KR20200117258A - 반도체 발광소자를 제조하는 방법 - Google Patents

반도체 발광소자를 제조하는 방법 Download PDF

Info

Publication number
KR20200117258A
KR20200117258A KR1020190039129A KR20190039129A KR20200117258A KR 20200117258 A KR20200117258 A KR 20200117258A KR 1020190039129 A KR1020190039129 A KR 1020190039129A KR 20190039129 A KR20190039129 A KR 20190039129A KR 20200117258 A KR20200117258 A KR 20200117258A
Authority
KR
South Korea
Prior art keywords
light emitting
semiconductor light
emitting device
mold
manufacturing
Prior art date
Application number
KR1020190039129A
Other languages
English (en)
Other versions
KR102203016B1 (ko
Inventor
안상정
Original Assignee
안상정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안상정 filed Critical 안상정
Priority to KR1020190039129A priority Critical patent/KR102203016B1/ko
Priority to US17/417,904 priority patent/US20220093829A1/en
Priority to PCT/KR2019/018608 priority patent/WO2020139022A1/ko
Priority to CN201980086537.5A priority patent/CN113228312A/zh
Publication of KR20200117258A publication Critical patent/KR20200117258A/ko
Application granted granted Critical
Publication of KR102203016B1 publication Critical patent/KR102203016B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

본 개시는 전극을 구비하는 반도체 발광 칩; 반도체 발광 칩이 놓이는 바닥부를 가지고, 바닥부에 관통홀이 형성되어 있는 몰드; 그리고 전극과의 전기적 연통을 위해 관통홀에 구비되는 도전부;를 가지는, 반도체 발광소자를 제조하는 방법에 있어서, 상기 몰드가 복수 개 형성되어 있으며, 복수의 몰드로부터 노출된 영역에 도금 방지막이 형성되어 있는 리드 프레임을 준비하는 단계; 각각의 몰드에 도전부를 형성하고 반도체 발광 칩의 전극을 도전부와 전기적 연통시키는 단계; 그리고, 리드 프레임을 절단하여 각각의 반도체 발광소자를 개별화하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법에 관한 것이다.

Description

반도체 발광소자를 제조하는 방법{METHOD OF MANUFACTURING LIGHT EMITTING DEVICE}
본 개시(Disclosure)는 전체적으로 반도체 발광소자를 제조하는 방법에 관한 것으로, 특히 전기적 연결의 안정성을 가지는 반도체 발광소자를 제조하는 방법에 관한 것이다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 미국 등록특허공보 제9,773,950호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, CSP(Chip-Scaled Package) 형태의 반도체 발광소자가 제시되어 있다. 반도체 발광소자는 반도체 발광 칩(2), 봉지제(4) 및 반사체(6; 예: 백색 PSR)를 포함한다. 반도체 발광 칩(2)은 전극(80)과 전극(90)을 구비하며, 봉지제(4)는 경사면(4b)을 구비하여 반도체 발광 칩(2)으로부터 나온 빛의 출사각을 조절할 수 있다. 반사체(6)는 백색의 PSR을 스크린 프린팅 또는 스핀 코팅한 다음, 일반적인 포토리소그라피 공정을 통해 패터닝함으로써 형성될 수 있다. 필요에 따라, 외부와의 전기적 연결을 위해, 외부 전극(81)과 외부 전극(91)이 증착 공정을 통해 형성된다.
도 2는 미국 등록특허공보 제10,008,648호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 도 1에 제시된 반사체(6)를 이용하는 경우의 문제점, 즉 반사체(6)가 백색 PSR과 같이 플렉서블(flexible)한 재질로 이루어져, 여러 공정을 거치는 과정에서 반도체 발광 칩(2)의 위치 정확도가 떨어지는 문제점을 해소하기 위해, 미리 성형되고(preformed), 딱딱한(rigid) 재질의 프레임 내지 몰드(210; 예: 사출성형된 몰드)를 이용하는 반도체 발광소자(200)가 제시되어 있다. 반도체 발광소자(200)는 몰드(210), 반도체 발광소자 칩(220) 및 봉지제(230)를 포함한다. 부호 211은 측벽, 부호 212는 바닥부, 부호 213은 홀, 부호 214는 캐비티, 215는 바닥부(212)의 상면, 부호 216은 바닥부(212)의 하면, 부호 217은 측벽(211)의 외면, 부호 218은 측벽(211)의 내면, 부호 219는 바닥부(212)의 높이, 부호 H는 측벽(211)의 높이, 부호 221은 전극, 부호 222는 반도체 발광 칩(220)의 높이, 부호 231은 광 변환제(예: 형광체), 부호 240은 홀(213)의 측벽이다. 이러한 반도체 발광소자는 몰드(210)를 구비한다는 점에서 종래의 SMD(Surface-Mounted Device) 타입의 반도체 발광소자(예: 미국 등록특허공보 US6,066,861호)와 동일하지만, 리드 프레임 내지 리드 전극을 구비하지 않는다는 점에서 차이를 가지며, 전술한 바와 같이 도 1에 제시된 반도체 발광소자의 문제점을 해소하는 한편, 리드 프레임이 외부 기판과의 접합에 관여함으로써 발생하는 문제점(접합 불량 등)을 해소할 수 있게 된다.
도 3은 한국 공개특허공보 제10-2018-0131303호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 도 1에 제시된 반사체(6)를 이용하는 경우의 문제점을 해소하는 다른 형태의 반도체 발광소자가 제시되어 있다. 반도체 발광소자는 몰드(113) 및 반도체 발광 칩(123)을 구비한다. 몰드(113)에는 도전부(TH1)와 도전부(TH2)가 구비되어 있으며, 도전부(TH1)와 도전부(TH2)는 도전성 페이스트나 솔더 물질로 형성될 수 있다. 부호 C는 캐비티이고, 부호 121, 122는 각각 전극이며, 부호 131은 외부 기판(예: PCB), 서브 마운트 등일 수 있다. 리드 프레임 내지 리드 전극을 구비하지 않는다는 점에서 도 2에 제시된 반도체 발광소자와 동일하지만, 외부 기판(131)과 반도체 발광 칩(123)의 물리적 및 전기적 접합에 도전부(TH1)와 도전부(TH2)가 개입하며, 따라서 도 2에서 지적한 바와 같이, SMT 공정 등에서 물리적 결합력이 약해 접합이 떨어지거나 도전부(TH1)와 도전부(TH2)가 몰드(113)로부터 이탈하는 등의 문제를 야기할 수 있다. 다만, 도 2에 제시된 반도체 발광소자의 경우에 리드 프레임 내지 리드 전극을 제거하여 리드 프레임 내지 리드 전극에 의해 흡수되는 빛을 없앴다는 점에서는 이점을 가지지만, 도 3에 제시된 반도체 발광소자의 경우에 몰드(113)의 아래로 누출되는 빛을 원천적으로 봉쇄하여 반도체 발광 칩(123)에서 생성된 모든 빛이 상측으로 방출된다는 점에서 이점을 가진다.
엘이디 패키지의 발전 과정을 정리하면, 래터럴 칩(lateral chip)이 SMD 타입 패키지에 와이어 본딩되어 사용되다가, 고휘도(high-power) 및 고전압(high-voltage) 소자의 요구에 수반하여 플립 칩(chip chip)의 사용이 검토되었으나, SMD 타입 패키지에 적합하지 않는 문제점들이 제기되었으며, 도 1에 제시된 CSP 타입의 패키지가 일부 이용되고 있지만, 앞서 지적한 바와 같이, 지향각의 조절 및 제조 공정에 문제점이 제기되었으며, 도 2 및 도 3에 제시된 바와 같이, 리드 프레임 내지 리드 전극을 구비하지 않은 형태의 리드리스 프레임 또는 몰드 타입의 엘이디 패키지가 검토되고 있는 실정이다. 그러나 도 3에 제시된 반도체 발광소자의 경우에, 도전부(TH1)와 도전부(TH2)의 형성을 위해, 몰드(113)가 만들어질 때(예: 사출성형), 도전부(TH1)와 도전부(TH2)에 대응하는 홀이 함께 만들어지며, 사출성형되는 홀은 금형의 표면거칠기에 대응하는 미끈한 표면을 가지게 되므로, 이후, 증착 또는 도금 등을 통해 형성되는 도전부(TH1)와 도전부(TH2)와의 물리적 결합력이 높지 않은 문제점을 가진다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 측면에 의하면(According to one aspect of the present disclosure), 반도체 발광소자에 있어서, 전극을 구비하는 반도체 발광 칩; 제1 표면 거칠기를 가지도록 형성되며, 반도체 발광 칩이 놓이는 바닥부를 가지고, 바닥부에 제1 표면 거칠기와 다른 제2 표면 거칠기를 가지는 표면으로 된 관통홀이 형성되어 있으며, 적어도 반도체 발광 칩과 면하는 측이 반도체 발광 칩에서 발광되는 빛에 대해 95% 이상의 반사율을 가지는 재질로 이루어진 몰드; 그리고 전극과의 전기적 연통을 위해 관통홀에 구비되는 도전부;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제시된다.
본 개시에 따른 또 다른 측면에 의하면(According to another aspect of the present disclosure), 전극을 구비하는 반도체 발광 칩; 반도체 발광 칩이 놓이는 바닥부를 가지고, 바닥부에 관통홀이 형성되어 있는 몰드; 그리고 전극과의 전기적 연통을 위해 관통홀에 구비되는 도전부;를 가지는, 반도체 발광소자를 제조하는 방법에 있어서, 상기 몰드가 복수 개 형성되어 있으며, 복수의 몰드로부터 노출된 영역에 도금 방지막이 형성되어 있는 리드 프레임을 준비하는 단계; 각각의 몰드에 도전부를 형성하고 반도체 발광 칩의 전극을 도전부와 전기적 연통시키는 단계; 그리고, 리드 프레임을 절단하여 각각의 반도체 발광소자를 개별화하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법이 제시된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 미국 등록특허공보 US9,773,950호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 2는 미국 등록특허공보 US10,008,648호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 3은 한국 공개특허공보 제10-2018-0131303호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 4는 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면,
도 5는 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면,
도 6은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 7은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 8은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 9는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 10은 미국 공개특허공보 US2014/0054078호에 제시된 복수의 몰드와 리드 프레임의 일 예(소위, individual type lead frame)를 나타내는 도면,
도 11은 본 개시에 따라 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면.
본 개시의 제1 특징은 반도체 발광소자용 몰드의 바닥부에 관통홀을 형성하되, 관통홀 내의 표면 거칠기를 높여, 이후 무전해 도금(electroless plating) 공정으로 형성된 도전성 물질과의 결합력을 향상시키는 것이다. 이때 관통홀은 사출성형시에 미리 성형되거나(preformed) 또는 레이저 드릴링(drilling)을 행함으로써 형성된다. 이때 몰드의 바닥부의 두께는 그 하한에 특별히 제한은 없지만, 반도체 발광 칩에서 발생한 빛이 아래쪽으로 투과되는 것을 방지하고, 무전해 도금(electroless plating) 공정으로 형성된 도전성 물질과 결합되는 충분한 면적을 확보할 수 있도록 100㎛ 이상인 것이 바람직하다. 그 상한에도 특별히 제한은 없지만, 레이저 드릴링이 가능하도록 500㎛ 이하인 것이 바람직하다. 두꺼운 경우에 복수회의 레이저 조사가 이루어질 수 있음은 물론이다.
본 개시의 제2 특징은 몰드 수지로 성형된 사출물 표면에 레이저 빔(laser beam)을 조사하여 표면 거칠기를 높임과 더불어 전기적으로 활성화시키고, 이어 상기 레이저 조사된 부분에 무전해 도금(electroless plating)으로 도전성 물질을 형성하는 레이저 직접 구조화(laser direct struccturing, LDS) 공법을 적용할 수 있도록 LDS 첨가제(LDS additive)를 함유한 몰드의 재질(열경화성 수지, 열가소성 수지)과 관련이 있다. 통상적으로 반도체 발광소자에 사용되는 몰드 수지(resin)는 열가소성 수지(thermoplastics)인 polyphthalamide(PPA), polycyclohexylenedimethylene terephthalate(PCT)가 널리 사용되고 있고, 열경화성 수지(thermosetting plastics)의 경우는 epoxy mold compounds(EMC), silicone mold compounds(SMC) 등이며, 특히 이들 몰드 수지 내에 청색 또는 녹색 발광 칩이 사용되는 경우에 광 반사도를 높이기 위해 백색 안료인 티타니움 산화물인 티타니아(Titania; TiO2), 그리고 실리콘 산화물인 실리카(Silica; SiO2) 및/또는 알루미늄 산화물인 알루미나(Alumina; Al2O3)와 같은 필러(filler) 내지 산란제가 첨가된다. 열가소성 수지는 발광소자용으로 현재 사용중인 상기 PPA & PCT 이외, polyamides(PA), polycarbonate(PC), polyphthalamide(PPA), polyphenylene oxide(PPO), poly butylene terephthalate(PBT), cycloolefin polymers(COP), liquid-crystal polymers(LCP), copolymers 또는 상기 이들 blends, 일 예로 acrylonitrile-butadiene-sty rene/polycarbonate blend(PC/ABS), PBT/PET 등이 가능하다. 열경화성 수지는 발광소자용으로 현재 사용중인 상기 EMC & SMC 이외, polyurethanes, melamine resins, phenolic resins, polyesters and epoxy resins 등이 가능하다. 그런데 플립 칩 형태의 반도체 발광 칩을 적용한 리드리스 프레임 또는 몰드 타입의 엘이디 패키지를 성공적으로 구현화하기 위해서는 상기 LDS 공법을 적용하여 몰드 수지로 성형된 사출물 표면에 강한 물리적 결합력을 갖는 전기적 도선 회로 패턴(도전성 물질)을 형성해야 한다. LDS 기술은 휴대폰 산업 성장으로 인해서 몰드 수지로 성형된 2차 및/또는 3차원 사출물 표면에 안테나 기능을 하는 전기 도선 회로 패턴(도전성 물질) 등을 직접 구현화할 수 있는 공법으로 널리 공지되었고 각광 받고 있다. 일 예가 논문(Selective Metallization Induced by Laser Activation: Fabricating Metallized Patterns on Polymer via Metal Oxide Composite, ACS Appl. Mater. Interfaces 2017, Volume 9, Pages 8996-9005)에 개시되어 있다. 본 논문에서 ABS 폴리머 모체(polymer matrix) 내에 5wt% 구리 크롬 산화물 복합체(CuO·Cr2O3)를 배합시켜 성형된 사출물 표면에 1064nm 레이저 빔을 조사하는 과정에서 CuO·Cr2O3가 분해(decomposition)되어, 전기적으로 활성화된 금속성 구리(Cu) 라디칼(radical)이 거친 표면에 상당량 형성되고, 이후 진행되는 무전해 도금의 씨앗(seed)으로 역할할 수 있다. 무엇보다도 조사한 레이저 빔 파라미터(파장, 출력, 조사 속도 : 1064nm, 8W, 2000mm/s)를 최적화시켜 100 마이크론미터(um) 분해능을 갖는 미세 전기 전도선(electric path line)을 성형된 사출물 표면에 형성할 수 있음을 알 수 있다. 몰드 수지로 성형된 사출물 표면에 도금이 가능한 이유는 조사된 레이저 빔에 의해 몰드 수지가 어블레이션(ablation)되면서 거칠어진(roughened) 표면 내에 고착된(anchored) LDS 첨가제(additive)가 전기적으로 활성화되어 무전해 도금층(electroless plated layer)이 형성될 수 있도록 씨앗(seed)으로 역할을 하기 때문이다. 상기 LDS 공법은 조사된 레이저 빔에 의해 몰드 수지(열경화성 수지, 열가소성 수지) 내에서 씨앗 역할을 할 수 있도록 LDS 첨가제(additive)가 기본적으로 함유되어 있어야 하는데, 이를 제1 첨가제(first additive)라 지칭한다. 추가로 소자 목적(예: 방열, 광학적 반사성 개선)에 맞게 다양한 별도의 기능성 첨가제(functional additive)를 혼합하여 구현할 수 있다. 일반적으로 제1 첨가제(first additive)는 팔라듐(Pd)함유 중금속 착물과 금속산화물(metal oxide), 금속산화물-코팅된 충전제, 구리 크롬 산화물 스피넬(CuO·Cr2O3 spinel), 구리(Cu) 함유 염, 구리 아이드록시 포스페이트, 구리 포스페이트, 제일구리 티오시아네이트, 스피넬계 금속산화물, 구리 크롬 산화물(CuO·Cr2O3), 유기 금속 착물, 안티몬(Sb) 도핑된 주석(Sn) 산화물, 구리 함유 금속산화물, 아연(Zn) 함유 금속산화물, 주석(Sn) 함유 금속산화물, 마그네슘(Mg) 함유 금속산화물, 알루미늄(Al) 함유 금속산화물, 금(Au) 함유 금속산화물, 은(Ag) 함유 금속산화물, 니켈(Ni) 함유 금속산화물, 크롬(Cr) 함유 금속산화물, 철(Fe) 함유 금속산화물, 바나듐(V) 함유 금속산화물, 코발트(Co) 함유 금속산화물, 망간(Mn) 함유 금속산화물; 중 적어도 하나를 포함한다. 상기 별도의 기능성 첨가제(functional additive) 중, 방열(heat dissipation) 특성을 개선하기 위해 사용되는 제2 첨가제(second additive)는 알루미늄 질화물(AlN), 알루미늄 탄화물(AlC), 알루미늄 산화물(Al2O3), 알루미늄 산화질화물(AlON), 붕소 질화물(BN), 마그네슘실리콘 질화물(MgSiN2), 실리콘 질화물(Si3N4), 실리콘 탄화물(SiC), 그라파이트(graphite), 그래핀(graphene), 및 탄소 섬유(carbon fiber), 아연(Zn) 산화물, 칼슘(Ca) 산화물, 마그네슘(Mg) 산화물; 중 적어도 하나를 사용할 수 있고, 광학적 반사성(optical reflectance)을 향상하기 위해 사용되는 제3 첨가제(third additive)는 TiO2 , ZnO, BaS, CaCO3 등이 있는데, 이들 중 적어도 하나를 포함하여 구현될 수 있다. 반도체 발광소자에 요구되는 인가전류 사용조건에 따라 몰드 수지의 재질, 함유된 LDS 첨가제의 종류와 이들 첨가제 배합비를 선택할 수 있다. 무엇보다도 LDS 공법의 기본이 되는 제1 첨가제(first additive)와 방열 성능 개선을 위한 제2 첨가제(second additive)는 일반적으로 빛을 반사하는 용도가 아니므로, 이는 제한적으로 최소화 사용(예: 10wt% 이하)되어야 한다. 이 점은 반도체 발광소자 분야가 아닌 일반 산업용 MID(Molded Interconnect Devices)와 본 개시에 따른 반도체 발광소자를 구분하는 요소 중의 하나이다. 반도체 발광소자에 요구되는 인가전류 사용조건에 따라 몰드 수지의 재질, 함유된 LDS 첨가제의 종류와 이들 첨가제 배합비를 선택할 수 있다. 무엇보다도 LDS 공법의 기본이 되는 제1 첨가제(first additive)와 제2 첨가제(second additive)의 양에 따라서, 몰드의 바닥부 측의 제1 첨가제(first additive)와 제2 첨가제(second additive)의 양이 타 측의 제1 첨가제(first additive)와 제2 첨가제(second additive)의 양보다 상대적으로 많도록 일체로 사출성형을 하거나, 별도의 부분(separated parts)으로 구성하는 것도 가능하다. LDS 첨가제들(제1, 제2, 제3)의 사용이 제한적인 경우에, LDS 첨가제의 물질 종류에 따라 조사되는 레이저 빔 파라미터(파장, 출력, 조사 속도)를 조절함으로써, 소정의 결과를 얻었을 수 있다. 예들 들어, 통상적으로 LDS 공정에서 화이버 레이저(fiber laser; 플라스틱 레이저 표면 마킹용도) 1064nm 레이저 빔 파장을 사용하지만, 제2 첨가제인 AlN, 제3 첨가제인 TiO2 등과 같이 첨가제 물질을 분해 활성화하는데 높은 에너지원이 필요로 하는 경우에는 UV 파장대역(400nm 이하 파장)의 레이저 빔을 사용할 수 있으며, 조사 시간이 길어질 수 있다. 예를 들어, 제3 첨가제인 TiO2는 몰드 수지가 반도체 발광 칩에서 발생된 빛에 대하여 95% 이상의 반사도를 가지도록 몰드 수지내에 50wt% 이상으로 배합된다. 사출성형시에 미리 성형된 관통홀의 몰드에 적정한 파장(크세논 염소 엑시머 308nm)과 출력을 갖는 레이저 빔을 조사하거나 드릴링에 사용되는 레이저 빔에 의해 TiO2가 금속성 타이타늄(Ti) 라디칼(radical) + 이온성 티타니아(TiOx) 라디칼(radical) + 1/2O2 개스(gas)로 광분해(decomposition)되고, 분해되어 전기적으로 활성화된 라디칼들(radicals; Ti 및 TiOx)가 이후 있을 무전해 도금(electroless plating)의 씨앗(seed)으로 역할할 수 있다.
본 개시의 제3 특징은 몰드의 바닥부의 하면에 외부 기판과의 물리적 결합력, 방열을 위한 금속 처리가 추가될 수 있다는 것이다. 외부 기판과의 물리적 결합력, 방열을 위해 처리된 금속이 관통홀에 형성되는 무전해 도금층과 전기적으로 연결되어 외부 기판과의 물리적 결합력, 방열에 더하여, 전기 연결 기능을 할 수 있음은 물론이다. 또한 몰드의 바닥부의 상면에 반도체 발광 칩과의 전기적 연결을 위해 필요한 경우에 관통홀에 형성된 무전해 도금층과 전기적으로 이어진 금속 처리가 행해질 수 있다.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 4는 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면으로서, 도 4(a)에 도시된 바와 같이, 반도체 발광소자는 반도체 발광 칩(11) 및 몰드(14)를 구비하며, 일반적으로 반도체 발광 칩(11)을 감싸는 봉지제(31)를 더 구비하며, 봉지제(31)에는 형광체와 같은 광 변환재가 구비될 수 있다. 반도체 발광 칩(11)은 전극(12)과 전극(13)을 구비하며, 플립 칩인 경우에 전극(12,13)의 반대 측에 성장 기판(11a)을 구비한다. 성장 기판(11a)은 제거될 수 있다. 몰드(14)는 반도체 발광 칩(11)이 놓이는 바닥부(15)를 구비하며, 지향각을 조절할 수 있도록 반사벽(14a)을 구비하는 것이 일반적이다. 몰드(14)는 미리 성형되며(예: 사출성형), 전체적으로 표면이 금형에 의해 주어지는 표면 거칠기를 가지게 된다. 바닥부(15)는 상면(15a)과 하면(15b)을 구비하며, 상면(15a)과 하면(15b)을 관통하여 관통홀(16)과 관통홀(17)이 형성되어 있다. 관통홀(16,17)은 금형에 의해 미리 형성되는 것이 더 바람직하지만, 레이저 드릴링 공정을 통해 관통홀(16,17)을 형성할 수도 있다. 몰드(14)는 PPA, PCT, EMC,SMC 등과 같은 수지에, 제3 첨가제(third additive)인 TiO2와 같은 백색을 띠며 광 반사 기능을 하는 필러를 함유하는 통상의 재질로 이루어지며, 빛의 흡수를 줄이기 위해 통상적으로 반도체 발광 칩(11)에서 생성되는 빛에 대해 95% 이상의 반사율을 가지도록 구성요소(ingredients)가 배합되어 형성된다. 몰드(14) 전체가 이러한 재질로 이루어질 수 있지만, 반도체 발광 칩(11)과 대면하는 측에만 이러한 재질이 코팅되어 있는 형태를 가질 수 있다(도 9 참조). 관통홀(16)과 관통홀(17) 각각에 도전부(18)와 도전부(19)가 형성되어 있다. 관통홀(16,17)은 도전부(18,19)가 고정될 수 있도록 표면이 거칠게 형성된다. 여기서 '거칠다' 함음 관통홀(16,17)이 몰드(14)와 함께 성형되는 경우에 몰드(14)의 표면 거칠기와 관통홀(16,17)의 표면 거칠기가 동일하게 되겠지만, 관통홀(16,17)이 레이저 빔 조사 또는 레이저 드릴링에 의해 어블레이션(ablation)되는 경우에 도전부(18,19)가 고정(anchoring)되기 좋도록 표면이 가공된다는 것을 의미한다. 관통홀(16,17)이 미리 성형되거나 레이저 드릴링에 의해 형성되어 레이저 빔에 노출되고, 몰드(14)가 레이저 빔에 의해 활성화(activatioin)되는 금속, 이온 라디칼(radicals)을 갖는 비도전성 금속 물질로 구성된 LDS 제1, 제2, 및/또는 제3 첨가제(first, second, and/or third additives; TiO2 , CuO, Cu2O, NiO, Cr2O3, PdO, Al2O3)를 포함하는 경우에, 이 금속이 도전부의 생성을 위한 씨앗으로 기능할 수 있다. 이 경우에 도전부를 별도의 패터닝 공정 없이 레이저에 의해 활성화된 영역에서만 무전해 도금을 통해 형성할 수 있는 이점을 가진다. 추가적으로 바닥부(15)의 하면(15b)에 레이저 빔을 조사하여 금속을 활성화시킴으로써, 방열 금속층(21)을 형성할 수 있으며, 바람직하게는 방열 금속층(21)이 도전부(18,19)와 연결된 형태를 가진다. 마찬가지로 무전해 도금을 통해 방열 금속층(21)을 형성함으로써, 레이저 빔이 조사된 패턴을 따라, 즉 디자인된 패턴을 따라 용이하게 방열 금속층(21)을 형성할 수 있다. 예를 들어, PCT 폴리머 모체(polymer matrix) 내에 3wt% 구리 알루미늄 산화물 복합체(CuO·Al2O3) 또는 산화 화합물(CuAl2O3)를 배합시켜 성형된 사출물을 몰드(14)로 이용할 수 있으며, 여기에 300 마이크론미터(um) 직경과 250 마이크론미터(um) 깊이를 가지는 관통홀(16,17)을 형성할 수 있다. 레이저 빔을 조사한 후에는 잔류물 제거를 위한 공정이 추가될 수 있으며, 무전해 도금을 통해 Cu(10um)/Ni(1um)/Au(0.02um)가 순차적으로 형성될 수 있다.
반도체 발광 칩(12)과 도전부(18,19)의 접합에는 종래와 마찬가지로 도전성 페이스트(예: Ag, Cu), 솔더 물질(예: SAC) 등이 사용될 수 있으며, 복수의 영역에 비도전성 접착제(①; 예: Silicone 접착제)를 도포하여, 물리적 결합을 확실히 할 수 있다. 도전성 페이스트, 솔더 물질을 별도로 사용하지 않고, 비도전성 접착제만을 이용하여 물리적으로 반도체 발광 칩(12)을 몰드(14)에 부착한 다음, 도 3에 제시된 외부 기판(131)에 부착할 때, 부분적으로 메워진 관통홀(16,17) 안으로 도전성 페이스트나 솔더 물질이 유입되도록 함으로써, 전기적 연결을 보장하는 것도 가능하다. 도 4(b)에 반도체 발광소자를 위에서 본 형상을 나타내었으며, 중공의 원형 도전부(18,19)와 원형의 전극(12,13)이 결합된 형태이다.
도 5는 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면으로서, 도 5(a)에 도시된 바와 같이, 바닥부(15)의 상부(15a)에도 레이저 어블레이션을 행하여 상부 금속층(18a,19a)이 레이저 어블레이션된 디자인 패턴을 따라 형성된 점에서 차이를 가진다. 도전부(18,19), 방열 금속층(21) 및 상부 금속층(18a,19a)은 무전해 도금시 함께 형성될 수 있다. 비도전성 접착제(①)에 더하여, 도전성 접착제(②; 예: 솔더 물질)를 통해 상부 금속층(18a,19a)과 전극(12,13)을 접합시킴으로써, 반도체 발광소자가 외부 전극(131; 도 3 참조)과 결합되기 이전에 전기적/물리적 결합의 안정성을 도모할 수 있다. 신뢰성 테스트 등에서 안정성을 확보할 수 있다. 도 5(b)에 도시된 바와 같이, 상부 금속층(18a,19a)의 크기를 전극(12,13)의 크기보다 작게 형성함으로써, 상부 금속층(18a,19a)에 의한 광 흡수를 줄일 수 있는 이점을 가질 수 있다.
도 6은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 도 6(a)에 도시된 바와 같이, 도전부(18,19)가 관통홀(16,17)을 메우는 형태가 제시되어 있다. 메워진 도전부(18,19)와 전극(12,13)의 결합에 도전성 접착제(②)가 이용될 수 있다. 메우는(Filling) 방법은 무전해 도금(Electroless Plating), 250℃ 이상의 온도에서 열처리 공정을 거치는 고온성 솔더(solder), Ag(은) & Cu(구리)가 포함된 전도성 Paste 물질로 메우고 열처리하는 공정 등이 있지만, 무전해 도금 공정이 바람직하다. 도 4에 제시된 반도체 발광소자와 비교할 때, 관통홀(16,17)이 채워져 있으므로, 방열 성능이 좋아지며, 외부 기판과 결합력도 높아질 수 있다. 다만, 관통홀(16,17)을 메우는데 시간이 소요된다.
도 4 내지 도 6에 제시된 반도체 발광소자를 구현함에 있어서, 몰드(14) 내에 LDS 공법의 기본이 되는 제1 첨가제(first additive) 및/또는 방열 성능 개선을 위한 제2 첨가제(second additive)를 추가하는 경우에, 이들은 일반적으로 빛을 반사하는 용도가 아니므로, 첨가하는 양을 최소화((예: 10wt% 이하))하는 것이 바람직하다. 다시 말하자면 가시광 흡수율(absorption)이 낮고 투과율(transparency)이 높은 한편, 그 자체로 또는 레이저 조사에 의해 활성화되어 도금의 씨앗으로 기능할 수 있는 나노스케일(나노크기 규모)의 입자 물질을 몰드(14)에 첨가함으로써, LDS에 최적화되었으나 반사도가 높지 않은 첨가제가 사용될 때의 문제점을 해소할 수 있게 된다. 이러한 나노스케일(나노크기 규모)의 입자 물질은 금속(예: Ag) 또는 금속 산화물(Al2O3, SiO2, TiO2, SnO2, In2O3, ITO, ZrO2, ZnO, CeO2, Ta2O5)이 가능하다. 예를 들어, PCT에 소정의 ZnO와 함께 나노스케일의 Ag 입자를 넣어서 몰드(14)를 형성할 수 있다.
도 7은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 반사벽(14a)과 바닥부(15)의 재질을 서로 달리하는 몰드(14)가 제시되어 있다. 반사벽(14a)에는 몰드 수지와 광 반사 기능을 하는 티타니아(TiO2)와 산란재(또는 분산재) 기능을 하는 실리카(SiO2) 또는 알루미나(Al2O3) 성분 이외, 빛을 흡수하는 별도의 LDS 제1, 제2 첨가제(Cu2O, NiO, Cr2O3, PdO 또는 LDS Additives)가 구비되지 않으며, 반면에 바닥부(15)에는 LDS 제1, 제2 첨가제(Cu2O, NiO, Cr2O3, PdO 또는 LDS Additives)가 구비될 수 있다. 이는 두 개 이상의 배합으로 구성될 수 있으나, 순차적으로 변하는 배합으로 구성될 수도 있다. 이러한 구성은 몰드(14)가 LDS 첨가제를 구비하는 경우에 특히 유용하다. 이는 몰드(14) 성형 과정에서, 순차적으로 배합을 달리하는 몰드 물질을 인젝션하거나, 반사벽(14a)에 대응하는 상부 금형과 바닥부(15)에 대응하는 하부 금형에 별도로 몰드 물질을 인젝션함으로써 제조할 수 있다.
도 8은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 반사벽(14a)과 바닥부(15)의 재질 구성을 서로 달리하는 몰드(14)가 제시되어 있다. 반사벽(14a)과 바닥부(15)가 한번에 성형되는 형태가 아니라 접착제(14b)에 결합된 형태가 제시되어 있다.
도 7 및 도 8에 제시된 반도체 발광소자를 구현함에 있어서, 몰드(14)의 바닥부(15) 측의 제1 첨가제(first additive)와 제2 첨가제(second additive)의 양이 반사벽(14a) 측의 제1 첨가제(first additive)와 제2 첨가제(second additive)의 양보다 상대적으로 많도록 일체로 사출성형을 하거나, 별도의 부분(separated parts)으로 구성하는 것도 가능하다.
도 9는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 몰드(14)가 반도체 발광 칩(11)에서 발광되는 빛에 대해 95% 이하의 반사율을 가지는 물질(14c; 예: LDS에 사용되는 폴리머)로 된 모체를 가지고, 여기에 반사층(14d)이 코팅된 형태를 가진다. 반사층(14d)은 Ag, Cr/Ag, Cu/Ag, Al, Cr/Al, Cu/Al, Au, Cr/Au, Cu/Ni/Au, DBR, White 수지 또는 PSR 등으로 이루어질 수 있다. 반사벽(14a)과 바닥부(15)에 의해 형성되는 오목한 공간을 캐비티(41)라 할 때, 반사층(14d)은 몰드(14)의 캐비티(41) 내부 측에 형성된다. 드릴링 및 도금에 적합한 물질과 빛의 반사에 적합한 물질의 조합으로 몰드(14)를 형성할 수 있게 된다.
도 10은 미국 공개특허공보 US2014/0054078호에 제시된 복수의 몰드와 리드 프레임의 일 예(소위, individual type lead frame)를 나타내는 도면으로서, 리드 프레임(50)에 복수의 몰드(25) 각각이 적어도 한쪽 변이 떨어진 상태로 독립되어 형성되어 있다. 본 개시는 앞선 예시들에서, 리드 프레임 내지 리드 전극을 구비하지 않으며, 따라서 리드 프레임 내지 리드 전극과 반도체 발광 칩(11; 도 4 참조)이 전기적으로 연결되지 않지만, 리드 프레임 내지 리드 전극(50)이 몰드(25)의 바닥부(35)를 빗겨나서 몰드(25)를 관통하여 구비되는 형태(예: 미국 등록특허공보 US10,008,648호)를 배제하지는 않는다. 또한, 리드 프레임 내지 리드 전극(50)이 몰드(25)를 관통하지 않더라도, 제조의 관점에서 리드 프레임(50)에 복수의 몰드(25)가 걸쳐 있는 형태여야 대량생산이 가능할 수 있다.
도 11은 본 개시에 따라 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면으로서, 설명의 편의를 위해 2개의 반도체 발광소자(100a,100b)가 제시되어 있다. 반도체 발광소자(100a,100b) 각각의 몰드(14)가 리드 프레임(50)과 일체로 성형되어 있으며, 몰드(14)로부터 노출된 리드 프레임(50)에는 도금 방지막(51)이 형성되어 있다. 도금 방지막(51)을 구비함으로써, 도전부(18,19), 상부 금속층(18a,19a) 및/또는 방열 금속층(21)의 형성을 위해 도금을 행할 때, 이들 각각에 도금막을 안정적으로 형성할 수 있게 된다. 도 4 내지 도 9에 제시된 예와 비교할 때, 적어도 몰드(14)로부터 노출된 리드 프레임(50)에 도금 방지막(51)이 형성되어 있는 것을 제외하면 이후의 공정은 동일하며, 동일한 공정을 거친 후, 노출된 리드 프레임(50)을 절단함으로써, 개별적인 반도체 발광소자로 된다. 리드 프레임(50) 전체에 도금 방지막(51)을 형성한 다음, 복수의 몰드(14)를 사출 성형 등을 통해 리드 프레임(50)과 일체화하는 것도 가능하다. 몰드(14)로부터 노출된 리드 프레임(50)에 도금 방지막(51)이 형성되는 경우에, 리드 프레임(50)이 반도체 발광 칩(11)과 전기적으로 연결되는 형태의 구성을 배제할 필요는 없다. 도금 방지막(51)은 예를 들어, 절연막의 코팅을 통해 이루어질 수 있으며, 몰드(14)에는 절연막이 코팅되지 않도록 하는 경우에, 전착 도장(Electro-depositon Coating)을 통해 전기적 절연막을 형성할 수 있다. 한편 몰드(14)에도 도장을 하는 경우에, 절연물질을 도장하는 것이라면, 특별히 그 방법에 제한은 없다. 예를 들어, 몰드(14)가 검은 색인 경우에, 반도체 발광 칩(11)의 반사도를 높이기 위해, 몰드(14)를 포함한 리드 프레임(50)을 백색의 절연물질로 코팅하는 것이 가능하다.
나아가, 본 개시는 제1 첨가제, 제2 첨가제 및/또는 제3 첨가제를 대신하여 또는 이들과 함께, 가시광 흡수율(absorption)이 낮고 투과도(transparency)가 높은 물질, 예를 들어 나노스케일(나노크기 규모)의 입자 금속 물질 자체(예: Ag) 또는 금속 산화물(Al2O3, SiO2, TiO2, SnO2, In2O3, ITO, ZrO2, ZnO, CeO2, Ta2O5)을 첨가하는 것이 가능하다. 투과율이 높은 한편, 그 자체로 또는 레이저 조사에 의해 활성화되어 도금의 씨앗으로 기능할 수 있는 물질을 몰드(14)에 첨가함으로써, LDS에 최적화되었으나 반사도가 높지 않은 첨가제가 사용될 때의 문제점을 해소할 수 있게 된다. 예를 들어, PCT에 소정의 ZnO와 함께 나노스케일의 Ag 입자를 넣어서 몰드(14)를 형성할 수 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 반도체 발광소자에 있어서, 전극을 구비하는 반도체 발광 칩; 제1 표면 거칠기를 가지도록 형성되며, 반도체 발광 칩이 놓이는 바닥부를 가지고, 바닥부에 제1 표면 거칠기와 다른 제2 표면 거칠기를 가지는 표면으로 된 관통홀이 형성되어 있으며, 적어도 반도체 발광 칩과 면하는 측이 반도체 발광 칩에서 발광되는 빛에 대해 95% 이상의 반사율을 가지는 재질로 이루어진 몰드; 그리고 전극과의 전기적 연통을 위해 관통홀에 구비되는 도전부;를 포함하는 것을 특징으로 하는 반도체 발광소자.
(2) 관통홀의 표면에 도전부의 생성을 위한 씨앗으로 기능하는 금속이 노출되어 있는 것을 특징으로 하는 반도체 발광소자.
(3) 바닥부의 하면에 디자인된 형태에 대응하여 패턴을 가지는 방열 금속층이 형성되어 있으며, 방열 금속층이 형성된 바닥부의 하면이 제1 표면 거칠기보다 거친 제3 표면 거칠기를 가지는 것을 특징으로 하는 반도체 발광소자.
(4) 방열 금속층이 도전부와 연결되어 있는 것을 특징으로 하는 반도체 발광소자.
(5) 바닥부의 상면에서 관통홀 밖으로 돌출되어 있으며, 전극 및 도전부와 전기적으로 접합되는 상부 금속층이 형성되어 있는 것을 특징으로 하는 반도체 발광소자.
(6) 도전부는 무전해 도금을 통해 형성되며, 몰드는 레이저 빔에 의해 활성화되어 무전해 도금의 씨앗으로 기능하는 적어도 하나의 LDS 첨가제;를 함유하는 것을 특징으로 하는 반도체 발광소자.
(7) 도전부는 무전해 도금을 통해 형성되며, 몰드는 레이저 빔에 의해 활성화되어 무전해 도금의 씨앗으로 기능하는 제1 첨가제 및 레이저 빔에 의해 활성화되어 무전해 도금의 씨앗으로 기능하며, 반도체 발광 칩에서 발생하는 열에 대해 제1 첨가제보다 높은 방열 특성을 가지는 제2 첨가제를 함유하는 것을 특징으로 하는 반도체 발광소자.
(8) 도전부는 무전해 도금을 통해 형성되며, 몰드는 레이저 빔에 의해 활성화되어 무전해 도금의 씨앗으로 기능하는 제1 첨가제 및 반도체 발광 칩에서 발광하는 빛에 대해 제1 첨가제보다 높은 반사도를 가지는 제3 첨가제를 함유하는 것을 특징으로 하는 반도체 발광소자.
(9) 제1 첨가제는 팔라듐(Pd)함유 중금속 착물과 금속산화물(metal oxide), 금속산화물-코팅된 충전제, 구리 크롬 산화물 스피넬(CuO·Cr2O3 spinel), 구리(Cu) 함유 염, 구리 아이드록시 포스페이트, 구리 포스페이트, 제일구리 티오시아네이트, 스피넬계 금속산화물, 구리 크롬 산화물(CuO·Cr2O3), 유기 금속 착물, 안티몬(Sb) 도핑된 주석(Sn) 산화물, 구리 함유 금속산화물, 아연(Zn) 함유 금속산화물, 주석(Sn) 함유 금속산화물, 마그네슘(Mg) 함유 금속산화물, 알루미늄(Al) 함유 금속산화물, 금(Au) 함유 금속산화물, 은(Ag) 함유 금속산화물, 니켈(Ni) 함유 금속산화물, 크롬(Cr) 함유 금속산화물, 철(Fe) 함유 금속산화물, 바나듐(V) 함유 금속산화물, 코발트(Co) 함유 금속산화물, 망간(Mn) 함유 금속산화물; 중의 적어도 하나를 포함하는 것을 특징으로 하는 반도체 발광소자.
(10) 제2 첨가제는 알루미늄 질화물(AlN), 알루미늄 탄화물(AlC), 알루미늄 산화물(Al2O3), 알루미늄 산화질화물(AlON), 붕소 질화물(BN), 마그네슘실리콘 질화물(MgSiN2), 실리콘 질화물(Si3N4), 실리콘 탄화물(SiC), 그라파이트(graphite), 그래핀(graphene), 및 탄소 섬유(carbon fiber), 아연(Zn) 산화물, 칼슘(Ca) 산화물, 마그네슘(Mg) 산화물; 중의 적어도 하나를 포함하는 것을 특징으로 하는 반도체 발광소자.
(11) 제3 첨가제는 TiO2 , ZnO, BaS, CaCO3 중의 적어도 하나를 포함하는 것을 특징으로 하는 반도체 발광소자.
(12) 몰드는 레이저 빔에 의해 활성화되어 도전부 형성을 위한 씨앗으로 기능하며, 반도체 발광 칩에서 발광하는 빛을 반사하도록 기능하는 첨가제를 50wt% 이상으로 함유하는 것을 특징으로 하는 반도체 발광소자.
(13) 첨가제는 TiO2인 것을 특징으로 하는 반도체 발광소자.
(14) 몰드 하부의 제1 첨가제의 함량이 몰드 상부의 제1 첨가제 함량보다 많은 것을 특징으로 하는 반도체 발광소자.
(15) 몰드는 반도체 발광 칩과 면하는 측에서 반도체 발광 칩에서 발광되는 빛을 반사하는 반사층을 구비하는 것을 특징으로 하는 반도체 발광소자.
(16) 전극을 구비하는 반도체 발광 칩; 반도체 발광 칩이 놓이는 바닥부를 가지고, 바닥부에 관통홀이 형성되어 있는 몰드; 그리고 전극과의 전기적 연통을 위해 관통홀에 구비되는 도전부;를 가지는, 반도체 발광소자를 제조하는 방법에 있어서, 상기 몰드가 복수 개 형성되어 있으며, 복수의 몰드로부터 노출된 영역에 도금 방지막이 형성되어 있는 리드 프레임을 준비하는 단계; 각각의 몰드에 도전부를 형성하고 반도체 발광 칩의 전극을 도전부와 전기적 연통시키는 단계; 그리고, 리드 프레임을 절단하여 각각의 반도체 발광소자를 개별화하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법.
(17) 관통홀은 리드 프레임을 준비하는 단계에서 형성되며, 이후 도전부 형성을 위한 씨앗을 제공하도록 관통홀에 레이저 빔이 조사되는 반도체 발광소자를 제조하는 방법.
(18) 관통홀은 레이저 드릴링을 통해 형성되는 반도체 발광소자를 제조하는 방법.
(19) 도전부는 무전해 도금을 통해 형성되는 반도체 발광소자를 제조하는 방법.
(20) 제1 첨가제, 제2 첨가제 및/또는 제3 첨가제를 대신하여 또는 이들과 함께, 가시광 흡수율(absorption)이 낮고 투과도(transparency) 높은 나노스케일(나노크기 규모)의 금속 또는 금속산화물 입자 물질을 함유하는 반도체 발광소자 및 이를 제조하는 방법.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 몰드 하부로의 빛 누출을 없애는 한편, 도전층의 고정을 향상시킬 수 있게 된다.
반도체 발광 칩(11), 몰드(14), 바닥부(15), 관통홀(16,17) 도전부(18,19)

Claims (6)

  1. 전극을 구비하는 반도체 발광 칩; 반도체 발광 칩이 놓이는 바닥부를 가지고, 바닥부에 관통홀이 형성되어 있는 몰드; 그리고 전극과의 전기적 연통을 위해 관통홀에 구비되는 도전부;를 가지는, 반도체 발광소자를 제조하는 방법에 있어서,
    상기 몰드가 복수 개 형성되어 있으며, 복수의 몰드로부터 노출된 영역에 도금 방지막이 형성되어 있는 리드 프레임을 준비하는 단계;
    각각의 몰드에 도전부를 형성하고 반도체 발광 칩의 전극을 도전부와 전기적 연통시키는 단계; 그리고,
    리드 프레임을 절단하여 각각의 반도체 발광소자를 개별화하는 단계;를 포함하는 반도체 발광소자를 제조하는 방법.
  2. 청구항 1에 있어서,
    관통홀은 리드 프레임을 준비하는 단계에서 형성되며, 이후 도전부 형성을 위한 씨앗을 제공하도록 관통홀에 레이저 빔이 조사되는 반도체 발광소자를 제조하는 방법.
  3. 청구항 1에 있어서,
    관통홀은 레이저 드릴링을 통해 형성되는 반도체 발광소자를 제조하는 방법.
  4. 청구항 1 내지 청구항 3 중의 어느 한 항에 있어서,
    도전부는 무전해 도금을 통해 형성되는 반도체 발광소자를 제조하는 방법.
  5. 청구항 1에 있어서,
    몰드는 가시광 흡수율(absorption)이 낮고 투과도(transparency)가 높은 나노스케일의 금속 또는 금속산화물 입자 물질을 함유하는 반도체 발광소자를 제조하는 방법.
  6. 청구항 5에 있어서,
    나노스케일의 금속으로 은(Ag)이며, 금속산화물 입자 물질은 Al2O3, SiO2, TiO2, SnO2, In2O3, ITO, ZrO2, ZnO, CeO2, Ta2O5 중의 적어도 하나를 포함하는 반도체 발광소자를 제조하는 방법.
KR1020190039129A 2018-12-27 2019-04-03 반도체 발광소자를 제조하는 방법 KR102203016B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190039129A KR102203016B1 (ko) 2019-04-03 2019-04-03 반도체 발광소자를 제조하는 방법
US17/417,904 US20220093829A1 (en) 2018-12-27 2019-12-27 Semiconductor light-emitting device
PCT/KR2019/018608 WO2020139022A1 (ko) 2018-12-27 2019-12-27 반도체 발광소자
CN201980086537.5A CN113228312A (zh) 2018-12-27 2019-12-27 半导体发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190039129A KR102203016B1 (ko) 2019-04-03 2019-04-03 반도체 발광소자를 제조하는 방법

Publications (2)

Publication Number Publication Date
KR20200117258A true KR20200117258A (ko) 2020-10-14
KR102203016B1 KR102203016B1 (ko) 2021-01-14

Family

ID=72846919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190039129A KR102203016B1 (ko) 2018-12-27 2019-04-03 반도체 발광소자를 제조하는 방법

Country Status (1)

Country Link
KR (1) KR102203016B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794634A (ja) * 1993-04-07 1995-04-07 Mitsui Toatsu Chem Inc 光学素子用回路基板
JP2013143430A (ja) * 2012-01-10 2013-07-22 Citizen Holdings Co Ltd 半導体発光装置及びそれを用いた照明装置
KR20170059894A (ko) * 2015-11-23 2017-05-31 렉스타 일렉트로닉스 코포레이션 발광 다이오드 패키지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794634A (ja) * 1993-04-07 1995-04-07 Mitsui Toatsu Chem Inc 光学素子用回路基板
JP2013143430A (ja) * 2012-01-10 2013-07-22 Citizen Holdings Co Ltd 半導体発光装置及びそれを用いた照明装置
KR20170059894A (ko) * 2015-11-23 2017-05-31 렉스타 일렉트로닉스 코포레이션 발광 다이오드 패키지

Also Published As

Publication number Publication date
KR102203016B1 (ko) 2021-01-14

Similar Documents

Publication Publication Date Title
US9018664B2 (en) Semiconductor device and production method therefor
EP3633743B1 (en) Optical-semiconductor device
KR100978028B1 (ko) 발광장치
WO2012002580A1 (ja) Led光源装置及びその製造方法
CN104716247A (zh) 发光装置
KR20240023079A (ko) 반도체 발광소자를 제조하는 방법
US20110272731A1 (en) Substrate for light emitting element package, and light emitting element package
JP2003163381A (ja) 表面実装型発光ダイオード及びその製造方法
CN109643743A (zh) 发光二极管封装
US9553245B2 (en) Light emitting device
CN109328400A (zh) 发光器件封装和光源设备
KR20150097991A (ko) 발광 소자 및 그 제조방법
KR102203016B1 (ko) 반도체 발광소자를 제조하는 방법
KR102227215B1 (ko) 반도체 발광소자
JP5493549B2 (ja) 発光装置及びその製造方法
CN113228312A (zh) 半导体发光器件
KR20200116893A (ko) 반도체 발광소자
KR102315896B1 (ko) 반도체 발광소자를 제조하는 방법
KR20210017666A (ko) 반도체 발광소자
US11677054B2 (en) Light-emitting device
KR100544274B1 (ko) 스터드 범프용 기판의 금속 적층구조
KR101380387B1 (ko) Led 패키지
KR20120073445A (ko) 발광 소자 패키지

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right