KR20200120808A - Method for forming nano-inorganic film - Google Patents

Method for forming nano-inorganic film Download PDF

Info

Publication number
KR20200120808A
KR20200120808A KR1020190042720A KR20190042720A KR20200120808A KR 20200120808 A KR20200120808 A KR 20200120808A KR 1020190042720 A KR1020190042720 A KR 1020190042720A KR 20190042720 A KR20190042720 A KR 20190042720A KR 20200120808 A KR20200120808 A KR 20200120808A
Authority
KR
South Korea
Prior art keywords
nano
inorganic
coating film
forming
base material
Prior art date
Application number
KR1020190042720A
Other languages
Korean (ko)
Other versions
KR102281837B1 (en
Inventor
김희곤
김병준
김남수
Original Assignee
주식회사 웰쳐화인텍
주식회사 에버코트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 웰쳐화인텍, 주식회사 에버코트 filed Critical 주식회사 웰쳐화인텍
Priority to KR1020190042720A priority Critical patent/KR102281837B1/en
Priority to CN202080039669.5A priority patent/CN113950463B/en
Priority to US17/603,154 priority patent/US20220194857A1/en
Priority to PCT/KR2020/004508 priority patent/WO2020209544A1/en
Priority to EP20786921.5A priority patent/EP3954669A4/en
Publication of KR20200120808A publication Critical patent/KR20200120808A/en
Application granted granted Critical
Publication of KR102281837B1 publication Critical patent/KR102281837B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/20Wood or similar material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/06Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention relates to a method for using a high-functional nano-inorganic composition to form a nano-size thin film. The present invention relates to a nano-inorganic coating technology using the high-functional nano-inorganic composition which exhibits excellent mechanical characteristics mainly including surface strength and wear resistance; which has very stable chemical characteristics such as water resistance, acid resistance, and alkali resistance; and which is formed of inorganic materials to provide excellent thermal stability. Moreover, functions, such as ultra-hydrophilic, hydrophilic, and hydrophobic characteristics can be controlled depending on coating methods, and a surface may have excellent contamination resistance and easy-clean characteristics and excellent optical characteristics such as light transmissivity and reflectivity, due to thin-film coating. The method comprises a pretreatment step, a coating step, a drying step, and a sintering step.

Description

나노 무기 도막형성 방법{Method for forming nano-inorganic film}Method for forming nano-inorganic film {Method for forming nano-inorganic film}

본 발명은 고기능성 나노 무기조성물을 이용하여 미세한 사이즈의 박막을 형성하는 방법에 관한 기술이다. 상기의 고기능성은 주로 표면경도, 마모특성을 포함하는 기계적 특성이 매우 우수하고 내수 및 내산, 내알칼리 등 화학적으로 매우 안정된 특성을 가지며 무기소재로 구성되어 열적 안정성이 매우 우수한 특성을 갖는 나노 무기코팅 기술이다. 또한 코팅방법에 따라 초친수와 친수, 소수특성의 기능제어가 가능하며 박막코팅에 따라 표면의 내오염 및 이지클린(Easy-Clean)특성이 매우 뛰어나며 광투과성 및 광의 반사율 등에 있어 광학적으로 뛰어난 특성을 갖는다.The present invention relates to a method for forming a fine-sized thin film using a high-functional nano-inorganic composition. The above high functionality is mainly a nano-inorganic coating that has excellent mechanical properties including surface hardness and abrasion properties, has very chemically stable properties such as water resistance, acid resistance, and alkali resistance, and is composed of inorganic materials and has very excellent thermal stability properties. It's technology. In addition, depending on the coating method, it is possible to control functions of super-hydrophilic, hydrophilic, and hydrophobic characteristics, and the thin-film coating provides excellent surface contamination and easy-clean characteristics, and optically superior characteristics in terms of light transmittance and light reflectance. Have.

나노코팅기술은 주로 반도체와 디스플레이와 같이 매우 정밀한 기술분야에 CVD나 스퍼터와 같은 고가의 장비를 이용하여 코팅하는 나노미터 두께의 높이로 박막을 형성하기 위해 사용되어 왔다. 하지만 최근 나노소재의 개발과 함께 일반 코팅방법을 통하여 나노미터 두께의 코팅을 할 수 있도록 연구개발이 진행되고 있는 실정이다.Nano coating technology has been mainly used to form a thin film with a height of nanometer thickness that is coated using expensive equipment such as CVD or sputtering in very precise technical fields such as semiconductors and displays. However, with the recent development of nanomaterials, research and development are in progress to enable nanometer-thick coating through general coating methods.

특히, 최근 개발된 웰쳐화인텍의 FC 코팅제의 경우 수 나노에서 수십 나노의 입자로 이루어진 소재를 이용하여 일반적인 스프레이 코팅, 스핀 코팅, 바 코팅, 슬롯다이코팅, 스폰지, 붓, 브러쉬 등을 통하여 나노두께의 코팅을 하는 것을 대한민국 등록특허 제10-1735383호를 통하여 무기도료 조성물과 무기도막을 형성하는 방법에 대하여 설명하고 있다. In particular, in the case of the recently developed FC coating agent of Welcher Finetech, nano-thickness is achieved through general spray coating, spin coating, bar coating, slot die coating, sponge, brush, brush, etc. using a material consisting of several nanometers to tens of nanoparticles. Coating is described with respect to a method of forming an inorganic coating composition and an inorganic coating film through Korean Patent No. 10-1735383.

그러나, 상기의 특허의 종래기술에 나타난 나노 무기 소재의 경우 고형분의 양이 수십wt% 이상으로 이루어져 수백~수천나노 미터 두께로 코팅되고 있어 일반 코팅방법을 통하여 코팅시 백화현상이 발생하고 열처리시 마이크로 크랙이 발생하는 등의 문제가 발생하고 고형분의 함량과다로 수십나노미터의 코팅두께로 평활성 있는 코팅이 어려운 것을 알 수 있다. However, in the case of the nano-inorganic material shown in the prior art of the above patent, the amount of solid content is made up of tens of wt% or more and is coated with a thickness of several hundred to several thousand nanometers. Thus, whitening occurs during coating through a general coating method, and microscopic It can be seen that a problem such as cracking occurs, and a smooth coating with a coating thickness of several tens of nanometers is difficult due to an excessive solid content.

특히 코팅 두께가 두꺼울 경우 코팅 층 내부의 결함과 열처리 과정에서 공기층의 형성이 용이하여 이와 같은 결함부위를 통한 내구성이 급속히 감소하는 현상이 있었다. 또한, 상기의 특허를 통한 소재로 도막 형성시 여러 가지 기능적인 부분에서도 많은 차이를 보이는 것을 알 수 있었다. In particular, when the coating thickness is thick, defects inside the coating layer and the formation of an air layer during the heat treatment process are easy, so that durability through such defect areas rapidly decreases. In addition, it can be seen that there are many differences in various functional parts when the coating film is formed with the material through the above patent.

대한민국 등록특허 제10-1735383호Korean Patent Registration No. 10-1735383 대한민국 등록특허 제10-1414019호Korean Patent Registration No. 10-1414019

상기와 같은 종래의 문제점을 해결하기 위하여 본원 발명에서는 수십 나노 또는 수백 나노미터 수준의 매우 평활도가 높고 코팅 도막 내부에 결함이 없는 나노 무기 도막을 형성하는 것이 목적이다.In order to solve the conventional problems as described above, in the present invention, it is an object of the present invention to form a nano-inorganic coating film having very high smoothness at the level of several tens of nanometers or hundreds of nanometers and having no defects in the coating film.

이를 위하여 조성물에 포함된 고형분의 양을 10wt% 이하로 낮추고 용매인 물의 양을 그에 상응하도록 높여 일반적인 코팅(도막형성)방법으로 용이하게 나노 코팅 도막을 형성할 수 있으며 매우 유니폼하게 형성할 수 있으며 도막 형성시 발생하는 백화현상을 줄여 더 높은 내구성을 확보함으로서 기존 발명의 문제점을 해결하고자 하였다. To this end, the amount of solid content contained in the composition is lowered to 10 wt% or less, and the amount of water, which is a solvent, is increased correspondingly, so that a nano-coating film can be easily formed by a general coating (film formation) method, and a very uniform film can be formed. It was intended to solve the problems of the existing invention by reducing the whitening phenomenon occurring during formation and securing higher durability.

또한, 상기와 같이 두께를 수십에서 수백 나노 수준으로 낮추고 높은 평활도를 유지하면 광투과 및 광반사와 같은 광학특성이 2배 이상 높은 효과를 나타내며 금속산화물이 용출되어 발생하는 백화현상을 해결할 수 있다.In addition, when the thickness is lowered to the level of tens to hundreds of nanometers as described above and high smoothness is maintained, optical properties such as light transmission and light reflection are more than twice as high, and the whitening phenomenon caused by elution of metal oxides can be solved.

상기의 과제를 해결하기 위한 수단으로서 나노 무기 조성물은,As a means for solving the above problems, the nano-inorganic composition,

하기 화학식으로 표시되는 알칼리 금속산화물(M2O)인 산화나트륨(Na2O), 산화칼륨(K2O), 산화리튬(Li2O) 중 적어도 하나 이상 포함되고; 무기산 화합물; 및 물(H2O);을 포함하며;At least one of sodium oxide (Na 2 O), potassium oxide (K 2 O), and lithium oxide (Li 2 O), which is an alkali metal oxide (M 2 O) represented by the following formula, is included; Inorganic acid compounds; And water (H 2 O);

하기 화학식에서, 알칼리 산화금속들의 몰수인

Figure pat00001
, 실리카의 몰수인
Figure pat00002
, n은 1 ~ 20의 자연수;In the following formula, the number of moles of alkali metal oxides
Figure pat00001
, Which is the number of moles of silica
Figure pat00002
, n is a natural number from 1 to 20;

[화학식]

Figure pat00003
[Chemical Formula]
Figure pat00003

상기 화학식의 나노무기조성물 100중량부에서 (M2O+ySiO2)은 0.1~10 중량부이고 무기산 화합물 0.01 ~ 2 중량부와 나머지의 물을 포함하도록 하여 제조한다.In 100 parts by weight of the nano-inorganic composition of the above formula, (M 2 O+ySiO 2 ) is 0.1 to 10 parts by weight, and is prepared by including 0.01 to 2 parts by weight of the inorganic acid compound and the rest of water.

상기 제조된 나노 무기조성물을 이용하여 도막 두께를 수십 나노 미터에서 수백 나노미터 수준으로 낮춤으로서 도막내의 공기층의 형성을 감소시키고 1차 열처리(건조) 온도를 110℃에서 90℃로 낮추어 진행함으로서 온도상승에 따른 물의 증기화에 의한 공기층의 형성을 방지함으로서 결함을 감소시켜 내구성을 향상시키고자 하였다.By reducing the thickness of the coating film from tens of nanometers to several hundreds of nanometers by using the prepared nano-inorganic composition, the formation of the air layer in the coating film is reduced, and the temperature is increased by lowering the first heat treatment (drying) temperature from 110°C to 90°C. It was intended to improve durability by reducing defects by preventing the formation of an air layer due to vaporization of water according to.

또한, 상기의 문제점을 해결하기 위한 수단으로 다양한 코팅방법을 사용할 수 있다. 본 발명에서는 유리와 같은 투명기재의 경우 슬롯다이와 바 코팅 방법을 이용하여 코팅하는 것이 가장 유니폼하면서도 수십 나노미터 수준으로 코팅이 용이함을 실험을 통하여 알 수 있었으며 피 코팅 모재의 무광 또는 유광 효과를 구현시키거나 헤이즈를 통한 반투명, 불투명 등이 필요한 모재에 대해서는 스프레이 방식의 코팅을 활용하는 것이 가장 효과적인 수단임을 알 수 있었다.In addition, various coating methods can be used as a means for solving the above problems. In the present invention, in the case of transparent substrates such as glass, it was found through experiments that coating by using a slot die and bar coating method is the most uniform and easy to coat at the level of tens of nanometers, and the matte or gloss effect of the base material to be coated is realized. For the base material that needs translucency or opacity through haze, it can be seen that the use of spray coating is the most effective means.

전술한 본 발명에 따른 나노 무기 조성물을 사용하여 형성되는 무기계 코팅막은 모재의 종류에 관계없이, 특히 금속재 및 비금속재의 표면들과의 결합력이 강하여 모재와의 접착력 및 부착력 등이 우수하고 오랜 시간이 지나도 코팅막이 모재로부터 이탈되는 문제가 없다. The inorganic coating film formed by using the above-described nano-inorganic composition according to the present invention is excellent regardless of the type of the base material, in particular, the bonding strength with the surfaces of the metal material and the non-metal material is strong. There is no problem that the coating film is separated from the base material.

또한, 상기 무기계 코팅막은 친수성 코팅막으로서 유기물질 등과 결합력이 약하여 유기계 오염물질들이 잘 묻지 아니하고, 나아가 유기계는 물론 기타의 오염 물질들의 제거가 용이하여 다른 작업을 가하지 않고 코팅막 표면에 단지 물을 흘려주는 것만으로도 오염물질이 쉽게 제거되는 효과가 있다.In addition, the inorganic coating film is a hydrophilic coating film, which has weak bonding strength with organic substances, so that organic contaminants are not well adhered to it. Furthermore, it is easy to remove organic substances as well as other contaminants, so that only water flows on the surface of the coating film without any other work. It has the effect of easily removing contaminants.

또한, 무기계 도막의 특성상 강한 내후성, 내구성, 내약품성, 내마모성, 표면의 고경도, 원적외선 방사, 불연성, 내약품성, 내식성 등이 뛰어나고 항균성도 우수한 나노 무기 조성물 및 이를 이용한 무기계 코팅막이 제공된다.In addition, due to the characteristics of the inorganic coating film, a nano-inorganic composition having excellent weather resistance, durability, chemical resistance, abrasion resistance, high hardness of the surface, far infrared radiation, non-flammability, chemical resistance, corrosion resistance, and antibacterial properties, and an inorganic coating film using the same are provided.

또한, 용매로 물을 사용하기 때문에 조성물의 제조과정 및 코팅과정에서 오염물질이 발생하지 않아 친환경적이고, 그 수명이 반영구적인 효과가 있다.In addition, since water is used as a solvent, contaminants are not generated during the manufacturing process and coating process of the composition, so it is eco-friendly, and its lifespan is semi-permanent.

도 1은 본 발명에 따른 바와 슬롯다이 도막 형성도
도 2는 본 발명의 도막 형성에 따른 광투과 특성
도 3은 본 발명의 도막 형성에 따른 광반사 특성
도 4는 본 발명의 스프레이에 의한 도막형성 실시예
도 5는 본 발명에 따른 조성물의 삼각분석도
도 6는 본 발명에 따른 헤이즈 실시예
도 7는 본 발명에 따른 접촉각 실시예
도 8는 본 발명에 따른 가독성 실시예
도 9은 본 발명에 따른 두께측정도
도 10은 본 발명의 이지크린(Easy-Clean) 특성 실시예
1 is a diagram showing the formation of a bar and slot die coating film according to the present invention
2 is a light transmission characteristic according to the coating film formation of the present invention
3 is a light reflection characteristic according to the coating film formation of the present invention
4 is an example of forming a coating film by spraying of the present invention
5 is a triangular analysis diagram of the composition according to the present invention
6 is a haze embodiment according to the present invention
7 is a contact angle embodiment according to the present invention
8 is a readability example according to the present invention
9 is a thickness measurement diagram according to the present invention
10 is an Example of the characteristics of Easy-Clean of the present invention

이하, 본 발명의 나노 무기 조성물 및 이의 제조방법에 대해 상세히 설명하도록 한다. Hereinafter, the nano-inorganic composition of the present invention and a method of manufacturing the same will be described in detail.

본 발명의 나노 무기 조성물은,The nano-inorganic composition of the present invention,

하기 화학식으로 표시되는 알칼리 금속산화물(M2O)인 산화나트륨(Na2O), 산화칼륨(K2O), 산화리튬(Li2O) 중 적어도 하나 이상 선택되고; 무기산 화합물; 및 물(H2O);을 포함하며;At least one of sodium oxide (Na 2 O), potassium oxide (K 2 O), lithium oxide (Li 2 O), which is an alkali metal oxide (M 2 O) represented by the following formula, is selected; Inorganic acid compounds; And water (H 2 O);

하기 화학식에서, 알칼리 산화금속들의 몰수인

Figure pat00004
고, x1, x2, x3 및 y 는 각각 0.01 ~ 500, n은 1 ~ 20의 자연수이며, 실리카의 몰수인
Figure pat00005
며;In the following formula, the number of moles of alkali metal oxides
Figure pat00004
High, x1, x2, x3 and y are each 0.01 ~ 500, n is a natural number of 1 ~ 20, the number of moles of silica
Figure pat00005
And;

[화학식]

Figure pat00006
[Chemical Formula]
Figure pat00006

상기 화학식의 나노무기조성물 100중량부에서 (M2O+ySiO2)은 0.1~10 중량부이고 무기산 화합물 0.01 ~ 2 중량부와 나머지의 물을 포함하도록 하여 제조한다.In 100 parts by weight of the nano-inorganic composition of the above formula, (M 2 O+ySiO 2 ) is 0.1 to 10 parts by weight, and is prepared by including 0.01 to 2 parts by weight of the inorganic acid compound and the rest of water.

상기 화학식으로 표현된 조성물은 요구되는 기능성과 코팅방법 및 코팅장치에 따라 분산제와 촉매제 그리고 계면활성제 등이 추가로 포함될 수 있다.The composition represented by the above formula may additionally contain a dispersant, a catalyst, and a surfactant, depending on the required functionality, coating method, and coating device.

상기의 코팅장치에 따른 조성물의 변경은 전처리장비에 따라 달라질 수 있으며 특히, 모재 표면의 친수여부에 따라 계면활성제를 포함시켜 부착특성을 개선시키고, 색상을 위한 칼라안료의 분산을 향상시키기 위해 분산제를 더 포함할 수 있으며 조성물의 생산시간 단축 및 화학반응의 촉진 등을 위해 촉매제를 추가로 포함시킬 수 있다.The change of the composition according to the above coating device may vary depending on the pretreatment equipment, and in particular, a dispersant is used to improve adhesion properties by including a surfactant depending on whether the surface of the base material is hydrophilic, and to improve the dispersion of color pigments for color. It may further include, and may further include a catalyst for shortening the production time of the composition and promoting chemical reactions.

상기 첨가되는 용매(물+무기산화합물)의 양은 첨가 되는 알칼리 산화금속의 용매에 대한 용해도 보다 크며, 무기산 화합물은 주로 인산 또는 붕산을 사용한다.The amount of the added solvent (water + inorganic oxide compound) is greater than the solubility of the alkali metal oxide added in the solvent, and phosphoric acid or boric acid is mainly used as the inorganic acid compound.

본 발명의 나노 무기 조성물은 상기 화학식으로 표시되는 x1Na2O, x2K2O, x3Li2O 중 1종 또는 2종 그리고 3종을 모두 포함하여 제조할 수 있다. 즉, 본 발명은 상기 화학식에 나타난 산화 알칼리 금속 중 적어도 하나 이상을 포함함으로써, 모재와의 접착력 또는 부착력을 높이면서도 코팅박막의 이지클린(easy-clean) 특성, 방오성, 내수성 및 기계적 및 화학적 특성을 포함한 다양한 고기능성을 향상시키는 나노 무기 조성물을 구현할 수 있다. The nano-inorganic composition of the present invention may be prepared by including one or two and all three of x 1 Na 2 O, x 2 K 2 O, and x 3 Li 2 O represented by the above formula. That is, the present invention includes at least one of the alkali metal oxides represented in the above formula, thereby improving the adhesion or adhesion to the base material while improving the easy-clean properties, antifouling properties, water resistance, and mechanical and chemical properties of the coating thin film. It is possible to implement a nano-inorganic composition that improves various high functionality including.

본 발명의 상기 화학식에서 X는 나노 무기조성물에 포함되는 알칼리 산화금속(M2O)들의 몰수이며 y는 실리카(SiO2)의 몰수로서 실리카의 몰수는 항상 알칼리 금속의 몰수보다 크거나 같은 것으로

Figure pat00007
를 만족하여야 하며, 산화나트륨(Na2O)의 몰수 x1, 산화칼륨(K2O)의 몰수 x2, 산화리튬(Li2O)의 몰수 x3중에서 상기 X(X=x1+x2+x3)는 항상 0보다 큰 수로서 X〉0를 만족하며, 각각의 알칼리 산화금속들은 0보다 크거나 같은 수로서
Figure pat00008
와 같이 표현할 수 있다. In the above formula of the present invention, X is the number of moles of alkali metal oxides (M 2 O) contained in the nano-inorganic composition, and y is the number of moles of silica (SiO 2 ), and the number of moles of silica is always greater than or equal to the number of moles of alkali metal.
Figure pat00007
X (X=x 1 +x) in the number of moles of sodium oxide (Na 2 O) x 1 , the number of moles of potassium oxide (K 2 O) x 2 , and the number of moles of lithium oxide (Li 2 O) x 3 2 +x 3 ) is always a number greater than 0, satisfying X>0, and each alkali metal oxide is a number greater than or equal to 0
Figure pat00008
It can be expressed as

또한 기존 발명에서는

Figure pat00009
와 같이 Na2O를 50% 이상 포함하는 나노무기조성물로 제조 되어 도막두께가 일정 이상이 될 경우 도1과 도8에 관찰되는 것처럼 백화현상의 원인이 되고 소성시 공기층을 발생시키는 원인이 되는 물질로서 본 발명의 제조예 4와 제조예 5를 통하여
Figure pat00010
의 식을 만족시킬 수 있도록 제조할 경우 광학특성, 친수특성 및 내수성(내구성)에서 만족스러운 결과가 나타났으며 Na2O의 최적의 함량은 X(X=x1+x2+x3)와 대비하여 30±10% 임을 실시예를 통하여 알 수 있었다.Also in the existing invention
Figure pat00009
As shown in Figs. 1 and 8, when the film thickness is made of a nano-inorganic composition containing 50% or more of Na 2 O, as shown in Figs. 1 and 8, it causes whitening and creates an air layer during firing. As through Preparation Example 4 and Preparation Example 5 of the present invention
Figure pat00010
When manufactured to satisfy the formula, satisfactory results were found in terms of optical properties, hydrophilic properties, and water resistance (durability), and the optimal content of Na 2 O was X(X=x 1 +x 2 +x 3 ) and In contrast, it was found through the examples that it was 30±10%.

또한, 실시예에서 산화 알칼리 금속을 혼합하기 위해 산화 알칼리 금속과 실리카의 몰비(y/X)는 3~4에서 가장 안정적이며 백화현상에 강하고 내수성 및 내열성을 갖게 됨을 알 수 있다.In addition, in the embodiment, in order to mix the alkali metal oxide, the molar ratio (y/X) of the alkali metal oxide and the silica is most stable in 3 to 4, and it can be seen that the whitening phenomenon is strong and water resistance and heat resistance are obtained.

나노 무기조성물의 고형분(M2O+ySiO2)과 용매(물+무기산화합물)의 비율은 제조예 4, 5에서 나타난 바와 같이 고형분이 10wt% 이하에서 광학특성과 내구특성이 매우 향상되는 것을 실시예를 통하여 알 수 있다.The ratio of the solid content (M 2 O + ySiO 2 ) and the solvent (water + inorganic oxide compound) of the nano-inorganic composition was shown in Preparation Examples 4 and 5, where the optical properties and durability properties were greatly improved when the solid content was 10 wt% or less. This can be seen through an example.

특히, 용매(물+무기산화합물)의 경우 인산과 붕산을 요구되는 특성에 따라 포함시켜 사용할 수 있으며 2% 이상 첨가할 경우 젤 형태화되어 요구되는 나노무기조성물의 특성에 부합되지 않는다.In particular, in the case of a solvent (water + inorganic oxide compound), phosphoric acid and boric acid can be included according to the required properties, and when 2% or more is added, the gel is formed and does not meet the properties of the required nano-inorganic composition.

상기 나노무기조성물((x1Na2O+x2K2O+x3Li2O)·ySiO2)은 화학식에 나타난 바와 같이, 중심금속 원자에 다른 비금속 원소가 치환하여 규소(Si)와 다른 원자 간의 단일결합(Single bond)을 이중결합(Double)으로 만들고 망목 구조가 생성되어 규산염과 축합반응을 함으로서 규산염에 붙어 있는 수산화이온(-OH)이 다른 이온으로 치환 및 해리되는바 물의 침투를 막아주어 내수성을 향상시키는 메커니즘으로 예상된다.The nano-inorganic composition ((x 1 Na 2 O+x 2 K 2 O+x 3 Li 2 O)·ySiO 2 ), as shown in the formula, is substituted with other non-metallic elements in the central metal atom to form silicon (Si) and A single bond between other atoms is formed into a double bond, and a network structure is created, and a condensation reaction with the silicate causes the hydroxide ions (-OH) attached to the silicate to be replaced and dissociated with other ions. It is expected to be a mechanism to improve water resistance by preventing it.

또한, 금속산화물의 부피변화를 포함한 각각의 금속산화물의 서로 다른 특성에 따라 또는 요구되는 기능성에 따라 첨가되는 금속산화물의 함량을 직접적으로 제어함으로서 요구되는 기능성의 최적화를 이루고자 하였다.In addition, it was intended to optimize the required functionality by directly controlling the content of the metal oxide added according to the different characteristics of each metal oxide including the volume change of the metal oxide or according to the required functionality.

또한, 상기 나노 무기조성물의 PH는 11이하일 경우 고형화가 진행되어 제조에 어려움이 있으며 13이상이면 다양한 기능성이 감소되어 11~13사이의 PH가 가장 적합하다.In addition, when the pH of the nano-inorganic composition is 11 or less, solidification proceeds, making it difficult to manufacture, and when the pH of the nano-inorganic composition is 13 or more, various functionalities are reduced, and a PH between 11 and 13 is most suitable.

또한, 상기 나노 무기조성물의 박막 표면의 접촉각은 20° 이하의 친수특성을 나타내며 이지클린(Easy-Clean) 특성을 갖는다.In addition, the contact angle of the surface of the thin film of the nano-inorganic composition exhibits a hydrophilic property of 20° or less and has an Easy-Clean property.

또한, 상기의 나노 무기조성물은 헤이즈(탁도)를 제어하여 광택도를 유광 또는 무광형태로 할 수 있으며 투명기판의 경우 반투명과 불투명 등 다양하게 헤이즈(탁도)를 구현시킴으로서 소비자의 요구를 만족시킬 수 있다.In addition, the above nano-inorganic composition can control haze (turbidity) to make glossiness or matte form, and in the case of transparent substrates, it can satisfy consumer's needs by implementing various haze (turbidity) such as translucency and opacity. have.

본 발명에서 산란도와 헤이즈 그리고 탁도는 동일한 의미를 갖는 것으로 투명기판의 투명도에 따라 달라지는 투명상태를 나타내는 것이며 유광 또는 무광등과 같이 코팅 표면의 광택도를 나타내는 의미로 사용될 수도 있다.In the present invention, scattering degree, haze, and turbidity have the same meaning and represent a transparent state that varies depending on the transparency of the transparent substrate, and may be used as a meaning representing the glossiness of the coated surface, such as a glossy or matte lamp.

본 발명에서는 유리와 같은 투명기판에 상기의 나노 무기조성물을 이용하여 코팅 도막을 형성할 경우 일반적인 맑고 깨끗한 유리와 같이 광투과도가 80%이상의 헤이즈가 없는 투명한 헤이즈 1단계와 70%의 투과도를 헤이즈 2단계, 60%의 투과도를 헤이즈 3단계, 50%의 투과도를 헤이즈 4단계, 40%의 투과도를 헤이즈 5단계, 30%의 투과도를 헤이즈 6단계, 20%의 투과도를 헤이즈 7단계, 10%의 투과도를 헤이즈 8단계, 완전불투명을 헤이즈 9단계로 정의하여 나타내면 헤이즈 1에서 헤이즈 9단계에 이르기 까지 전 영역에 코팅 박막을 형성할 수 있다.으로서 규산염에 붙어 있는 수산화이온(-OH)이 다른 이온으로 치환 및 해리되는바 물의 침투를 막아주어 내수성을 향상시키는 메커니즘으로 예상된다.In the present invention, when a coating film is formed on a transparent substrate such as glass using the above nano-inorganic composition, as in general clear and clean glass, the light transmittance is 80% or more without haze. Steps, 60% transmittance in 3 haze steps, 50% transmittance in 4 haze steps, 40% transmittance in 5 haze steps, 30% transmittance in 6 haze steps, 20% transmittance in 7 haze steps, 10% If the transmittance is defined as 8 levels of haze and 9 levels of haze as complete opacity, a coating thin film can be formed over all areas from haze 1 to 9 haze. As such, ions with different hydroxide ions (-OH) attached to silicate can be formed. As it is substituted and dissociated, it is expected to be a mechanism to improve water resistance by preventing the penetration of water.

[실시예][Example]

[실시예][Example]

본 발명에 따른 나노 무기조성물을 다음과 같이 하여 제조하였다.The nano-inorganic composition according to the present invention was prepared as follows.

제조예 1~제조예5는 동일한 방법으로 제조된 것이며 본 발명의 제조예로서 가장 적당하다고 판단되는 제조예 4를 활용하여 설명한다. 나노 무기조성물 200g을 제조하기 위하여 제조예 4에 나타난 바와 같이 ySiO2 : 0.105몰과 X(x1+x2+x3) M2O : 0.027몰을 각각 x1 : 33.8%, x2 : 33.8% x3 :26.5% 분율이 되도록 균일하게 혼합하거나 소디움실리케이트, 포타시움실리케이트, 리튬실리케이트에 각각 실리카(SiO2)를 이용하여 상기의 몰분율이 될 수 있도록 균일하게 제조하여 본 발명의 조성물에 포함된 고형분의 몰비(y/x)가 3.885되면서 고형분의 함량은 4.04wt%되도록 제어하여 제조된 제1조성물과 190.72g의 물(H2O) 및 무기산화합물 1.2g(인산 or 붕산)을 제조한 제2조성물을 혼합하여 최종적인 본 발명의 나노 무기조성물 200g을을 제조한다. 상기의 제1조성물과 제2조성물을 각각 제조하여 혼합하는 2액형으로 제조된 나노 무기조성물 제조과정과 다르게 제1조성물을 제조하는 과정상에 제2조성물을 각각의 구성원소를 혼합하는 제조과정에 적절히 첨가함으로서 1액형의 나노 무기조성물을 제조할 수 있다.Preparation Examples 1 to 5 are prepared by the same method and will be described using Preparation Example 4, which is judged to be the most suitable as a Preparation Example of the present invention. In order to prepare 200 g of the nano-inorganic composition, as shown in Preparation Example 4, ySiO 2 : 0.105 mol and X(x1+x2+x3) M 2 O: 0.027 mol respectively x 1 : 33.8%, x 2 : 33.8% x 3 : Mix uniformly so as to have a fraction of 26.5%, or use silica (SiO 2 ) for sodium silicate, potassium silicate, and lithium silicate, respectively, to be uniformly prepared so that the molar fraction may be the molar ratio of the solids contained in the composition of the present invention ( Mixing the first composition prepared by controlling y/x) to 3.885 and the solid content is 4.04 wt% and the second composition prepared 190.72 g of water (H 2 O) and 1.2 g of inorganic oxide (phosphoric acid or boric acid) Thus, 200 g of the final nano-inorganic composition of the present invention is prepared. Unlike the manufacturing process of a two-component nano-inorganic composition in which the first composition and the second composition are respectively prepared and mixed, in the process of preparing the first composition, the second composition is mixed with each component. By adding appropriately, a one-pack type nano-inorganic composition can be prepared.

또한, 제조예1, 2, 3, 5는 아래의 [표 1]에 나타난 바와 같이 알칼리 산화금속(M2O)과 실리카(SiO2)의 몰비와 각각의 알칼리 산화금속(x1, x2, x3)의 몰분율을 달리하여 상기의 제조예 4의 방법과 동일하게 조성물을 제조하였다.In addition, Preparation Examples 1, 2, 3 and 5 are the molar ratios of alkali metal oxide (M 2 O) and silica (SiO 2 ) and each alkali metal oxide (x 1, x 2 ) as shown in [Table 1] below. The composition was prepared in the same manner as in Preparation Example 4 by varying the mole fraction of , x 3 ).

200g 제조 시 200g manufacturing 구분division 제조예 1
(중량부)
Manufacturing Example 1
(Part by weight)
제조예 2
(중량부)
Manufacturing Example 2
(Part by weight)
제조예 3
(중량부)
Manufacturing Example 3
(Part by weight)
제조예 4
(중량부)
Manufacturing Example 4
(Part by weight)
제조예 5
(중량부) G
Manufacturing Example 5
(Parts by weight) G

고형분




Solid content



ySiO2 (몰수)ySiO 2 (molar number) 0.33270.3327 0.32160.3216 0.32060.3206 0.1050.105 0.2060.206
x1+x2+x3 (몰수)x1+x2+x3 (for moles) 0.09160.0916 0.08470.0847 0.08180.0818 0.0270.027 0.0510.051 M2O 몰분율 M 2 O mole fraction Na2O Na 2 O 0.51510.5151 0.4160.416 0.4170.417 0.3380.338 0.280.28 K2O K 2 O 0.30310.3031 0.3340.334 0.2140.214 0.3970.397 0.380.38 Li2O Li 2 O 0.18180.1818 0.250.25 0.3690.369 0.2650.265 0.340.34 몰분율 합계Sum of mole fractions 1One 1One 1One 1One 1One Molar ratio (y / x)Molar ratio (y/x) 3.633.63 3.79683.7968 3.92133.9213 3.8853.885 4.01794.0179 고형분 함량 wt% (M2O+SiO2)Solid content wt% (M 2 O+SiO 2 ) 13.0113.01 12.412.4 11.9611.96 4.044.04 7.87.8 용매menstruum H2OH 2 O 186.39186.39 186.6186.6 187.14187.14 194.76194.76 191.6191.6 무기산화합물
(인산 or 붕산)
Inorganic oxide compound
(Phosphoric acid or boric acid)
0.60.6 1One 0.90.9 1.21.2 0.60.6
합 계Sum 186.99186.99 187.6187.6 188.04188.04 195.96195.96 192.2192.2 총 합 (고형분 + 용매)Total (solid + solvent) 200200 200200 200200 200200 200200

구분division 제조예 1Manufacturing Example 1 제조예 2Manufacturing Example 2 제조예 3Manufacturing Example 3 제조예 4Manufacturing Example 4 제조예 5Manufacturing Example 5 연필경도Pencil hardness 9H9H 9H9H 9H9H 9H9H 9H9H 부착력Adhesion 5B5B 5B5B 5B5B 5B5B 5B5B 이지클린성Easy Clean Castle 광투과도Light transmittance 1% 이내 향상Improvement within 1% 1% 이내 향상Improvement within 1% 1% 이상 향상1% or more improvement 2% 이상 향상2% or more improvement 2% 이상 향상2% or more improvement 접촉각Contact angle 23.2
친수
23.2
Hydrophilic
20.7
친수
20.7
Hydrophilic
12.4
친수
12.4
Hydrophilic
7.8
초친수
7.8
Super hydrophilic
9.3
초친수
9.3
Super hydrophilic
내수성Water resistance

상기 화학식으로 표현된 조성물은 요구되는 기능성과 코팅방법 및 코팅장치에 따라 분산제와 촉매제 그리고 계면활성제 등이 추가로 포함될 수 있다.The composition represented by the above formula may additionally contain a dispersant, a catalyst, and a surfactant, depending on the required functionality, coating method, and coating device.

본 발명에 이용되는 모재는 금속 및 비철금속재, 기타 플라스틱(고분자 재료), 필름, 도자기, 타일, 석재, 목재 등의 다양한 소재가 사용 가능하며, 기타 도료의 코팅이 필요한 다양한 모재들이 모두 이용 가능하다. As the base material used in the present invention, various materials such as metal and non-ferrous metal materials, other plastics (polymer materials), films, ceramics, tiles, stone materials, and wood can be used, and various base materials requiring coating of other paints are all available. .

상기 제조된 조성물을 이용하여 코팅 도막을 형성하는 공정을 살펴보면 상기 화학식의 조성물을 제조하는 단계(S100)에 이어 코팅이 필요한 모재의 전처리(세정)하는 단계(S200)가 매우 중요하다. 세정은 나노 무기 조성물을 코팅하기 위해서는 어떠한 표면의 이물질도 결함을 유발할 수 있기 때문에 매우 중요한 공정으로 일반적인 알칼리 혹은 중성세제 등으로 세정을 할 수 있으며 필요에 따라 알코올 또는 아세톤과 같은 물질을 이용하거나 산세정 등을 활용하여 세정할 수 있다. Looking at the process of forming a coating film using the prepared composition, the step (S200) of pre-treating (washing) the base material requiring coating is very important following the step (S100) of preparing the composition of the above formula. Cleaning is a very important process because any foreign substance on the surface can cause defects in order to coat the nano-inorganic composition, and it can be cleaned with a general alkali or neutral detergent, and if necessary, use a substance such as alcohol or acetone or pickling. It can be cleaned by using the same.

또한, 연마와 같은 방식을 이용하여 코팅 전에 전처리로서 세정을 할 수도 있다.In addition, cleaning may be performed as a pretreatment prior to coating using a method such as polishing.

특히 투명기판의 경우 모재에 잔재하는 이물질에 의한 결함은 코팅 도막 형성 후 품질에 매우 큰 영향을 미칠 수 있어 중요한 공정이다.In particular, in the case of transparent substrates, defects caused by foreign substances remaining on the base material are an important process because they can have a very large effect on the quality after forming the coating film.

세정이 끝나면 표면에 형성된 물 또는 습분을 제거하기 위한 건조단계(S300)를 진행한 후 다양한 코팅 방법을 이용하여 상기의 나노 무기조성물을 부착하는 코팅 조성물 부착단계(S400)을 진행한다. 세정 시 사용한 물 또는 기타 매체에는 이물질이 잔존할 수 있으며 이러한 이물질이 건조되면서 표면에 그대로 잔존할 수 있어 이를 제거하기 위하여 공기(바람), 열 등을 활용하여 표면을 깨끗하게 건조할 필요가 있으며 열 또는 높은 온도를 이용할 경우 증류수와 같은 물이나 기타 순도가 높은 물질을 이용하여 코팅 표면에 이물질이 남겨지지 않도록 한다.After washing is finished, a drying step (S300) for removing water or moisture formed on the surface is performed, and then a coating composition attaching step (S400) of attaching the above-described nano-inorganic composition is performed using various coating methods. Foreign substances may remain in the water or other media used during cleaning, and these foreign substances may remain on the surface as they are dried. To remove them, it is necessary to cleanly dry the surface using air (wind) or heat. When using a high temperature, use water such as distilled water or other high-purity substances to prevent foreign substances from being left on the coating surface.

상기와 같이 건조단계(S300) 후 코팅 조성물 부착단계(S400)가 마무리되면 코팅된 표면을 다시 건조 또는 소성할 필요가 있다. 코팅 조성물 부착 직후 바로 소성을 위해 100℃ 이상의 높은 온도를 가열하면 조성물에 포함된 대부분의 물이 증발하면서 기포와 같은 문제점을 발생할 수 있기 때문에 코팅 조성물 부착 직후에는 자연적인 상온 건조 또는 100℃ 미만으로 일정시간 건조하는 단계(S500)이 필요하다. 이러한 건조시간과 연이어 코팅의 내구성을 확보하기 위하여 100~1000℃의 열처리를 위한 소성하는 단계(S600)가 필요하다. 상기 소성단계(S600)은 건조단계(S500)와 연결되어 온도제어기를 이용하여 연속적으로 제어한다.As described above, after the drying step (S300) and the coating composition attaching step (S400) is finished, it is necessary to dry or fire the coated surface again. If you heat a high temperature of 100℃ or higher for sintering immediately after the coating composition is attached, most of the water contained in the composition may evaporate and cause problems such as air bubbles. A step of drying time (S500) is required. In order to secure the durability of the coating after this drying time and successively, a firing step (S600) for heat treatment at 100 to 1000°C is required. The firing step (S600) is connected to the drying step (S500) and continuously controlled using a temperature controller.

일반적으로 열처리 과정은 300℃ 미만에서 이루어지나 특별히 사용온도가 높은 모재이거나 매우 열악한 환경에 사용되는 모재의 경우에는 500℃이상에서 열처리를 수행할 수 있다.In general, the heat treatment process is performed at less than 300°C, but in the case of a base material having a particularly high use temperature or a base material used in a very poor environment, the heat treatment may be performed at 500°C or higher.

강화 유리처럼 700℃ 이상에서 열처리가 필요한 경우는 상기이 건조단계인 S500단계에서 바로 유리 강화를 위한 열처리를 하는 과정으로 S600을 대체할 수도 있다.If heat treatment is required at 700° C. or higher like tempered glass, S600 may be replaced by a process of performing heat treatment for strengthening the glass immediately in step S500, which is the drying step.

본 발명의 조성물은 완전한 무기물로 구성되어 있어 일반적으로 높은 온도에서 열처리를 할 경우 내구성이 높아지는 현상이 있으며 우리가 일상적으로 생활하는 실내와 같은 온습도가 조절되는 매우 좋은 환경에서는 S600의 열처리 과정 없이 S500과정 이후 사용이 가능하다. Since the composition of the present invention is composed of a complete inorganic material, there is a phenomenon that the durability increases when heat treatment is performed at a high temperature in general, and in a very good environment where temperature and humidity are controlled, such as in the room where we live daily, the S500 process It can be used later.

열처리를 위한 소성은 코팅된 조성물과 모재의 부착력을 열(온도)에너지를 이용하는 것으로 자외선, 적외선, 마이크로웨이브 등을 이용할 수 있으며 자연경화로서 상온에서 경화하여 부착할 수 있다. 다만 상온에서 경화를 진행할 경우 다소 많은 시간이 소비되며 내구성 등의 기능성면에서 열처리를 진행한 경우와 비교하여 다소 떨어질 수 있다.The sintering for heat treatment uses heat (temperature) energy for the adhesion between the coated composition and the base material. Ultraviolet rays, infrared rays, microwaves, etc. can be used, and as natural curing, it can be hardened at room temperature and attached. However, if curing is performed at room temperature, a little more time is consumed, and in terms of functionality such as durability, it may be slightly inferior compared to the case of heat treatment.

열처리 시간은 승온 시간을 제외한 10분 이상의 열처리(소성) 유지 시간이 필요하다. 또한 소성이 끝난 후 냉각하는 경우에 있어서도 유리 또는 석재와 같이 온도에 매우 민감한 모재의 코팅 시 냉각시간을 충분히 할 필요가 있으며 고온 열처리를 진행했을 경우 100℃ 미만에서 자연 상태인 상온의 외부로 나올 수 있도록 하는 것이 좋다. 특히 유리와 석재 등 냉각온도에 민감한 소재에 코팅할 경우 필요에 따라 강제로 냉각시간을 제어하는 냉각단계(S700)가 필요할 수 있다.The heat treatment time requires a heat treatment (firing) holding time of 10 minutes or more excluding the temperature rise time. In addition, even in the case of cooling after firing, it is necessary to allow sufficient cooling time when coating a very sensitive base material such as glass or stone. If high-temperature heat treatment is performed, it may come out to the outside of the natural state at room temperature below 100℃. It is good to have it. In particular, when coating on a material sensitive to cooling temperature such as glass and stone, a cooling step (S700) of forcibly controlling the cooling time may be required as needed.

더 구체적으로 코팅 도막을 형성하는 공정을 설명하면, 상기 화학식의 조성물을 제조하는 단계(S100)에 이어 코팅이 필요한 모재의 전처리(세정)하는 단계(S200)는 일반적으로 코팅을 하기 위한 모재의 표면을 가공하는 과정에서 많은 유기물 및 기름 등과 같은 이물질을 포함하고 있어 이를 제거하기 위하여 일반적으로 습식세정인 수세정을 하고 있으며 수세정 환경이 어려운 경우 플라즈마와 같은 방법을 이용한 건식세정을 한다.More specifically, the process of forming the coating film is described, following the step of preparing the composition of the above formula (S100), the step of pretreating (washing) the base material requiring coating (S200) is generally the surface of the base material for coating. In the process of processing, since it contains a lot of foreign substances such as organic matter and oil, in order to remove it, water washing is generally performed, which is wet washing, and if the water washing environment is difficult, dry washing is performed using a method such as plasma.

습식세정인 수세정에 비하여 건식세정은 비교적 공정이 간단하고 코팅 도막 형성을 위한 모재의 표면을 친수화시키는 등의 장점이 있고 경우에 따라 모재와 나노 무기조성물의 부착을 용이하게 하기 위하여 표면처리할 필요가 있을 때 상기의 플라즈마 공정은 매우 유익하지만 모재의 표면에 궁극적으로 이물질이 잔존할 수 있는 단점이 있어 모재에 따라 표면의 이물질을 완벽하게 제거할 수 있는 세정방법을 선택할 필요가 있다.Compared to water cleaning, which is wet cleaning, dry cleaning is relatively simple in process and has advantages such as hydrophilizing the surface of the base material for forming a coating film, and in some cases, surface treatment is required to facilitate adhesion of the base material and the nano-inorganic composition. When there is, the plasma process is very beneficial, but there is a drawback that foreign substances may ultimately remain on the surface of the base material, so it is necessary to select a cleaning method that can completely remove foreign substances from the surface depending on the base material.

세정에는 표면의 이물질 제거를 위하여 세정제를 사용할 수 있으며 세정제 사용 후 세정제 내의 계면활성제 또는 이물질이 표면에 남아 있지 않도록 공기(Air) 등을 이용하여 완전히 제거하여야 한다. For cleaning, a cleaning agent can be used to remove foreign substances from the surface, and after using the cleaning agent, it must be completely removed using air or the like so that surfactants or foreign substances in the cleaning agent do not remain on the surface.

또한 모재의 표면 거칠기 상태 또는 모재에 부착된 이물질의 상태에 따라 모재 표면의 폴리싱 또는 연마 등을 할 수 있다. 이는 코팅 모재의 평활도를 높이거나 표면의 오염이 심하거나 이물질이 모재에 스며들어 세정이 어려운 경우 이를 제거할 목적으로 이용할 수 있다.Also, depending on the surface roughness of the base material or the state of foreign substances attached to the base material, the base material surface can be polished or polished. This can be used for the purpose of improving the smoothness of the coated base material, when the surface is severely contaminated or when cleaning is difficult due to foreign matters permeating the base material.

한편, 본 발명의 나노 무기조성물을 활용하여 무기 도막을 형성하기 전에 본 발명의 나노 무기조성물이 용매로서 물을 사용하는 관계로 모재와 부착을 용이하게 할 목적으로 친수특성을 갖도록 플라즈마(plasma), 애노다이징(anodizing), 샌딩(sanding), 에칭(etching) 등 전처리하는 단계를 더 포함하여 무기계 코팅막의 형성이 보다 효율적으로 이뤄질 수 있도록 할 수 있다.On the other hand, before forming the inorganic coating film using the nano-inorganic composition of the present invention, the nano-inorganic composition of the present invention uses water as a solvent, so that the plasma has a hydrophilic property for the purpose of facilitating adhesion to the base material, Anodizing, sanding, etching, or the like may be further included so that the inorganic coating layer can be formed more efficiently.

상기 모재 표면을 세척하는 과정의 하나로서 이용할 수 있는 초음파 세척은 모재를 초음파 탱크 안에 잠기도록 담근 후, 초음파를 발생시켜 모재 표면의 미세 부분까지도 세척할 수 있도록 한다. 초음파는 28 ~ 48 kHZ인 것이 바람직하다. 상기 초음파 세척과정에서는 무기염이 포함된 수용성 세척제를 사용할 수 있다. 무기염이 포함된 수용성 세척제를 사용하면, 모재의 표면에 형성되는 코팅막인 무기계 코팅 도막과의 밀착도를 높일 수 있는 장점도 있다. In the ultrasonic cleaning, which can be used as one of the processes of cleaning the surface of the base material, after the base material is immersed in an ultrasonic tank, ultrasonic waves are generated so that even a fine part of the surface of the base material can be cleaned. It is preferable that the ultrasonic wave is 28 to 48 kHZ. In the ultrasonic cleaning process, a water-soluble cleaning agent containing an inorganic salt may be used. If a water-soluble detergent containing an inorganic salt is used, there is also an advantage of increasing the adhesion with the inorganic coating film, which is a coating film formed on the surface of the base material.

또한, 본 발명에서는 상기 초음파 세척과정 이전에, 유분 및 불순물을 제거하는 침적 및 증기 세척단계를 더 포함할 수 있다. 이는 모재 표면이 깨끗한 경우에는 별도로 진행할 필요가 없으나, 불순물 제거가 어려운 경우, 예를 들어 목재 또는 석재와 같은 경우에는 특히 바람직하게 적용할 수 있다.In addition, in the present invention, prior to the ultrasonic cleaning process, a deposition and steam cleaning step of removing oil and impurities may be further included. This is not necessary to proceed separately when the base material surface is clean, but when impurities are difficult to be removed, for example, it can be particularly preferably applied in the case of wood or stone.

상기 침적 및 증기 세척단계는 모재의 표면에 부착되어 있는 광물성 합성유 등과 같은 각종 유분을 제거하기 위하여 진행되며, 모재를 탱크 안에 넣고 용제에 침적하여 세척하거나, 용제를 증발시켜 증기를 응축하여 모재 표면에 흐르도록 하여 흐르는 응축수에 의하여 유분 및 불순물을 깨끗이 세척되도록 한다. 증기의 응축에 의한 세척은 탱크에서 꺼낸 즉시 건조되므로 별도의 건조 단계를 거치지 않고서도 다음 단계로 넘어갈 수 있어 생산 시간을 단축시킬 수 있다.The immersion and steam washing step is performed to remove various oils such as mineral synthetic oil adhering to the surface of the base material, and wash the base material by immersing it in a solvent or evaporate the solvent to condense the vapor on the surface of the base material. Let it flow and clean the oil and impurities by flowing condensed water. Washing by condensation of steam is dried immediately after it is taken out of the tank, so it is possible to move to the next step without going through a separate drying step, thereby shortening the production time.

또한, 세정이 끝나면 표면에 형성된 물 또는 습분을 제거하기 위한 건조단계(S300)를 진행하는데 건조시 공기나 열을 이용하여 건조할 경우 소정의 온도로 예열된 공기를 활용하여 건조할 수 있다.In addition, after the cleaning is finished, a drying step (S300) is performed to remove water or moisture formed on the surface. When drying is performed using air or heat, it may be dried using air preheated to a predetermined temperature.

이는, 모재표면의 습기를 제거하는 과정으로 여름철은 공기 중 습분을 제거한 후 이용할 수 있으나 겨울철과 같이 주변온도가 낮고 습도가 낮을 경우 약 50±20℃ 정도의 온도로 공기를 예열하여 사용할 수 있다. 이때 모재 표면에 전이된 상온 이상의 온도를 활용하여 코팅시 투명기재의 경우 헤이즈를 주거나 불투명 기재의 광택도를 유광 또는 무광과 같이 선택적으로 적용할 수 있도록 하며 나노 무기 조성물이 효율적으로 코팅되도록 할 수 있다.This is a process of removing moisture from the surface of the base material, and can be used after removing moisture from the air in summer, but when the ambient temperature is low and humidity is low, such as in winter, the air can be preheated to a temperature of about 50±20°C. At this time, by using the temperature above room temperature transferred to the surface of the base material, in the case of a transparent material when coating, a haze can be given or the glossiness of an opaque substrate can be selectively applied, such as glossy or matte, and a nano-inorganic composition can be efficiently coated. .

물론 예열된 공기를 활용하지 않고 상기의 유, 무광이나 헤이즈(탁도)를 의도적으로 구현하기 위하여 모재표면 온도를 상온 이상으로 전이하여 원하는 정도의 헤이즈(탁도)를 구현할 수 있으며 모재 표면의 온도가 높을수록 헤이즈(탁도)의 단계는 높아진다.Of course, in order to intentionally implement the above oil, matte or haze (turbidity) without using preheated air, the desired degree of haze (turbidity) can be achieved by shifting the base material surface temperature above room temperature. The higher the level of haze (turbidity) is.

상기 모재의 표면 전처리 및 예열건조처리가 종료되면, 상기 나노 무기 조성물을 모재의 표면에 부착시키기 위한 코팅 단계(S400)를 수행한다. When the surface pretreatment and preheat drying treatment of the base material are finished, a coating step (S400) for attaching the nano-inorganic composition to the surface of the base material is performed.

상기 조성물의 코팅방법은 특별히 제한되지 아니하는바 공지의 방법을 이용할 수 있으며, 예를 들어 딥핑(Dipping)코팅 또는 스프레이코팅, 롤코팅, 스핀코팅, 바코팅, 플로우코팅, 커튼코팅, 나이프코팅, 진공증착, 이온플레이팅, 플라즈마증착법, 스퍼터, 스크린프린팅, 붓이나 스폰지, 브러쉬 등를 비롯한 부드러운 천등을 이용하여 바르는 등의 방법들 중 어느 하나의 방법을 이용하거나 하나 이상의 방법을 동시에 사용함으로서 모재 표면에 나노 무기 조성물을 코팅할 수 있다.The coating method of the composition is not particularly limited, and a known method may be used, for example, dipping coating or spray coating, roll coating, spin coating, bar coating, flow coating, curtain coating, knife coating, Vacuum deposition, ion plating, plasma deposition, sputtering, screen printing, brushing, sponge, brush, and other methods such as applying with a soft cloth, etc., or by using one or more methods simultaneously Nano inorganic composition can be coated.

이때, 모재 표면에 코팅되는 나노 무기 조성물의 코팅막은 10nm ~ 5㎛의 두께로 코팅되도록 함이 바람직하다. 상기의 모든 코팅 방법은 용도에 따라 상기 범위 내에서 코팅두께로 제어가 가능할 것이다.At this time, it is preferable that the coating film of the nano-inorganic composition coated on the surface of the base material is coated to a thickness of 10 nm to 5 μm. All of the above coating methods may be controlled by the coating thickness within the above range depending on the application.

경우에 따라, 상기 코팅단계는 상기의 S200 또는 S300에서 S600의 과정을 수회 이상 진행하여 코팅 도막의 두께를 높게 형성함으로서 내부식성과 같은 화학적 안정성과 기계적 특성을 높일 수도 있다.In some cases, in the coating step, chemical stability such as corrosion resistance and mechanical properties may be improved by increasing the thickness of the coating film by performing the process of S600 in S200 or S300 several times or more.

상기 단계에 의하여 나노 무기 조성물을 모재의 표면에 코팅한 후에는 나노 무기 조성물을 완전히 경화시키기 위하여 소정 온도에서 소정 시간 동안 소성하는 단계(S600)를 수행한다. After coating the nano-inorganic composition on the surface of the base material by the above step, firing at a predetermined temperature for a predetermined time in order to completely cure the nano-inorganic composition (S600) is performed.

상기 건조된 모재를 소성하는 단계(S600)는 100℃ ~ 1000℃의 온도에서 10분 ~ 3시간 동안 소성하는 것이 모재의 종류에 따라 차이는 있지만 모재 자체에 큰 영향을 주지 않으면서도 코팅막의 경도 및 매끄러운 표면 거칠기 구현을 위하여 바람직하다. 일반적인 소성온도는 300℃미만에서 열처리를 하지만 특별히 열악한 환경(물내부, 염수, 강산 등에 노출)하에서 코팅된 모재가 사용되는 경우는 500℃이상에서 소성하거나 3시간 이상 충분히 열처리를 진행하여 내수성과 내구성을 높일 수 있다.In the firing step (S600) of the dried base material, firing at a temperature of 100°C to 1000°C for 10 minutes to 3 hours is different depending on the type of base material, but the hardness and hardness of the coating film and the It is preferable for realizing a smooth surface roughness. The general firing temperature is heat treated at less than 300℃, but when the coated base material is used in a particularly harsh environment (exposed to water, salt water, strong acid, etc.), fire at 500℃ or higher or sufficiently heat treatment for more than 3 hours to ensure water resistance and durability. Can increase.

상기 소성 단계는 1차 건조 공정(S500), 2차 소성 공정(S600), 냉각공정(S700)의 소단계로 나뉘어서 진행될 수도 있다. The firing step may be divided into a first drying process (S500), a second firing process (S600), and a cooling process (S700).

구체적으로는, 먼저 코팅 도막이 형성된 모재를 소성로에 투입하고, 소성로 내부의 온도를 3~5℃/min정도로 서서히 상승시킨다. 소성로 내부 온도가 제1 소성 온도(100±20℃)에 도달하면 온도를 더 이상 상승시키지 않고, 소성로 내부 온도를 제1 소성 온도로 유지하면서 1차 소성 공정을 소정 시간 동안 진행한다. 이때 제1 소성 온도는 100±20℃인 것이 바람직하다. Specifically, first, the base material on which the coating film is formed is put into a sintering furnace, and the temperature inside the sintering furnace is gradually increased to about 3 to 5°C/min. When the temperature inside the kiln reaches the first firing temperature (100±20°C), the temperature is not increased any more, and the first firing process is performed for a predetermined time while maintaining the inside temperature of the kiln at the first firing temperature. At this time, the first firing temperature is preferably 100±20°C.

상기와 같은 1차 소성을 진행하는 목적은 본 발명의 나노 무기조성물의 용매로서 물을 사용하고 있는 관계로 100℃ 이상의 너무 높은 온도에서 급하게 온도를 상승시키거나 100℃이상이 환경에 용매인 물이 노출되면 나노 무기조성물을 구성하고 있는 물이 기화하여 코팅 도막에 물의 증발로 인해 도1에 나타난 바와 같이 공기층이 형성되거나 열처리과정에서 결함이 발생할 수 있기 때문에 이를 방지할 목적으로 승온 속도를 낮추거나 100±20℃정도에서 수분~수십분 정도의 1차 소성 과정을 진행함으로서 나노 무기조성물 상에 존재하는 물을 외부로 방출시킴으로서 열처리를 진행하는 것이다.Since water is used as a solvent for the nano-inorganic composition of the present invention, the purpose of the first firing as described above is to rapidly increase the temperature at too high a temperature of 100°C or higher, or water as a solvent to the environment above 100°C. When exposed, the water constituting the nano-inorganic composition evaporates and the air layer is formed as shown in Fig. 1 due to the evaporation of water on the coating film, or defects may occur in the heat treatment process. Heat treatment is performed by releasing water present on the nano-inorganic composition to the outside by performing the first firing process of about a few minutes to several tens of minutes at about ±20°C.

그리고, 1차 소성 공정이 완료되면 다시 소성로 내부의 온도를 서서히 상승시킨다. 소성로 내부 온도가 제2 소성 온도에 도달하면 온도를 더 이상 상승시키지 않고 소성로 내부 온도를 제2 소성온도로 유지하면서 2차 소성 공정을 소정 시간동안 진행한다. 이때 제2 소성 온도는 100℃ ~ 1000℃인 것이 바람직하다. 1000℃이상의 온도 상승은 나노 무기조성물은 1000℃ 이상의 온도에서도 물리적, 화학적인 문제가 발생하지 않지만 대부분 모재의 종류에 따라서 열(온도)에 의한 열화가 발생할 수 있기 때문에 모재의 온도특성을 주의 깊게 살펴 진행할 필요가 있다.Then, when the first firing process is completed, the temperature inside the firing furnace is gradually increased again. When the inside temperature of the kiln reaches the second firing temperature, the temperature is not increased any more and the secondary firing process is performed for a predetermined time while maintaining the inside temperature of the kiln at the second firing temperature. At this time, the second firing temperature is preferably 100 ℃ ~ 1000 ℃. If the temperature rises above 1000℃, the nano-inorganic composition does not cause physical and chemical problems even at temperatures above 1000℃, but most of the materials may cause deterioration due to heat (temperature), so carefully examine the temperature characteristics of the base material. You need to proceed.

이렇게 하여 1, 2차 소성 공정이 완료되면 소성된 모재를 상온으로 식히는 냉각 공정(S700)이 진행된다. 이 냉각 공정에서는 모재에 특별한 처리를 하는 것이 아니고 모재의 온도를 상온으로 낮추는 과정이다. 이때 이 냉각 공정을 1, 2차 소성 공정과 마찬가지로 온도를 일정속도로 제어하면서 하강시키거나 자연적으로 냉각이 될 수 있도록 진행할 수도 있다. In this way, when the first and second firing processes are completed, a cooling process (S700) of cooling the fired base material to room temperature is performed. In this cooling process, the base material is not treated specially, but the temperature of the base material is lowered to room temperature. At this time, the cooling process may be lowered while controlling the temperature at a constant rate, or may be performed so that it can be cooled naturally, as in the first and second firing processes.

상기 소성 온도는 모재의 재료에 따라 모재와 코팅도막 사이의 열팽창 특성에 차이가 있어 냉각에 의한 열 충격을 줄이기 위해 달리 선택할 수 있음은 물론이다.It goes without saying that the firing temperature may be differently selected to reduce thermal shock due to cooling since there is a difference in thermal expansion characteristics between the base material and the coating film depending on the material of the base material.

특히 유리 또는 석재와 같이 온도에 매우 민감한 모재의 경우 100℃이상에서 상온으로 바로 노출시키게 되면 표면에 마이크로 크랙 등 결함이 발생하거나 깨어지는 현상이 발생할 수 있어 모재에 따른 주의가 필요하다.In particular, in the case of a base material that is very sensitive to temperature such as glass or stone, if it is directly exposed to room temperature above 100°C, defects such as micro cracks or breakage may occur on the surface, so care is required according to the base material.

본 발명의 나노 무기조성물을 이용한 도막형성을 위해 모재에 따라 서로 다른 코팅방법을 이용한 실시예를 통하여 설명하면 아래와 같다.It will be described through examples using different coating methods depending on the base material for forming a coating film using the nano-inorganic composition of the present invention.

주로 강판, 유리, 석재, 목재 등과 같이 판재로 이루어진 모재의 경우 스프레이 또는 바 방식의 코팅방법이 가장 일반적이라 할 수 있으며 양산을 위한 자동화에도 가장 적합할 수 있다.In the case of a base material mainly made of a plate material such as steel, glass, stone, wood, etc., spray or bar coating method is the most common, and it may be most suitable for automation for mass production.

또한, 최적의 두께로 코팅도막을 형성하기 위하여 노즐의 높이, 유량, 이동속도, 고형분 함량, 공기압 등을 제어함으로서 이를 달성할 수 있다. In addition, this can be achieved by controlling the height, flow rate, moving speed, solid content, air pressure, etc. of the nozzle in order to form a coating film with an optimum thickness.

노즐의 높이가 높아지면 단위 면적당 모재표면에 부착되는 조성물의 양이 감소하여 도막 두께가 감소하고 반대로 노즐의 높이가 낮아질수록 모재에 부착되는 조성물의 양이 증가하여 도막두께는 증가될 것이며 모재의 이동속도가 증가하면 부착되는 조성물의 양은 감소하고 이동속도가 감소하면 부착되는 조성물의 양은 증가하는 것은 당연한 물리적인 법칙이다. 또한 고형분의 함량이 낮으면 코팅 두께가 감소하고 고형분 함량이 많으면 코팅 두께가 두꺼워진다. 조성물의 분출되는 공기압을 제어함으로써 표면 탁도를 조절할 수도 있다. As the height of the nozzle increases, the amount of composition adhered to the base material surface per unit area decreases and the coating thickness decreases. Conversely, as the height of the nozzle decreases, the amount of composition adhered to the base material increases, resulting in an increase in the coating thickness. It is a natural physical law that as the speed increases, the amount of the attached composition decreases, and as the movement speed decreases, the amount of the attached composition increases. In addition, when the solid content is low, the coating thickness decreases, and when the solid content is high, the coating thickness becomes thick. Surface turbidity can also be controlled by controlling the air pressure to be ejected from the composition.

이외에 조성물의 유량을 직접 제어하여 도막의 상태와 두께를 조절할 수 있음은 당연하다.In addition, it is natural that the state and thickness of the coating film can be controlled by directly controlling the flow rate of the composition.

상기의 판재에 대해 전처리를 위한 세정(S200)단계 진행 후 100*100mm 면적에 대하여 노즐의 높이는 100mm, 유량 1,000ul/min, 모재의 이동속도 0.25m/min, 노즐의 이동속도를 20m/min로 진행하며 이때 주변온도 25±5℃와 습도 40~60%를 기준으로 할 경우 200~500nm 정도의 두께로 도막형성을 할 수 있으며 도막 두께를 높이기 위해서 동일 조건으로 코팅 횟수를 늘리는 것으로 가능하다.After performing the cleaning (S200) step for pretreatment of the above plate, the height of the nozzle is 100mm, the flow rate is 1,000ul/min, the movement speed of the base material is 0.25m/min, and the movement speed of the nozzle is 20m/min for an area of 100*100mm. At this time, based on the ambient temperature of 25±5℃ and humidity of 40-60%, the coating film can be formed with a thickness of about 200-500nm, and it is possible to increase the number of coatings under the same conditions to increase the coating thickness.

본 발명에서 단위면적은 100*100mm을 나타낸다.In the present invention, the unit area represents 100*100mm.

상기의 기준은 습도가 40%이하일 경우 유량이 증가하며 60%이상일 경우 유량을 감소시켜 코팅도막의 두께와 도막의 표면상태가 유니폼하고 일정하게 유지될 수 있도록 제어하며 석재 또는 목재와 같이 물을 흡수하는 표면을 가지고 있을 경우 이를 감안하여 유량을 증가시켜 코팅도막을 형성함으로서 가장 최적의 도막두께를 형성할 수 있도록 하여야 한다.The above standards are controlled so that the thickness of the coating film and the surface condition of the coating film remain uniform and constant by increasing the flow rate when the humidity is less than 40% and decreasing the flow rate when the humidity is more than 60%, and absorbs water like stone or wood. In the case of having a surface to be coated, the most optimal thickness of the coating film should be formed by increasing the flow rate in consideration of this.

스프레이 방식을 통한 실시예를 구체적으로 설명하면 하기의 식과 같다.When the embodiment through the spray method is described in detail, it is as follows.

스프레이 방식의 코팅에 따른 실시예는 코팅 도막두께를 기준으로 하여 코팅도막을 형성할 경우 아래와 같은 계산식을 활용하여 실시한다.In the case of forming a coating film based on the coating film thickness, the spray-type coating example is carried out using the following calculation formula.

스프레이 방식의 코팅도막 형성을 위한 조건들의 관계식은 다음과 같다.The relational expression of the conditions for forming a spray-type coating film is as follows.

Figure pat00011
Figure pat00011

Ht : 코팅 두께H t : coating thickness

Q : 유량(ul/min)Q: Flow rate (ul/min)

C : 점도 또는 농도(고형분 함량)C: viscosity or concentration (solid content)

U : 모재의 이동속도(m/min)U: moving speed of base material (m/min)

t : 코팅 횟수t: number of coatings

W : 스프레이 면적 (m2)W: spray area (m2)

h : 노즐의 높이(m)h: height of the nozzle (m)

0.1m x 0.1m 평판 코팅의 경우, 유량(100 ul/min ~ 10,000ul/min), 점도(1~10cp), 모재의 이동속도 (0.1~5m/min), 노즐의 이동속도 (10~50m/min),노즐의 높이(0.05 ~ 1m), 코팅 횟수 등의 조건들을 통해 다양한 두께의 코팅 층을 만들 수 있다. 상기 식에서 유량을 제어하기 위한 공기압은 정압으로 일정한 값을 기준으로 정하고 코팅을 실시하며 0.5Mpa 이상일 경우 투명한 유리의 경우 헤이즈(탁도)가 생길 수 있으며 불투명한 모재의 경우 투과도를 낮추어 반투명 또는 불투명하게 할 수 있다.In the case of 0.1mx 0.1m flat coating, flow rate (100 ul/min ~ 10,000 ul/min), viscosity (1~10cp), moving speed of base material (0.1~5m/min), moving speed of nozzle (10~50m/ min), the height of the nozzle (0.05 ~ 1m), it is possible to create a coating layer of various thicknesses through conditions such as the number of coatings. In the above equation, the air pressure for controlling the flow rate is determined based on a constant value as a static pressure, and coating is performed.If it is 0.5 MPa or more, haze (turbidity) may occur in the case of transparent glass, and in the case of an opaque base material, the transmittance is lowered to make it translucent or opaque. I can.

본 발명에서는 유리와 같은 투명기판에 상기의 나노 무기조성물을 이용하여 코팅 도막을 형성할 경우 일반적인 맑고 깨끗한 유리와 같이 광투과도가 80%이상의 헤이즈가 없는 투명한 헤이즈 1단계와 70%의 투과도를 헤이즈 2단계, 60%의 투과도를 헤이즈 3단계, 50%의 투과도를 헤이즈 4단계, 40%의 투과도를 헤이즈 5단계, 30%의 투과도를 헤이즈 6단계, 20%의 투과도를 헤이즈 7단계, 10%의 투과도를 헤이즈 8단계, 완전불투명을 헤이즈 9단계로 정의하여 나타내면 헤이즈 1에서 헤이즈 9단계에 이르기 까지 전 영역에 코팅 박막을 형성할 수 있다.In the present invention, when a coating film is formed on a transparent substrate such as glass using the above nano-inorganic composition, as in general clear and clean glass, the light transmittance is 80% or more without haze. Steps, 60% transmittance in 3 haze steps, 50% transmittance in 4 haze steps, 40% transmittance in 5 haze steps, 30% transmittance in 6 haze steps, 20% transmittance in 7 haze steps, 10% If the transmittance is defined as 8 stages of haze and 9 stages of haze as complete opacity, a coating thin film can be formed over the entire area from Haze 1 to Haze 9 stages.

하기의 식은 상기의 산란도(헤이즈)와 관련된 비례식이다.The following equation is a proportional equation related to the above scattering degree (haze).

Figure pat00012
Figure pat00012

S : 일정한 유량에서의 산란도(헤이즈 또는 탁도)S : Scattering degree at constant flow rate (haze or turbidity)

C : 점도 또는 농도(고형분 함량)C: viscosity or concentration (solid content)

P : 공기압 P: air pressure

U : 모재의 이동속도(m/min)U: moving speed of base material (m/min)

T : 모재의 표면 온도T: surface temperature of the base material

t : 코팅 횟수t: number of coatings

W : 스프레이 면적W: spray area

h : 노즐의 높이h: height of the nozzle

0.1m x 0.1m 평판 유리 코팅의 경우, 주변온도 25±5℃와 습도 40~60%를 기준으로 하며 모재의 표면온도 역시 상온으로 가정할 경우 공기압(0.1Mpa ~ 1Mpa), 점도(1~10cp), 모재의 이동속도 (0.1~5m/min), 노즐의 이동속도 (10~50m/min), 노즐의 높이(0.1 ~ 0.5m), 의 조건들을 통해 다양한 헤이즈(탁도)를 나타내는 코팅 층을 만들 수 있다. 상기의 조건들일 때, 유량이 일정량(예 : 3,000ul/min 이상) 이상이면 다시 투명해질 수 있어 정밀한 제어가 필요하며 공기압이 높아질수록 압력에 의한 액상원료의 분해도가 높아져 헤이즈(탁도)가 높아지고 조성물이 점도 또는 농도 역시 산란도와 비례관계에 있다는 것을 알 수 있다.In the case of 0.1mx 0.1m flat glass coating, the ambient temperature is 25±5℃ and the humidity is 40~60%. If the surface temperature of the base material is also assumed to be room temperature, air pressure (0.1Mpa ~ 1Mpa), viscosity (1~10cp) , The base material movement speed (0.1~5m/min), the nozzle movement speed (10~50m/min), the nozzle height (0.1~0.5m), and various haze (turbidity) I can. Under the above conditions, if the flow rate is more than a certain amount (e.g., 3,000 ul/min or more), it may become transparent again, so precise control is required. It can be seen that this viscosity or concentration is also proportional to the scattering degree.

모재가 유리의 경우 스프레이 코팅방식은 헤이즈를 위한 코팅방식으로 적합하지만 맑고 깨끗한 유리상태로 코팅을 위해서는 슬롯다이 또는 바코팅 방식이 스프레이 방식의 코팅과 비교시 일정한 표면거칠기를 유지할 수 있어 유리하다.When the base material is glass, the spray coating method is suitable as a coating method for haze, but for coating in a clear and clean glass state, the slot die or bar coating method is advantageous because it can maintain a certain surface roughness compared to the spray method coating.

또한, 헤이즈를 제어하기 위해서는 모재 표면의 온도를 제어하거나 주변 환경(온도 및 습도)을 제어함으로서도 가능하다.In addition, in order to control haze, it is possible by controlling the temperature of the base material surface or by controlling the surrounding environment (temperature and humidity).

즉 모재의 표면온도를 상온 이상으로 높일수록 동일한 조건에서 산란도(헤이즈 또는 탁도)를 높일 수 있으며 주변 온도를 높임으로서 동일한 효과가 가능할 수 있다. 그러나 유리의 맑은 특성을 살리기 위해서는 스프레이 방식으로 제어가 어렵기 때문에 상기의 슬롯다이 또는 바코팅 방식을 활용하는 것이 용이하다.That is, as the surface temperature of the base material is increased above room temperature, the scattering degree (haze or turbidity) can be increased under the same conditions, and the same effect can be achieved by increasing the ambient temperature. However, it is easy to use the slot die or bar coating method described above because it is difficult to control by spray method in order to preserve the clear characteristics of glass.

슬롯다이 또는 바코팅 방식은 슬롯과 바를 피 코팅 표면에 수십에서 수백마이크로미터 이격시켜 메니스커스(meniscus)를 형성하여 피 코팅표면에 조성물을 부착시키는 것으로서 실시예는 아래와 같으며 피 코팅표면의 코팅을 위해서는 100mm x 100mm 크기의 유리샘플을 기준으로 100nm 두께의 코팅 도막층을 고려했을 때, 바 또는 슬롯다이의 높이를 100±50㎛ 정도로 이격시키고 바 또는 슬롯에 주입되는 유량을 50~500ul/min, 모재의 이동속도 1~10 mm/sec로 진행한다. 이때 도막의 두께는 바 또는 슬롯다이의 높이, 유량, 이동속도, 조성물 고형분 함량 등을 제어함으로서 조절할 수 있다.The slot die or bar coating method is to attach the composition to the coated surface by forming a meniscus by separating the slot and the bar from the surface to be coated by tens to hundreds of micrometers.Examples are as follows. For this, when considering a 100nm-thick coating layer based on a 100mm x 100mm glass sample, the height of the bar or slot die is separated by about 100±50㎛, and the flow rate injected into the bar or slot is 50~500ul/min. , Proceed at the moving speed of the base material 1~10 mm/sec. At this time, the thickness of the coating film can be adjusted by controlling the height, flow rate, moving speed, solid content of the composition, and the like of the bar or slot die.

바 또는 슬롯다이 코팅을 위한 조건들의 관계식의 경우 다음과 같다.The relational expression of conditions for bar or slot die coating is as follows.

Figure pat00013
: 바의 길이
Figure pat00013
: The length of the bar

Figure pat00014
: 매니스커스 끝단에서 실제 코팅이 되어지는 두께
Figure pat00014
: Thickness that is actually coated at the end of the meniscus

Figure pat00015
: 모재의 이동속도
Figure pat00015
: Base material movement speed

Figure pat00016
: 유량 (코팅 시 매니스커스에서 소모되는 용액의 양)
Figure pat00016
: Flow rate (amount of solution consumed in the meniscus during coating)

Figure pat00017
: 용액 주입용 주사기 니들의 개수
Figure pat00017
: Number of syringe needles for solution injection

Figure pat00018
: 매니스커스의 곡률반경
Figure pat00018
: Curvature radius of meniscus

Figure pat00019
: 표면장력
Figure pat00019
: Surface tension

Figure pat00020
: 용액의 점도
Figure pat00020
: Viscosity of solution

Figure pat00021
: 바의 높이
Figure pat00021
: Bar height

tdry : 건조 후 도막두께t dry : thickness of the film after drying

코팅 시 메니스커스에서 소모되는 용액의 양과 새로 주입되는 양이 같다고 가정할 때, 아래의 식으로 나타낼 수 있으며,Assuming that the amount of solution consumed in the meniscus and the amount newly injected during coating are the same, it can be expressed by the following equation,

Figure pat00022
Figure pat00022

코팅 면적 증가에 따라 추가 될 조성물을 주입할 니들 개수를 넣으면 아래의 식으로 나타낼 수 있다.If the number of needles to inject the composition to be added as the coating area increases, it can be expressed by the following equation.

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

Figure pat00025
: 주사기의 내경
Figure pat00025
: Inner diameter of syringe

Figure pat00026
: 조성물 주입 속도
Figure pat00026
: Composition injection rate

Landau Levich theory에 따라 아래의 식을 활용하면,Using the following equation according to Landau Levich theory,

Figure pat00027
,
Figure pat00027
,

여기서

Figure pat00028
이고, 상기의 식을 응용하면
Figure pat00029
임으로 최종적으로 아래의 식을 유추할 수 있다.here
Figure pat00028
And applying the above equation
Figure pat00029
Finally, the following equation can be inferred.

Figure pat00030
Figure pat00030

즉, 매니스커스 끝단에서 실제 코팅이 되어지는 두께인 Twet는 니들의 개수와 유량에 비례하고 바의 길이와 조성물의 주입속도와 반비례관계임을 알 수 있으며 C1은 Dynamic meniscus curvature와 관계된 상수이다.In other words, it can be seen that T wet , which is the actual coating thickness at the end of the meniscus, is proportional to the number and flow rate of the needle, and is inversely proportional to the length of the bar and the injection rate of the composition, and C 1 is a constant related to the dynamic meniscus curvature. .

스프레이 코팅과 달리 바 또는 슬롯다이 코팅의 경우 고형분 함량을 제외한 조건들로 두께를 두배 이상 올리기는 쉽지 않다. 반면 광학특성 중 투과도 향상을 위한 코팅 방법으로서는 얇은 박막두께와 상대적으로 균일한 표면을 구현할 수 있는 바 또는 슬롯다이 코팅이 더 용이하다. Unlike spray coating, in the case of bar or slot die coating, it is not easy to increase the thickness more than twice under conditions excluding solid content. On the other hand, as a coating method for improving transmittance among optical properties, a bar or slot die coating capable of realizing a relatively uniform surface with a thin film thickness is easier.

상기와 같이 나노 무기조성물의 부착을 위한 코팅단계(S400)끝나면 소성단계를 진행한다.When the coating step (S400) for attaching the nano-inorganic composition is finished as described above, the firing step is performed.

상기에 기술한 바와 같이 1차와 2차로 구분되어 소성을 진행하며 모재에 따라 1,2차의 구분 없이 소성을 진행할 수 있으며 소성온도 역시 조정할 수 있다.As described above, firing is performed by being divided into primary and secondary, and firing can be performed without distinction between primary and secondary depending on the base material, and the firing temperature can also be adjusted.

예를 들어 온도에 민감한 필름 또는 석재, 목재 등의 모재에 따라 모재를 소성로 내부에 입고하여 모재 전체를 열처리하는 방식보다는 코팅도막이 형성되는 표면에만 열처리를 하는 것이 더 효과적인 모재에 대해서는 마이크로웨이브, UV경화 또는 적외선(중적외선) 등을 이용하여 모재 표면에만 열처리하는 방식으로 진행할 수 있다.For example, it is more effective to heat treatment only on the surface where the coating film is formed rather than heat-treating the entire base material by putting the base material inside the kiln according to the temperature-sensitive film or the base material such as stone or wood. Alternatively, it can be carried out in a manner that heat treatment is performed only on the surface of the base material using infrared (medium infrared) or the like.

또 다른 목적으로는 고분자 재료로 구성된 필름과 기판형태에 따라 롤코팅, 스프레이 코팅 또는 디핑(dipping)코팅과 같은 방식을 활용하는 경우에는 단면 혹은 양면 코팅이 가능하며 코팅물질을 고분자 재료에 부착시키고 바로 마이크로웨이브를 이용하여 소성함으로서 다양한 사이즈의 두께로 고분자 재료에 코팅이 가능함으로서 다양한 형태를 유지하면서 무기소재가 가지고 있는 다양한 특성을 활용할 수 있어 이미 설치되어 있는 산업재에 직접 부착함으로서 활용범위를 다양화할 수 있다.For another purpose, if a method such as roll coating, spray coating or dipping coating is used depending on the type of film and substrate made of polymer material, single-sided or double-sided coating is possible. By firing using microwave, it is possible to coat polymeric materials with various sizes of thickness, so that various properties of inorganic materials can be utilized while maintaining various shapes, so that the scope of application can be diversified by attaching directly to industrial materials already installed. have.

1. 연필경도(Pencil hardness)1. Pencil hardness

ASTM D3363의 기준에 따라 측정하였다. It was measured according to the standards of ASTM D3363.

측정용 연필을 끼우고, 일정 하중(1Kg)을 가함으로써 측정하였다. 측정결과는 9H ~ 1H, F, HB, 1B ~ 6B로 나타내었으며, 9H의 경우 최고로 단단한 것이며, 6B의 경우 가장 약한 경도를 나타낸다. The measurement was performed by inserting a measuring pencil and applying a constant load (1Kg). The measurement results are shown as 9H ~ 1H, F, HB, 1B ~ 6B, 9H is the hardest, and 6B shows the weakest hardness.

2. 부착력 내지 접착력(Adhension)2. Adhesion to adhesion (Adhension)

ASTM D3359의 기준에 따라 측정하였다.It was measured according to the standards of ASTM D3359.

나노 무기 조성물을 이용한 코팅막에 cutter로 바둑판 모양의 흠을 낸 후, 그 위에 3M 테이프를 완전 밀착시킨 후 일정한 힘으로 떼어내어 코팅층과 기재와의 밀착 정도를 관찰하였다. 측정결과는 0B, 1B, 2B, 3B, 4B, 5B로 기재하였으며, 수치는 아래와 같다. After making a checkerboard-shaped flaw on the coating film using the nano-inorganic composition with a cutter, the 3M tape was completely adhered to the coating film and then peeled off with a certain force to observe the degree of adhesion between the coating layer and the substrate. Measurement results are described as 0B, 1B, 2B, 3B, 4B, 5B, and the numerical values are as follows.

0B: 측정 후 코팅 막이 65% 이상 손실된 경우.0B: When the coating film is lost more than 65% after measurement.

1B: 측정 후 코팅 막이 35 ~ 65% 정도 손실된 경우.1B: When the coating film is lost about 35 to 65% after measurement.

2B: 측정 후 코팅 막이 15 ~ 35% 정도 손실된 경우. 2B: When the coating film is lost by 15 to 35% after measurement.

3B: 측정 후 코팅 막이 5 ~ 15% 정도 손실된 경우.3B: When the coating film is lost by 5 to 15% after measurement.

4B: 측정 후 코팅 막이 5% 미만 손실된 경우.4B: When the coating film is lost less than 5% after measurement.

5B: 측정 후 코팅 막의 손실이 없는 경우.5B: When there is no loss of coating film after measurement.

3. 클린성(Pollution resistant)3. Pollution resistant

코팅막에 유성 매직을 칠한 다음, 물(수돗물)을 뿌린 후 매직이 지워지는 정도로 측정하였으며, 한 포인트에 10회 연속 실시한 결과에 대해 아래와 같이 기재하였다. ◎ : 아주 좋음, ○ : 좋음, △ : 보통, X : 나쁨After applying oily magic to the coating film, it was measured to the extent that the magic was erased after spraying water (tap water), and the results of performing 10 consecutive times at one point were described as follows. ◎: Very good, ○: Good, △: Normal, X: Bad

4. 접촉각(Contact angle)4. Contact angle

코팅막에 물 한 방울을 떨어뜨린 후 코팅 막 위의 물의 형태가 어떻게 변하는지 관찰하였다. 이는 코팅막의 친수성 정도를 알 수 있는 실험으로 초친수성 또는 친수성인 경우 클린성이 더 좋게 나온다. 접촉각이 20±5도인 경우는 친수성, 10±2도인 경우에는 초친수성이라 할 수 있다. After dropping a drop of water on the coating film, it was observed how the shape of the water on the coating film changed. This is an experiment in which the degree of hydrophilicity of the coating film can be known, and if it is super-hydrophilic or hydrophilic, the cleanability is better. If the contact angle is 20±5 degrees, it can be said to be hydrophilic, and if the contact angle is 10±2 degrees, it can be said to be superhydrophilic.

5. 내수성5. Water resistance

90℃의 온도에서 모재를 12시간 동안 방치한 결과 코팅막의 상태를 측정하였다. As a result of leaving the base material at a temperature of 90° C. for 12 hours, the state of the coating film was measured.

◎ : 아주 좋음, ○ : 좋음, △ : 보통, X : 나쁨◎: Very good, ○: Good, △: Normal, X: Bad

6. 투과율6. Transmittance

UV-Visible Spectrometer를 이용하여 가시광선 영역부터 자외선 영역까지에서 유리판에 코팅된 코팅막의 투과율을 측정하였다.Using a UV-Visible Spectrometer, the transmittance of the coating film coated on the glass plate was measured from the visible light range to the ultraviolet range.

Claims (19)

화학식((x1Na2O+x2K2O+x3Li2O)·ySiO2·nH2O)으로 표시되는 알칼리 금속산화물(M2O)인 산화나트륨(Na2O), 산화칼륨(K2O), 산화리튬(Li2O) 중 적어도 하나 이상 포함되고; 무기산 화합물; 및 물(H2O);을 포함하며;
알칼리 산화금속들의 몰수인
Figure pat00031
,
Figure pat00032
, n은 1 ~ 20의 자연수이며,
Figure pat00033
;를 만족하고,
실리카의 몰수인
Figure pat00034
를 만족하는 나노무기조성물의 (M2O+ySiO2)은 0.1~10 중량부이고 무기산 화합물 0.01 ~ 2 중량부와 나머지의 물을 포함하는 나노 무기조성물을 부착하여 코팅 도막을 형성하는 것을 특징으로 하는 나노 무기도막 형성방법.
The formula ((x 1 Na 2 O + x 2 K 2 O + x 3 Li 2 O) · ySiO 2 · nH 2 O) , sodium (Na 2 O) oxidation alkali metal oxide (M 2 O) represented by the oxidation At least one of potassium (K 2 O) and lithium oxide (Li 2 O) is included; Inorganic acid compounds; And water (H 2 O);
The number of moles of alkali metal oxides
Figure pat00031
,
Figure pat00032
, n is a natural number from 1 to 20,
Figure pat00033
Satisfies ;,
The number of moles of silica
Figure pat00034
The nano-inorganic composition satisfying (M 2 O+ySiO 2 ) is 0.1 to 10 parts by weight, and a coating film is formed by attaching a nano-inorganic composition containing 0.01 to 2 parts by weight of an inorganic acid compound and the rest of water. Method of forming a nano-inorganic coating.
제1항에 있어서,
모재의 전처리(세정)하는 단계(S200)를 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 1,
Method for forming a nano-inorganic coating further comprising the step (S200) of pre-treating (cleaning) the base material.
제1항 또는 제2항에 있어서,
습분을 제거하기 위한 건조단계(S300)를 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method according to claim 1 or 2,
A method of forming a nano-inorganic coating, further comprising a drying step (S300) for removing moisture.
제1항 내지 제3항에 있어서,
코팅된 모재의 열처리를 위해 소성하는 단계(S600)를 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method according to claim 1 to 3,
A method of forming a nano-inorganic coating, further comprising firing (S600) for heat treatment of the coated base material.
제2항에 있어서,
모재의 전처리(세정)하는 단계(S200)후 조성물 부착이 용이하도록 표면처리 과정을 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 2,
After the step of pre-treating (cleaning) the base material (S200), the method of forming a nano-inorganic coating further comprises a surface treatment process to facilitate attachment of the composition.
제5항에 있어서,
표면처리 과정은 플라즈마를 이용하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 5,
The method of forming a nano-inorganic coating film, characterized in that the surface treatment process uses plasma.
제1항에 있어서,
모재에 부착이 용이하도록 나노 무기 조성물에 계면활성제를 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 1,
Method for forming a nano-inorganic coating film, characterized in that it further comprises a surfactant in the nano-inorganic composition to facilitate attachment to the base material.
제2항에 있어서,
모재의 전처리(세정)하는 단계(S200)는;
플라즈마(plasma), 애노다이징(anodizing), 샌딩(sanding), 에칭(etching), 알칼리 세정, 또는 산세정의 전처리를 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 2,
Pre-treatment (washing) of the base material (S200);
Plasma (plasma), anodizing (anodizing), sanding (sanding), etching (etching), alkali cleaning, or a method of forming a nano-inorganic coating comprising pretreatment of acid cleaning.
제1항에 있어서,
나노 무기조성물을 부착은 스프레이, 바, 스핀, 슬롯다이, 증착, 스퍼터, 디핑, 스크린프린팅, 스폰지, 또는 브러쉬를 이용하여 코팅 도막을 형성하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 1,
A method of forming a nano-inorganic coating film, characterized in that the coating film is formed using spray, bar, spin, slot die, vapor deposition, sputtering, dipping, screen printing, sponge, or brush to attach the nano-inorganic composition.
제9항에 있어서,
스프레이에 의한 무기도막 형성은 하기의 수식과 비례하여 도막 두께(Ht)를 제어하는 것을 특징으로 하는 나노 무기도막 형성방법.
Figure pat00035


The method of claim 9,
The formation of the inorganic coating film by spraying is a method of forming a nano-inorganic coating film, characterized in that the coating thickness (H t ) is controlled in proportion to the following equation.
Figure pat00035


제10항에 있어서,
도막 두께(Ht)는 단위 면적당 유량(Q)은 100 ~ 10,000ul/min, 점도(C)는 1~10cp, 모재의 이동속도 U는 0.1~5m/min, 노즐의 높이는 0.05 ~ 1m 조건에 비례하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 10,
The coating thickness (H t ) is the flow rate per unit area (Q) is 100 ~ 10,000ul/min, the viscosity (C) is 1 ~ 10cp, the moving speed U of the base material is 0.1 ~ 5m/min, the height of the nozzle is 0.05 ~ 1m. Method for forming a nano-inorganic coating film, characterized in that proportional.
제9항에 있어서,
바와 슬롯다이를 이용한 무기도막 형성은 하기의 수식과 비례하여 도막 두께(Twet)를 제어하는 것을 특징으로 하는 나노 무기도막 형성방법.
Figure pat00036
The method of claim 9,
The formation of the inorganic coating film using the bar and the slot die is a method of forming a nano-inorganic coating film, characterized in that the coating thickness (T wet ) is controlled in proportion to the following equation.
Figure pat00036
제12항에 있어서,
도막 두께(Twet)는 단위면적당 바와 슬롯의 높이 100±50㎛, 주입되는 유량 50~500ul/min, 모재의 이동속도 1~10 mm/sec의 조건에 비례하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 12,
Coating thickness (T wet ) is proportional to the conditions of bar and slot height 100±50㎛ per unit area, injected flow rate 50~500ul/min, moving speed of base material 1~10 mm/sec. Way.
제10항 또는 제12항에 있어서,
도막 두께(Ht)는 10~5,000nm 인 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 10 or 12,
The coating film thickness (H t ) is a method of forming a nano-inorganic coating film, characterized in that 10 ~ 5,000nm.
제9항에 있어서,
스프레이에 의해 형성된 무기 도막의 산란도(S)는 하기의 수식에 비례하여 헤이즈(탁도)를 제어하는 것을 특징으로 하는 나노 무기도막 형성방법.
Figure pat00037

The method of claim 9,
A method for forming a nano-inorganic coating film, characterized in that the scattering degree (S) of the inorganic coating film formed by spraying controls haze (turbidity) in proportion to the following equation.
Figure pat00037

제15항에 있어서,
헤이즈는 제1단계에서 제9단계까지 제어가 가능한 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 15,
The method of forming a nano-inorganic coating film, characterized in that the haze can be controlled from the first step to the ninth step.
제15항에 있어서,
헤이즈는 모재의 표면온도에 따라 제1단계에서 제9단계까지 제어가 가능한 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 15,
Haze is a method of forming a nano-inorganic coating film, characterized in that it can be controlled from the first step to the ninth step according to the surface temperature of the base material.
제4항에 있어서,
코팅된 모재의 열처리를 위해 소성하는 단계(S600)는;
100℃ 미만으로 건조하는 단계(S500)를 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 4,
Firing for heat treatment of the coated base material (S600);
A method of forming a nano-inorganic coating further comprising the step of drying at less than 100° C. (S500).
제4항에 있어서,
열처리를 위한 소성하는 단계(S600); 후 냉각 단계(S700)를 더 포함하는 것을 특징으로 하는 나노 무기도막 형성방법.
The method of claim 4,
Firing for heat treatment (S600); After the cooling step (S700), characterized in that it further comprises a nano-inorganic coating forming method.
KR1020190042720A 2019-04-11 2019-04-11 Method for forming nano-inorganic film KR102281837B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020190042720A KR102281837B1 (en) 2019-04-11 2019-04-11 Method for forming nano-inorganic film
CN202080039669.5A CN113950463B (en) 2019-04-11 2020-04-02 Nano inorganic composition and coating method using the same
US17/603,154 US20220194857A1 (en) 2019-04-11 2020-04-02 Nano inorganic composition and coating method using same
PCT/KR2020/004508 WO2020209544A1 (en) 2019-04-11 2020-04-02 Nano-inorganic composition and coating method using same
EP20786921.5A EP3954669A4 (en) 2019-04-11 2020-04-02 Nano-inorganic composition and coating method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190042720A KR102281837B1 (en) 2019-04-11 2019-04-11 Method for forming nano-inorganic film

Publications (2)

Publication Number Publication Date
KR20200120808A true KR20200120808A (en) 2020-10-22
KR102281837B1 KR102281837B1 (en) 2021-07-27

Family

ID=73035475

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190042720A KR102281837B1 (en) 2019-04-11 2019-04-11 Method for forming nano-inorganic film

Country Status (1)

Country Link
KR (1) KR102281837B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070796A (en) * 1998-08-31 2000-03-07 Nkk Corp Method and device for controlling thickness of coating film
JP2009001685A (en) * 2007-06-21 2009-01-08 Toreede Service:Kk Aqueous complete inorganic alkali metal silicate composition, aqueous complete inorganic alkali silicate composition aqueous solution, aqueous coating agent, aqueous solution of aqueous coating agent, complete inorganic colored coating, binder for high temperature heat resistant coating, and method for using aqueous complete inorganic alkali metal silicate compound
KR20140063447A (en) * 2012-11-16 2014-05-27 김희곤 Inorganic coating composition, and method for forming inorganic layer using the same
KR101414019B1 (en) 2011-05-31 2014-07-03 김희곤 Method for forming hydrophilic inorganic layer
KR20180107823A (en) * 2017-03-23 2018-10-04 주식회사 웰쳐화인텍 Method for glass coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070796A (en) * 1998-08-31 2000-03-07 Nkk Corp Method and device for controlling thickness of coating film
JP2009001685A (en) * 2007-06-21 2009-01-08 Toreede Service:Kk Aqueous complete inorganic alkali metal silicate composition, aqueous complete inorganic alkali silicate composition aqueous solution, aqueous coating agent, aqueous solution of aqueous coating agent, complete inorganic colored coating, binder for high temperature heat resistant coating, and method for using aqueous complete inorganic alkali metal silicate compound
KR101414019B1 (en) 2011-05-31 2014-07-03 김희곤 Method for forming hydrophilic inorganic layer
KR20140063447A (en) * 2012-11-16 2014-05-27 김희곤 Inorganic coating composition, and method for forming inorganic layer using the same
KR101735383B1 (en) 2012-11-16 2017-05-29 김효원 Inorganic coating composition, and method for forming inorganic layer using the same
KR20180107823A (en) * 2017-03-23 2018-10-04 주식회사 웰쳐화인텍 Method for glass coating

Also Published As

Publication number Publication date
KR102281837B1 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
Zhong et al. Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability
Wu et al. A facile and novel emulsion for efficient and convenient fabrication of durable superhydrophobic materials
Meena et al. Superhydrophobic polymer composite coating on glass via spin coating technique
Zheng et al. Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods
Abu Jarad et al. Fabrication of superamphiphobic surfaces via spray coating; a review
Qing et al. Natural rosin-grafted nanoparticles for extremely-robust and eco-friendly antifouling coating with controllable liquid transport
Gao et al. Rational design of durable anti-fouling coatings with high transparency, hardness, and flexibility
JP4812902B1 (en) Antifouling paint composition and method for forming antifouling coating film
Wu et al. An underwater stable superhydrophobic surface for robust ultra-long-lasting biofouling resistance
KR102174294B1 (en) Method of forming nano-inorganic film of three-dimensional object
Qu et al. Bioinspired durable superhydrophobic materials with antiwear property fabricated from quartz sands and organosilane
KR101847786B1 (en) manufacturing method of a nano ceramic coating joining Glass with Hydrophilic and Easy-Clean Effect
Zhu et al. Preparation of hydrophobic antireflective SiO2 coating with deposition of PDMS from water-based SiO2-PEG sol
Liu et al. Durable and self-healing superhydrophobic polyvinylidene fluoride (PVDF) composite coating with in-situ gas compensation function
KR101275782B1 (en) Inorganic coating composition and coating method using thereof
Sutar et al. Durable Self‐Cleaning Superhydrophobic Coating of SiO2–Cyanoacrylate Adhesive via Facile Dip Coat Technique
Wang et al. Feasible fabrication of durable superhydrophobic SiO2 coatings with translucency and self-cleaning performance
Huang et al. Facile fabrication of durable superhydrophobic SiO 2/polyacrylate composite coatings with low nanoparticle filling
Qu et al. Bioinspired fabrication of mechanically durable superhydrophobic materials with abrasion-enhanced properties
KR101940924B1 (en) manufacturing method of a nano ceramic coating Glass with Hydrophilic and Easy-Clean Effect
KR102174307B1 (en) Method for forming a nano-inorganic coating film on a transparent substrate
CN113956483B (en) Dual-modified polysilazane, coating based on dual-modified polysilazane, and preparation and application methods thereof
KR102281837B1 (en) Method for forming nano-inorganic film
KR101847785B1 (en) manufacturing method of a nano color joining glass for Transparent Noise Barrier
KR102174275B1 (en) Method for forming water-repellent inorganic coating on building interior and exterior materials

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant