KR20200098882A - Manufacturing Method of Pullulan Using recombinant glycosyltransferases - Google Patents

Manufacturing Method of Pullulan Using recombinant glycosyltransferases Download PDF

Info

Publication number
KR20200098882A
KR20200098882A KR1020190016545A KR20190016545A KR20200098882A KR 20200098882 A KR20200098882 A KR 20200098882A KR 1020190016545 A KR1020190016545 A KR 1020190016545A KR 20190016545 A KR20190016545 A KR 20190016545A KR 20200098882 A KR20200098882 A KR 20200098882A
Authority
KR
South Korea
Prior art keywords
neofluranase
recombinant
dextran sucrase
recombinant microorganism
reaction
Prior art date
Application number
KR1020190016545A
Other languages
Korean (ko)
Inventor
이우일
김준수
유환구
Original Assignee
건양대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건양대학교산학협력단 filed Critical 건양대학교산학협력단
Priority to KR1020190016545A priority Critical patent/KR20200098882A/en
Publication of KR20200098882A publication Critical patent/KR20200098882A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • C12P19/10Pullulan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01005Dextransucrase (2.4.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01135Neopullulanase (3.2.1.135)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a process of producing sugar transferase, Dextransucrase and Neopullulanase, and synthesizing Panose, a type of triose, and Pullulan, a polymer of Panose, through the corresponding enzymatic reaction and, more specifically, to a process of constructing an expression vector of Dextransucrase and Neopullulanase, which can be expressed in E. coli in large quantities and has easy purification process, using molecular biology techniques, transforming it in E. coli to produce a large amount of recombinant Dextransucrase and Neopullulanas, producing Panose, a kind of triose, through the enzymatic reaction of recombinant Dextransucrase using sucrose and maltose as substrates, and synthesizing Pullulan, a sugar polymer, through the enzymatic reaction of recombinant Neopullulanase using the reaction product of Panose as a substrate.

Description

재조합 당 전이효소를 이용한 당 중합체 풀루란의 제조방법 {Manufacturing Method of Pullulan Using recombinant glycosyltransferases}Manufacturing Method of Pullulan Using Recombinant Glucose Transferase {Manufacturing Method of Pullulan Using Recombinant Glycosyltransferases}

본 발명은 당 전이효소인 덱스트란슈크라제(Dextransucrase)와 네오플루란나제(Neopullulanase)를 생산하고, 효소 반응을 통하여 삼탄당의 일종인 판노스(Panose)와 판노스의 중합체인 플루란(Pullulan)을 합성하는 공정에 관한 것이다. 보다 상세하게는 분자생물학 기법을 활용하여 대장균에서 다량 발현이 가능하고 정제 과정이 용이한 덱스트란슈크라제과 네오플루란나제의 발현 벡터를 구축하고, 이를 대장균에서 형질 전환하여 다량의 재조합 덱스트란슈크라제와 네오플루란나제를 생산하는 방법을 제공하는 것이다. 또한, 설탕(Sucrose) 및 맥마당(maltose)을 기질로 하여 상기 재조합 덱스트란슈크라제를 이용한 효소 반응을 통하여 삼탕당의 일종인 판노스를 생산하고, 상기 판노스 합성 반응물을 기질로 하여 상기 재조합 네오플루란나제를 이용한 효소 반응을 통하여 당 중합체인 플루란을 합성하는 공정에 관한 것이다.The present invention produces sugar transfer enzymes Dextransucrase and Neopullulanase, and through an enzymatic reaction, Panose, a type of tritanose, and Flulan, a polymer of pannose. ) To the synthesis process. In more detail, by using molecular biology techniques, a large amount of expression in E. coli is possible and an expression vector of neofluranase and dextranshukrase that can be easily purified is constructed, and it is transformed in E. coli to produce a large amount of recombinant dextranche. It is to provide a method for producing craze and neofluranase. In addition, pannose, a kind of samtangose, is produced through an enzymatic reaction using the recombinant dextran sucrose using sugar (Sucrose) and maltose as substrates, and the recombination using the pannose synthesis reaction product as a substrate. It relates to a process for synthesizing flurane, a sugar polymer, through an enzymatic reaction using neofluranase.

플루란(Pullulan)은 흑효모 균주인 Aureobasidium Pullulans에서 분비되는 천연 다당류의 고분자 중합체이다. 플루란은 alpha-1,4 결합과 alpha-1,6 결합을 동시에 가지고 있는 탄수화물 유도체의 일종으로 maltriose 단위로 이루어져 있으며, 각각의 maltriose 단량체가 alpha-1,6 glucoside 결합 형태로 이루어져 계단형태의 연속된 고분자체를 형성한다. 플루란은 Aureobasidium Pullulans의 세포벽을 구성하는 물질 중 하나로 β-glucan 층의 바깥쪽에 플루란 층이 형성되며 흑효모의 발효 과정을 통하여 다량으로 획득할 수 있다. 플루란이 가지고 있는 계단형태의 구조적 배열 특징으로 인해 전분과 같은 일반 다당류와 비교할 때 점성도가 월등히 높고, 독성이 전혀 나타나지 않으며, 내구성이 강해 산업적 적용이 용이하다는 장점을 가지고 있다. 플루란의 생성 메카니즘은 Aureobasidium pullulans의 인지질에서 UDPG가 UDP로 전환이 되면서 Glucose 분자가 인지질에 붙게 되며, 이러한 생화학적 반응이 연쇄적으로 일어나면서 플루란 전구체를 형성하게 된다.Flulan (Pullulan) is a high-molecular polymer of natural polysaccharides secreted from Aureobasidium Pullulans , a black yeast strain. Flurane is a type of carbohydrate derivative that has alpha-1,4 and alpha-1,6 bonds at the same time. It consists of maltriose units, and each maltriose monomer is in the form of alpha-1,6 glucoside bonds. Form a polymer body. Flurane is one of the substances that make up the cell wall of Aureobasidium Pullulans. A fluran layer is formed on the outside of the β-glucan layer, and can be obtained in large quantities through the fermentation process of black yeast. Due to the stepwise structural arrangement characteristics of flurane, it has the advantage of being superior in viscosity, no toxicity at all, and easy industrial application due to its strong durability compared to general polysaccharides such as starch. The mechanism of production of flurane is that when UDPG is converted to UDP in the phospholipids of Aureobasidium pullulans , the glucose molecules are attached to the phospholipids, and these biochemical reactions occur in a chain to form fluran precursors.

플루란은 히아루론산을 대체할 수 있는 천연 소재이며, 친환경적인 생산 공정 개발을 바탕으로 대량 생산이 가능해 질 경우 상대적으로 저렴한 생산 단가와 더불어 뛰어난 보습소재로서의 공급이 가능할 것이다. 또한 플루란은 피부 미용 보습제 뿐만 아니라 식품 첨가물, 가식성 필름, 코팅제, 의료용 소재 등 여러 가지 분야에서 광범위하게 사용되고 있으며, 특히 플루란은 천연 고분자 물질의 하나로 생분해성 능력이 우수한 특징을 가지고 있어 차세대 바이오 플라스틱 물질로 각광을 받고 있다.Fluran is a natural material that can replace hyaluronic acid, and if mass production is possible based on the development of an eco-friendly production process, it will be possible to supply it as an excellent moisturizing material with a relatively low production cost. In addition, fluran is widely used in various fields such as food additives, edible films, coatings, and medical materials as well as skin moisturizers. Especially, fluran is one of natural polymer materials and has excellent biodegradability, so it is the next generation biotechnology. It is in the limelight as a plastic material.

현재 플루란의 생산 공정은 흑효모 균주인 Aureobasidium pullulans을 다량으로 배양하고 미생물에서 직접 플루란을 추출하여 획득하는 공정이 주를 이루고 있지만 흑효모의 배양이 다른 미생물과 비교하여 상당히 오래 걸릴 뿐만 아니라 흑효모 균주 특유의 멜라닌 색소로 인하여 주 생산 원료인 플루란이 착색되고 결과적으로 플루란의 순도 및 제품의 기능성이 떨어지는 단점이 존재한다. 때문에 고순도의 플루란을 효율적으로 생산할 수 있는 새로운 공정 개발이 필요하다고 할 수 있다.Currently, the production process of fluran is mainly a process of culturing a large amount of black yeast strain Aureobasidium pullulans and extracting fluran directly from microorganisms, but the cultivation of black yeast takes considerably longer than other microorganisms, as well as black. Due to the melanin pigment peculiar to the yeast strain, fluran, which is the main raw material for production, is colored, and as a result, the purity of fluran and the functionality of the product are poor. Therefore, it can be said that it is necessary to develop a new process that can efficiently produce high-purity flurane.

대한민국 등록특허 제 10-0739022 호Korean Patent Registration No. 10-0739022 대한민국 등록특허 제 10-1882101 호Korean Patent Registration No. 10-1882101 대한민국 등록특허 제 10-0414952 호Korean Patent Registration No. 10-0414952

(연구논문 0001) Barnett Christian. et al., Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. CARBOHYDRATE POLYMERS, 1998, Vol. 38(3), pp. 203 - 209.(Research Paper 0001) Barnett Christian. et al., Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. CARBOHYDRATE POLYMERS, 1998, Vol. 38(3), pp. 203-209.

현재까지 연구된 플루란의 생산은 흑효모 균주인 Aureobasidium pullulan을 다량으로 배양하고 회수한 배양액으로부터 직접 플루란 추출하는 방법을 기본으로 하여 생산 공정의 단축이나 플루란의 순도 향상 등에 초점이 맞추어져 있으며, 아직까지 흑효모 균주가 아닌 다른 방법을 통해 플루란을 인공적으로 합성하는 공정은 연구 및 개발이 전무한 상황이다. 흑효모 균주에서 플루란을 생산하는 공정은 Aureobasidium pulllans의 긴 배양 시간으로 인하여 발효기 등 생산기기의 작동기간이 길어질 뿐만 아니라 흑효모 배양 시 나타나는 멜라닌 색소의 착색으로 인하여 플루란 생산 후 흑색소를 제거할 새로운 정제 공정이 필요하거나 혹은 배양 단계 중 색소를 억제할 필수 요소로 첨가하는 단계가 반드시 들어가기 때문에 결과적으로 생산 단가가 높아지는 한계점을 가지고 있다. 따라서 본 발명은 고순도의 플루란을 효율적으로 생산할 수 있는 제조방법을 제공하고자 한다.The production of fluran that has been studied so far is based on the method of culturing a large amount of black yeast strain Aureobasidium pullulan and extracting fluran directly from the recovered culture, focusing on shortening the production process or improving the purity of fluran. As of yet, there is no research and development in the process of artificially synthesizing flurane through methods other than black yeast strains. The process of producing fluran from black yeast strains not only increases the operating period of production equipment such as fermentors due to the long cultivation time of Aureobasidium pulllans , but also removes black pigment after production of fluran due to the coloring of melanin pigments that appear during black yeast cultivation. As a result, a new purification process is required, or the step of adding the pigment as an essential element to suppress the pigment during the cultivation step must be entered, and as a result, the production cost has a limitation. Accordingly, the present invention is to provide a manufacturing method capable of efficiently producing high-purity flurane.

상기 과제를 해결하기 위해서 본 발명은 류코노스톡 메센테로이데스(Leuconostoc mesenteroides) 유래의 덱스트란슈크라제 유전자 dsrS를 포함하는 재조합 벡터로 형질전환된, 덱스트란슈크라제 생산용 재조합 미생물을 제공한다.In order to solve the above problem, the present invention provides a recombinant microorganism for producing dextran sucrase, transformed with a recombinant vector containing the dextran sucrase gene dsr S derived from Leuconostoc mesenteroides . do.

본 발명의 일 실시예에 있어서 상기 재조합 벡터는 대장균에서 발현 가능한 벡터이면 어떤 것이든 가능하고, 본 발명에서는 pRSET_A에 덱스트란슈크라제 유전자 dsrS를 삽입한 pRDsu 벡터일 수 있다.In one embodiment of the present invention, the recombinant vector may be possible when expressed in E. coli vector, whichever is less available and, pRDsu the present invention, one inserts the dextran sucrase gene dsr shoe S in pRSET_A vector.

본 발명의 일 실시예에 있어서, (a) pRDsu 벡터로 형질전환된 재조합 미생물을 배양하는 단계; (b) 상기 (a) 단계에서 배양한 재조합 미생물을 덱스트란슈크라제 전용 발현 배지에 본배양하는 단계; (c) 상기 (b) 단계에서 얻은 배양액으로부터 덱스트란슈크라제를 추출하는 단계; 및 (d) 친화성 크로마토그래피를 통하여 덱스트란슈크라제를 단일 물질로 정제하는 단계;를 포함하는, 텍스트란슈크라제를 대량생산하는 방법을 제공한다.In one embodiment of the present invention, (a) culturing a recombinant microorganism transformed with a pRDsu vector; (b) culturing the recombinant microorganism cultured in step (a) in a dextran sucrase-only expression medium; (c) extracting dextran sucrase from the culture medium obtained in step (b); And (d) purifying dextran sucrase into a single substance through affinity chromatography. It provides a method for mass-producing texturan sucrase containing.

본 발명의 일 실시예에 있어서, 상기 친화성 크로마토그래피는 Ni-NTA를 이용한 친화성 크로마토그래피인 것을 특징으로 한다. In one embodiment of the present invention, the affinity chromatography is characterized in that the affinity chromatography using Ni-NTA.

또한 본 발명은 게오바실러스 스테아로써모필루스(Geobacillus stearothermophilus) TRS40 유래의 네오플루란나제 유전자 npl38을 포함하는 재조합벡터로 형질전환된, 네오플루란나제 생산용 재조합 미생물을 제공한다.In addition, the present invention provides a recombinant microorganism for producing neofluranase , transformed with a recombinant vector containing the neofluranase gene npl 38 derived from Geobacillus stearothermophilus TRS40.

본 발명의 일 실시예에 있어서 상기 재조합 벡터는 대장균에서 발현 가능한 벡터이면 어떤 것이든 가능하고, 본 발명에서는 pRSET_A에 네오플루란나제 유전자 npl38을 삽입한 pRNPL 벡터일 수 있다.In an embodiment of the present invention, the recombinant vector may be any vector that can be expressed in E. coli, and in the present invention, it may be a pRNPL vector in which the neofluranase gene npl 38 is inserted into pRSET_A.

본 발명의 일 실시예에 있어서, (a) 상기 pRNPL 벡터로 형질진환된 재조합 미생물을 배양하는 단계; (b) 상기 (a) 단계에서 배양한 재조합 미생물을 네오플루란나제 전용 발현 배지에 본배양하는 단계; (c) 상기 (b) 단계에서 얻은 배양액으로부터 네오플루란나제를 추출하는 단계; 및 (d) 친화성 크로마토그래피를 통하여 네오플루란나제를 단일 물질로 정제하는 단계;를 포함하는, 네오플루란나제를 대량생산하는 방법을 제공한다.In one embodiment of the present invention, (a) culturing a recombinant microorganism transformed with the pRNPL vector; (b) main culturing the recombinant microorganism cultured in step (a) in a neofluranase-only expression medium; (c) extracting neofluranase from the culture solution obtained in step (b); And (d) purifying neofluranase into a single substance through affinity chromatography. It provides a method for mass-producing neofluranase containing.

본 발명의 일 실시예에 있어서, 상기 친화성 크로마토그래피는 Ni-NTA를 이용한 친화성 크로마토그래피인 것을 특징으로 한다. In one embodiment of the present invention, the affinity chromatography is characterized in that the affinity chromatography using Ni-NTA.

본 발명은 상기 대량생산된 덱스트란슈크라제와 네오플루란나제를 이용한 효소반응을 통해 맥아당과 설탕의 기질혼합물로부터 플루란을 제조하는 방법을 특징으로 한다.The present invention is characterized by a method for producing flurane from a matrix mixture of maltose and sugar through an enzymatic reaction using the mass-produced dextran sucrase and neofluranase.

본 발명의 일 실시예에 있어서, (a) 맥아당과 설탕을 혼합한 기질혼합물을 준비하는 단계; (b) 상기 (a)의 기질혼합물에 상기 재조합 미생물로부터 생산된 덱스트란슈크라제를 첨가하여 효소반응으로 판노스를 합성하는 단계; (c) 상기 단계 (b)의 반응물에 상기 재조합 미생물로부터 생산된 네오플루란나제를 첨가하여 효소반응을 통해 플루란을 합성하는 단계; 및 (d) 상기 단계 (c)의 합성된 플루란을 추출 정제하는 단계;를 포함하는, 플루란을 제조하는 방법을 제공한다.In one embodiment of the present invention, (a) preparing a substrate mixture of maltose and sugar; (b) synthesizing pannose by enzymatic reaction by adding dextran sucrase produced from the recombinant microorganism to the substrate mixture of (a); (c) synthesizing flurane through an enzymatic reaction by adding neofluranase produced from the recombinant microorganism to the reaction product of step (b); And (d) extracting and purifying the synthesized fluran in step (c); containing, it provides a method for producing fluran.

본 발명의 효소 반응 공정은 미생물을 통한 생산 공정과 비교하여 그 과정이 비교적 단순하고 취급이 용이하며 미생물 오염 등의 우려가 없다.The enzymatic reaction process of the present invention is relatively simple and easy to handle compared to the production process through microorganisms, and there is no concern of microbial contamination.

Aureobasidium pullulans에서 플루란을 생산하는 공정은 3차의 배양 과정을 거쳐 플루란을 생산하기 때문에 최소 약 7일이상이 소요되지만, 본 발명의 플루란 효소 반응 공정은 적정온도에서 약 24시간 내에 합성이 완료된다. 이는 플루란의 생산 단가 절감에도 영향을 준다. The process of producing fluran from Aureobasidium pullulans takes at least about 7 days because fluran is produced through a third culture process, but the fluran enzyme reaction process of the present invention can be synthesized within about 24 hours at an appropriate temperature. Is completed. This also affects the reduction of the production cost of fluran.

본 발명에 있어서, 효소 반응 공정을 통해 합성한 플루란은 미생물에서 생성되는 멜라닌 색소의 착색이 없어 별도의 정제 과정이 필요가 없으며 수득률 역시 20~30% 증가한다.In the present invention, fluran synthesized through an enzymatic reaction process does not require a separate purification process because there is no coloration of the melanin pigment produced by microorganisms, and the yield is also increased by 20-30%.

도 1은 중합효소연쇄반응(Polymerase Chain Recation) 과정을 통한 덱스트란슈크라제 유전자 증폭의 아가로스 겔 전기영동의 분석 결과이다.
도 2는 중합효소연쇄반응(Polymerase Chain Recation) 과정을 통한 네오플루란나제 유전자 증폭의 아가로스 겔 전기영동의 분석 결과이다.
도 3은 덱스트란슈크라제 유전자가 삽입된 발현벡터 pRDsu의 구조적 특징를 나타내는 모식도이다.
도 4는 네오플루란나제 유전자가 삽입된 발현벡터 pRNPL의 구조적 특징를 나타내는 모식도이다.
도 5는 재조합 덱스트란슈크라제의 효소 반응을 통한 플루란 선구체인 판노스 합성의 TLC 분석 결과이다.
도 6은 대장균으로부터 재조합 네오플루란나제의 대량 발현에 대한 SDS-PAGE 분석 결과이다.
1 is an analysis result of agarose gel electrophoresis of dextran sucrase gene amplification through a polymerase chain reaction (Polymerase Chain Recation) process.
2 is an analysis result of agarose gel electrophoresis of neofluranase gene amplification through a polymerase chain reaction (Polymerase Chain Recation) process.
3 is a schematic diagram showing the structural characteristics of the expression vector pRDsu into which the dextran sucrase gene is inserted.
4 is a schematic diagram showing the structural characteristics of the expression vector pRNPL into which the neofluranase gene is inserted.
5 is a TLC analysis result of the synthesis of pannose, a precursor of fluran, through an enzymatic reaction of a recombinant dextran sucrase.
6 is a result of SDS-PAGE analysis of large-scale expression of recombinant neofluranase from E. coli.

이하 실시예를 바탕으로 본 발명을 상세히 설명한다. 본 발명에 사용된 용어, 실시예 등은 본 발명을 보다 구체적으로 설명하고 통상의 기술자의 이해를 돕기 위하여 예시된 것에 불과할 뿐이며, 본 발명의 권리범위 등이 이에 한정되어 해석되어서는 안 된다.The present invention will be described in detail based on the following examples. The terms, examples, etc. used in the present invention are merely exemplified to describe the present invention in more detail and to aid understanding of those skilled in the art, and the scope of the present invention should not be interpreted as being limited thereto.

본 발명에 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 나타낸다.Technical terms and scientific terms used in the present invention represent the meanings commonly understood by those of ordinary skill in the art, unless otherwise defined.

덱스트란슈크라제 대량생산Mass production of dextran sucrase

1. 덱스트란슈크라제의 유전자가 삽입된 재조합 발현 벡터 구축 1. Construction of a recombinant expression vector with a gene of dextran sucrase inserted

류코노스톡 메센테로이데스(Leuconostoc mesenteroides)의 gDNA를 주형 DNA로 사용하는 중합효소연쇄반응(Polymerase Chain Reaction)을 실행하여 덱스트란슈크라제 유전자(dsrS)를 획득하였다. 류코노스톡 메센테로이데스를 Nutrient Broth (0.3 % Beef Extract, 0.5 % Peptone)에 접종하고 27 ℃에서 48시간 배양하였으며, 배양된 류코노스톡 메센테로이데스를 spin down하여 균주만을 harvest하고 TE buffer로 희석하여 특별한 lysis 과정 없이 Template DNA로 사용하였다. 덱스트란슈크라제의 증폭을 위한 PCR 과정은 Taq polymearse를 이용하였고, polymerase 0.5 ㎕, 10x PCR buffer 5 ㎕, 2.5 mM dNTP 혼합물 5 ㎕, 10 nM/ul 정방향 프라이머(forward primer) 및 10 nM/ul 역방향 프라이머(revese primer)를 각각 1 ㎕, 주형은 2 ㎕를 넣은 PCR 반응용액이 50 ㎕가 되도록 증류수를 넣어 준 후 PCR을 수행하였다. A polymerase chain reaction using gDNA of Leuconostoc mesenteroides as a template DNA was carried out to obtain a dextran sucrase gene ( dsr S). Leukonostock mecenteroides was inoculated in Nutrient Broth (0.3% Beef Extract, 0.5% Peptone) and incubated at 27°C for 48 hours, and the cultured Leukonostock mecenteroides was spin down to harvest only the strain and diluted with TE buffer. Therefore, it was used as Template DNA without any special lysis process. The PCR process for amplification of dextran sucrase was performed using Taq polymearse, 0.5 µl of polymerase, 5 µl of 10x PCR buffer, 5 µl of 2.5 mM dNTP mixture, 10 nM/ul forward primer and 10 nM/ul Distilled water was added so that the PCR reaction solution containing 1 µl of each reverse primer and 2 µl of the template was 50 µl, and then PCR was performed.

이때 정방향 프라이머로 pF 프라미어(5'-ctcgagatgaggaaagaagccatcta-3')와 역방향 프라이머로 pR 프라이머(5'-aagctcctaccaatgttctattgcataaa-3')를 사용하였고, PCR 반응 조건은 94 ℃에서 5분간 전변성(predenaturation)시키고, 94 ℃에서 30초, 54 ℃에서 30초, 72 ℃에서 3분 조건으로 30회간 반복 반응하고 72 ℃에서 7분간 연장 반응을 유도하였다. 결과물은 Agarose gel 전기영동을 통하여 크기 및 농도를 분석하였으며, 그 결과 약 3,000 bp의 류코노스톡 메센테로이데스 유래 덱스트란슈크라제 유전자가 증폭되었음을 확인할 수 있었다(도 1). 반응물은 추후 효소 반응을 위하여 DNA 단편 정제 키트로 정제하였다.At this time, pF primer (5'-ctcgagatgaggaaagaagccatcta-3') as a forward primer and pR primer (5'-aagctcctaccaatgttctattgcataaa-3') as a reverse primer were used, and PCR reaction conditions were predenaturation for 5 minutes at 94°C. , 94 ℃ 30 seconds, 54 ℃ 30 seconds, 72 3 minutes under the conditions of repeated reaction 30 times and induce an extension reaction for 7 minutes at 72 ℃. The resultant product was analyzed for size and concentration through Agarose gel electrophoresis, and as a result, it was confirmed that a dextran sucrase gene derived from leukonostock mecenteroides of about 3,000 bp was amplified (FIG. 1). The reaction product was purified with a DNA fragment purification kit for subsequent enzymatic reaction.

이 후 정제된 덱스트란슈크라제 유전자 (dsrS)와 발현 벡터인 pRSET_A를 동일한 제한 효소로 처리하여 절단하고 T4 DNA Ligase의 효소 반응을 실시하여 덱스트란슈크라제 유전자가 삽입된 발현 벡터인 pRDsu(도 3)를 구축한 후 대장균 DH5a에서 형질전환하고, Colony PCR을 통하여 재조합 여부를 확인하였다. 올바르게 재조합된 pRDsu 벡터는 대장균에서 플라스미드를 정제 분리하고 대량 발현을 위하여 대장균 BL21(DE3)에 형질전환하였다.Afterwards, the purified dextransukrase gene ( dsr S) and the expression vector pRSET_A were cut by treatment with the same restriction enzyme and subjected to an enzymatic reaction of T4 DNA Ligase, and the expression vector pRDsu into which the dextransukrase gene was inserted. After constructing (Fig. 3), it was transformed in E. coli DH5a, and whether or not recombination was confirmed through colony PCR. The correctly recombined pRDsu vector was purified and isolated from E. coli and transformed into E. coli BL21 (DE3) for mass expression.

2. 대장균 BL21(DE3)로부터 재조합 덱스트란슈크라제의 대량 발현2. Mass expression of recombinant dextran sucrase from E. coli BL21 (DE3)

pRDsu 벡터가 형질전환된 대장균 BL21(DE3)을 이용하여 덱스트란슈크라제의 발현을 시도하였다. 대량 발현을 시도하기 앞서 대장균으로부터 최적화된 pRDsu의 발현 조건을 탐색하기 위하여 Small-scale로 배지 조성, 배양 시간 및 온도 등의 변수를 선정하고 SDS-PAGE 통하여 비교분석하였으며, 이 후 최적화된 조건을 바탕으로 덱스트란슈크라제를 대량으로 생산하였다. pRDsu이 형질전환된 BL21(DE3)를 항생제인 엠피실린이 들어간 SOB broth에 seed culture하고 배양물은 다시 동일한 SOB broth에 1 : 50 비율(v/v)로 본 배양을 실시하였으며, 실시간으로 OD값을 측정하여 흡광도가 0.7이 되었을 때 isopropyl 1-thio-β-D-galactoside (IPTG)를 최종농도가 1 mM이 되도록 첨가하였다. 이 후 37 ℃에서 5시간 동안 발현을 진행하였고 발현이 완료된 균주는 6,000 rpm에서 4 ℃ 조건으로 10분간 원심 분리하여 Cell harvest하였다.Expression of dextran sucrase was attempted using E. coli BL21 (DE3) transformed with pRDsu vector. Before attempting mass expression, variables such as medium composition, culture time and temperature were selected on a small-scale in order to explore the expression conditions of pRDsu optimized from E. coli, and compared and analyzed through SDS-PAGE, and then based on the optimized conditions. Dextran sucrase was produced in large quantities. BL21 (DE3) transformed with pRDsu was seeded in SOB broth containing the antibiotic ampicillin, and the culture was again carried out in the same SOB broth at a ratio of 1:50 (v/v), and the OD value in real time When the absorbance reached 0.7 by measuring, isopropyl 1-thio-β-D-galactoside (IPTG) was added so that the final concentration became 1 mM. After that, the expression was performed at 37°C for 5 hours, and the strain after expression was centrifuged at 6,000 rpm at 4°C for 10 minutes to harvest Cells.

회수된 Pellet은 PBS buffer (137 mM NaCl, 27 mM KCl, 10 mM NaHPO4, 1.8 mM KH2PO4)로 세척하고 Cell Lysis buffer (10 % sucrose, 0.1 M Tris-HCl, 0.05 M EDTA, 0.2 M NaCl, pH 7.9)로 균주를 현탁한 후 초음파를 통하여 균주를 완전히 파쇄하였으며, 균주 파쇄물은 다시 16,000 rpm에서 30분 동안 원심분리하여 수용성 단백질과 불용성 단백질을 분리하였다. 이 중 Pellet 부문을 Cell wash buffer (2 % Triton X-100, 1.0 M Urea)로 세척하였고, 이 후 Solubilization buffer (8 M Urea, 0.01 M Tris-HCl, 0.2 M Na2HPO4, pH 8.0)로 봉입체를 완전히 용해시켰다. 각각의 분리된 수용성 단백질과 불용성 단백질은 SDS-PAGE 분석에 실시하여 덱스트란슈크라제의 발현 양상을 확인하였다. 분석하고자 하는 단백질 중 40 ul을 취하여 5x SDS-PAGE sample buffer (60 mM Tris-HCl(pH 6.8), 25 % glycerol, 2 % SDS, 14.4 mM 2-mercaptoethanol, 0.1 % bromophenol blue) 10 ㎕를 혼합하고 끓는 물에 5분 동안 반응시켰으며 이를 10 % Acrylamide 겔에 전기 영동하여 덱스트란슈크라제의 발현을 확인하였다. 분석결과 불용성 단백질 샘플로부터 덱스트란슈크라제 발현 단백질 밴드가 관찰되었으며 이를 통해 재조합 덱스트란슈크라제가 봉입체 단백질 형태로 발현되었음을 알 수 있었다.The recovered pellets were washed with PBS buffer (137 mM NaCl, 27 mM KCl, 10 mM NaHPO 4 , 1.8 mM KH 2 PO 4 ) and Cell Lysis buffer (10% sucrose, 0.1 M Tris-HCl, 0.05 M EDTA, 0.2 M After suspending the strain with NaCl, pH 7.9), the strain was completely crushed through ultrasound, and the strain lysate was centrifuged again at 16,000 rpm for 30 minutes to separate the water-soluble protein and the insoluble protein. Among them, the pellet section was washed with Cell wash buffer (2% Triton X-100, 1.0 M Urea), and then with Solubilization buffer (8 M Urea, 0.01 M Tris-HCl, 0.2 M Na 2 HPO 4 , pH 8.0). The inclusion body was completely dissolved. Each of the separated water-soluble and insoluble proteins was subjected to SDS-PAGE analysis to confirm the expression pattern of dextran sucrase. Take 40 ul of the protein to be analyzed, and mix 10 µl of 5x SDS-PAGE sample buffer (60 mM Tris-HCl (pH 6.8), 25% glycerol, 2% SDS, 14.4 mM 2-mercaptoethanol, 0.1% bromophenol blue). The reaction was carried out in boiling water for 5 minutes, and the expression of dextran sucrase was confirmed by electrophoresis on 10% Acrylamide gel. As a result of the analysis, a dextran sucrase-expressing protein band was observed from the insoluble protein sample, indicating that the recombinant dextran sucrase was expressed in the form of an inclusion body protein.

3. 재조합 덱스트란슈크라제 단백질의 재접힘 반응 3. Refolding Reaction of Recombinant Dextran Sucrase Protein

봉입체 형태로 발현된 재조합 단백질은 올바른 단백질 구조를 형성하지 못하여 고유의 단백질 활성을 잃어버리게 된다. 이에 단백질 재접힘 과정을 통하여 생산한 덱스트란슈크라제의 봉입체를 구조적으로 복원할 필요성이 있다.Recombinant proteins expressed in the form of inclusion bodies fail to form the correct protein structure, resulting in loss of intrinsic protein activity. Accordingly, there is a need to structurally restore the inclusion body of dextran sucrase produced through the protein refolding process.

덱스트란슈크라제의 단백질 재접힘 반응은 급속한 희석 방법으로 진행하였으며, 20배의 덱스트란슈크라제 전용 Refold buffer (50 mM Tris-HCl, 1 mM L-Glutathione oxidized, 1 mM L-Glutathione reduced, 1 mM Beta-merchaptoethanol, 1 mM DTT)로 Dextransucrase의 봉입체를 희석하고 4 ℃의 160 rpm에서 천천히 stir하여 진행하였다. The protein refolding reaction of dextran sucrase was carried out by a rapid dilution method, and a 20-fold dextran sucrase-specific refold buffer (50 mM Tris-HCl, 1 mM L-Glutathione oxidized, 1 mM L-Glutathione reduced, 1 mM Beta-merchaptoethanol, 1 mM DTT) to dilute the inclusion body of Dextransucrase and stir slowly at 160 rpm at 4°C.

4. 친화성 크로마토그래피를 통한 재조합 덱스트란슈크라제 단백질의 정제4. Purification of recombinant dextran sucrase protein through affinity chromatography

N-말단에 6개의 Histidine이 융합된 덱스트란슈크라제 단백질을 단일물질로 정제하기 위하여 Ni-NTA를 이용한 친화성 크로마토그래피를 실시하였다. Ni-NTA 수지가 충전된 컬럼에 10 배의 binding buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0)를 흘려보내 평형화하였고, 덱스트란슈크라제가 포함된 단백질 샘플을 로딩하였으며, 10 배의 washing buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0)를 통해 불순물을 완전히 제거하였다. 8 배의 elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0)를 이용하여 목표 단백질을 용출하였으며 피크가 나타나는 분획물을 회수하여 SDS-PAGE 분석을 실시하였다. 280 nm에서 흡광도를 측정하였으며, 유속은 0.5 mL/min으로 하였다.Affinity chromatography using Ni-NTA was performed to purify the dextran sucrase protein in which six Histidines were fused to the N-terminus into a single substance. Equilibrated by flowing 10-fold binding buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole, pH 8.0) to a column filled with Ni-NTA resin, and loading a protein sample containing dextran sucrase. And, impurities were completely removed through 10 times the washing buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole, pH 8.0). The target protein was eluted using an eight-fold elution buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 250 mM imidazole, pH 8.0), and the fraction showing the peak was recovered and subjected to SDS-PAGE analysis. The absorbance was measured at 280 nm, and the flow rate was 0.5 mL/min.

네오플루란나제 대량생산Mass production of neofluranase

1. 네오플루란나제의 유전자가 삽입된 재조합 발현 벡터 구축 1. Construction of a recombinant expression vector into which the gene of neofluranase was inserted

네오플루란나제의 재조합 발현 벡터를 구축하는 과정은 상기의 덱스트란슈크라제와 거의 동일하게 이루어 졌다. 본 과제에서는 목표 유전자로 게오바실러스 스테아로써모필루스(Geobacillus stearothermophilus) TRS40 유래에서 네오플루란나제 유전자(npl38)를 사용하였다. 게오바실러스 스테아로써모필루스(Geobacillus stearothermophilus) TRS40을 유전자 추출 kit를 사용하여 스핀 컬럼에 완전히 정제시킨 후 이를 PCR의 Template DNA로 활용하였다. npl38의 증폭은 0.5 ㎕ Taq DNA polymerase, 10x PCR buffer 5 ㎕, 2.5 mM dNTP 혼합물 5 ㎕, 10 nM/ul 정방향 프라이머(forward primer) 및 10 nM/ul 역방향 프라이머(revese primer)를 각각 1 ㎕, 주형은 2 ㎕를 넣은 PCR 반응용액이 50 ㎕가 되도록 증류수를 넣어 준 후 PCR을 수행하였다. The process of constructing the recombinant expression vector of neofluranase was carried out almost the same as the dextran sucrase described above. In this project, a neofluranase gene ( npl 38) derived from Geobacillus stearothermophilus TRS40 was used as a target gene. Geobacillus stearothermophilus ( Geobacillus stearothermophilus ) TRS40 was completely purified on a spin column using a gene extraction kit, and then used as a template DNA for PCR. The amplification of npl 38 was 0.5 μl Taq DNA polymerase, 10x PCR buffer 5 μl, 2.5 mM dNTP mixture 5 μl, 10 nM/ul forward primer and 10 nM/ul reverse primer 1 μl, respectively, As the template, distilled water was added so that the PCR reaction solution containing 2 µl became 50 µl, and then PCR was performed.

이때 정방향 프라이머로 pF 프라미어(5'-ggatccatgtataaaatctgggaaaatgt-3')와 역방향 프라이머로 pR 프라이머(5'-ccatggttataaatctggtacccaatct-3')를 사용하였고, PCR 반응 조건은 94 ℃에서 5분간 전변성(predenaturation)시키고, 94 ℃에서 30초, 52 ℃에서 30초, 72 ℃에서 2분 조건으로 30회간 반복 반응하고 72 ℃에서 7분간 연장 반응을 유도하였다. 결과물은 Agarose gel 전기영동을 통하여 크기 및 농도를 분석하였으며, 그 결과 약 2,000 bp의 네오플루란나제 유전자가 증폭되었음을 확인할 수 있었다(도 2). 반응물 결과물은 추후 효소 반응을 위하여 DNA 단편 정제 키트로 정제하였다.At this time, pF primer (5'-ggatccatgtataaaatctgggaaaatgt-3') as a forward primer and pR primer (5'-ccatggttataaatctggtacccaatct-3') as a reverse primer were used, and PCR reaction conditions were predenaturation for 5 minutes at 94°C. , 94 ℃ 30 seconds, 52 ℃ 30 seconds, 72 ℃ under the conditions of 2 minutes repeated reaction 30 times and induce an extension reaction at 72 7 minutes. The resulting product was analyzed for size and concentration through Agarose gel electrophoresis, and as a result, it was confirmed that the neofluranase gene of about 2,000 bp was amplified (FIG. 2). The reaction product was purified with a DNA fragment purification kit for subsequent enzymatic reaction.

이 후 정제된 네오플루란나제 유전자 (npl38)와 발현 벡터인 pRSET_A를 동일한 제한 효소로 처리하여 절단하고 T4 DNA Ligase의 효소 반응을 실시하여 네오플루란나제 유전자가 삽입된 발현 벡터인 pRNPL(도 4)를 구축한 후 대장균 DH5a에서 형질전환하고, 각각의 콜로니 중 플라스미드를 분리 및 제한효소 처리를 실시하여 올바르게 재조합된 pRNPL를 선정하였다. 이 후 재조합이 확인된 pRNPL는 대장균에서 플라스미드를 정제 분리하고 대량 발현을 위하여 대장균 BL21(DE3)에 형질전환하였다.After that, the purified neofluranase gene (npl38) and the expression vector pRSET_A were cut with the same restriction enzyme and digested, followed by enzymatic reaction of T4 DNA Ligase, and the expression vector into which the neofluranase gene was inserted, pRNPL (Fig. 4 ) Was constructed and transformed in E. coli DH5a, and the plasmid was isolated from each colony and subjected to restriction enzyme treatment to select correctly recombined pRNPL. Thereafter, pRNPL, which was confirmed for recombination, was purified and isolated from E. coli and transformed into E. coli BL21 (DE3) for mass expression.

2. 대장균 BL21(DE3)로부터 재조합 네오플루란나제의 대량 발현2. Mass expression of recombinant neofluranase from E. coli BL21 (DE3)

pRNPL이 형질전환된 대장균 BL21(DE3)를 이용하여 네오플루란나제의 발현을 시도하였다. 대장균으로부터 최적화된 pRNPL의 발현 조건을 탐색하기 위하여 상기의 pRDsu와 동일한 방법으로 Small-scale에서 배지 조성, 배양 시간 및 온도 등의 조건을 비교하고 SDS-PAGE 통하여 이를 분석하였다.The expression of neofluranase was attempted using pRNPL-transformed E. coli BL21 (DE3). In order to search for the expression conditions of pRNPL optimized from E. coli, conditions such as medium composition, culture time and temperature were compared in the small-scale in the same manner as in the above pRDsu and analyzed through SDS-PAGE.

발현 테스트 결과, pRNPL은 대장균에서 수용성 단백질 형태로 발현되었음을 알 수 있었으며, 이러한 점을 활용하기 위하여 Auto-induction media를 통한 발현을 진행하기로 하였다. 멸균된 삼각플라스크에 200 ml의 AIM broth (트리톤 12 g/L, 효모 추출물 24 g/L, 포도당 0.5 g/L, 젖당 2.0 g/L, (NH4)2SO4 3.3 g/L, KH2PO4 6.8 g/L, Na2HPO4 7.1 g/L, MgSO4 0.15 g/L, 글리세롤 4.0 ml/L를 제조하고 멸균시킨 후 엠피실린을 첨가한다. pRNPL이 형질전환된 BL21(DE3)는 SOB broth에 seed culture하고 해당 배양물은 상기의 AIM broth에 1 : 50 비율(v:v)로 본 배양하여 37 ℃에서 8시간 동안 발현을 실시한다. 원심분리하여 Pellet을 회수하고 이를 PBS buffer로 세척하였으며, Cell Lysis buffer으로 균주를 현탁한 후 초음파를 통하여 균주를 완전히 파쇄하였다. 균주 파쇄물은 다시 16,000 rpm에서 30분 동안 원심분리하여 수용성 단백질과 불용성 단백질을 분리하고, 이 중 Pellet 부문을 Solubilization buffer으로 현탁하여 봉입체를 완전히 용해시켰다. 각각의 분리된 수용성 단백질과 불용성 단백질은 SDS-PAGE 분석을 실시하여 네오플루란나제의 발현 양상을 확인하였다. 분석하고자 하는 단백질 중 40 ul을 취하여 5x SDS-PAGE sample buffer 10㎕를 혼합하고 끓는 물에 5분 동안 반응시켰으며 이를 10 % Acrylamide 겔에 전기 영동하여 네오플루란나제의 발현을 확인하였다(도 6). 분석결과, 재조합 네오플루란나제가 수용성 단백질 형태로 발현되었음을 알 수 있었다.As a result of the expression test, it was found that pRNPL was expressed in the form of a water-soluble protein in E. coli, and in order to utilize this point, it was decided to proceed with expression through an auto-induction media. In a sterilized Erlenmeyer flask, 200 ml of AIM broth (Triton 12 g/L, yeast extract 24 g/L, glucose 0.5 g/L, lactose 2.0 g/L, (NH4)2SO4 3.3 g/L, KH2PO4 6.8 g/L , Na2HPO4 7.1 g/L, MgSO4 0.15 g/L, and glycerol 4.0 ml/L are prepared and sterilized, and then ampicillin is added. BL21 (DE3) transformed with pRNPL is seed cultured in SOB broth and the culture is Main culture was performed in the above AIM broth at a ratio of 1:50 (v:v) and expressed for 8 hours at 37° C. Pellet was recovered by centrifugation, washed with PBS buffer, and the strain was suspended in Cell Lysis buffer. After that, the strain was completely crushed through ultrasound, and the strain lysate was centrifuged again at 16,000 rpm for 30 minutes to separate the soluble protein and the insoluble protein, and the Pellet part was suspended in Solubilization buffer to completely dissolve the inclusion body. The separated water-soluble protein and insoluble protein were analyzed by SDS-PAGE to confirm the expression pattern of neofluranase, 40 ul of the protein to be analyzed was mixed with 10 µl of 5x SDS-PAGE sample buffer and added to boiling water. The reaction was performed for 5 minutes and the expression of neofluranase was confirmed by electrophoresis on 10% Acrylamide gel (Fig. 6) As a result of the analysis, it was found that the recombinant neofluranase was expressed in the form of a water-soluble protein.

3. 친화성 크로마토그래피를 통한 재조합 네오플루란나제 단백질의 정제 3. Purification of recombinant neofluranase protein through affinity chromatography

네오플루란나제의 정제 과정 역시 덱스트란슈크라제 단백질의 정제 원리인 6x 히스티민 말단을 이용한 Ni-NTA 친화성 크로마토그래피를 통하여 이루어졌으며, 모든 과정이 동일하게 이루어 졌다. Ni-NTA 수지가 충전된 컬럼에 10 배의 binding buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0)를 흘려보내 평형화하였고, 네오플루란나제가 포함된 단백질 샘플을 로딩하였으며, 10 배의 washing buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0)를 통해 불순물을 완전히 제거하였다. 8 배의 elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0)를 이용하여 목표 단백질을 용출하였으며 피크가 나타나는 분획물을 회수하여 SDS-PAGE 분석을 실시하였다. 280 nm에서 흡광도를 측정하였으며, 유속은 0.5 mL/min으로 하였다.The purification process of neofluranase was also carried out through Ni-NTA affinity chromatography using 6x histamine end, which is the principle of purification of dextran sucrase protein, and all processes were performed in the same manner. Equilibrated by flowing 10-fold binding buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole, pH 8.0) to a column filled with Ni-NTA resin, and loading a protein sample containing neofluranase. And, impurities were completely removed through 10 times the washing buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole, pH 8.0). The target protein was eluted using an eight-fold elution buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 250 mM imidazole, pH 8.0), and the fraction showing the peak was recovered and subjected to SDS-PAGE analysis. The absorbance was measured at 280 nm, and the flow rate was 0.5 mL/min.

재조합 당 전이 효소를 이용한 플루란의 합성Synthesis of flurane using recombinant sugar transferase

단일 물질로 정제한 덱스트란슈크라제를 판노스 효소 합성의 촉매제로 사용하였다. 50 mM Sodium acetate buffer (pH 5.5)와 1 mM CaCl2, 1%의 맥아당, 5 %의 설탕을 혼합하고, 재조합 덱스트란슈크라제를 최종 부피의 10 %만큼 첨가하여 25℃에서 24 시간동안 반응하여 판노스를 합성하였다. 반응이 완료된 샘플은 TLC (Thin Layer Chromatography)를 통하여 1차 분석을 실시하였다. TLC 분석은 고정상으로 C18 실리카겔을 사용하였으며 Acetic acid : Formic acid : Water = 7 : 2 : 1을 이동상으로 사용하였고 전개가 완료된 plate는 5%의 황산이 포함된 메탄올 용액에 살짝 담구고 121℃에서 5분 동안 반응시켜 spot을 검출하였으며 이를 통해 판노스의 합성을 확인하였다(도 5). 이 후 좀 더 정밀한 정성 및 정량 분석을 위하여 High Performance Liquid Chromatography (HPLC) 분석을 실시하였다. 분석 조건은 Column : SRT 30 cm x 7.8 mm I.D., 5 μm, 300 Å, Solvent : 150 mM phosphate Buffer, pH 7.0, 유속 : 0.7 ml/min, Detector : RI Detector이며, HPLC 분석 결과를 통하여 판노스의 합성 여부와 수득률을 확인하였다. 이 후 정제된 네오플루란나제와 판노스 효소 합성물을 이용하여 플루란을 대량으로 합성하였다. 상기의 판노스 효소 합성물의 pH를 조정하여 6.0으로 맞추고 여기에 10% 재조합 플루란나제를 첨가시킨 후 40℃에서 24시간 동안 반응시켜 판노스 기질로부터 플루란을 합성하였다. 모든 효소 반응이 끝난 후 한외여과막을 사용하여 반응의 종결 및 함유된 효소를 완전히 제거하였으며, 합성된 플루란을 추출하기 위하여 전체 부피의 2배에 해당하는 에탄올을 첨가하고 약 1시간 동안 당 중합체를 완전히 침전시켰다. 이 후 침전된 당중합체를 회수하여 동결건조함으로써, 플루란을 완전히 파우더화하였다. 모든 동정이 완료된 후 최종 반응물에 대한 HPLC를 실시하여 플루란의 합성 수율 및 순도를 분석하였다.Dextran sucrase purified from a single substance was used as a catalyst for the synthesis of pannose enzyme. 50 mM Sodium acetate buffer (pH 5.5), 1 mM CaCl 2, 1% maltose and 5% sugar were mixed, and 10% of the final volume of recombinant dextran sucrase was added, followed by reaction at 25℃ for 24 hours. Thus, pannose was synthesized. The sample for which the reaction was completed was first analyzed through TLC (Thin Layer Chromatography). For TLC analysis, C 18 silica gel was used as the stationary phase, and Acetic acid: Formic acid: Water = 7: 2: 1 was used as the mobile phase, and the developed plate was slightly immersed in a methanol solution containing 5% sulfuric acid and 5 at 121℃. The reaction was carried out for a minute to detect the spot, and the synthesis of pannose was confirmed through this (FIG. After that, for more precise qualitative and quantitative analysis, High Performance Liquid Chromatography (HPLC) analysis was performed. Analysis conditions are Column: SRT 30 cm x 7.8 mm ID, 5 μm, 300 Å, Solvent: 150 mM phosphate Buffer, pH 7.0, flow rate: 0.7 ml/min, Detector: RI Detector. Synthesis and yield were checked. After that, a large amount of fluran was synthesized using the purified neofluranase and pannose enzyme compound. The pH of the pannose enzyme compound was adjusted to 6.0, 10% recombinant fluranase was added thereto, and then reacted at 40° C. for 24 hours to synthesize fluran from the pannose substrate. After all enzymatic reactions were completed, the reaction was terminated using an ultrafiltration membrane and the contained enzymes were completely removed.To extract the synthesized flurane, ethanol equivalent to twice the total volume was added, and the sugar polymer was added for about 1 hour. Completely precipitated. Thereafter, the precipitated saccharide polymer was recovered and lyophilized to completely powder the flurane. After all identification was completed, HPLC was performed on the final reaction product to analyze the synthesis yield and purity of fluran.

Claims (5)

류코노스톡 메센테로이데스(Leuconostoc mesenteroides) 유래의 덱스트란슈크라제 유전자 dsrS를 포함하는 재조합벡터로 형질전환된, 덱스트란슈크라제 생산용 재조합 미생물.
Leuconostoc mesenteroides ( Leuconostoc mesenteroides ) derived from the dextran sucrase gene dsr S transformed with a recombinant vector containing a recombinant microorganism for the production of dextran sucrase.
게오바실러스 스테아로써모필루스(Geobacillus stearothermophilus) TRS40 유래의 네오플루란나제 유전자 npl38을 포함하는 재조합벡터로 형질전환된, 네오플루란나제 생산용 재조합 미생물.
Geobacillus stearothermophilus ( Geobacillus stearothermophilus ) Transformed with a recombinant vector containing the neofluranase gene npl 38 derived from TRS40 , a recombinant microorganism for the production of neofluranase .
(a) 제 1 항에 기재된 재조합 미생물을 배양하는 단계;
(b) 상기 (a) 단계에서 배양한 재조합 미생물을 덱스트란슈크라제 전용 발현 배지에 본배양하는 단계;
(c) 상기 (b) 단계에서 얻은 배양액으로부터 덱스트란슈크라제를 추출하는 단계; 및
(d) 친화성 크로마토그래피를 통하여 덱스트란슈크라제를 단일 물질로 정제하는 단계;
를 포함하는, 텍스트란슈크라제를 대량생산하는 방법.
(a) culturing the recombinant microorganism according to claim 1;
(b) culturing the recombinant microorganism cultured in step (a) in a dextran sucrase-only expression medium;
(c) extracting dextran sucrase from the culture medium obtained in step (b); And
(d) purifying dextran sucrase into a single substance through affinity chromatography;
Containing, a method for mass-producing textran sukrase.
(a) 제 2 항에 기재된 재조합 미생물을 배양하는 단계;
(b) 상기 (a) 단계에서 배양한 재조합 미생물을 네오플루란나제 전용 발현 배지에 본배양하는 단계;
(c) 상기 (b) 단계에서 얻은 배양액으로부터 네오플루란나제를 추출하는 단계; 및
(d) 친화성 크로마토그래피를 통하여 네오플루란나제를 단일 물질로 정제하는 단계;
를 포함하는, 네오플루란나제를 대량생산하는 방법.
(a) culturing the recombinant microorganism according to claim 2;
(b) main culturing the recombinant microorganism cultured in step (a) in a neofluranase-only expression medium;
(c) extracting neofluranase from the culture solution obtained in step (b); And
(d) purifying neofluranase into a single substance through affinity chromatography;
Containing, a method for mass-producing neofluranase.
(a) 맥아당과 설탕을 혼합한 기질혼합물을 준비하는 단계;
(b) 상기 (a)의 기질혼합물에 상기 제 3 항의 덱스트란슈크라제를 첨가하여 효소반응으로 판노스를 합성하는 단계;
(c) 상기 단계 (b)의 반응물에 상기 제 4 항의 네오플루란나제를 첨가하여 효소반응을 통해 플루란을 합성하는 단계; 및
(d) 상기 단계 (c)의 합성된 플루란을 추출 정제하는 단계;
를 포함하는, 플루란을 제조하는 방법.
(a) preparing a substrate mixture obtained by mixing maltose and sugar;
(b) synthesizing pannose by enzymatic reaction by adding the dextran sucrase of claim 3 to the substrate mixture of (a);
(c) synthesizing flurane through an enzymatic reaction by adding the neofluranase of claim 4 to the reaction product of step (b); And
(d) extracting and purifying the synthesized flurane of step (c);
Containing, a method for producing fluran.
KR1020190016545A 2019-02-13 2019-02-13 Manufacturing Method of Pullulan Using recombinant glycosyltransferases KR20200098882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190016545A KR20200098882A (en) 2019-02-13 2019-02-13 Manufacturing Method of Pullulan Using recombinant glycosyltransferases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190016545A KR20200098882A (en) 2019-02-13 2019-02-13 Manufacturing Method of Pullulan Using recombinant glycosyltransferases

Publications (1)

Publication Number Publication Date
KR20200098882A true KR20200098882A (en) 2020-08-21

Family

ID=72235694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190016545A KR20200098882A (en) 2019-02-13 2019-02-13 Manufacturing Method of Pullulan Using recombinant glycosyltransferases

Country Status (1)

Country Link
KR (1) KR20200098882A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414952B1 (en) 2001-02-09 2004-01-14 (주)케이비피 Process for Preparing of Pullulan Employing By-product from Soybean Source Fermentation
KR100739022B1 (en) 2005-12-12 2007-07-12 동아대학교 산학협력단 Method for continuous production of pullulan with feeding of the sucrose
KR101882101B1 (en) 2016-11-25 2018-07-25 건양대학교산학협력단 A composition for therapeutic skin patchfor atopic dermatitis using Rhus Verniciflua Stokes extract-containing pullulan-based hydrogel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414952B1 (en) 2001-02-09 2004-01-14 (주)케이비피 Process for Preparing of Pullulan Employing By-product from Soybean Source Fermentation
KR100739022B1 (en) 2005-12-12 2007-07-12 동아대학교 산학협력단 Method for continuous production of pullulan with feeding of the sucrose
KR101882101B1 (en) 2016-11-25 2018-07-25 건양대학교산학협력단 A composition for therapeutic skin patchfor atopic dermatitis using Rhus Verniciflua Stokes extract-containing pullulan-based hydrogel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(연구논문 0001) Barnett Christian. et al., Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. CARBOHYDRATE POLYMERS, 1998, Vol. 38(3), pp. 203 - 209.

Similar Documents

Publication Publication Date Title
US11566235B2 (en) Mutant of cyclodextrin glycosyltransferase
KR20200087220A (en) Method for producing taurorusodeoxycholic acid by bioconversion and its application
CN108884120A (en) For the novel method by using microorganism purifying 3,6- dehydration-L- galactolipin
CN113265434A (en) Method for synthesizing UDP-galactose and galactosyl compound
CN116445519B (en) Glycosyltransferase and application thereof in biosynthesis of eugenol glucoside
Prabhakar et al. Heterologous expression of plant glycosyltransferases for biochemistry and structural biology
CN117604005A (en) Flavonoid polyhydroxy site glycosyltransferase and application thereof
CN109694892B (en) Method and kit for preparing salidroside
KR20200098882A (en) Manufacturing Method of Pullulan Using recombinant glycosyltransferases
CN113025590A (en) Optimization method for improving secretion expression of cyclodextrin glucosyltransferase and application thereof
WO2023035584A1 (en) Construction and application of yeast engineering bacteria for fermentative production of heparin
CN113817704B (en) Cyclodextrin glucosyltransferase with improved organic solvent tolerance and preparation method thereof
KR20240032944A (en) Rhamnose highly specific glycosyltransferase and its applications
KR20230167084A (en) Anthocyanin bioproduction in a cell-free manufacturing system
CN111534498B (en) Cyclodextrin glucosyltransferase mutant with improved disproportionation specific activity and AA-2G yield
CN105907816A (en) Method for producing cycloamylose with enzymic method
CN110358749B (en) Sucrose phosphorylase mutant Q345F having glycosylation on quercetin
CN113943716A (en) Intermolecular exo selective Diels-Alder reaction enzyme and application thereof
CN113151377A (en) Enzymatic preparation method for preparing glucosamine from glucose and enzyme application
EP1233072B1 (en) Novel use of uridine diphosphate glucose 4-epimerase
KR101801908B1 (en) Method for Preparing of Arbutin
CN109609473A (en) A kind of carbonyl reductase DmCR and its encoding gene, recombinant expression carrier, recombinant expression cell and its application
CN117343919B (en) Flavonoid dihydroxyl site glycosyltransferase and application thereof
EP4151742B1 (en) Transgenic cell line and genetically engineered bacterium expressing fructosamine deglycase, and use of fructosamine deglycase
WO2022131130A1 (en) Prenylflavonoid glucosidase, polynucleotide encoding same, and method for producing prenylflavonoid glycoside

Legal Events

Date Code Title Description
E601 Decision to refuse application