is a block diagram showing a vacuum exhaust relationship applied to the present inventors a plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness.

이하 첨부되는 도면과 관련하여 상기 목적을 달성하기 위한 본 발명의 바람직한 구성과 작용에 대하여 설명하면 다음과같다.Hereinafter, a preferred configuration and operation of the present invention for achieving the above object will be described with reference to the accompanying drawings.

도 1은 본 발명의 기술이 적용된 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치를 도시한 구성도, 도 2는 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 사용되는 3상 저온 플라즈마 전극의 전기적 구성도, 도 3은 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 적용되는 원주형 마그네트론 스퍼터링 소스의 구성도, 도 4는 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 적용되는 원주형 마그네트론 스퍼터링 소스의 다른 구성도, 도 5는 본 발명인 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치에 적용되는 진공배기관계를 도시한 구성도로서 함께 설명한다.1 is a configuration diagram showing a plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness to which the technology of the present invention is applied, and FIG. 2 is a three-phase low-temperature plasma electrode used in a plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness according to the present invention 3 is a schematic diagram of a cylindrical magnetron sputtering source applied to a plastic vacuum deposition coating apparatus capable of coating with a uniform thickness according to the present invention, and FIG. 4 is a plastic vacuum deposition coating apparatus capable of coating with a uniform thickness according to the present invention. Another configuration diagram of the applied columnar magnetron sputtering source, FIG. 5 will be described together as a configuration diagram showing a vacuum exhaust relationship applied to the inventive plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness.

본 발명의 기술이 적용되는 코팅장지(100)는, 일측에 방전매체로 사용되는 아르곤(Ar)가스나 산소를 주입할 수 있도록 압력게이지(30)을 가지는 질량유량게이지(MFC;31)를 가지고, 다른 측에는 진공배기를 위한 배기구(32)를 가지는 원통형의 진공챔버(33)를 구비한다.The coating sheet 100 to which the technology of the present invention is applied has a mass flow gauge (MFC) 31 having a pressure gauge 30 to inject argon (Ar) gas or oxygen used as a discharge medium at one side. The other side is provided with a cylindrical vacuum chamber 33 having an exhaust port 32 for evacuating the vacuum.

상기 진공챔버(33)의 내부에는 진공챔버(33)의 축방향으로 일정간격을 유지시켜 구비되는 레일(34)에 활주가능하게 바퀴(35)를 가지는 이동대차(36)를 설치한다.In the inside of the vacuum chamber 33, a moving carriage 36 having wheels 35 is installed so as to be slidable on a rail 34 provided at a predetermined interval in the axial direction of the vacuum chamber 33.

상기 이동대차(36)의 상방 양측에 서포터(37)로 유지되는 가이드로울러(38)의 상방에는 양측이 개방된 관체타입의 외부지그(39)을 구비하고, 상기 외부지그(39)의 내측에는 일정간격을 유지시켜 내부지그(40)를 설치하여 이동대차(36)의 중앙에서 세워지는 지지대(41)에 의하여 유지되도록 한다.Above the guide rollers 38 maintained by supporters 37 on both sides of the mobile cart 36, a tubular type external jig 39 with both sides open is provided, and inside the external jig 39 An inner jig 40 is installed at a constant interval to be maintained by a support 41 erected in the center of the moving cart 36.

상기 외부지그(39)의 내측과 내부지그(40)의 외측면에는 코팅하고자 하는 플라스틱 제품(P)을 장착하는 것은 당연할 것이다.It will be natural to mount the plastic product P to be coated on the inner side of the outer jig 39 and the outer side of the inner jig 40.

상기 외부지그(39)은 진공챔버(33)의 외부에 설치되는 모터와 감속기로 구성되는 구동수단(42)과 커플러 등과 같은 착탈수단에 의하여 연결되는 가이드로울러(38)에 의하여 회전하도록 한다.The external jig 39 is rotated by a driving means 42 comprising a motor and a reducer installed outside the vacuum chamber 33 and a guide roller 38 connected by a detachable means such as a coupler.

상기 내부지그(40)은 가이드로울러(38)와 함께 설치되는 원동체인기어(43)와 내부지그(40)을 유지하는 지지대(41)의 상,하측에 설치되는 중간 및 피동체인기어(44,45)와 체인(46)으로 연결하여 구동하도록 한다.The inner jig 40 is an intermediate and driven chain gear 44 installed on the upper and lower sides of the motive chain gear 43 installed together with the guide roller 38 and the support 41 holding the inner jig 40, 45) and chain 46 to drive.

상기 외부지그(39)과 내부지그(40)상간에 형성되는 코팅공간(S)에 위치하는 진공챔버(33)에는 플라즈마 발생을 위한 다수개의 수냉 플라즈마전극(50)과 스퍼터링 작동으로 플라스틱제품(P)에 코팅을 수행하는 다수개의 마그네트론스퍼터링소스(60)를 설치하고, 상기 배기구(32)에는 진공배기시스템(80)을 연결한다.In the vacuum chamber 33 located in the coating space S formed between the outer jig 39 and the inner jig 40, a plurality of water-cooled plasma electrodes 50 for plasma generation and a plastic product (P) by sputtering operation ), a plurality of magnetron sputtering sources 60 for coating are installed, and a vacuum exhaust system 80 is connected to the exhaust port 32.

물론, 상기 코팅공간(S)에는 플라스틱제품(P)을 예열하여 잠재기체의 방출을 촉진시켜 코팅품질을 향상시키기 위한 히터(47)를 설치하고, 상기 히터(47)의 가열온도 및 진공챔버(33) 내부의 온도를 감지하기 위한 온도센서(48)를 적정위치에 설치한다.Of course, a heater 47 is installed in the coating space S to improve the coating quality by preheating the plastic product P to promote the release of latent gas, and the heating temperature of the heater 47 and the vacuum chamber ( 33) Install a temperature sensor 48 to detect the internal temperature in an appropriate position.

상기 플라즈마전극(50)은, 3상 외부전원(380v)으로 부터 SRC전압제어기(51)와 승압변압기(52)를 통하여 필요한 전압을 파형변화기(53)에 입력하고, 상기 파형변화기(53)를 통하여 전력을 공급받도록 한다.The plasma electrode 50 inputs a required voltage from a three-phase external power source (380v) through the SRC voltage controller 51 and the step-up transformer 52 to the waveform changer 53, and the waveform changer 53 Make sure to receive power through it.

상기 플라즈마전극(50)은 진공챔버(33) 내에서 방전기체를 글로우방전 이온화하여 저온 플라즈마를 형성하여 플라스틱제품(P)을 에칭 또는 활성화와 부분적 과산화구조로 전환시켜 친수성 표면을 형성한다.The plasma electrode 50 forms a low-temperature plasma by glow discharge ionization of the discharge gas in the vacuum chamber 33 to form a hydrophilic surface by etching or activating the plastic product P and converting it into a partial peroxidation structure.

상기 마그네트론스퍼터링소스(60)는, 동이나 알루미늄, 타타늄, 스테인레스스틸과 같은 비자성체 금속으로 원주형상으로 성형한 음극의 스퍼터링타깃(61)을 구비하고, 상기 스퍼터링타깃(61)의 내부에 구비되는 축(62)에는 자기장 발생을 위한 마그네트(64)를 배열하여 구성한다.The magnetron sputtering source 60 has a negative electrode sputtering target 61 formed in a columnar shape of a non-magnetic metal such as copper, aluminum, titanium, and stainless steel, and is provided in the sputtering target 61 A magnet 64 for generating a magnetic field is arranged on the axis 62 to be configured.

상기 마그네트론스퍼터링소스(60)는 도 3에서와 같이 축(62)에 각각의 마그네트(64)를 N-S, S-N순서로 조립하여 전력선과 자력선 분량이 서로 수직되는 매개자석의 중간위치의 스퍼터링타깃(61)의 외부표면에서 360°방향에 스퍼터링(63)이 발생되도록 하고, 마그네트(64)를 축방향으로 왕복시킴으로서 스퍼터링타깃(61) 전체 외부표면에 걸처 균일하게 증발이 가능하도록 마그네트왕복타입으로 구성한다.The magnetron sputtering source 60 assembles each magnet 64 on the shaft 62 in the order of NS and SN, as shown in FIG. 3, and the sputtering target 61 at an intermediate position of the intermediate magnet in which the power line and the magnetic field line are perpendicular to each other ), the sputtering 63 is generated in the 360° direction from the outer surface of ), and the magnet 64 is reciprocated in the axial direction so that the sputtering target 61 can be evaporated uniformly over the entire outer surface. .

상기 마그네트론스퍼터링소스(60)의 다른 예로서는, 도 4에서와 같이 스퍼터링타깃(61)의 내부에 구비되는 축(62)에 마그네트(64)를 4개이상 짝수개로 조립하고, 인접하는 극과 극관계는 N-S 또는 S-N으로 배열하면 N-S 또는 S-N 중심위치의 스퍼터링타깃(61)의 외부표면에서 스퍼터링타깃(61)의 길이방향에 대하여 직선형의 스퍼터링(63)증발이 발생하도록 구성하고, 마그네트(64)를 회전시킴으로서 스퍼터링타깃(61) 전체에 걸처 균일하게 증발이 가능하도록 하는 마그네트 회전타입으로 구성하여도 된다.As another example of the magnetron sputtering source 60, four or more magnets 64 are assembled in an even number of four or more magnets 64 on the shaft 62 provided inside the sputtering target 61, as shown in FIG. When arranged in NS or SN, a straight sputtering 63 evaporates from the outer surface of the sputtering target 61 at the center of NS or SN in the longitudinal direction of the sputtering target 61, and the magnet 64 is By rotating the sputtering target 61, the sputtering target 61 may be configured as a magnet rotation type that enables uniform evaporation.

상기와 같은 마그네트론스퍼터링소스(60)를 단일 또는 조합하여 배치할 수 있으며, 스퍼터링타깃(61)이 이종(異種)의 소재로 조합하여 배치할 경우에는 상호 간섭이 없는 위치에 배치하는 것이 바람직하다.The magnetron sputtering source 60 as described above can be arranged singly or in combination, and when the sputtering target 61 is arranged in combination with different materials, it is preferable to arrange it in a position where there is no mutual interference.

상기 진공배기시스템(80)은, 진공챔버(33)의 배기구(32)와 조절실드(81)를 가지는 배기관(82)으로 연결하고, 상기 배기관(82)에는 고진공주밸브(83)와 오일냉각트랩(84)을 가지는 확산펌프(85)를 연결한다.The vacuum exhaust system 80 is connected to an exhaust pipe 82 having an exhaust port 32 and a control shield 81 of the vacuum chamber 33, and the exhaust pipe 82 includes a high vacuum main valve 83 and an oil cooling trap. A diffusion pump 85 having 84 is connected.

상기 확산펌프(85)는 고진공밸브(93)와 연결되고 다음으로 고진공밸브(93)→부스터펌프(88)→로터리펌프(86)노선과 고진공밸브(93)→밸브(94)→로터리펌프(86)노선으로 되어있고, 고진공주밸브(83)는 중간위치에 저진공밸브(87)를 가지는 부스트펌프(88)와 연결하여 구성한다.The diffusion pump 85 is connected to the high vacuum valve 93, and then the high vacuum valve 93 → the booster pump 88 → the rotary pump 86 line and the high vacuum valve 93 → the valve 94 → the rotary pump ( 86) is a route, and the high vacuum main valve 83 is configured by connecting with a boost pump 88 having a low vacuum valve 87 in an intermediate position.

상기 배기관(82)과 오일냉각트랩(84) 상간에는 진공코팅시 확산펌프(85)의 오일역류방지와 정상배기속도를 유지할 수 있도록 하는 고진공병렬밸브(90)를 더 구비하고, 상기 고진공주밸브(83)와 부스트펌프(88)상간에는 플라즈마 처리시 진공챔버(33)내부를 일정한 압력으로 유지하기 위한 저진공병렬밸브(91)와 유량조절밸브(92)를 더 설치하여 구성한다.A high vacuum parallel valve 90 is further provided between the exhaust pipe 82 and the oil cooling trap 84 to prevent oil backflow of the diffusion pump 85 and maintain a normal exhaust speed during vacuum coating, and the high vacuum main valve ( A low vacuum parallel valve 91 and a flow control valve 92 are further installed between the 83) and the boost pump 88 at a constant pressure in the vacuum chamber 33 during plasma processing.

상기와 같은 본 발명은,The present invention as described above,

이동대차(36)에 구비되는 외부지그(39)의 내측과 내부지그(40)의 외측면에 외부세척공정을 거친 플라스틱제품(P)을 장착한 후 진공챔버(33)를 개방하여 진공챔버(33)에 구비되는 레일(34)에 이동대차(36)의 바퀴(35)가 안착되도록 한 후 밀어서 넣는다.After installing the plastic product (P) that has undergone an external cleaning process on the inner side of the outer jig 39 and the outer side of the inner jig 40 provided in the moving cart 36, the vacuum chamber 33 is opened and the vacuum chamber ( After making the wheel 35 of the moving cart 36 seated on the rail 34 provided in 33), it is pushed in.

이러한 상태에서 진공챔버(33)내부를 진공배기시스탬(80)을 이용하여 진공상태로 유지한 후 히터(47)를 작동시켜 예비가열을 수행하고, 온도센서(48)에 의하여 적정한(기 설정된)온도를 유지하면 플라스틱제품(P)에 잔존하는 기체를 배기한다.In this state, the inside of the vacuum chamber 33 is maintained in a vacuum state by using the vacuum exhaust system 80, and then the heater 47 is operated to perform preheating, and an appropriate (preset) temperature is performed by the temperature sensor 48. When the temperature is maintained, the gas remaining in the plastic product (P) is exhausted.

예비가열에 의해 플라스틱제품(P)에 잔존하는 기체를 배기한 후 방전매체인 산소나 외부공기를 주입하여 설정된 압력에 도달한 후 플라즈마전극(50)에 3상전력을 공급하여 플라즈마처리를 수행한다.After exhausting the gas remaining in the plastic product P by preheating, oxygen or external air, which is a discharge medium, is injected to reach the set pressure, and then three-phase power is supplied to the plasma electrode 50 to perform plasma treatment. .

이때, 외부지그(39)는 구동수단(42)에 의하여 회전하는 가이드로울러(38)에 의하여 회전하고, 내부지그(40)은 가이드로 울러(38)에 설치되는 원동체인기어(43)와 체인(46)으로 연결되는 중간 및 피동체인기어(44,45)에 의하여 회전하게 되며, 회전방향은 동일방향 또는 역방향에 관계없이 진행시켜도 무방하다.At this time, the outer jig 39 is rotated by the guide roller 38 rotated by the driving means 42, and the inner jig 40 is a motive chain gear 43 and a chain installed on the roller 38 as a guide. It is rotated by the intermediate and driven gears 44 and 45 connected by (46), and the rotation direction may proceed regardless of the same or reverse direction.

상기와 같이 3상전원을 공급받는 플라즈마전극(50)에 의하여 플라즈마 표면처리 과정에서 플라스틱제품(P)을 회전시킴으로서 플라스틱제품(P)의 복잡한 구조에 관계없이 전체적인 부분에 대하여 에칭화 되거나 표면분자가 부분적으로 과산화구조로 전환되어 화학적 부착도 가능하게 활성화 되고, 물리적 부착이 강화되도록 한다.As described above, by rotating the plastic product (P) in the plasma surface treatment process by the plasma electrode (50) supplied with three-phase power, the entire part is etched or the surface molecules are etched regardless of the complex structure of the plastic product (P). It is partially converted to a peroxidation structure, enabling chemical attachment to be activated, and to strengthen physical attachment.

상기와 같은 동작으로 플라스틱제품(P)의 플라즈마처리가 끝난 후에는 다시 진공배기시스템(80)을 이용하여 진공챔버(33)내부를 고진공 상태로 배기하여 잔류공기(산소)를 깨끗하게 제거하여 다음순서(공정)인 코팅공정에서 혹여 일어날 수 있는 산화 및 질화를 방지할 수 있도록 한다.After plasma treatment of the plastic product (P) is completed by the above operation, the vacuum chamber 33 is evacuated to a high vacuum state by using the vacuum exhaust system 80 again to cleanly remove residual air (oxygen). (Process) It is possible to prevent oxidation and nitriding that may occur in the coating process.

상기와 같은 배기가 끝난 후에는 압력게이지(30) 또는 질량유량게이지(MFC;31)를 통하여 방전 기체로 아르곤(Ar)가스를 주입하면서 스퍼터링타깃(61)을 음극으로 하고 음극 표면에 자기장을 걸어줌으로서 스퍼티링타겟(61) 표면위치에서 고리형(원형) 스퍼터링(Sputtering;63)이 발생하여 원자분자가 증발, 활성화된 플라스틱제품(P)표면에 증착되는 것이다.After the exhaust as described above is finished, argon (Ar) gas is injected as discharge gas through a pressure gauge 30 or a mass flow gauge (MFC) 31, while the sputtering target 61 is used as the cathode and a magnetic field is applied to the surface of the cathode. As a zoom, ring-shaped (circular) sputtering 63 occurs at the surface position of the sputtering target 61 so that atomic molecules are evaporated and deposited on the surface of the activated plastic product (P).

상기 마그네트론스퍼터링소스(60)가 마그네트왕복타입일 경우에는 스퍼터링타깃(61) 내부에 구비되는 축(62)에 조립된 마그네트(64)를 스퍼터링타깃(61)의 축방향으로 왕복시킴으로서 각각의 마그네트(64)가 위치한 스퍼터링타깃(61)에만 증발되지 않고 스퍼터링타깃(61) 전체 외부표면에 걸처 균일하게 증발할 수 있도록 하게된다.When the magnetron sputtering source 60 is a magnet reciprocating type, the magnets 64 assembled on the shaft 62 provided inside the sputtering target 61 are reciprocated in the axial direction of the sputtering target 61 to each magnet ( It does not evaporate only on the sputtering target 61 where 64) is located, but uniformly evaporates over the entire outer surface of the sputtering target 61.

그리고, 마그네트회전타입의 경우에는 스퍼터링타깃(61)의 내부 축(62)에 구비되는 각각의 마그네트(64)의 극과극의 중간위치에서 대응되는 스퍼터링타깃(61)의 외부표면에서 증발작용이 일어나기 때문에 마그네트(64)를 회전시킴으로서 역시 스퍼터링타깃(61) 전체 외부표면에 걸처 균일하게 증발되도록 함으로서 고가의 스퍼터링타깃(61)이 균일하게 소모할 수 있는 장점을 가진다.And, in the case of the magnet rotation type, the evaporation action on the outer surface of the corresponding sputtering target 61 at an intermediate position between the pole and pole of each magnet 64 provided on the inner shaft 62 of the sputtering target 61 Therefore, by rotating the magnet 64, the sputtering target 61 is uniformly evaporated over the entire outer surface of the sputtering target 61 so that the expensive sputtering target 61 can be uniformly consumed.

특히, 스퍼터링타깃(61)이 전방향에 대하여 증발형상이 일어나고 플라스틱부품(P)이 장착된 외부지그(39)과 내부지그(40)는 회전하고 있는 상태에 있어 부품의 구조가 복잡함에 관계없이 구석구석 고르게 증착할 수 있게된다.In particular, the sputtering target 61 evaporates in all directions, and the outer jig 39 and the inner jig 40 on which the plastic parts P are mounted are in a rotating state, regardless of the complexity of the parts structure. It becomes possible to deposit evenly in every corner.

그리고, 상기 진공배기시스템(80)의 경우에는 진공코팅시 확산펌프(85)의 오일역류방지와 정상배기속도를 유지할 수 있도록 배기관(82)과 오일냉각트랩(84) 상간에 고진공병렬밸브(90)를 더 구비하고, 상기 플라즈마 처리시 진공챔버(33)내부를 일정한 압력으로 유지할 수 있는 저진공병렬밸브(91)와 유량조절밸브(92)를 고진공주밸브(83)와 부스터펌프(88)상간에 더 설치함으로서 효율적인 배기관계를 유지할 수 있게된다.In the case of the vacuum exhaust system 80, a high vacuum parallel valve 90 between the exhaust pipe 82 and the oil cooling trap 84 to prevent oil backflow of the diffusion pump 85 and maintain the normal exhaust speed during vacuum coating. ), and a low vacuum parallel valve 91 and a flow control valve 92 capable of maintaining a constant pressure inside the vacuum chamber 33 during the plasma treatment, between the high vacuum main valve 83 and the booster pump 88 By installing more on it, it is possible to maintain an efficient exhaust relationship.

33; 진공챔버
39; 외부지그
40; 내부지그
50; 플라즈마전극
60; 마그네트론스퍼터링소스
80; 진공배기시스템
33; Vacuum chamber
39; External jig
40; Internal jig
50; Plasma electrode
60; Magnetron Sputtering Source
80; Vacuum exhaust system

Claims (8)

균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치를 구성함에 있어서;
상기 코팅장치(100)는,
방전매체로 사용되는 아르곤(Ar)가스나 산소를 주입할 수 있도록 압력게이지(30)을 가지는 질량유량게이지(MFC;31)와 배기가스 방출을 위한 배기구(32)를 가지고 구비되는 진공챔버(33)와;
상기 진공챔버(33)의 내부에 구비되는 레일(34)에 활주가능하게 바퀴(35)를 가지고 설치되는 이동대차(36)와;
상기 이동대차(36)의 상방 양측에 서포터(37)로 유지되는 가이드로울러(38)의 상방에 구비되는 외부지그(39)과;
상기 외부지그(39)의 내측에는 일정간격을 유지시켜 이동대차(36)의 중앙에서 세워지는 지지대(41)로 유지되는 내부지그(40)와;
상기 외부지그(39)과 내부지그(40)상간에 형성되는 코팅공간(S)에는 플라즈마 발생을 위한 다수개의 수냉 플라즈마전극(50)과;
스퍼터링 작동으로 플라스틱제품(P)에 코팅을 수행하는 다수개의 마그네트론스퍼터링소스(60)와;
상기 배기구(32)에는 조절실드(81)를 가지고 연결되는 배기관(82)과;
상기 배기관(82)에는 고진공주밸브(83)와 오일냉각트랩(84)을 가지고 연결되는 확산펌프(85)와;
상기 확산펌프(85)와 연결되는 부스터펌프(88) 및 로터리펌프(86)와;
상기 고진공주밸브(83)에 저진공밸브(87)를 가지고 연결되는 부스트펌프(88)를 가지는 진공배기시스템(80)을 포함하는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
In constructing a plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness;
The coating device 100,
A vacuum chamber 33 having a mass flow gauge (MFC) 31 having a pressure gauge 30 to inject argon (Ar) gas or oxygen used as a discharge medium and an exhaust port 32 for discharging exhaust gas. )Wow;
A moving cart 36 installed with a wheel 35 to be slidable on a rail 34 provided in the vacuum chamber 33;
An external jig (39) provided above the guide roller (38) maintained by supporters (37) on both upper sides of the mobile cart (36);
An inner jig 40 maintained on the inner side of the outer jig 39 by a support 41 erected at the center of the moving cart 36 by maintaining a predetermined interval;
A plurality of water-cooled plasma electrodes 50 for generating plasma in the coating space S formed between the outer jig 39 and the inner jig 40;
A plurality of magnetron sputtering sources 60 for coating the plastic product P by sputtering operation;
An exhaust pipe 82 connected to the exhaust port 32 with a control shield 81;
A diffusion pump 85 connected with a high vacuum main valve 83 and an oil cooling trap 84 to the exhaust pipe 82;
A booster pump 88 and a rotary pump 86 connected to the diffusion pump 85;
A plastic vacuum deposition coating apparatus capable of coating with a uniform thickness, characterized in that it comprises a vacuum exhaust system (80) having a boost pump (88) connected with a low vacuum valve (87) to the high vacuum main valve (83).
제 1 항에 있어서;
상기 플라즈마전극(50)은 3상 외부전원(380v)을 인가받는 SRC전압제어기(51)와 승압변압기(52)를 통하여 필요한 전압을 입력받는 파형변화기(53)와;
상기 파형변화기(53)를 통하여 전력을 공급받는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method of claim 1;
The plasma electrode 50 includes an SRC voltage controller 51 receiving a three-phase external power supply (380v) and a waveform changer 53 receiving a required voltage through a boosting transformer 52;
Plastic vacuum deposition coating apparatus capable of coating with a uniform thickness, characterized in that receiving power through the waveform changer (53).
제 1 항에 있어서;
상기 마그네트론스퍼터링소스(60)는, 비자성체 금속으로 원주형으로 성형하여 구비되는 스퍼터링타깃(61)과;
상기 스퍼터링타깃(61)의 내부의 축(62)에 자기장 발생을 위하여 구비되는 마그네트(64)로 구성하는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method of claim 1;
The magnetron sputtering source 60 may include a sputtering target 61 formed by forming a columnar shape of a non-magnetic metal;
A plastic vacuum deposition coating apparatus capable of coating with a uniform thickness, characterized in that comprising a magnet 64 provided to generate a magnetic field on the shaft 62 inside the sputtering target 61.
제 1 항에 있어서;
상기 진공배기시스템(80)의 배기관(82)과 오일냉각트랩(84) 상간에는 진공코팅시 확산펌프(85)의 오일역류방지와 정상 배기속도를 유지할 수 있도록 하는 고진공병렬밸브(90)를 더 구비하고;
상기 고진공주밸브(83)와 부스트펌프(88)상간에는 플라즈마 처리시 진공챔버(33)내부를 일정한 압력으로 유지하기 위한 저진공병렬밸브(91)와 유량조절밸브(92)를 더 설치하는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method of claim 1;
A high vacuum parallel valve 90 is further provided between the exhaust pipe 82 of the vacuum exhaust system 80 and the oil cooling trap 84 to prevent oil backflow of the diffusion pump 85 and maintain a normal exhaust speed during vacuum coating. Equipped;
A low vacuum parallel valve 91 and a flow control valve 92 are further installed between the high vacuum main valve 83 and the boost pump 88 to maintain the inside of the vacuum chamber 33 at a constant pressure during plasma treatment. Plastic vacuum evaporation coating device capable of coating with uniform thickness.
제 1 항에 있어서;
상기 외부지그(39)는 진공챔버(33)의 외부에 설치되는 구동수단(42)과 착탈수단으로 연결되는 가이드로울러(38)에 의하여 회전하도록 하고;
상기 내부지그(40)는 가이드로울러(38)와 함께 설치되는 원동체인기어(43)와;
상기 내부지그(40)를 유지하는 지지대(41)의 상,하측에 설치되는 중간체인기어(44)와 피동체인기어(44,45)를 연결하는 체인(46)에 의하여 구동하는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method of claim 1;
The external jig 39 is rotated by a driving means 42 installed outside the vacuum chamber 33 and a guide roller 38 connected by a detachable means;
The inner jig 40 includes a motive chain gear 43 installed together with a guide roller 38;
It characterized in that it is driven by a chain 46 connecting the intermediate chain gear 44 and driven chain gears 44 and 45 installed on the upper and lower sides of the support 41 holding the inner jig 40 Plastic vacuum evaporation coating device capable of coating with uniform thickness.
제 1 항에 있어서;
상기 외부지그(39)외 내부지그(40)상간 위치의 진공챔버(33)에 구비되는 코팅공간(S)에는 플라스틱제품(P)을 예열하여 잠재기체의 방출을 촉진시켜 코팅품질을 향상시키기 위한 히터(47)와;
상기 히터(47)의 가열온도 및 진공챔버(33) 내부의 온도를 감지하기 위한 온도센서(48)를 설치하는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method of claim 1;
In the coating space (S) provided in the vacuum chamber 33 located between the outer jig 39 and the inner jig 40, the plastic product P is preheated to promote the release of latent gas to improve the coating quality. A heater 47;
A plastic vacuum deposition coating apparatus capable of coating with a uniform thickness, characterized in that a temperature sensor (48) for sensing the heating temperature of the heater (47) and the temperature inside the vacuum chamber (33) is installed.
제 1 항 또는 제 3 항에 있어서;
상기 마그네트론스퍼터링소스(60)을 구성하는 마그네트(64)는 축(62)에 각각의 마그네트(64)를 N-S, S-N순서로 조립하여 전력선과 자력선 분량이 서로 수직되는 매개자석의 중간위치에 대응하는 스퍼터링타깃(61)의 외부표면에서 원주방향에 스퍼터링(63)이 발생되어 360°방향에 증발각도를 가지도록 하고;
상기 마그네트(64)를 축방향으로 왕복시시켜 스퍼터링타깃(61) 전체 외부표면에 걸처 균일하게 증발이 일어나도록 하는 마그네트왕복타입인 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method according to claim 1 or 3;
The magnet 64 constituting the magnetron sputtering source 60 assembles each magnet 64 on the shaft 62 in the order of NS and SN, so that the power line and the magnetic line of force correspond to the intermediate position of the intermediate magnets perpendicular to each other. Sputtering 63 is generated in the circumferential direction on the outer surface of the sputtering target 61 so as to have an evaporation angle in the 360° direction;
A plastic vacuum evaporation coating apparatus capable of coating with a uniform thickness, characterized in that it is of a magnet reciprocating type that uniformly evaporates over the entire outer surface of the sputtering target 61 by reciprocating the magnet 64 in the axial direction.
제 1 항 또는 제 3항에 있어서;
상기 마그네트론스퍼터링소스(60)을 구성하는 마그네트(64)는 스퍼터링타깃(61)의 내부 축(62)에 구비되는 각각의 마그네트(64)를 4개이상 짝수개로 인접하는 극과는 다른 극이 되도록 방사형으로 배치하여;
상기 마그네트(64)의 다른극(N-S 또는 S-N)과의 사이에서 스퍼터링타깃(61)외부표면의 길이방향에 대하여 증발이 일어나도록 구성하고;
상기 마그네트(64)를 회전시킴으로서 스퍼터링타깃(61)전체 외부표면에 걸처 균일하게 증발이 가능하도록 구성하는 것을 특징으로 하는 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치.
The method according to claim 1 or 3;
The magnets 64 constituting the magnetron sputtering source 60 have four or more even numbers of each magnet 64 provided on the inner shaft 62 of the sputtering target 61 to be a different pole from the adjacent poles. Arranged radially;
It is configured so that evaporation occurs in the longitudinal direction of the outer surface of the sputtering target 61 between the magnet 64 and the other electrode (NS or SN);
A plastic vacuum deposition coating apparatus capable of coating with a uniform thickness, characterized in that it is configured to evaporate uniformly over the entire outer surface of the sputtering target 61 by rotating the magnet 64.
KR1020190054291A 2019-05-09 2019-05-09 Plastic vacuum deposition coating system capable of coating with uniform thickness KR20200129615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190054291A KR20200129615A (en) 2019-05-09 2019-05-09 Plastic vacuum deposition coating system capable of coating with uniform thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190054291A KR20200129615A (en) 2019-05-09 2019-05-09 Plastic vacuum deposition coating system capable of coating with uniform thickness

Publications (1)

Publication Number Publication Date
KR20200129615A true KR20200129615A (en) 2020-11-18

Family

ID=73697850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190054291A KR20200129615A (en) 2019-05-09 2019-05-09 Plastic vacuum deposition coating system capable of coating with uniform thickness

Country Status (1)

Country Link
KR (1) KR20200129615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327316B1 (en) * 2021-10-14 2021-11-17 에이치앤케이(주) Surface vacuum deposition method of reflector for air conditioner sterilization with improved UV-ultraviolet reflectance and vacuum deposition device therefor
CN115572953A (en) * 2022-10-24 2023-01-06 苏州思萃热控材料科技有限公司 Magnetron sputtering device for diamond metal-based high-thermal-conductivity composite material
KR102567143B1 (en) * 2022-05-03 2023-08-14 이재철 Vacuum evaporation apparatus
CN117416072A (en) * 2023-12-19 2024-01-19 晋江市创佳纺织科技有限公司 Manufacturing process and manufacturing equipment of nano waterproof vamp

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327316B1 (en) * 2021-10-14 2021-11-17 에이치앤케이(주) Surface vacuum deposition method of reflector for air conditioner sterilization with improved UV-ultraviolet reflectance and vacuum deposition device therefor
KR102567143B1 (en) * 2022-05-03 2023-08-14 이재철 Vacuum evaporation apparatus
CN115572953A (en) * 2022-10-24 2023-01-06 苏州思萃热控材料科技有限公司 Magnetron sputtering device for diamond metal-based high-thermal-conductivity composite material
CN115572953B (en) * 2022-10-24 2024-04-26 苏州思萃热控材料科技有限公司 Magnetron sputtering device for diamond metal-based high-heat-conductivity composite material
CN117416072A (en) * 2023-12-19 2024-01-19 晋江市创佳纺织科技有限公司 Manufacturing process and manufacturing equipment of nano waterproof vamp
CN117416072B (en) * 2023-12-19 2024-03-08 晋江市创佳纺织科技有限公司 Manufacturing process and manufacturing equipment of nano waterproof vamp

Similar Documents

Publication Publication Date Title
KR20200129615A (en) Plastic vacuum deposition coating system capable of coating with uniform thickness
JP6533511B2 (en) Film forming method and film forming apparatus
US7520965B2 (en) Magnetron sputtering apparatus and method for depositing a coating using same
US20060076231A1 (en) Method for magnetron sputter deposition
JP2008069402A (en) Sputtering apparatus and sputtering method
CN103320772B (en) Metal inner surface modification device and method
WO2014103228A1 (en) In-line plasma cvd device
EP1640474B1 (en) Thin film forming device
CN110055503B (en) Magnetron sputtering coating system and method for preparing dysprosium/terbium coating
KR20070053213A (en) Thin-film forming apparatus
CN109576665B (en) Ion source, coating device and coating method
CN111575652A (en) Vacuum coating equipment and vacuum coating method
KR100502000B1 (en) Coating system of vacuum plating for plastic parts
CN205635764U (en) Physics chemical vapor deposition system
CN101376964A (en) Sputtering type film coating apparatus and film coating method
JP2001190948A (en) Method and apparatus for plasma treatment of surface
JP6887304B2 (en) Method of forming carbon electrode film
JP6005536B2 (en) Plasma CVD apparatus with arc evaporation source
JP5880474B2 (en) Vacuum deposition system
TW202031918A (en) Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film
JP2010174378A (en) Method for depositing thin film
KR100899378B1 (en) Hollow body coating apparatus using the hollow cathode effect, inner wall coating method and coated cylinder or tube thereof
JP7219941B2 (en) Plasma CVD device, magnetic recording medium manufacturing method and film forming method
TWI686488B (en) Carbon film forming method
JP2005290432A (en) Sputtering apparatus and thin film deposition method