KR20200113761A - Non-detective Testing Method of Concrete Member Covered Steel Plate - Google Patents

Non-detective Testing Method of Concrete Member Covered Steel Plate Download PDF

Info

Publication number
KR20200113761A
KR20200113761A KR1020190034426A KR20190034426A KR20200113761A KR 20200113761 A KR20200113761 A KR 20200113761A KR 1020190034426 A KR1020190034426 A KR 1020190034426A KR 20190034426 A KR20190034426 A KR 20190034426A KR 20200113761 A KR20200113761 A KR 20200113761A
Authority
KR
South Korea
Prior art keywords
steel plate
concrete
composite member
voids
sensor
Prior art date
Application number
KR1020190034426A
Other languages
Korean (ko)
Other versions
KR102185259B1 (en
Inventor
이재복
안상경
박찬규
문영종
Original Assignee
삼성물산 주식회사
에이치디엘(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성물산 주식회사, 에이치디엘(주) filed Critical 삼성물산 주식회사
Priority to KR1020190034426A priority Critical patent/KR102185259B1/en
Publication of KR20200113761A publication Critical patent/KR20200113761A/en
Application granted granted Critical
Publication of KR102185259B1 publication Critical patent/KR102185259B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention relates to a non-destructive inspection method of a steel plate coated concrete composite member. More specifically, the present invention relates to the non-destructive inspection method capable of estimating adhesion of concrete and a steel plate, presence of concrete voids, and the size and depth of the concrete voids in the composite member through non-destructive inspection. The non-destructive inspection method of the steel plate coated concrete composite member according to the present invention comprises: a first step of attaching a sensor to the surface of the steel plate of the composite member and applying an impact with an impact hammer; a second step of obtaining a vibration signal by the sensor and analyzing the obtained vibration signal to obtain a resonance frequency and a damping ratio; and a third step of estimating whether the steel plate and the concrete are attached to each other and the size of the voids using the resonance frequency, and estimating the depth of the voids using the damping ratio.

Description

철판 피복 콘크리트 합성부재의 비파괴 검사방법{Non-detective Testing Method of Concrete Member Covered Steel Plate}Non-detective Testing Method of Concrete Member Covered Steel Plate}

본 발명은 철판 피복 콘크리트 합성부재의 비파괴 검사방법에 관한 것으로, 더욱 상세하게는 비파괴 검사를 통해 합성부재에서 콘크리트와 철판의 부착 유무, 콘크리트 공극의 유무, 콘크리트 공극의 크기 및 깊이를 추정할 수 있는 비파괴 검사방법에 관한 것이다. The present invention relates to a non-destructive inspection method of a steel plate-covered concrete composite member, and more particularly, through a non-destructive inspection, it is possible to estimate the presence or absence of adhesion of concrete and steel plate, the presence of concrete voids, and the size and depth of concrete voids in the composite member. It relates to a non-destructive testing method.

비파괴 검사는 피검사물을 파괴하지 않고 내부의 성질, 결함을 찾아내는 것으로서, 비파괴검사 방법으로는 육안검사, 방사선투과 검사, 자기검사, 초음파 검사, 누설 시험 등이 있다.Non-destructive inspection is to find internal properties and defects without destroying the object to be inspected. Non-destructive inspection methods include visual inspection, radiographic inspection, self-inspection, ultrasonic inspection, and leakage test.

콘크리트 구조물의 비파괴 검사방법으로 등록특허 제10-0553570호가 있다. 제10-0553570호는 표면파 기법(SASW, Spectral Analysis of Surface Wave Method)을 이용하여 콘크리트 부재의 표면파 속도를 구한 후 충격반향 기법(Impact-Echo Method)에 적용하여 보다 효율적이고 정확하게 콘크리트 구조물의 결함, 두께 등을 평가할 수 있는 방법이다. 그러나 이 방법은 표면파 속도 측정을 위해 충격가진 지점과 센서와 충분한 거리가 떨어져 있어야 하고, 특히 매질이 단단하여 표면파 속도가 빠를 경우에는 더욱 멀리 떨어진 거리가 필요하다. 이에 따라 충격가진 지점과 센서와의 거리가 충분하지 못할 경우 오차가 커지게 되고 이로 인해 정밀도가 떨어질 수 있다. There is Registration Patent No. 10-0553570 as a non-destructive inspection method for concrete structures. No. 10-0553570 uses the surface wave method (SASW, Spectral Analysis of Surface Wave Method) to calculate the surface wave velocity of a concrete member and then applies it to the Impact-Echo Method to more efficiently and accurately determine defects in concrete structures. It is a method that can evaluate the thickness and the like. However, this method requires a sufficient distance from the impact point and the sensor to measure the surface wave velocity. In particular, when the medium is hard and the surface wave velocity is high, a further distance is required. Accordingly, if the distance between the impact point and the sensor is insufficient, the error becomes large, and precision may be degraded.

한편 원자로 격납건물(RCB·Reactor Containment Building)은 철판(함석판, CLP)을 거푸집으로 사용하면서 철판이 피복된 콘크리트 합성부재로 시공되는데, 이 경우 철판 거푸집은 탈형하지 않기 때문에 콘크리트 타설 후 잘 채워져 있는지 육안으로 확인하기가 어렵다. 초음파나 전자파, 표면파 등을 이용하면 콘크리트 내부의 공동을 확인할 수 있지만, 철판이 콘크리트 표면에 있는 경우에는 이를 이용한 기술은 적용이 불가능하다. 따라서 주로 망치를 이용하여 철판을 두드림으로써 소리로 확인곤 했지만, 이 또한 내부의 상태를 정확히 진단하는 것이 어렵다. 특히 철판과 콘크리트는 떨어지기 쉽기 때문에 콘크리트가 잘 시공되어 있더라도 떨어지면 공동으로 판단될 소지가 많기 때문에 철판을 뜯어보기 전에는 정확한 진단이 어려운 실정이다.On the other hand, the reactor containment building (RCB) is constructed using a steel plate (tin plate, CLP) as a formwork and a concrete composite member covered with a steel plate.In this case, since the steel plate formwork is not demolded, it is visually checked whether it is well filled after concrete placement. It is difficult to check. Using ultrasonic waves, electromagnetic waves, surface waves, etc., the cavity inside the concrete can be identified, but when the steel plate is on the concrete surface, the technology using this cannot be applied. Therefore, it was usually confirmed by sound by hitting the iron plate with a hammer, but it is also difficult to accurately diagnose the internal condition. In particular, since steel plates and concrete are easily separated, even if concrete is well constructed, it is difficult to diagnose accurately before opening the steel plate because there is a lot of possibility to be judged jointly if it falls.

KR 10-0553570 B1KR 10-0553570 B1 KR 10-1328515 B1KR 10-1328515 B1

본 발명은 철판 피복 콘크리트 합성부재의 새로운 비파괴 검사방법을 제안하고자 개발된 것으로서, 철판 피복 콘크리트 합성부재에서 콘크리트와 철판의 부착 유무, 콘크리트 공극의 유무, 콘크리트 공극의 크기 및 깊이를 추정할 수 있는 비파괴 검사방법을 제공하는데 기술적 과제가 있다.The present invention was developed to propose a new non-destructive testing method for a steel plate-covered concrete composite member, and is non-destructive for estimating the presence or absence of concrete and steel plates, the presence of concrete voids, and the size and depth of concrete voids in the steel plate-covered concrete composite member. There is a technical problem in providing the inspection method.

상기한 기술적 과제를 해결하기 위해 본 발명은 철판 피복 콘크리트 합성부재의 비파괴 검사방법에서, 합성부재의 철판 표면에 센서를 부착하고 임팩트 햄머로 충격을 가진하는 제1단계; 센서로 진동신호를 취득하고 취득한 진동신호를 분석하여 공진주파수와 감쇠비를 구하는 제2단계; 공진주파수로 철판과 콘크리트의 부착여부와 공극의 크기를 추정하고, 감쇠비로 공극의 깊이를 추정하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 철판 피복 콘크리트 합성부재의 비파괴 검사방법을 제공한다.In order to solve the above technical problem, the present invention provides a method for non-destructive testing of a composite member of iron-clad concrete, comprising: a first step of attaching a sensor to a surface of a steel sheet of the composite member and having an impact with an impact hammer; A second step of obtaining a vibration signal by a sensor and analyzing the obtained vibration signal to obtain a resonance frequency and a damping ratio; It provides a non-destructive inspection method of a steel plate-coated concrete composite member comprising; a third step of estimating the adhesion of the steel plate and the concrete and the size of the voids by the resonance frequency, and estimating the depth of the voids by the damping ratio.

본 발명에 따르면, 철판 피복 콘크리트 합성부재에서 콘크리트와 철판의 부착 유무, 콘크리트 공극의 유무, 콘크리트 공극의 크기 및 깊이를 비파괴적으로 추정할 수 있다. 이로써 철판을 절단하지 않고 공극상태 판단이 가능하므로 무분별한 철판 절개의 빈도를 크게 줄일 수 있다. 이에 따라 본 발명은 원자로 RCB 공사현장에 유리하게 적용할 수 있다. According to the present invention, it is possible to nondestructively estimate the presence or absence of adhesion between concrete and steel plates, the presence of concrete voids, and the size and depth of the concrete voids in the steel plate-covered concrete composite member. This makes it possible to judge the state of voids without cutting the steel plate, so that the frequency of indiscriminately cutting the steel plate can be greatly reduced. Accordingly, the present invention can be advantageously applied to a reactor RCB construction site.

도 1과 도 2는 각각 본 발명의 시험예에서 사용한 시험체의 설계도면과 시험체에의 센서 부착위치 표시도면이다.
도 3은 본 발명의 시험예에서 진동시험을 위해 사용한 장비를 보여준다.
도 4는 도 2 및 도 3의 시험체에서 공극지점 A에서의 진동 분석결과를 나타낸 그래프이다.
도 5는 도 2 및 도 3의 시험체에서 공극지점 B에서의 진동 분석결과를 나타낸 그래프이다.
도 6은 도 2 및 도 3의 시험체에서 공극지점 C에서의 진동 분석결과를 나타낸 그래프이다.
도 7은 도 2 및 도 3의 시험체에서 공극지점 A에서의 감쇠비 분석결과를 나타낸 그래프이다.
1 and 2 are a design drawing of a test body used in a test example of the present invention and a diagram showing a sensor attachment position to the test body, respectively.
3 shows the equipment used for the vibration test in the test example of the present invention.
4 is a graph showing the results of vibration analysis at a void point A in the specimens of FIGS. 2 and 3.
5 is a graph showing the results of vibration analysis at a void point B in the specimens of FIGS. 2 and 3.
6 is a graph showing the results of vibration analysis at a void point C in the specimens of FIGS. 2 and 3.
7 is a graph showing the results of the damping ratio analysis at the void point A in the specimens of FIGS. 2 and 3.

본 발명은 철판 피복 콘크리트 합성부재의 비파괴 검사방법에서, 합성부재의 철판 표면에 센서를 부착하고 임팩트 햄머로 충격을 가진하는 제1단계; 센서로 진동신호를 취득하고 취득한 진동신호를 분석하여 공진주파수와 감쇠비를 구하는 제2단계; 공진주파수로 철판과 콘크리트의 부착여부와 공극의 크기를 추정하고, 감쇠비로 공극의 깊이를 추정하는 제3단계;를 포함하여 이루어지는 것을 특징으로 한다. 여기서 제3단계는 공진주파수가 하나의 주파수 피크로 구해지면 해당 센서 위치를 공극 지점으로 추정할 수 있고, 공진주파수가 다수의 주파수 피크로 구해지면 해당 센서 위치를 철판과 콘크리트의 비부착 지점으로 추정할 수 있다. 이와 같은 비파괴 검사방법은 Mock-up 시험체 진동 시험을 통한 분석을 통해 공극의 유무, 크기 및 깊이 추정이 가능함을 확인하고 그 결과로서 제안하게 되었다.The present invention provides a method for non-destructive testing of a steel plate-coated concrete composite member, comprising: a first step of attaching a sensor to the steel plate surface of the composite member and having an impact with an impact hammer; A second step of obtaining a vibration signal by a sensor and analyzing the obtained vibration signal to obtain a resonance frequency and a damping ratio; And a third step of estimating whether the steel plate and concrete are attached to each other and the size of the voids using the resonance frequency, and estimating the depth of the voids using the damping ratio. In the third step, if the resonant frequency is obtained as one frequency peak, the corresponding sensor position can be estimated as a void point, and if the resonant frequency is obtained as multiple frequency peaks, the corresponding sensor position is estimated as a non-attachment point of steel plate and concrete. can do. Such a non-destructive test method was confirmed to be possible to estimate the presence, size, and depth of voids through analysis through the vibration test of the mock-up specimen and was proposed as a result.

이하 시험예에 따라 본 발명을 상세히 설명한다. 다만, 아래의 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.The present invention will be described in detail according to the following test examples. However, the following test examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[시험예] Mock-up 시험체를 이용한 공극 검사[Test Example] Porosity inspection using mock-up test body

1. 시험방법1. Test method

도 1 및 도 2와 같이 설계된 Mock-up 시험체를 제작하고 도 3의 장비를 이용하여 진동시험을 실시하였다. 도 2의 시험체는 실제 RCB 외벽과 유사한 크기 및 조건으로 설계되었으며, 보는 바와 같이 300mm×300mm 크기의 공극 세개(공극깊이 2mm, 20mm, 150mm 각각 1개)와 100mm×100mm 크기의 공극 두개(공극깊이 2mm, 20mm 각각 1개), 총 5가지 형태의 공극이 형성되도록 제작되었다. 도 3과 같이 공극 주변부의 철판 표면에 센서를 부착한 후 임팩트 햄머를 이용한 충격 하중 가진하고, 센서로부터 진동 신호를 취득하고 취득된 신호의 주파수 분석을 통한 고유진동수 판별하고 감쇠비를 계산하였다.A mock-up test body designed as shown in FIGS. 1 and 2 was manufactured, and a vibration test was performed using the equipment of FIG. 3. The test body of FIG. 2 was designed with a size and conditions similar to those of an actual RCB outer wall, and as shown, three pores of 300 mm × 300 mm (one each with a pore depth of 2 mm, 20 mm, and 150 mm) and two pores of a size of 100 mm × 100 mm (pore depth 2mm, 20mm, 1 each), was manufactured to form a total of 5 types of voids. As shown in FIG. 3, after attaching the sensor to the surface of the steel plate in the vicinity of the air gap, the shock load was excitation using an impact hammer, a vibration signal was obtained from the sensor, and the natural frequency was determined through frequency analysis of the acquired signal, and the damping ratio was calculated.

진동시험에서 센서는 미국 P사의 가속도계 센서로 10V/g의 높은 Sensitivity를 갖는 구조물 진동 전용 센서를 이용하였고, 임팩트 햄머는 미국 P사의 구조물 동강성 측정용 햄머로 햄머 끝단에 하중측정 센서 부착하여 이용하였으며, 측정분석장비는 독일 S사의 진동 측정 분석장비를 이용하였다.In the vibration test, the sensor was an accelerometer sensor of US P company, and a sensor dedicated to structural vibration with high sensitivity of 10V/g was used, and the impact hammer was used by attaching a load measurement sensor to the end of the hammer as a hammer for measuring the dynamic stiffness of the structure of P company in the USA. , As the measurement and analysis equipment, the vibration measurement and analysis equipment of Germany S company was used.

2. 시험결과2. Test result

(1) 진동 주파수 분석(1) vibration frequency analysis

진동시험 분석결과의 하나로 주파수를 분석하였으며, 그 결과 도 4 내지 도 6과 같이 나타냈다. 도 4는 공극지점 A의 진동시험 분석결과를 보여주는데, 보는 바와 같이 하나의 주된 주파수를 나타냈다. 이는 공극의 영향으로 CLP만의 고유진동수가 나타남에 따른 것으로 파악된다. 또한 공극의 크기가 300mm의 경우(A1, A2, A3)는 400Hz 내외, 공극의 크기가 100mm의 경우(A4, A5) 2000Hz 내외의 주파수 특성을 나타냈다. 따라서 공극의 크기에 따른 구조적 특성으로 주파수 값을 이용해 공극의 유무 및 크기를 추정할 수 있겠다.As one of the vibration test analysis results, frequency was analyzed, and the results are shown in FIGS. 4 to 6. 4 shows the analysis results of the vibration test at the void point A, showing one main frequency as shown. This is believed to be due to the appearance of the natural frequency of CLP only due to the effect of the void. In addition, when the pore size is 300 mm (A1, A2, A3), the frequency characteristics are around 400 Hz, and when the pore size is 100 mm (A4, A5), the frequency characteristics are around 2000 Hz. Therefore, it is possible to estimate the existence and size of the void using the frequency value as a structural characteristic according to the size of the void.

도 5는 공극지점 상단의 진동시험 분석결과를 보여준다. 타격시 공극 지점과 유사한 소음이 발생했는데, 이는 CLP가 콘크리트와 완벽히 밀착되지 않아 발생하는 것으로 추측된다. 도 5에서 보는 바와 같이 진동시험 분석결과 도 4와 달리 다수의 주파수 특성을 나타냈고 크기 또한 상대적으로 작게 나타냈다. CLP가 완전한 밀착도 아니지만, 완전한 공극도 아닌 상황으로 인해 다수의 주파수 피크를 갖는 것으로 판단되며, 이와 같은 주파수 특성을 이용해 완전한 공극과 그렇지 않은 부분을 구분 가능할 것으로 판단된다.5 shows the analysis result of the vibration test at the top of the void point. There was a noise similar to that of the air gap when hitting, which is presumed to be caused by the CLP not completely in contact with the concrete. As shown in FIG. 5, the vibration test analysis result showed a number of frequency characteristics unlike FIG. 4, and the size was also relatively small. Although the CLP is not completely in close contact, it is judged that it has a number of frequency peaks due to the situation where it is not a perfect void, and it is judged that it is possible to distinguish between a perfect void and a portion that is not using such frequency characteristics.

도 6은 공극이 아닌 지점의 진동시험 분석결과를 보여준다. 공극지점과 비교를 위한 일종의 기준값을 위해 시험을 수행하였는데, 도 4 및 도 5와 달리 매우 높은 고유진동수(7000Hz 이상)를 나타내고, 매우 작은 수준의 진동 크기를 나타냈다. 이는 CLP와 콘크리트의 일체화로 인해 매우 높은 강성을 갖기 때문인 것으로 판단된다. 6 shows the analysis result of the vibration test at a point other than the void. A test was performed for a kind of reference value for comparison with the void point. Unlike FIGS. 4 and 5, a very high natural frequency (more than 7000 Hz) was shown, and a very small level of vibration amplitude was shown. It is believed that this is because it has very high rigidity due to the integration of CLP and concrete.

(2)감쇠비 분석(2) Attenuation ratio analysis

주파수 분석을 통해 감쇠비를 계산하였으며, 그 결과 아래 [표 1] 및 도 7과 같이 나타냈다.The attenuation ratio was calculated through frequency analysis, and the results are shown in Table 1 and Fig. 7 below.

구분division 감쇠비(%)Damping ratio (%) 비율ratio A1A1 1.761.76 1.0 (A1 기준 )1.0 (based on A1) A2A2 1.141.14 0.65 (A1 기준 )0.65 (A1 standard) A3A3 0.540.54 0.31 (A1 기준 )0.31 (based on A1) A4A4 2.602.60 A5A5 2.092.09

위의 [표 1]에서 보는 바와 같이 A1~A3의 감쇠비 값을 보면 공극의 깊이가 클수록 감쇠비 값이 작아지는 것을 알 수 있다. 또한 A1~A3와 A4,A5의 감쇠비 값을 비교해보면 공극의 크기가 다른 경우 감쇠비 값의 차이는 있으나, 공극의 깊이가 클수록 감쇠비 값이 작아지는 경향은 동일하게 나타냈다. A4와 A5의 감쇠비 값이 큰 것은 강성이 큰 구조물에서 크게 나타나는 일반적인 특성으로 판단된다(공극의 크기가 작으면 CLP만의 강성은 상대적으로 큰 경우에 해당함).As shown in [Table 1] above, looking at the damping ratio values of A1 to A3, it can be seen that the larger the depth of the air gap, the smaller the damping ratio value. In addition, when comparing the damping ratio values of A1 to A3 with A4 and A5, there is a difference in the damping ratio value when the pore size is different, but the tendency of the damping ratio value to decrease as the depth of the pore increases is the same. The large damping ratio value of A4 and A5 is considered to be a general characteristic that appears large in structures with high rigidity (if the pore size is small, the rigidity of CLP alone is relatively large).

도 7은 A1~A3(공극 300mm)의 감쇠비 값의 비율을 공극의 깊이에 따라 나타낸 그래프인데, 보는 바와 같이 공극의 깊이를 로그로 나타낼 때 감쇠비 비율이 선형의 경향을 나타냈다. 이로부터 공극에 해당하는 CLP의 감쇠비 값을 이용해 공극의 깊이 추정이 가능할 것으로 판단된다. 다만 정확한 깊이 추정을 위해서는 사전에 다양한 공극의 크기 및 깊이별 감쇠비 값을 측정한 기초자료가 필요하겠다.7 is a graph showing the ratio of the damping ratio values of A1 to A3 (pore 300 mm) according to the depth of the gap. As can be seen, when the depth of the gap is expressed as a log, the damping ratio ratio tends to be linear. From this, it is determined that the depth of the void can be estimated using the damping ratio value of the CLP corresponding to the void. However, for accurate depth estimation, basic data obtained by measuring various pore sizes and damping ratio values for each depth are required.

Claims (3)

철판 피복 콘크리트 합성부재의 비파괴 검사방법에서,
합성부재의 철판 표면에 센서를 부착하고 임팩트 햄머로 충격을 가진하는 제1단계;
센서로 진동신호를 취득하고 취득한 진동신호를 분석하여 공진주파수와 감쇠비를 구하는 제2단계;
공진주파수로 철판과 콘크리트의 부착여부와 공극의 크기를 추정하고, 감쇠비로 공극의 깊이를 추정하는 제3단계;
를 포함하여 이루어지는 것을 특징으로 하는 철판 피복 콘크리트 합성부재의 비파괴 검사방법.
In the non-destructive inspection method of the steel plate coated concrete composite member,
A first step of attaching a sensor to the surface of the steel plate of the composite member and having an impact with an impact hammer;
A second step of obtaining a vibration signal by a sensor and analyzing the obtained vibration signal to obtain a resonance frequency and a damping ratio;
A third step of estimating whether the steel plate and concrete are attached to each other and the size of the voids using the resonance frequency, and estimating the depth of the voids using the damping ratio;
Non-destructive inspection method of the steel plate-coated concrete composite member comprising a.
제1항에서,
상기 제3단계는,
공진주파수가 하나의 주파수 피크로 구해지면 해당 센서 위치를 공극 지점으로 추정하면서 이루어지는 것을 특징으로 하는 철판 피복 콘크리트 합성부재의 비파괴 검사방법.
In claim 1,
The third step,
When the resonant frequency is obtained as one frequency peak, the non-destructive inspection method of a steel plate-coated concrete composite member, characterized in that it is performed while estimating a corresponding sensor position as a void point.
제1항 또는 제2항에서,
상기 제3단계는,
공진주파수가 다수의 주파수 피크로 구해지면 해당 센서 위치를 철판과 콘크리트의 비부착 지점으로 추정하면서 이루어지는 것을 특징으로 하는 철판 피복 콘크리트 합성부재의 비파괴 검사방법.
In claim 1 or 2,
The third step,
When the resonant frequency is obtained as a plurality of frequency peaks, a non-destructive inspection method of a steel plate-coated concrete composite member, characterized in that the sensor location is estimated as a non-attachment point of the steel plate and concrete.
KR1020190034426A 2019-03-26 2019-03-26 Non-detective Testing Method of Concrete Member Covered Steel Plate KR102185259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190034426A KR102185259B1 (en) 2019-03-26 2019-03-26 Non-detective Testing Method of Concrete Member Covered Steel Plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190034426A KR102185259B1 (en) 2019-03-26 2019-03-26 Non-detective Testing Method of Concrete Member Covered Steel Plate

Publications (2)

Publication Number Publication Date
KR20200113761A true KR20200113761A (en) 2020-10-07
KR102185259B1 KR102185259B1 (en) 2020-12-01

Family

ID=72883570

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190034426A KR102185259B1 (en) 2019-03-26 2019-03-26 Non-detective Testing Method of Concrete Member Covered Steel Plate

Country Status (1)

Country Link
KR (1) KR102185259B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553570B1 (en) 1999-10-27 2006-02-22 주식회사 케이티 Method for non-destructive testing of concrete structure
KR20120005695A (en) * 2010-07-09 2012-01-17 한국해양연구원 Elastic wave measurement device for nondestructive evaluation of concrete structure
KR101328515B1 (en) 2012-08-20 2013-11-13 (주)제이스코리아 Measuring method for steel concrete wall plate and measuring apparatus used in the same
KR101513067B1 (en) * 2014-01-27 2015-04-22 서울과학기술대학교 산학협력단 Apparatus and method for nondestructive for measuring the dynamic modulus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553570B1 (en) 1999-10-27 2006-02-22 주식회사 케이티 Method for non-destructive testing of concrete structure
KR20120005695A (en) * 2010-07-09 2012-01-17 한국해양연구원 Elastic wave measurement device for nondestructive evaluation of concrete structure
KR101328515B1 (en) 2012-08-20 2013-11-13 (주)제이스코리아 Measuring method for steel concrete wall plate and measuring apparatus used in the same
KR101513067B1 (en) * 2014-01-27 2015-04-22 서울과학기술대학교 산학협력단 Apparatus and method for nondestructive for measuring the dynamic modulus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. G. Cho, et al. "Investigation of damping ratio of steel plate concrete (SC) shear wall by lateral loading test & impact test." Journal of the Earthquake Engineering Society of Korea 17.2 (2013)* *
홍성욱, 조영상. "응력파 기반 Impact Echo Method 를 이용한 콘크리트 구조물의 결함추정에 관한 연구." 대한건축학회 논문집-구조계 22.11 (2006): 11-18.* *

Also Published As

Publication number Publication date
KR102185259B1 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
Owolabi et al. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions
US10444110B2 (en) System and method for inspecting parts using frequency response function
JP5639359B2 (en) Ultrasonic inspection method and associated probe of noisy casting material
KR20090017769A (en) Method for non-destructive testing of concretestructure
Schoefs et al. Quantitative evaluation of contactless impact echo for non-destructive assessment of void detection within tendon ducts
Serra et al. Damage detection in elastic properties of masonry bridges using coda wave interferometry
KR101027069B1 (en) Evaluation method for bonding state of shotcrete
KR102185259B1 (en) Non-detective Testing Method of Concrete Member Covered Steel Plate
JP3523806B2 (en) Defect inspection method in concrete structure
KR100553570B1 (en) Method for non-destructive testing of concrete structure
Gao et al. Goodness dispersion curves for ultrasonic guided wave based SHM: A sample problem in corrosion monitoring
Belletti et al. Design of an instrumentation for the automated damage detection in ceilings
KR20100090912A (en) Method for structural health monitoring using ultrasonic guided wave
CN110967474A (en) Building strength detection method
JP2014211333A (en) Detached survey method and device inside concrete
WO2015059956A1 (en) Structure diagnosis device, structure diagnosis method, and program
JP2011158415A (en) Ultrasonic inspection method
Cheng et al. Analysis and application of weak guided wave signal detection based on double Duffing oscillators
Schiavi et al. Dynamic stiffness of resilient materials: some consideration on the proposed revision of ISO 9052-1 standard
Nacim et al. Experimental damage localization in beam by using natural frequency distribution and modal strain energy change ratio based methods
Maack et al. Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo
KR101614992B1 (en) Method for inspecting inner defects of steel
Białkowski et al. Early detection of cracks in rear suspension beam with the use of time domain estimates of vibration during the fatigue testing
KR102556219B1 (en) Method of Comparison of concrete compressive strength by parameters of apartment building finishing materials using ultrasonic wave velosity test
Ren et al. A quick method for assessing transducer mass effects on the measured FRFs

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant