KR20200105615A - Solid state hydrogen storage device - Google Patents

Solid state hydrogen storage device Download PDF

Info

Publication number
KR20200105615A
KR20200105615A KR1020190061819A KR20190061819A KR20200105615A KR 20200105615 A KR20200105615 A KR 20200105615A KR 1020190061819 A KR1020190061819 A KR 1020190061819A KR 20190061819 A KR20190061819 A KR 20190061819A KR 20200105615 A KR20200105615 A KR 20200105615A
Authority
KR
South Korea
Prior art keywords
tube
hydrogen storage
hole
storage device
heating tube
Prior art date
Application number
KR1020190061819A
Other languages
Korean (ko)
Inventor
박지혜
이경문
남동훈
조영진
최승현
이윤수
박훈모
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to US16/689,313 priority Critical patent/US11466814B2/en
Priority to CN201911213301.1A priority patent/CN111623233B/en
Publication of KR20200105615A publication Critical patent/KR20200105615A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0372Localisation of heat exchange in or on a vessel in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a solid hydrogen storage apparatus which improves heat transfer efficiency by improving contact property between a heat exchange tube and a heat transfer fin. The solid hydrogen storage apparatus introduced in the present invention includes: a plurality of tube through holes formed on the heat transfer fin; and a heating tube and a cooling tube which are provided through each of the tube through holes. The heating tube and the cooling tube have different coefficients of thermal expansion from each other.

Description

고체수소저장 장치{SOLID STATE HYDROGEN STORAGE DEVICE}Solid hydrogen storage device {SOLID STATE HYDROGEN STORAGE DEVICE}

본 발명은 열교환튜브와 열전달핀 간의 접촉성을 향상시켜 열전달 효율을 향상시키는 고체수소저장 장치에 관한 것이다.The present invention relates to a solid hydrogen storage device that improves heat transfer efficiency by improving the contact property between a heat exchange tube and a heat transfer fin.

금속수소화물 기반의 고체수소저장소재의 경우 열에너지가 가하지면 금속으로부터 수소분자가 분해되어 수소가 방출되고, 적정 온도에서 수소를 공급 및 가압하면 다시 금속에 수소가 합성되면서 수소가 저장되는 가역 반응이 나타난다.In the case of a metal hydride-based solid hydrogen storage material, when heat energy is applied, hydrogen molecules are decomposed from the metal to release hydrogen, and when hydrogen is supplied and pressurized at an appropriate temperature, hydrogen is synthesized in the metal and hydrogen is stored. appear.

MgH2는 단위 질량당 높은 수소 저장량(수소저장밀도 7.8wt%)을 갖는 대표적인 금속수소화물 중 하나이다.MgH 2 is one of the representative metal hydrides having a high hydrogen storage amount per unit mass (hydrogen storage density of 7.8 wt%).

하지만, 수소 방출 반응이 일어나는 온도가 높고, 가열에 필요한 전력 소모가 크기 때문에, 수소 저장시스템의 열효율을 높이는 방안이 요구되고 있다.However, since the temperature at which the hydrogen emission reaction occurs is high and power consumption required for heating is large, there is a need for a method of increasing the thermal efficiency of the hydrogen storage system.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art are only for enhancing an understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the prior art already known to those of ordinary skill in the art.

KR 10-2017-0011161 AKR 10-2017-0011161 A

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출한 것으로, 열교환튜브와 열전달핀 간의 접촉성을 향상시켜 열전달 효율을 향상시키는 고체수소저장 장치를 제공하는 데 있다.The present invention has been conceived to solve the above-described problems, and is to provide a solid hydrogen storage device that improves heat transfer efficiency by improving contact properties between a heat exchange tube and a heat transfer fin.

상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 열전달핀 상에 형성된 복수의 튜브관통홀; 상기 튜브관통홀에 각각 관통 구비되는 가열튜브 및 냉각튜브;를 포함하고, 상기 가열튜브와 냉각튜브는 서로 상이한 열팽창계수를 갖는 것을 특징으로 할 수 있다.The configuration of the present invention for achieving the above object, a plurality of tube through holes formed on the heat transfer fins; And a heating tube and a cooling tube provided through each of the tube through holes, and the heating tube and the cooling tube may have different coefficients of thermal expansion from each other.

상기 가열튜브가 냉각튜브보다 열팽창계수가 큰 것일 수 있다.The heating tube may have a larger coefficient of thermal expansion than the cooling tube.

상기 가열튜브는, 상기 수소저장소재에서 방출되는 수소의 양이 최대가 되는 활성온도 상에서 가열튜브의 열팽창되는 반경방향 길이의 최대값이, 상기 가열튜브와 튜브관통홀 내주면 사이의 이격공차와 동일하거나 최대한 감소시킬 수 있도록 하는 열팽창계수의 소재일 수 있다.In the heating tube, the maximum value of the radial length at which the heating tube is thermally expanded at an activation temperature at which the amount of hydrogen emitted from the hydrogen storage material is the maximum is equal to the clearance tolerance between the heating tube and the inner peripheral surface of the tube through hole, or It may be a material with a coefficient of thermal expansion that can be reduced as much as possible.

상기 냉각튜브는, 상기 수소저장소재에 저장되는 수소의 양이 최대가 되는 활성온도 상에서 냉각튜브의 열수축되는 반경방향 길이의 최대값이 최소화될 수 있도록 하는 열팽창계수의 소재일 수 있다.The cooling tube may be a material having a thermal expansion coefficient such that a maximum value of a radial length at which heat contraction of the cooling tube is thermally contracted can be minimized at an activation temperature in which the amount of hydrogen stored in the hydrogen storage material is maximized.

상기 튜브관통홀의 테두리에 가열튜브 및 냉각튜브가 삽입되는 길이방향으로 연장홀부가 돌출되어 형성될 수 있다.An extension hole portion may be formed to protrude in a longitudinal direction into which the heating tube and the cooling tube are inserted into the rim of the tube through hole.

상기 연장홀부가 상기 가열튜브 및 냉각튜브를 감싸는 형상으로 형성될 수 있다.The extension hole may be formed in a shape surrounding the heating tube and the cooling tube.

상기 연장홀부가 상기 튜브관통홀의 양단에 돌출 형성될 수 있다.The extension hole may be formed to protrude from both ends of the tube through hole.

상기 연장홀부는 상기 튜브관통홀의 테두리에 일체로 고정될 수 있다.The extension hole part may be integrally fixed to the edge of the tube through hole.

상기한 과제 해결수단을 통해 본 발명은, 가열튜브는 상대적으로 열팽창계수가 큰 소재로 제조됨으로써, 가열튜브의 열팽창량이 크게 증대됨에 따라 가열튜브와 열전달핀 사이의 이격거리가 감소되어 열전달 효율이 향상되는 효과가 있는 반면, 냉각튜브는 상대적으로 열팽창계수가 작은 소재로 제조됨으로써, 냉각튜브의 열수축량이 크게 감소됨에 따라 냉각튜브와 열전달핀 사이의 이격거리가 감소되어 열전달 손실을 최소화하는 효과도 있다.According to the present invention through the above-described problem solving means, the heating tube is made of a material having a relatively large coefficient of thermal expansion, so that the separation distance between the heating tube and the heat transfer fin is reduced as the amount of thermal expansion of the heating tube is greatly increased, thereby improving heat transfer efficiency. On the other hand, the cooling tube is made of a material having a relatively small coefficient of thermal expansion, so as the amount of heat contraction of the cooling tube is greatly reduced, the separation distance between the cooling tube and the heat transfer fins is reduced, thereby minimizing heat transfer loss.

더욱이, 튜브관통홀에 형성된 연장홀부를 통해 튜브관통홀의 내주면 면적이 증대됨으로써, 열전달핀과 열교환튜브 사이의 접촉면적이 증대되고, 이에 열교환튜브의 열전달 효율이 향상되는 효과도 있다.Further, the area of the inner circumferential surface of the tube through hole is increased through the extension hole formed in the tube through hole, thereby increasing the contact area between the heat transfer fin and the heat exchange tube, thereby improving the heat transfer efficiency of the heat exchange tube.

도 1은 본 발명에 따른 고체수소저장 장치의 저장용기의 형상을 도시한 도면.
도 2는 본 발명에 따른 열교환튜브와 열전달핀 및 수소저장소재의 결합관계를 설명하기 위한 도면.
도 3은 본 발명에 따른 열전달핀의 형상을 도시한 도면.
도 4는 본 발명에 따른 가열튜브와 열전달핀의 결합구조 및 가열튜브의 열팽창에 따른 형상 변화를 설명하기 위한 도면.
도 5는 본 발명에 따른 냉각튜브와 열전달핀의 결합구조 및 냉각튜브의 열수축에 따른 형상 변화를 설명하기 위한 도면.
1 is a view showing the shape of a storage container of a solid hydrogen storage device according to the present invention.
Figure 2 is a view for explaining the coupling relationship between the heat exchange tube, the heat transfer fin and the hydrogen storage material according to the present invention.
3 is a view showing the shape of a heat transfer fin according to the present invention.
Figure 4 is a view for explaining the shape change according to the thermal expansion of the heating tube and the coupling structure of the heat transfer fin and the heating tube according to the present invention.
Figure 5 is a view for explaining the shape change according to the heat shrinkage of the coupling structure of the cooling tube and the heat transfer fins according to the present invention.

본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.The preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 및 도 2를 참조하여, 본 발명의 고체수소저장 장치에 대해 설명하면, 원통형의 저장용기(40) 내부에 그 축방향을 따라 다수의 열교환튜브(20)가 구비된다.Referring to FIGS. 1 and 2, when the solid hydrogen storage device of the present invention is described, a plurality of heat exchange tubes 20 are provided in a cylindrical storage container 40 along the axial direction thereof.

여기서, 상기 열교환튜브(20)는 금속재질의 가열튜브(20a) 및 냉각튜브(20b)를 포함하는 것으로, 상기 가열튜브(20a) 및 냉각튜브(20b)가 저장용기(40)의 축을 중심으로 임의의 반경 위치에 규칙적인 각도를 이루어 다수 구비된다.Here, the heat exchange tube 20 includes a heating tube 20a and a cooling tube 20b made of metal, and the heating tube 20a and the cooling tube 20b are centered on the axis of the storage container 40. It is provided in a number of regular angles at any radial position.

아울러, 수소가 저장 및 방출되는 수소저장소재(30)는 MgH2, NaAlH4 등과 같은 소재로서, 원반형의 형상으로 다수 형성되어 상기 저장용기(40) 내부에 구비된다. 이때에, 상기 수소저장소재(30)에는 상기 열교환튜브(20)와 대응하는 위치에 관통홀(31)이 형성되어, 상기 열교환튜브(20)가 관통 구비됨으로써, 상기 열교환튜브(20)로부터 열이 공급될 수 있게 된다.In addition, the hydrogen storage material 30 from which hydrogen is stored and released is a material such as MgH 2 , NaAlH 4, etc., and is formed in a plurality of disk-shaped and provided inside the storage container 40. At this time, the hydrogen storage material 30 has a through hole 31 formed at a position corresponding to the heat exchange tube 20, and the heat exchange tube 20 is provided through it, so that heat from the heat exchange tube 20 Will be able to be supplied.

그리고, 서로 이웃하는 두 개의 수소저장소재(30) 사이에는 열교환튜브(20)에서 수소저장소재(30)에 전달되는 열전도율 향상을 위해 열전도 성능이 우수한 열전달핀(10)이 구비된다.In addition, a heat transfer fin 10 having excellent heat conduction performance is provided between the two adjacent hydrogen storage materials 30 to improve the thermal conductivity transferred from the heat exchange tube 20 to the hydrogen storage material 30.

이를 위해, 본 발명에서는 도 3과 같이 상기 열전달핀(10) 상에 복수의 튜브관통홀(11)이 형성되고, 상기 튜브관통홀(11)에 상기 가열튜브(20a) 및 냉각튜브(20b)가 각각 관통 구비된다.To this end, in the present invention, a plurality of tube through holes 11 are formed on the heat transfer fin 10 as shown in FIG. 3, and the heating tube 20a and the cooling tube 20b are formed in the tube through hole 11 Each is provided through.

특히, 상기 가열튜브(20a)와 냉각튜브(20b)는 서로 상이한 열팽창계수를 갖도록 구성이 된다. In particular, the heating tube 20a and the cooling tube 20b are configured to have different coefficients of thermal expansion from each other.

바람직하게는, 상기 가열튜브(20a)가 냉각튜브(20b)보다 열팽창계수가 큰 소재로 제조되는 것으로, 예를 들어 가열튜브(20a)의 경우 열팽창계수가 상대적으로 큰 Zn, Al, Mn등으로 제조될 수 있고, 냉각튜브(20b)의 경우 열팽창계수가 상대적으로 작은 W, Mo, Fe 등으로 제조될 수 있다.Preferably, the heating tube (20a) is made of a material having a higher coefficient of thermal expansion than the cooling tube (20b), for example, in the case of the heating tube (20a), Zn, Al, Mn, etc. It can be manufactured, and in the case of the cooling tube 20b, it can be made of W, Mo, Fe, or the like having a relatively small coefficient of thermal expansion.

다만, 위의 언급된 소재가 본 발명의 가열튜브(20a) 및 냉각튜브(20b)의 소재로 제한이 되는 것은 아니다.However, the materials mentioned above are not limited to the materials of the heating tube 20a and the cooling tube 20b of the present invention.

즉, 상기 가열튜브(20a)는, 상기 수소저장소재(30)에서 방출되는 수소의 양이 최대가 되는 활성온도 상에서 가열튜브(20a)의 열팽창되는 반경방향 길이의 최대값이, 상기 가열튜브(20a)와 튜브관통홀(11) 내주면 사이의 이격공차와 동일하거나 최대한 감소시킬 수 있도록 하는 열팽창계수의 소재가 적용될 수 있다.That is, the heating tube 20a has a maximum value of the radial length at which the heating tube 20a is thermally expanded at an activation temperature at which the amount of hydrogen emitted from the hydrogen storage material 30 becomes the maximum, the heating tube ( A material having a thermal expansion coefficient that is equal to or maximally reduced to a clearance tolerance between 20a) and the inner peripheral surface of the tube through hole 11 may be applied.

그리고, 상기 냉각튜브(20b)는, 상기 수소저장소재(30)에 저장되는 수소의 양이 최대가 되는 활성온도 상에서 냉각튜브(20b)의 열수축되는 반경방향 길이의 최대값이 최소화될 수 있도록 하는 열팽창계수의 소재가 적용될 수 있다.In addition, the cooling tube 20b is configured to minimize the maximum value of the radial length of the cooling tube 20b at the active temperature at which the amount of hydrogen stored in the hydrogen storage material 30 is maximum. Materials of thermal expansion coefficient can be applied.

조금 더 구체적으로, 가열튜브(20a) 및 냉각튜브(20b)의 외주면과 튜브관통홀(11)의 내주면 사이에는 소정의 이격 공차가 발생되는데, 가열튜브(20a)는 상대적으로 열팽창계수가 큰 소재로 제조됨으로써, 가열튜브의 가열시 도 4와 같이 가열튜브(20a)의 열팽창량이 크게 증대되어 가열튜브(20a)와 열전달핀(10) 사이는 물론, 가열튜브(20a)와 수소저장소재(30) 사이의 이격거리가 감소되는바, 열전달 효율이 향상된다.More specifically, a predetermined clearance tolerance is generated between the outer circumferential surfaces of the heating tube 20a and the cooling tube 20b and the inner circumferential surface of the tube through hole 11, and the heating tube 20a is a material having a relatively large coefficient of thermal expansion. As shown in FIG. 4, when the heating tube is heated, the amount of thermal expansion of the heating tube 20a is greatly increased, so that the heating tube 20a and the hydrogen storage material 30 as well as between the heating tube 20a and the heat transfer pin 10 ), the distance between them is reduced, and the heat transfer efficiency is improved.

반면, 냉각튜브(20b)는 상대적으로 열팽창계수가 작은 소재로 제조되는 것으로, 튜브관통홀(11) 내에 억지끼움 상태로 결합될 수 있다.On the other hand, the cooling tube 20b is made of a material having a relatively small coefficient of thermal expansion, and may be coupled to the tube through hole 11 in a force-fitting state.

이에, 도 5와 같이 냉각튜브(20b)의 냉각시, 낮은 열팽창계수로 인해 열수축이 최소화됨으로써, 튜브관통홀(11)의 내면과 냉각튜브(20b) 사이의 이격거리가 최소화되는 것은 물론, 냉각튜브(20b)와 수소저장수재(30) 사이의 이격거리도 최소화되는바, 열전달 손실을 최소화하여 열전달 효율을 최적화하게 된다.Accordingly, when cooling the cooling tube 20b as shown in FIG. 5, heat shrinkage is minimized due to a low coefficient of thermal expansion, so that the separation distance between the inner surface of the tube through hole 11 and the cooling tube 20b is minimized, as well as cooling. The separation distance between the tube 20b and the hydrogen storage material 30 is also minimized, thereby optimizing heat transfer efficiency by minimizing heat transfer loss.

참고로, 가열튜브(20a)의 열팽창량에 따른 팽창길이와, 냉각튜브(20b)의 열수축량에 따른 수축길이는 서로 다를 수 있는 것인바, 도 4에 도시된 이격거리와 도 5에 도시된 이격공차는 서로 다를 수 있다.For reference, the expansion length according to the amount of thermal expansion of the heating tube 20a and the contraction length according to the amount of heat contraction of the cooling tube 20b may be different from each other, the separation distance shown in FIG. 4 and the distance shown in FIG. Separation tolerances can be different.

한편, 본 발명에서는 상기 가열튜브(20a) 및 냉각튜브(20b)와 열전달핀(10)의 접촉면적 증대를 위해 튜브관통홀(11)의 면적을 증대시킬 수 있다.Meanwhile, in the present invention, the area of the tube through hole 11 may be increased to increase the contact area between the heating tube 20a and the cooling tube 20b and the heat transfer fin 10.

이를 위해, 도 4 및 도 5와 같이 상기 튜브관통홀(11)의 테두리에 가열튜브(20a) 및 냉각튜브(20b)가 삽입되는 길이방향으로 연장홀부(13)가 돌출되어 형성될 수 있다.To this end, as shown in FIGS. 4 and 5, the extension hole 13 may be formed to protrude in the longitudinal direction into which the heating tube 20a and the cooling tube 20b are inserted into the rim of the tube through hole 11.

바람직하게는, 상기 열전달핀(10)이 원형의 디스크 형상으로 형성되는데, 상기 디스크 평면에 대해 직교하는 방향으로 상기 연장홀부(13)가 형성된다. 이때에 상기 연장홀부(13)는 상기 가열튜브(20a) 및 냉각튜브(20b)를 감싸는 형상으로 형성될 수 있다.Preferably, the heat transfer fin 10 is formed in a circular disk shape, and the extension hole 13 is formed in a direction orthogonal to the disk plane. At this time, the extension hole 13 may be formed in a shape surrounding the heating tube 20a and the cooling tube 20b.

즉, 상기 연장홀부(13)를 통해 튜브관통홀(11)의 내주면 면적이 증대됨으로써, 상기 열전달핀(10)과 상기 가열튜브(20a) 및 냉각튜브(20b)의 접촉면적이 증대되고, 열교환튜브(20)의 열전달 효율이 향상된다.That is, by increasing the inner circumferential area of the tube through hole 11 through the extension hole 13, the contact area between the heat transfer fin 10 and the heating tube 20a and the cooling tube 20b increases, and heat exchange The heat transfer efficiency of the tube 20 is improved.

그리고, 상기 연장홀부(13)가 상기 튜브관통홀(11)의 위아래의 양단에 돌출 형성될 수 있다. 즉, 상기 열전달핀(10)을 중심으로 일측 수소저장소재(30) 방향 뿐만 아니라, 타측 수소저장소재(30) 방향으로도 형성되어, 열전달핀과 수소저장소재(30) 사이의 열전달 효율을 더욱 향상시키게 된다.In addition, the extension hole 13 may be formed to protrude from both ends of the tube through hole 11 above and below. That is, the heat transfer fin 10 is formed not only in the direction of the hydrogen storage material 30 on one side, but also in the direction of the other hydrogen storage material 30, further enhancing the heat transfer efficiency between the heat transfer fins and the hydrogen storage material 30. Will improve.

또한, 상기 연장홀부(13)는 상기 튜브관통홀(11)의 테두리에 일체로 고정될 수 있는 것으로, 바람직하게는 상기 연장홀부(13)가 상기 열전달핀과 동일한 재질로 일체 형성될 수 있다.In addition, the extension hole 13 may be integrally fixed to the edge of the tube through hole 11, and preferably, the extension hole 13 may be integrally formed of the same material as the heat transfer fin.

상술한 바와 같이, 본 발명은 가열튜브(20a)는 상대적으로 열팽창계수가 큰 소재로 제조됨으로써, 가열튜브(20a)의 열팽창량이 크게 증대됨에 따라 가열튜브(20a)와 열전달핀 사이의 이격거리가 감소되어 열전달 효율이 향상되고, 반면 냉각튜브(20b)는 상대적으로 열팽창계수가 작은 소재로 제조됨으로써, 냉각튜브(20b)의 열수축량이 크게 감소됨에 따라 냉각튜브(20b)와 열전달핀 사이의 이격거리가 감소되어 열전달 손실을 최소화하게 된다.As described above, according to the present invention, the heating tube 20a is made of a material having a relatively large coefficient of thermal expansion, so that the separation distance between the heating tube 20a and the heat transfer pin is increased as the amount of thermal expansion of the heating tube 20a is greatly increased. As the heat transfer efficiency is reduced, the heat transfer efficiency is improved, whereas the cooling tube 20b is made of a material having a relatively small coefficient of thermal expansion, so that the distance between the cooling tube 20b and the heat transfer fin is greatly reduced as the amount of heat contraction of the cooling tube 20b is greatly reduced. Is reduced to minimize heat transfer loss.

더욱이, 튜브관통홀(11)에 형성된 연장홀부(13)를 통해 튜브관통홀(11)의 내주면 면적이 증대됨으로써, 열전달핀과 열교환튜브(20) 사이의 접촉면적이 증대되고, 이에 열교환튜브(20)의 열전달 효율이 향상된다.Moreover, by increasing the inner circumferential surface area of the tube through hole 11 through the extension hole 13 formed in the tube through hole 11, the contact area between the heat transfer fin and the heat exchange tube 20 increases, and thus the heat exchange tube ( 20) heat transfer efficiency is improved.

한편, 본 발명은 상기한 구체적인 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.On the other hand, the present invention has been described in detail only for the above specific examples, but it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention, and it is natural that such modifications and modifications belong to the appended claims. .

10 : 열전달핀
11 : 튜브관통홀
13 : 연장홀부
20 : 열교환튜브
20a : 가열튜브
20b : 냉각튜브
30 : 수소저장소재
40 : 저장용기
10: heat transfer pin
11: tube through hole
13: extension hole
20: heat exchange tube
20a: heating tube
20b: cooling tube
30: hydrogen storage material
40: storage container

Claims (8)

열전달핀 상에 형성된 복수의 튜브관통홀;
상기 튜브관통홀에 각각 관통 구비되는 가열튜브 및 냉각튜브;를 포함하고,
상기 가열튜브와 냉각튜브는 서로 상이한 열팽창계수를 갖는 것을 특징으로 하는 고체수소 저장장치.
A plurality of tube through holes formed on the heat transfer fins;
Including; a heating tube and a cooling tube provided through each of the tube through hole,
The solid hydrogen storage device, characterized in that the heating tube and the cooling tube have different coefficients of thermal expansion from each other.
청구항 1에 있어서,
상기 가열튜브가 냉각튜브보다 열팽창계수가 큰 것을 특징으로 하는 고체수소저장 장치.
The method according to claim 1,
Solid hydrogen storage device, characterized in that the heating tube has a larger coefficient of thermal expansion than the cooling tube.
청구항 1에 있어서,
상기 가열튜브는,
상기 수소저장소재에서 방출되는 수소의 양이 최대가 되는 활성온도 상에서 가열튜브의 열팽창되는 반경방향 길이의 최대값이, 상기 가열튜브와 튜브관통홀 내주면 사이의 이격공차와 동일하거나 최대한 감소시킬 수 있도록 하는 열팽창계수의 소재인 것을 특징으로 하는 고체수소저장 장치.
The method according to claim 1,
The heating tube,
The maximum value of the radial length at which the heating tube is thermally expanded at the active temperature at which the amount of hydrogen emitted from the hydrogen storage material becomes the maximum is equal to or reduced as much as the clearance tolerance between the heating tube and the inner peripheral surface of the tube through hole. Solid hydrogen storage device, characterized in that the material of the thermal expansion coefficient.
청구항 1에 있어서,
상기 냉각튜브는,
상기 수소저장소재에 저장되는 수소의 양이 최대가 되는 활성온도 상에서 냉각튜브의 열수축되는 반경방향 길이의 최대값이 최소화될 수 있도록 하는 열팽창계수의 소재인 것을 특징으로 하는 고체수소저장 장치.
The method according to claim 1,
The cooling tube,
A solid hydrogen storage device, characterized in that it is a material having a thermal expansion coefficient so that the maximum value of the radial length of the cooling tube at which the amount of hydrogen stored in the hydrogen storage material is maximized is minimized.
청구항 1에 있어서,
상기 튜브관통홀의 테두리에 가열튜브 및 냉각튜브가 삽입되는 길이방향으로 연장홀부가 돌출되어 형성된 것을 특징으로 하는 고체수소저장 장치.
The method according to claim 1,
A solid hydrogen storage device, characterized in that an extension hole protrudes in a longitudinal direction into which the heating tube and the cooling tube are inserted into the rim of the tube through hole.
청구항 5에 있어서,
상기 연장홀부가 상기 가열튜브 및 냉각튜브를 감싸는 형상으로 형성된 것을 특징으로 하는 고체수소저장 장치.
The method of claim 5,
The solid hydrogen storage device, characterized in that the extension hole is formed in a shape surrounding the heating tube and the cooling tube.
청구항 5에 있어서,
상기 연장홀부가 상기 튜브관통홀의 양단에 돌출 형성된 것을 특징으로 하는 고체수소저장 장치.
The method of claim 5,
Solid hydrogen storage device, characterized in that the extension hole is formed protruding from both ends of the tube through hole.
청구항 5에 있어서,
상기 연장홀부는 상기 튜브관통홀의 테두리에 일체로 고정된 것을 특징으로 하는 고체수소저장 장치의 열전달핀.
The method of claim 5,
The heat transfer pin of the solid hydrogen storage device, characterized in that the extension hole is integrally fixed to the rim of the tube through hole.
KR1020190061819A 2019-02-28 2019-05-27 Solid state hydrogen storage device KR20200105615A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/689,313 US11466814B2 (en) 2019-02-28 2019-11-20 Solid hydrogen storage device
CN201911213301.1A CN111623233B (en) 2019-02-28 2019-12-02 Solid hydrogen storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190024314 2019-02-28
KR20190024314 2019-02-28

Publications (1)

Publication Number Publication Date
KR20200105615A true KR20200105615A (en) 2020-09-08

Family

ID=72471758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190061819A KR20200105615A (en) 2019-02-28 2019-05-27 Solid state hydrogen storage device

Country Status (1)

Country Link
KR (1) KR20200105615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593363A (en) * 2022-04-19 2022-06-07 江苏集萃安泰创明先进能源材料研究院有限公司 Alloy hydrogen storage tank with fins for heat dissipation
CN114593362A (en) * 2022-04-19 2022-06-07 大连理工大学 Solid alloy hydrogen storage rapid heat transfer structure and hydrogen storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170011161A (en) 2015-07-21 2017-02-02 현대자동차주식회사 solid hydrogen storage system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170011161A (en) 2015-07-21 2017-02-02 현대자동차주식회사 solid hydrogen storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593363A (en) * 2022-04-19 2022-06-07 江苏集萃安泰创明先进能源材料研究院有限公司 Alloy hydrogen storage tank with fins for heat dissipation
CN114593362A (en) * 2022-04-19 2022-06-07 大连理工大学 Solid alloy hydrogen storage rapid heat transfer structure and hydrogen storage system

Similar Documents

Publication Publication Date Title
CN202758989U (en) Battery system with multi-medium cooling source
CN101943533B (en) Loop heat pipe
CN111578130B (en) Heat conduction fin and solid hydrogen storage equipment with same
JP2018506163A (en) Three-dimensional solid vapor chamber, manufacturing method thereof, and vehicle headlight
KR20200105615A (en) Solid state hydrogen storage device
WO2013111815A1 (en) Heat transport apparatus
WO2013076907A1 (en) Fin-tube type heat exchanger
JP2022542355A (en) battery cooling system
CN209877718U (en) Phase change heat dissipation device
JP2014179194A (en) Temperature adjusting device and battery equipped with the same
CN114526627A (en) 3D soaking plate structure applied to phase change cold accumulation device and manufacturing method thereof
CN203190377U (en) Heat radiating device of vehicle-mounted LED
EP4325157A2 (en) Devices, systems, and methods for removing heat from a nuclear reactor core
JP5687179B2 (en) Chemical heat storage reactor
US11466814B2 (en) Solid hydrogen storage device
US10024581B2 (en) Solar power generation system
CN111720236B (en) Heater in Stirling engine and Stirling engine
CN218101442U (en) Heat dissipation assembly and battery module
KR102310261B1 (en) Heat pipe apparatus
US20210396355A1 (en) Solid state hydrogen storage device including plate type heat exchanger
KR102344053B1 (en) Radiating pipe with led cooling system
CN111023878B (en) Power-adjustable space radiation heat dissipation system and working method thereof
JP2012002371A (en) Heat absorption and radiation system
Lignell et al. Micro-power AMTEC systems
KR101749927B1 (en) Fast Heat Transferring Device Using Refrigerant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal