KR20200085238A - Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same - Google Patents
Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same Download PDFInfo
- Publication number
- KR20200085238A KR20200085238A KR1020200060632A KR20200060632A KR20200085238A KR 20200085238 A KR20200085238 A KR 20200085238A KR 1020200060632 A KR1020200060632 A KR 1020200060632A KR 20200060632 A KR20200060632 A KR 20200060632A KR 20200085238 A KR20200085238 A KR 20200085238A
- Authority
- KR
- South Korea
- Prior art keywords
- virus
- influenza
- recombinant
- derived
- seq
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/55—Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
- A61K2039/552—Veterinary vaccine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16151—Methods of production or purification of viral material
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Pulmonology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
본 발명은 재조합 인플루엔자 A 바이러스 및 이를 포함하는 clade 2.3.4.4B에 속하는 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물에 관한 것이다.The present invention relates to a vaccine composition against the recombinant influenza A virus and H5 serotype influenza A virus belonging to clade 2.3.4.4B comprising the same.
인플루엔자 바이러스(Influenza Virus)는 오르소믹소 계통(Family Orthomyxoviridae)에 속하는 RNA 바이러스로서 혈청형은 A, B, C 형 3가지로 구분된다. 그 중 B 형과 C형은 사람에서만 감염이 확인되고 있으며, A형은 다양한 종류의 가금과 야생조류와 더불어 사람, 말, 돼지, 기타 포유류에서도 감염이 확인되고 있다.Influenza virus is an RNA virus belonging to the family Orthomyxoviridae, and the serotypes are classified into three types: A, B, and C. Among them, type B and type C infections have been confirmed only in humans, and type A has been confirmed in humans, horses, pigs, and other mammals as well as various types of poultry and wild birds.
A형 인플루엔자 바이러스의 혈청형은 바이러스 표면의 두 가지 단백질인 헤마글루티닌(Hemagglutinin: HA), 뉴라미니다제(Neuraminidase: NA)의 종류에 따라 구분되며, 혈청형에 따라 144 종류(HA 16종, NA 9종)로 분류할 수 있다. HA는 바이러스가 체세포에 부착하는 역할을 하며, NA는 바이러스가 세포 내로 침투할 수 있도록 한다.The serotype of influenza A virus is classified according to the types of two proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA), and 144 types (HA 16) according to the serotype. Species,
조류 인플루엔자 바이러스(AIV)는 모두 A형에 속하는 바이러스로, 바이러스 외막에 있는 혈구응집소(Hemagglutinin; HA)와 뉴라미니다제(Neuraminidase; NA) 유전자에 따라 HA는 16종류, NA는 9종류로 나누어져 혈청형이 다양하며 다른 혈청형 간에 교차방어가 되지 않는 것이 특징이다. AIV의 다양한 혈청형 중 현재까지 발생한 고병원성 조류 인플루엔자(Highly Pathogenic Avian Influenza; HPAI)는 모두 H5형 또는 H7 혈청형에 의한 것으로 나타났다. 과학적으로 확인된 첫 고병원성 조류 인플루엔자(Highly Pathogenic Avian Influenza, HPAI)는 1959년 스코틀랜드에서 발생한 H5N1형의 조류 인플루엔자 바이러스에 의한 것으로 이후 세계 각국에서 AIV 아형(subtype) 중 H5 혈청형 혹은 H7 혈청형에 의해 HPAI가 발생하였다.Avian influenza virus (AIV) is a virus belonging to type A, and according to the hemagglutinin (HA) and neuraminidase (NA) genes in the viral envelope, HA is divided into 16 types and NA is divided into 9 types. Low serotypes are diverse, and they are not characterized by cross-defense between different serotypes. Among the various serotypes of AIV, the highly pathogenic Avian Influenza (HPAI) that has occurred to date has been shown to be caused by the H5 or H7 serotype. Highly Pathogenic Avian Influenza (HPAI), the first scientifically identified, was caused by the H5N1 avian influenza virus in Scotland in 1959, and was subsequently used by H5 serotypes or H7 serotypes among AIV subtypes worldwide. HPAI occurred.
우리나라에서는 2003년 최초 발생 이후 2014년부터는 매년 발생하는 추세로 특히 2016.11월부터 2017.6월까지 2개 유형(H5N6, H5N8)의 HPAI가 총 419건이 발생(H5N6: 343건, H5N8: 76건)하여 3,800만여 마리를 살처분 하는 등 천문학적 직간접적 경비가 소요되어 사상 최대 규모의 피해를 초래한 바 있다. 이는 국내 양계 산업뿐만 아니라 소비 위축으로 인한 관련 산업 전반에 이르기까지 막대한 영향을 미쳤다. 또한 우리나라와 지리적으로 가까운 동남 아시아 지역에서 2004년부터 현재까지 HPAI가 지속적으로 발생하고 있으며 특히 태국과 베트남에서는 H5N1형의 HPAI에 의한 인체 감염 사례도 지속적으로 나타나고 있어 우려가 되는 실정이다. HPAI는 조류 인플루엔자 백신을 사용하고 있는 멕시코, 이탈리아 등을 제외한 우리나라 포함 대부분의 국가에서 감염 동물의 살처분을 통한 근절 정책을 원칙으로 하고 있다. 그러나 우리나라도 HPAI가 상시 발생할 경우 살처분 보상금 등 직간접적 경비, 인체 순환감염에의 우려 및 환경적 문제 등으로 인해 과거와 같이 살처분 정책만을 고집할 수 없게 되었다. 따라서 HPAI의 근절 및 재발 방지를 위해 노력하는 한편, 살처분만으로 통제할 수 없는 만일의 경우에 대비한 HPAI에 대하여 방어 효과를 나타내는 백신주 개발 필요성이 제기되고 있다.In Korea, since the first occurrence in 2003, the trend has occurred every year since 2014. Especially, from November, 2016 to June, 2017, 2 types (H5N6, H5N8) of HPAI occurred in total 419 cases (H5N6: 343 cases, H5N8: 76 cases), 3,800 As the astronomical direct and indirect expenses, such as killing tens of thousands, were the biggest damages in history. This had a huge impact not only in the domestic poultry industry, but also in all related industries due to shrinking consumption. In addition, HPAI has been continuously occurring in Southeast Asia, which is geographically close to Korea, from 2004 to the present. In particular, in Thailand and Vietnam, cases of human infection with H5N1 type HPAI have been continuously present, which is a concern. HPAI, as a rule, has a policy to eradicate infected animals in most countries, including Korea, except Mexico and Italy, which use the avian influenza vaccine. However, even when HPAI occurs at all times, it is impossible to insist on the policy of disposition as in the past due to direct and indirect expenses such as compensation for disposal of death, concerns about human circulation, and environmental problems. Therefore, while trying to eradicate and prevent recurrence of HPAI, there is a need to develop a vaccine strain that shows a protective effect against HPAI in case of an emergency that cannot be controlled by killing.
조류 인플루엔자 예방 백신 중 생(live) 바이러스 백신은 변이가 쉽게 되는 바이러스의 특성상 개발이 거의 불가능한 실정이며, 현재까지 개발된 백신은 크게 사독 백신과 유전자 재조합 백신으로 구분할 수 있다. 1999년도 이탈리아와 2003년 홍콩에서는 고병원성 조류 인플루엔자 발생이 장기화되고 전국으로 확산되면서 조류 인플루엔자 예방 백신을 선택적 살처분 정책과 병행한 바 있으며, 현재 이탈리아와 홍콩에서는 조류 인플루엔자 예방 백신의 사용이 고병원성 조류 인플루엔자를 방제하는데 효과적이었다는 긍정적인 평가를 받고 있다. 이탈리아(혈청형 A/H7N1)와 홍콩(혈청형 A/H5N1)에서 긍정적인 평가를 받은 백신은 모두 사독 백신으로 HA형은 동일하나 NA형이 다른 이종 혈청형의 바이러스(혈청형 A/H7N3, 혈청형 A/H5N2)로 사독백신을 제조하여 항체 검사 시 야외 감염과의 구별을 시도한 경우이다. 그러나 이 사독 백신은 기존 A형 조류 인플루엔자 표준 진단법인 한천겔 침강법(AGP, Agar Gel Precipitation) 검사법으로는 백신 항체와 야외 감염 항체의 구분이 불가능하고 NA형을 감별하는 형광 항체법은 대규모의 항체 모니터링 검사에 적합하지 않다는 점이 가장 큰 단점으로 지적되고 있다. 또한 현재 개발되어 있는 사독 백신은 고병원성 조류 인플루엔자 감염시 분변으로 배출되는 바이러스의 양을 줄여 줄 수는 있지만 완벽하게 질병의 확산을 막지는 못하는 것으로 평가되고 있다.Among live vaccines against avian influenza, live virus vaccines are almost impossible to develop due to the nature of easily mutated viruses, and vaccines developed to date can be largely divided into proprietary vaccines and genetic recombinant vaccines. In Italy and Hong Kong in 1999 and 2003, the outbreak of highly pathogenic avian influenza was prolonged and spread across the country, and the vaccine against avian influenza was combined with the selective killing policy. Currently, in Italy and Hong Kong, the use of the vaccine against avian influenza is highly pathogenic avian influenza. It has received positive reviews that it was effective in controlling. Vaccines that have been positively evaluated in Italy (serum type A/H7N1) and Hong Kong (serum type A/H5N1) are all proprietary vaccines, but are heterogeneous serotype viruses with the same HA type but different NA types (serum type A/H7N3, This is a case where a serotoxin vaccine was prepared with serotype A/H5N2) to try to distinguish it from an outdoor infection during antibody testing. However, this proprietary vaccine cannot distinguish between a vaccine antibody and an outdoor infectious antibody using the Agar Gel Precipitation (AGP) test, which is the standard diagnostic method for avian influenza A, and the fluorescent antibody method for discriminating NA is a large-scale antibody. The biggest disadvantage is that it is not suitable for monitoring inspection. In addition, the currently developed poison vaccine is considered to be able to reduce the amount of virus released into feces during infection with highly pathogenic avian influenza, but does not completely prevent the spread of the disease.
현재까지 개발된 조류 인플루엔자 백신으로는 멕시코에서 사용 중인 H5N2 혈청형에 대한 사독오일백신(inactivated oil vaccine; Intervet Mexico사, 멕시코)과 계두바이러스를 벡터로 한 H5 혈청형에 대한 유전자 재조합 백신(H5 recombinant fowl pox-vectored AI vaccine; Merial Select사, 미국)이 있다. 그러나 조류 인플루엔자는 전술한 바와 같이 다양한 혈청형이 존재하며, 혈청형이 다르면 방어도 되지 않기 때문에 2003년 이후 아시아 지역에서 유행하고 있는 혈청형에 높은 방어능을 보이면서 백신 제조 과정 중 안전성이 높은 고병원성 백신주를 이용한 백신 개발이 요구되고 있다.Avian influenza vaccines that have been developed to date include an inactivated oil vaccine against the H5N2 serotype used in Mexico (Intervet Mexico, Mexico) and a genetic recombination vaccine against the H5 serotype based on chickenpox virus (H5 recombinant fowl pox-vectored AI vaccine; Merial Select, USA). However, avian influenza has various serotypes as described above, and since the serotypes are different, they cannot be protected. Development of vaccines used is required.
본 발명자들은 고병원성 인플루엔자 A 바이러스에 대한 유전자 재조합 백신을 개발하고자 예의 연구 노력하였다. 그 결과, 고병원성 인플루엔자 A 바이러스의 병원성을 부여하는 HA 내 테트라 펩타이드를 결실시켜 약독화된 인플루엔자 A 바이러스를 제조하고 이의 높은 안정성, 면역성 및 백신 효능을 규명함으로써 본 발명을 완성하였다.The present inventors have made extensive efforts to develop a genetic recombinant vaccine against the highly pathogenic influenza A virus. As a result, the present invention was completed by preparing the attenuated influenza A virus by deleting the tetra peptide in HA conferring the pathogenicity of the highly pathogenic influenza A virus and identifying its high stability, immunity and vaccine efficacy.
따라서, 본 발명의 목적은 H5N8형 재조합 인플루엔자 A 바이러스의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for producing H5N8 recombinant influenza A virus.
본 발명의 다른 목적은 H5N8형 재조합 인플루엔자 A 바이러스를 제공하는 것이다.Another object of the present invention is to provide an H5N8 recombinant influenza A virus.
본 발명의 또 목적은 H5N6형 재조합 인플루엔자 A 바이러스의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing H5N6 recombinant influenza A virus.
본 발명의 또 다른 목적은 H5N6형 재조합 인플루엔자 A 바이러스를 제공하는 것이다.Another object of the present invention is to provide a recombinant H5N6 influenza A virus.
본 발명의 또 다른 목적은 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물을 제공하는 데 있다.Another object of the present invention is to provide a vaccine composition against H5 serotype influenza A virus.
본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 H5N8형 재조합 인플루엔자 A 바이러스의 제조방법을 제공한다:According to one aspect of the present invention, the present invention provides a method for preparing a H5N8 recombinant influenza A virus comprising the following steps:
(a) 서열번호 1의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin) 및 서열번호 2의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조하는 단계;(a) A recombinant plasmid by cloning a H5N8-type highly pathogenic influenza A virus-derived HA (hemagglutinin) consisting of the nucleotide sequence of SEQ ID NO: 1 and a H5N8-type high-pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 2 into a vector, respectively, by cloning it into a vector. Preparing a;
(b) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조하는 단계;(b) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (PB2) derived from the low-pathogenic influenza A virus, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 preparing a recombinant plasmid by cloning each non-structural protein) into a vector;
(c) 단계 (a) 및 (b)의 재조합 플라스미드를 패키징 세포(packaging cell)에 트랜스펙션(transfection)하는 단계; 및(c) transfecting the recombinant plasmids of steps (a) and (b) into packaging cells; And
(d) 패키징 세포의 배양 상층액으로부터 H5N8형 재조합 인플루엔자 A 바이러스를 수득하는 단계.(d) obtaining H5N8 type recombinant influenza A virus from culture supernatant of packaging cells.
본 발명자들은 고병원성 인플루엔자 A 바이러스에 대한 유전자 재조합 백신을 개발하고자 예의 연구 노력하였다. 그 결과, 고병원성 인플루엔자 A 바이러스의 병원성을 부여하는 HA 내 테트라 펩타이드를 결실시켜 약독화된 인플루엔자 A 바이러스를 제조하고 이의 높은 안정성, 면역성 및 백신 효능을 규명하였다.The present inventors have made extensive efforts to develop a genetic recombinant vaccine against the highly pathogenic influenza A virus. As a result, the attenuated influenza A virus was prepared by deleting the tetra peptide in HA conferring the pathogenicity of the highly pathogenic influenza A virus, and its high stability, immunity and vaccine efficacy were investigated.
본 명세서에서 용어 '조류 인플루엔자'는 조류 인플루엔자 바이러스 감염에 의해 발생하는 조류의 급성 전염병을 의미한다. 상기 조류 인플루엔자의 원인체는 인플루엔자 A 바이러스이다.The term'algae influenza' as used herein refers to an acute infectious disease of avian caused by avian influenza virus infection. The causative agent of avian influenza is influenza A virus.
본 명세서에서 용어 ‘인플루엔자 A 바이러스’는 동물 및 인간에서 발생하는 통상 '독감(flu)'으로 불리는 고 전염성 호흡기 질환의 원인 바이러스로, 단일 가닥 음성 RNA 절편으로 이루어진 절편화된 게놈을 갖는 외피가 있는 RNA 바이러스를 의미한다.As used herein, the term'influenza A virus' is a causative virus of a highly infectious respiratory disease commonly referred to as'flu' that occurs in animals and humans, and has an envelope with a fragmented genome consisting of single-stranded negative RNA fragments. RNA virus.
본 명세서에서 용어 '재조합 인플루엔자 A 바이러스'는 유전자 재조합 기술을 이용하여 인플루엔자 A 바이러스의 RNA 단편이 재조합된 바이러스를 의미한다. 예를 들어, 적어도 2개의 공여자 바이러스(고병원성 인플루엔자 A 바이러스 및 저병원성 인플루엔자 A 바이러스)의 RNA 단편의 조합에 의해 생성되는 유전물질을 함유하는 바이러스이다.In the present specification, the term'recombinant influenza A virus' refers to a virus in which the RNA fragment of influenza A virus is recombined using genetic recombination technology. For example, a virus containing a genetic material produced by a combination of RNA fragments of at least two donor viruses (high pathogenic influenza A virus and low pathogenic influenza A virus).
본 명세서에서 용어 '고병원성 인플루엔자 A 바이러스'는 (ⅰ) 4-8주령 감수성 닭 8수에 접종하여 10일 이내에 6수 이상(75%) 폐사할 경우; (ⅱ) 정맥내 병원성지수(intravenous pathogenicity, IVPI, 10수의 4-8주령 감수성 닭의 정맥내로 바이러스를 접종하고 10일 동안 24시간 간격으로 닭의 임상증상 및 폐사정도를 확인하고 호흡기 증상, 침울, 설사, 외피나 벼슬의 청색증, 두부의 부종, 신경증상의 경중을 점수로 기록하여 각 증상의 합에 증상 수치를 곱한 총합을 100으로 나눈 지수)가 1.2 이상인 경우; (ⅲ) 닭에서 낮은 병원성인 H5 또는 H7형의 경우 HA 단백질 분절 부위의 아미노산 서열이 고병원성과 비슷하다고 판정되는 경우를 의미한다.In this specification, the term'high pathogenic influenza A virus' (i) 4-8 weeks old susceptible chickens inoculated into 8 chickens within 10 days of 6 or more deaths (75%); (Ii) Intravenous pathogenicity (IVPI), 10 to 4-8 weeks old susceptible chickens were injected intravenously with virus, and the clinical symptoms and mortality of the chickens were checked every 24 hours for 10 days, respiratory symptoms, depression , Diarrhea, blueness of the skin or crest, swelling of the head, and severity of neurological symptoms, and the sum of each symptom multiplied by the symptom number divided by 100) is 1.2 or more; (Iv) In the case of H5 or H7, which is low pathogenicity in chicken, it means that the amino acid sequence of the HA protein segment site is judged to be similar to high pathogenicity.
본 명세서에서 용어 '저병원성 인플루엔자 A 바이러스'는 고병원성 인플루엔자 A 바이러스보다, (ⅰ) 4-8주령 감수성 닭 8수에 접종하여 10일 이내에 2수 이하(25%) 폐사할 경우; (ⅱ) 정맥내 병원성 지수가 1.2 미만인 경우; (ⅲ) 닭에서 낮은 병원성인 H5 또는 H7형의 경우 HA 단백질 분절 부위의 아미노산 서열이 고병원성과 상이하다고 판정되는 경우를 의미한다.In the present specification, the term'low pathogenic influenza A virus' is higher than pathogenic influenza A virus, (i) 4-8 weeks old susceptible chickens, inoculated into 8 chickens within 2 days or less within 2 days (25%); (Ii) the intravenous pathogenicity index is less than 1.2; (I) In the case of H5 or H7, which is low pathogenicity in chicken, it means that the amino acid sequence of the HA protein segment site is determined to be different from the high pathogenicity.
본 명세서에서 용어 'H5N8형 인플루엔자 A 바이러스'는 인플루엔자 A 바이러스의 표면 단백질인 HA 단백질의 항원 특성이 H5형이고, NA 단백질의 항원 특성이 N8형인 인플루엔자 A 바이러스를 의미한다.In the present specification, the term'H5N8 influenza A virus' refers to an influenza A virus in which the antigen characteristic of the HA protein, which is the surface protein of the influenza A virus, is H5, and the antigen characteristic of the NA protein is N8.
본 발명의 H5N8형 재조합 인플루엔자 A 바이러스의 제조방법을 단계별로 설명한다.The method for producing the H5N8 recombinant influenza A virus of the present invention will be described step by step.
단계(a): 고병원성 인플루엔자 A 바이러스의 HA 및 NA를 각각 포함하는 재조합 플라스미드의 제조Step (a): Preparation of a recombinant plasmid comprising HA and NA of the highly pathogenic influenza A virus, respectively
먼저, 서열번호 1의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin) 및 서열번호 2의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조한다.First, the recombinant plasmid was cloned into a vector by cloning H5N8-type highly pathogenic influenza A virus derived from the nucleotide sequence of SEQ ID NO: 1 (hemagglutinin) and H5N8-type highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 2 into a vector, respectively. To manufacture.
본 명세서에서 용어 '뉴클레오타이드 서열'은 상기 언급된 서열 이외에 상기 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 보다 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성을 나타내는 뉴클레오타이드 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv. Appl. Math. 2:482(1981); Needleman and Wunsch, J. Mol. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) and Pearson et al., Meth. Mol. Biol. 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403-10(1990))은 NCBI (National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn and tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLAST는 ncbi 웹사이트의 BLAST 페이지를 통하여 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 ncbi 웹사이트의 BLAST help 페이지에서 확인할 수 있다.In the present specification, the term'nucleotide sequence' is interpreted to include a nucleotide sequence exhibiting substantial identity to the nucleotide sequence in addition to the above-mentioned sequence. The substantial identity above, when the nucleotide sequence of the present invention is aligned with any other sequence to the maximal correspondence, and the aligned sequence is analyzed using an algorithm commonly used in the art, at least 80% of phase Refers to a nucleotide sequence that exhibits homology, more preferably at least 90% homology, and most preferably at least 95% homology. Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment can be found in Smith and Waterman, Adv. Appl. Math. 2:482 (1981) ; Needleman and Wunsch, J. Mol. Bio. 48:443 (1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31 (1988); Higgins and Sharp, Gene 73:237-44 (1988); Higgins and Sharp, CABIOS 5:151-3 (1989); Corpet et al. , Nuc. Acids Res. 16:10881-90 (1988); Huang et al. , Comp. Appl. BioSci. 8:155-65 (1992) and Pearson et al. , Meth. Mol. Biol. 24:307-31 (1994). NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al. , J. Mol. Biol. 215:403-10 (1990)) is accessible from the National Center for Biological Information (NCBI), etc. It can be used in conjunction with sequence analysis programs such as blastx, tblastn and tblastx. BLAST can be accessed through the BLAST page of the ncbi website. The sequence homology comparison method using this program can be found on the BLAST help page of the ncbi website.
상기 단계 (a)의 재조합 플라스미드는 H5N8형 고병원성 인플루엔자 A 바이러스 유래의 서열번호 1의 뉴클레오타이드 서열로 이루어진 HA 및 서열번호 2의 뉴클레오타이드 서열로 이루어진 NA를 포함한다.The recombinant plasmid of step (a) comprises HA consisting of the nucleotide sequence of SEQ ID NO: 1 from H5N8 highly pathogenic influenza A virus and NA consisting of the nucleotide sequence of SEQ ID NO: 2.
본 발명의 일 구현예에 따르면, 상기 H5N8형 고병원성 인플루엔자 A 바이러스는 clade 2.3.4.4B에 속하는 A/chicken/Korea/Gimje2/2017(H5N8)이다.According to an embodiment of the present invention, the H5N8 type highly pathogenic influenza A virus is A/chicken/Korea/Gimje2/2017 (H5N8) belonging to clade 2.3.4.4B.
인플루엔자 바이러스의 명명법[아형/기원숙주/분리지역/분리순번/분리년도(HA형, NA형)]에 따라, 상기 A/chicken/Korea/Gimje2/2017(H5N8)는 인플루엔자 A 바이러스로 닭을 숙주로 하며, 대한민국 김제에서 2017년에 분리된 바이러스로 H5 및 N8의 항원형을 갖는 것을 의미한다.A/chicken/Korea/Gimje2/2017(H5N8) host chickens with influenza A virus according to the nomenclature of influenza virus [subtype/origin host/separation region/separation sequence/separation year (type HA, NA)] It is a virus isolated in 2017 from Gimje, South Korea, which means that it has an antigen type of H5 and N8.
본 명세서에서 "clade"는 H5형 인플루엔자의 HA 유전자의 계통수적 특징(phylogenetic characterization) 및 서열 상동성에 기초하여 H5형 인플루엔자의 그룹을 분류하는 기준이 되는 것으로, 각 clade는 WHO/OIE/FAO의 전문가 그룹에 의하여 정의된다. In the present specification, "clade" is a standard for classifying a group of H5 influenza based on phylogenetic characterization and sequence homology of the HA gene of H5 influenza, and each clade is an expert of WHO/OIE/FAO Defined by groups.
상기 서열번호 1의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 HA는 고병원성 유발 유전자가 결실된 HA이다.The H5N8-type highly pathogenic influenza A virus-derived HA consisting of the nucleotide sequence of SEQ ID NO: 1 is HA in which a high-pathogenicity gene is deleted.
본 발명의 일 구현예에 따르면, 상기 H5N8형 고병원성 인플루엔자 A 바이러스 유래의 HA는 HA를 구성하는 HA1의 카르복시 말단 부위에 위치하는 Lys-Arg-Arg-Lys(KRRK)가 결실된 HA이다.According to an embodiment of the present invention, the HA derived from the H5N8 type highly pathogenic influenza A virus is HA in which Lys-Arg-Arg-Lys (KRRK) deleted at the carboxy terminal site of HA1 constituting HA.
인플루엔자 A 바이러스의 HA는 표면 당단백질로, 인플루엔자 A 바이러스가 세포 내로 도입되는 경우 세포 표면의 특이적 수용체와 상호작용을 하는 역할을 한다. 상기 HA는 HA1 및 HA2로 서브유닛으로 구성되며, 상기 HA1의 카르복실 말단 부위에 인플루엔자 A 바이러스의 고병원성을 유발하는 아미노산 서열(Arg-Arg-Arg-Lys-Lys, RRRKK)이 존재한다.HA of influenza A virus is a surface glycoprotein, and when influenza A virus is introduced into a cell, it interacts with a specific receptor on the cell surface. The HA is composed of subunits of HA1 and HA2, and an amino acid sequence (Arg-Arg-Arg-Lys-Lys, RRRKK) that causes high pathogenicity of the influenza A virus is present at the carboxyl terminal site of HA1.
본 발명은 인플루엔자 A 바이러스의 HA1 부위의 고병원성 유발 부위를 결실시켜 고병원성 인플루엔자 A 바이러스를 약독화(attenuation)한다.The present invention attenuates the highly pathogenic influenza A virus by deleting the highly pathogenic inducing site of the HA1 region of the influenza A virus.
상기 서열번호 2의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 NA는 인플루엔자 A 바이러스 표면 당단백질로, 감염된 세포로부터 증식된 바이러스가 유리되어 새로운 세포를 감염시킬 수 있도록 숙주세포의 수용체와 바이러스 입자간의 결합을 끊어주는 역할을 한다.The NA derived from H5N8-type highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 2 is a surface glycoprotein of influenza A virus, between the receptor of the host cell and the virus particle so that the virus propagated from the infected cell is free to infect new cells. It serves to break the bond.
상기 H5N8형 고병원성 인플루엔자 A 바이러스 유래의 서열번호 1의 뉴클레오타이드 서열로 이루어진 HA 및 서열번호 2의 뉴클레오타이드 서열로 이루어진 NA를 벡터에 클로닝하여 재조합 플라스미드를 제조한다.A recombinant plasmid is prepared by cloning a HA consisting of the nucleotide sequence of SEQ ID NO: 1 derived from the H5N8-type highly pathogenic influenza A virus and a nucleotide sequence of SEQ ID NO: 2 into a vector.
본 명세서에서 용어 '벡터'는 벡터의 전사에 제공되는 추가단편에 작동가능하게 연결된 관심의 폴리펩티드를 암호화하는 단편으로 구성되는 선형 또는 원형의 DNA 분자이다. 그와 같은 추가단편은 프로모터 및 종료암호 서열을 포함한다. 벡터는 하나 이상의 복제 개시점, 하나 이상의 선택마커 등을 또한 포함한다. 벡터는 일반적으로 플라스미드 또는 바이러스 DNA로부터 유도되거나, 또는 둘 다의 요소를 함유한다.The term'vector' herein is a linear or circular DNA molecule composed of fragments encoding a polypeptide of interest operably linked to additional fragments provided for transcription of the vector. Such additional fragments include promoter and termination code sequences. The vector also includes one or more origins of replication, one or more selection markers, and the like. Vectors are generally derived from plasmid or viral DNA, or contain elements of both.
본 발명의 일 구현예에 따르면, 상기 벡터는 v2pHW 벡터이다.According to one embodiment of the invention, the vector is a v2pHW vector.
상기 v2pHW 벡터(대한민국 등록특허 제10-1323582호)는 pHW2000 벡터 (Hoffmann E et al. Proc Natl Acad Sci USA 2000 23;97(11):6108-13)의 인간 PolⅠ 프로모터를 Vero 세포(원숭이 유래) 유래의 PolⅠ 프로모터로 치환한 벡터이다.The v2pHW vector (Republic of Korea Patent No. 10-1323582) is a Vero cell (monkey-derived) of the human PolI promoter of the pHW2000 vector (Hoffmann E et al. Proc Natl Acad Sci USA 2000 23;97(11):6108-13). It is a vector substituted with the derived PolI promoter.
본 발명의 일 구현예에 따르면, 상기 재조합 플라스미드는 HA를 포함하는 제1재조합 플라스미드 및 NA를 포함하는 제2재조합 플라스미드로 구성된다.According to one embodiment of the invention, the recombinant plasmid consists of a first recombination plasmid comprising HA and a second recombination plasmid comprising NA.
단계 (b): 저병원성 인플루엔자 A 바이러스의 PB2, PB1, PA, NP, M 및 NS를 각각 포함하는 재조합 플라스미드의 제조Step (b): Preparation of a recombinant plasmid comprising PB2, PB1, PA, NP, M and NS of low pathogenic influenza A virus, respectively
다음, 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2, PB1, PA, NP, M 및 NS를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조한다.Next, a recombinant plasmid was prepared by cloning the PB2, PB1, PA, NP, M, and NS derived from the low pathogenic influenza A virus, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8, into vectors, respectively.
상기 단계 (b)의 재조합 플라스미드는 저병원성 인플루엔자 A 바이러스 유래의 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 PB2, PB1, PA, NP, M 및 NS를 각각 포함한다.The recombinant plasmid of step (b) includes PB2, PB1, PA, NP, M and NS, respectively, consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 derived from the low pathogenic influenza A virus.
본 발명의 일 구현예에 있어서, 상기 저병원성 인플루엔자 A 바이러스는 A/PR/8/34(H1N1)이다.In one embodiment of the invention, the low pathogenic influenza A virus is A/PR/8/34 (H1N1).
상기 저병원성 인플루엔자 A 바이러스의 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2, PB1, PA, NP, M 및 NS를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조한다.Recombinant plasmids were prepared by cloning PB2, PB1, PA, NP, M, and NS derived from the low pathogenic influenza A virus, respectively, consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 of the low pathogenic influenza A virus into vectors.
본 발명의 일 구현예에 따르면, 상기 재조합 플라스미드는 PB2를 포함하는 제3재조합 플라스미드, PB1을 포함하는 제4재조합 플라스미드, PA를 포함하는 제5재조합 플라스미드, NP를 포함하는 제6재조합 플라스미드, M을 포함하는 제7재조합 플라스미드 및 NS를 포함하는 제8재조합 플라스미드로 구성된다.According to one embodiment of the invention, the recombinant plasmid is a third recombination plasmid comprising PB2, a fourth recombination plasmid comprising PB1, a fifth recombination plasmid comprising PA, a sixth recombination plasmid comprising NP, M It is composed of a seventh recombination plasmid comprising and an eighth recombination plasmid comprising NS.
단계 (c): 패키징 세포로의 트랜스펙션Step (c): Transfection into packaging cells
다음, 상기 단계 (a) 및 (b)의 제1 내지 제8재조합 플라스미드를 패키징 세포에 트랜스펙션한다.Next, the first to eighth recombination plasmids of steps (a) and (b) are transfected into packaging cells.
본 명세서에서 용어 '패키징 세포'는 비바이러스성 트랜스펙션 방법을 통해 재조합 바이러스를 생산할 수 있는 세포를 의미한다. 예를 들어, 패키징 세포는 트랜스펙션된 제1 내지 제8재조합 플라스미드로부터 발현된 HA, NA, PB2, PB1, PA, NP, M 및 NS 단백질이 어셈블리(assembly)된 유전자 재조합의 H5N8형 인플루엔자 A 바이러스를 생산할 수 있다.As used herein, the term'packaging cell' refers to a cell capable of producing a recombinant virus through a non-viral transfection method. For example, packaging cells are H5N8 type influenza A of genetic recombination in which HA, NA, PB2, PB1, PA, NP, M and NS proteins expressed from transfected first to eighth recombination plasmids are assembled. It can produce viruses.
본 발명의 일 구현예에 따르면, 상기 패키징 세포는 293T, MDCK, Vero, DF1, PK15, 및 ST1 세포로 구성된 군으로부터 선택되는 하나 이상의 세포이다.According to one embodiment of the invention, the packaging cells are one or more cells selected from the group consisting of 293T, MDCK, Vero, DF1, PK15, and ST1 cells.
본 발명의 구체적인 구현예에 따르면, 상기 패키징 세포는 293T 세포이다.According to a specific embodiment of the invention, the packaging cells are 293T cells.
단계 (d): H5N8형 재조합 인플루엔자 A 바이러스의 수득Step (d): Obtaining H5N8 type recombinant influenza A virus
마지막으로, 상기 패키징 세포의 배양 상층액으로부터 H5N8형 재조합 인플루엔자 A 바이러스를 수득한다.Finally, the H5N8 recombinant influenza A virus is obtained from the culture supernatant of the packaging cells.
본 발명의 다른 양태에 따르면, 본 발명은 (ⅰ) 서열번호 1의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin);According to another aspect of the invention, the present invention (i) H5N8 type high pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 1 virus derived HA (hemagglutinin);
(ⅱ) 서열번호 2의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase); 및(Ii) NA (neuraminidase) derived from H5N8 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 2; And
(iii) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)의, 8개 negative-sense ssRNA의 게놈을 포함하는 H5N8형 재조합 인플루엔자 A 바이러스[rgAIV_Gimje2(H5N8)]를 제공한다.(iii) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (PB2) derived from the low-pathogenic influenza A virus, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 A non-structural protein (H5N8) recombinant influenza A virus [rgAIV_Gimje2(H5N8)] containing the genome of eight negative-sense ssRNAs is provided.
본 발명의 H5N8형 재조합 인플루엔자 A 바이러스는 앞서 기재된 H5N8형 재조합 인플루엔자 A 바이러스의 제조방법의 내용과 거의 동일하므로, 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the H5N8-type recombinant influenza A virus of the present invention is almost the same as the contents of the method for preparing the H5N8-type recombinant influenza A virus described above, the contents common to the two are omitted to avoid excessive complexity of the present specification.
본 발명의 또 다른 양태에 따르면, 본 발명은 (ⅰ) 서열번호 1의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin); (ⅱ) 서열번호 2의 뉴클레오타이드 서열로 이루어진 H5N8형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase); 및 (iii) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)의 8개 negative-sense ssRNA의 게놈을 포함하는, H5N8형 재조합 인플루엔자 A 바이러스를 포함하는 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물을 제공한다.According to another aspect of the invention, the present invention (i) H5N8 type highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 1 HA (hemagglutinin); (Ii) NA (neuraminidase) derived from H5N8 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 2; And (iii) low pathogenic influenza A virus-derived PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein) and NS, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 Provided is a vaccine composition against H5 serotype influenza A virus, including the H5N8 type recombinant influenza A virus, comprising the genome of eight negative-sense ssRNAs (non-structural proteins).
본 발명의 일 구현예에 따르면, 상기 H5 혈청형 인플루엔자 A 바이러스는 clade 2.3.4.4B에 속하는 H5N8형 인플루엔자 A 바이러스이다.According to an embodiment of the present invention, the H5 serotype influenza A virus is an H5N8 influenza A virus belonging to clade 2.3.4.4B.
본 명세서에서 용어 '백신 조성물'은 대상(subject)의 면역 반응에 긍정적으로 영향을 주는 조성물을 의미한다. 상기 백신 조성물은 대상(subject)에게 세포성 면역 반응, 예를 들어 CTL(Cytotoxic T Lymphocyte) 또는 체액성 면역 반응, 예를 들어 항체에 의해 유발되는 향상된 전신적 또는 국소적 면역 반응을 제공한다. 상기 백신 조성물의 대상은 조류, 사람, 개, 말, 돼지, 고양이 등이 있으나, 이에 제한되는 것은 아니다.The term'vaccine composition' as used herein refers to a composition that positively affects the immune response of a subject. The vaccine composition provides the subject with a cellular immune response, such as a Cytotoxic T Lymphocyte (CTL) or humoral immune response, such as an enhanced systemic or local immune response caused by antibodies. The target of the vaccine composition is a bird, a person, a dog, a horse, a pig, a cat, and the like, but is not limited thereto.
본 발명의 백신 조성물은 약제학적 유효량의 본 발명의 H5N8형 재조합 인플루엔자 A 바이러스를 포함한다. 상기 백신 조성물은 약제학적으로 허용되는 담체를 추가적으로 포함할 수 있다. 본 명세서의 용어 "약제학적 유효량"은 바이러스에 의해 유발되는 질병 또는 병리학적 증상에 대한 예방, 경감 또는 치료적 효능을 달성하는 데 충분한 양을 의미한다. 본 발명의 조성물에 포함될 수 있는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 제한되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다. 본 발명인 백신 조성물은 기타 구성성분, 예컨대 안정화제, 부형제, 기타 약학적 허용 화합물 또는 임의의 기타 항원 또는 그의 일부를 포함할 수 있다. 백신은 냉동 건조된 제제 또는 현탁액의 형태로서 존재할 수 있으며, 이들은 모두 백신 생성 분야에 일반적인 것들이다.The vaccine composition of the present invention comprises a pharmaceutically effective amount of the H5N8 recombinant influenza A virus of the present invention. The vaccine composition may further include a pharmaceutically acceptable carrier. The term "pharmaceutically effective amount" as used herein refers to an amount sufficient to achieve prophylactic, alleviating or therapeutic efficacy against a disease or pathological condition caused by a virus. Pharmaceutically acceptable carriers that may be included in the compositions of the present invention are those commonly used in formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, silicic acid Calcium, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, but is not limited thereto. It is not. The composition of the present invention may further include a lubricant, a wetting agent, a sweetener, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995). The vaccine composition of the present invention may include other components, such as stabilizers, excipients, other pharmaceutically acceptable compounds or any other antigens or parts thereof. Vaccines can exist in the form of freeze-dried preparations or suspensions, all of which are common in the field of vaccine production.
본 발명인 백신 조성물의 투여 형태는 장용피 사용 단위체의 형태, 복강내, 근육내 또는 피하 투여용 접종, 에어로졸 분무, 경구 또는 비강내 용도일 수 있다. 음용수 또는 식용 펠렛으로 투여하는 것도 가능하다. 본 발명의 백신 조성물은 이종 항원 및 사이토카인과 같은 면역 조절 분자를 동일한 재조합체내에서 발현시켜 단일 백신으로 전달할 수도 있으며, 상이한 외래 유전자 또는 면역증강제를 보유하는 2 이상의 바이러스 벡터를 포함하는 "칵테일"로서 투여할 수 있다. 본 명세서의 용어, "면역증강제(adjuvant)"는 일반적으로 항원에 대한 체액 또는 세포 면역 반응을 증가시키는 임의의 물질(예컨대, alum, 프로인트 완전 어주번트, 프로인트 불완전 어주번트, LPS, poly IC, poly AU 등)을 의미한다.The dosage form of the vaccine composition of the present invention may be in the form of an enteric-coated unit, inoculation for intraperitoneal, intramuscular or subcutaneous administration, aerosol spray, oral or intranasal use. It is also possible to administer with drinking water or edible pellets. The vaccine composition of the present invention can also be expressed in a single vaccine by expressing heterologous antigens and immunomodulatory molecules such as cytokines in the same recombinant, and as a “cocktail” comprising two or more viral vectors carrying different foreign genes or adjuvants. Can be administered. As used herein, the term “adjuvant” is generally any substance that increases the humoral or cellular immune response to an antigen (eg, alum, Freund's complete adjuvant, Freund's incomplete adjuvant, LPS, poly IC) , poly AU, etc.).
본 발명의 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 H5N6형 재조합 인플루엔자 A 바이러스의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for preparing H5N6 recombinant influenza A virus comprising the following steps:
(a) 서열번호 9의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin) 및 서열번호 10의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조하는 단계;(a) A recombinant plasmid by cloning a H5N6 type highly pathogenic influenza A virus-derived HA (hemagglutinin) consisting of the nucleotide sequence of SEQ ID NO: 9 and a NA (neuraminidase) derived from a H5N6 type highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 10 into a vector, respectively. Preparing a;
(b) 서열번호 3 내지 8의 뉴클레오타이드 서열로 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조하는 단계;(b) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (non-matrix protein) derived from the low-pathogenic influenza A virus consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 -structuring a recombinant plasmid by cloning each structural vector) into a vector;
(c) 단계 (a) 및 (b)의 재조합 플라스미드를 패키징 세포(packaging cell)에 트랜스펙션(transfection)하는 단계; 및(c) transfecting the recombinant plasmids of steps (a) and (b) into packaging cells; And
(d) 패키징 세포의 배양 상층액으로부터 H5N6형 재조합 인플루엔자 A 바이러스를 수득하는 단계.(d) obtaining H5N6 recombinant influenza A virus from culture supernatant of packaging cells.
본 명세서에서 용어 'H5N6형 인플루엔자 A 바이러스'는 인플루엔자 A 바이러스의 표면 단백질인 HA 단백질의 항원 특성이 H5형이고, NA 단백질의 항원 특성이 N6형인 인플루엔자 A 바이러스를 의미한다.In the present specification, the term'H5N6 influenza A virus' refers to an influenza A virus in which the antigen characteristic of the HA protein, which is the surface protein of the influenza A virus, is H5 and the antigen characteristic of the NA protein is N6.
본 발명의 일 구현예에 따르면, 상기 H5N6형 고병원성 인플루엔자 A 바이러스는 clade 2.3.4.4B에 속하는 A/duck/Korea/H35/2017(H5N6)이다.According to an embodiment of the present invention, the H5N6 type highly pathogenic influenza A virus is A/duck/Korea/H35/2017 (H5N6) belonging to clade 2.3.4.4B.
인플루엔자 바이러스의 명명법[아형/기원숙주/분리지역/분리순번/분리년도(HA형, NA형)]에 따라, 상기 A/duck/Korea/H35/2017(H5N6)은 인플루엔자 A 바이러스이며 오리를 숙주로 하며, 대한민국에서 2017년에 분리된 바이러스로 H5 및 N6의 항원형을 갖는 것을 의미한다.A/duck/Korea/H35/2017 (H5N6) is an influenza A virus and hosts ducks according to the nomenclature of influenza virus [subtype/origin host/separation area/separation sequence/separation year (type HA, type NA)] It means that the virus isolated in 2017 in Korea has antigenic forms of H5 and N6.
상기 서열번호 9의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 HA는 고병원성 유발 유전자가 결실된 HA이다.The H5N6 highly pathogenic influenza A virus-derived HA consisting of the nucleotide sequence of SEQ ID NO: 9 is HA in which a high pathogenicity-inducing gene is deleted.
본 발명의 일 구현예에 따르면, 상기 H5N6형 고병원성 인플루엔자 A 바이러스 유래의 HA는 HA를 구성하는 HA1의 카르복시 말단 부위에 위치하는 Lys-Arg-Arg-Lys(KRRK)가 결실된 HA이다.According to an embodiment of the present invention, the HA derived from the H5N6 type highly pathogenic influenza A virus is HA in which Lys-Arg-Arg-Lys (KRRK) deleted at the carboxy terminal site of HA1 constituting HA.
본 발명의 다른 양태에 따르면, 본 발명은 (ⅰ) 서열번호 9의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin);According to another aspect of the invention, the present invention (i) H5N6 type high pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 9 derived from HA (hemagglutinin);
(ⅱ) 서열번호 10의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase); 및(Ii) NA (neuraminidase) derived from H5N6 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 10; And
(iii) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)의, 8개 negative-sense ssRNA의 게놈을 포함하는 H5N6형 재조합 인플루엔자 A 바이러스[rgAIV_H35(H5N6)]를 제공한다.(iii) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (PB2) derived from the low-pathogenic influenza A virus, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 A non-structural protein, H5N6-type recombinant influenza A virus [rgAIV_H35(H5N6)], which contains the genome of eight negative-sense ssRNAs, is provided.
본 발명의 또 다른 양태에 따르면, 본 발명은 (ⅰ) 서열번호 9의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin); (ⅱ) 서열번호 10의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase); 및 (iii) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)의 8개 negative-sense ssRNA의 게놈을 포함하는, H5N6형 재조합 인플루엔자 A 바이러스를 포함하는 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물을 제공한다.According to another aspect of the present invention, the present invention (i) H5N6 type highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 9 HA (hemagglutinin); (Ii) NA (neuraminidase) derived from H5N6 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 10; And (iii) low pathogenic influenza A virus-derived PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein) and NS, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 Provided is a vaccine composition against H5 serotype influenza A virus, including the recombinant H5N6 influenza A virus, which contains the genome of eight negative-sense ssRNAs (non-structural proteins).
본 발명의 일 구현예에 따르면, 상기 H5 혈청형 인플루엔자 A 바이러스는 clade 2.3.4.4B에 속하는 H5N6형 인플루엔자 A 바이러스이다.According to an embodiment of the present invention, the H5 serotype influenza A virus is H5N6 influenza A virus belonging to clade 2.3.4.4B.
본 발명의 H5N6형 재조합 인플루엔자 A 바이러스의 제조방법, H5N6형 재조합 인플루엔자 A 바이러스 및 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물은 앞서 기재된 H5N8형 재조합 인플루엔자 A 바이러스의 내용과 거의 동일하므로, 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The method for preparing the recombinant H5N6 influenza A virus of the present invention, the vaccine composition for the H5N6 recombinant influenza A virus and the H5 serotype influenza A virus, is substantially the same as the contents of the H5N8 recombinant influenza A virus described above, and thus is common to both. The contents are omitted to avoid excessive complexity of the present specification.
본 발명은 재조합 인플루엔자 A 바이러스, 이의 제조방법 및 이를 포함하는 clade 2.3.4.4B에 속하는 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물을 제공한다. 본 발명은 고병원성 조류 인플루엔자 바이러스에 방어효과를 나타내는 유전자 재조합 백신을 제조함으로써, 해외로부터 유입되거나 국내에서 발생하는 H5 혈청형 고병원성 조류 인플루엔자 발생에 대비한 방어효과를 통해 질병 방제에 기여할 수 있다. 또한, 상기 백신 조성물은 HA 분절 부위의 고병원성 유전자가 제거되어 병원성이 약하고 안전성이 우수할 뿐만 아니라, 종란(egg) 내 증식성 및 닭에서의 방어능이 우수하다.The present invention provides a vaccine composition for a recombinant influenza A virus, a method for manufacturing the same, and an H5 serotype influenza A virus belonging to clade 2.3.4.4B including the same. The present invention may contribute to disease control through a protective effect against a H5 serotype highly pathogenic avian influenza outbreak, which is introduced from overseas or occurs in Korea, by preparing a genetic recombinant vaccine showing a protective effect on a highly pathogenic avian influenza virus. In addition, the vaccine composition is excellent in pathogenicity and safety, as well as the high pathogenicity of the HA segment is removed, and is excellent in proliferation in eggs (egg) and defense in chickens.
도 1a는 A/chicken/Korea/Gimje2/2017(H5N8)(좌측) 및 rgAIV_Gimje2(H5N8) 백신주(우측)을 접종한 계태아의 접종 72시간 후 이미지를 나타낸다.
도 1b는 A/duck/Korea/H35/2017(H5N6)(좌측) 및 rgAIV_H35(H5N6) 백신주(우측)을 접종한 계태아의 접종 72시간 후 이미지를 나타낸다.
도 2a는 rgAIV_Gimje2(H5N8) 백신주를 접종(vaccination) 또는 접종하지 않은 SPF 닭의 A/chicken/Korea/Gimje2/2017(H5N8)의 공격접종 후 14일 동안의 생존 백분율을 나타낸다.
도 2b는 rgAIV_H35(H5N6) 백신주를 접종(vaccination) 또는 접종하지 않은 SPF 닭의 A/duck/Korea/H35/2017(H5N6)의 공격접종 후 14일 동안의 생존 백분율을 나타낸다.
도 3a는 rgAIV_Gimje2(H5N8) 백신주 접종 후 15주 동안의 HI 역가를 나타낸다.
도 3b는 rgAIV_H35(H5N6) 백신주 접종 후 15주 동안의 HI 역가를 나타낸다.1A shows images after 72 hours of inoculation of a fetus inoculated with A/chicken/Korea/Gimje2/2017 (H5N8) (left) and rgAIV_Gimje2 (H5N8) vaccine strains (right).
Figure 1b shows images after 72 hours of inoculation of a fetus inoculated with A/duck/Korea/H35/2017 (H5N6) (left) and rgAIV_H35 (H5N6) vaccine strain (right).
Figure 2a shows the percentage of survival for 14 days after challenge with A/chicken/Korea/Gimje2/2017 (H5N8) of SPF chickens vaccinated or not vaccinated with the rgAIV_Gimje2 (H5N8) vaccine strain.
Figure 2b shows the percentage of survival for 14 days after the challenge of A/duck/Korea/H35/2017 (H5N6) of SPF chickens vaccinated or vaccinated with the rgAIV_H35 (H5N6) vaccine strain.
3A shows HI titers for 15 weeks after vaccination with rgAIV_Gimje2 (H5N8).
3B shows HI titers for 15 weeks after vaccination with rgAIV_H35 (H5N6) vaccine.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.Throughout this specification, "%" used to indicate the concentration of a specific substance, unless otherwise specified, solids/solids (weight/weight)%, solids/liquids (weight/volume)%, and The liquid/liquid is (volume/volume) %.
실시예Example
실시예 1. 약독화 H5N8형 재조합 인플루엔자 A 바이러스 백신 제조Example 1 Preparation of Attenuated H5N8 Recombinant Influenza A Virus Vaccine
1-1. H5N8형 고병원성 인플루엔자 A 바이러스의 HA 유전자(H5) 제거1-1. Removal of HA gene (H5) of H5N8 highly pathogenic influenza A virus
RNA extration kit(iNtRON, 한국)를 사용하여 A/chicken/Korea/Gimje2/2017(H5N8) 인플루엔자 바이러스로부터 RNA를 추출한다. HA 부분의 분절부위의 고병원성 유전자(KRRK)를 제거하기 위해 하기 표 1에 나타낸 중첩되는 프라이머들(overlapping primers)을 사용하여 2개의 분절을 증폭한 후 이 두 개의 분절을 이용하여 PCR을 통해 HA 유전자를 증폭(PCR 조건: 94℃ 30초, 57℃ 1분, 72℃ 4분/35회)하였으며, 하기 실험의 재료로 사용하였다.RNA is extracted from the A/chicken/Korea/Gimje2/2017(H5N8) influenza virus using an RNA extration kit (iNtRON, Korea). To remove the highly pathogenic gene (KRRK) at the segment of the HA part, amplify two segments using overlapping primers shown in Table 1 below, and then use these two segments to amplify the HA gene through PCR Was amplified (PCR conditions: 94°C 30 seconds, 57°
1-2. H5N8형 고병원성 인플루엔자 A 바이러스의 유전자 NA(N8) 증폭1-2. Gene NA (N8) amplification of H5N8 highly pathogenic influenza A virus
상기 실시예 1-1와 동일한 방법으로 실험을 수행하여 cDNA를 만든 후, NA (N8)를 하기 표 2에 나타낸 말단의 프라이머들을 이용하여 PCR을 통해 증폭(PCR 조건: 94℃ 30초, 57℃ 1분, 72℃ 2분/35회)하였으며, 하기 실험의 재료로 사용하였다.After performing the experiment in the same manner as in Example 1-1 to make cDNA, NA (N8) was amplified through PCR using primers at the ends shown in Table 2 below (PCR conditions: 94°C 30 seconds, 57°C) 1 minute, 72°
1-3. H5N8형 고병원성 인플루엔자 A 바이러스의 벡터 클로닝1-3. Vector cloning of H5N8 highly pathogenic influenza A virus
상기 실시예 1-1 및 1-2에서 PCR를 이용하여 증폭한 유전자 HA 및 NA를 v2pHW(KCDC)에 In-Fusion HD Cloning kit(Takara, 미국)로 접합시킨 후 대장균(E. coli, stella competent cells)를 이용하여 형질전환 시킨 후 LB broth(바이오 사이언스, 한국)를 이용하여 37℃ 회전배양기(shaking incubator)에 18시간 배양증폭한 후 Plasmid DNA purification Kit(iNtRON, 한국)로 정제하여 HA 및 NA 유전자를 얻었다.Genes HA and NA amplified using PCR in Examples 1-1 and 1-2 were conjugated to v2pHW (KCDC) with an In-Fusion HD Cloning kit (Takara, USA), and then E. coli, stella competent cells) and transformed with LB broth (Bio Science, Korea) for 18 hours in a 37°C shaking incubator, purified with Plasmid DNA purification Kit (iNtRON, Korea), and HA and NA Genes were obtained.
1-4. 저병원성 인프루엔자 A/PR/8/34(H1N1) 주의 벡터 클로닝1-4. Vector cloning of low pathogenic influenza A/PR/8/34 (H1N1)
A/PR/8/34(H1N1) 바이러스(ATCC, 미국)에서 상기 실시예 1-1 내지 1-3와 동일한 방법으로 실험을 수행하여 PB2, PB1, PA, NP, M, NS 유전자들을 하기 표 3에 나타난 특정 프라이머들을 이용하여 PCR을 통해 증폭(PCR 조건: 94℃ 30초, 57℃ 1분, 72℃ 4분/35회)한 후, v2pHW(KCDC)에 In-Fusion HD Cloning kit(Takara, 미국)로 접합시킨 후 대장균(E. coli, stella competent cells)를 이용하여 형질전환한 후 LB broth(바이오사이언스, 한국)를 이용하여 37℃ 회전배양기(shaking incubator)에 18시간 배양증폭한 후 Plasmid DNA purification Kit(iNtRON, 한국)로 정제하여 PB2, PB1, PA, NP, M 및 NS 유전자를 얻었다.A/PR/8/34 (H1N1) virus (ATCC, USA) was subjected to the experiment in the same manner as Examples 1-1 to 1-3 above to list the PB2, PB1, PA, NP, M, NS genes. After amplification through PCR using the specific primers shown in 3 (PCR conditions: 94°C 30 seconds, 57°
1-5. 약독화 H5N8형 재조합 인플루엔자 A 바이러스 제조1-5. Preparation of attenuated H5N8 type recombinant influenza A virus
상기 실시에 1-3 및 1-4에서 수득한 플라스미드(plasmid)를 293T 세포를 37℃, 5% CO2에 배양 후 각각의 플라스미드 0.5 ul씩 리포펙타민 LTX and Plus Reagent(Lipofectamin LTX and Plus Reagent, Invitrogen, 미국)으로 접종(transfection) 48시간 후 상층액을 10일령된 특정병원체부재(SPF, specific pathogen free) 부화란에 접종(105.0 EID50/0.1ml)하여 약독화된 재조합 H5N8 혈청형 바이러스 주(이하 rgAIV_Gimje2(H5N8)로 명명함)를 수득하였다(기탁기관: Animal and Plant Quarantine Agency, 기탁일 2018년 3월 28일).The plasmids obtained in 1-3 and 1-4 in the above embodiment were cultured in 293T cells at 37° C., 5% CO 2 , and 0.5 ul of each plasmid was used for Lipofectamine LTX and Plus Reagent (Lipofectamin LTX and Plus Reagent) , Invitrogen, USA) After 48 hours of inoculation (transfection), the supernatant was inoculated into 10 days old specific pathogen free (SPF) incubated eggs (10 5.0 EID 50 /0.1 ml) and attenuated recombinant H5N8 serotype Virus strain (hereinafter referred to as rgAIV_Gimje2 (H5N8)) was obtained (Depository: Animal and Plant Quarantine Agency, deposit date March 28, 2018).
실시예 2. 약독화 H5N6형 재조합 인플루엔자 A 바이러스 백신 제조Example 2. Preparation of attenuated H5N6 type recombinant influenza A virus vaccine
2-1. H5N6형 고병원성 인플루엔자 A 바이러스의 HA 유전자(H5) 제거2-1. Removal of HA gene (H5) of H5N6 highly pathogenic influenza A virus
RNA extration kit(iNtRON, 한국)를 사용하여 A/duck/Korea/H35/2017(H5N6) 인플루엔자 바이러스로부터 RNA를 추출한다. HA 부분의 분절부위의 고병원성 유전자(KRRK)를 제거하기 위해 상기 표 1에 나타낸 중첩되는 프라이머들(overlapping primers)을 사용하여 2개의 분절을 증폭한 후 이 두 개의 분절을 이용하여 PCR을 통해 HA 유전자를 증폭(PCR 조건: 94℃ 30초, 57℃ 1분, 72℃ 4분/35회)하였으며, 하기 실험의 재료로 사용하였다.RNA is extracted from the A/duck/Korea/H35/2017 (H5N6) influenza virus using an RNA extration kit (iNtRON, Korea). To remove the highly pathogenic gene (KRRK) of the segment of the HA part, amplify two segments using overlapping primers shown in Table 1 above, and then use these two segments to amplify the HA gene through PCR Was amplified (PCR conditions: 94°C 30 seconds, 57°
2-2. H5N8형 고병원성 인플루엔자 A 바이러스의 유전자 NA(N6) 증폭2-2. Gene NA (N6) amplification of H5N8 highly pathogenic influenza A virus
상기 실시예 2-1와 동일한 방법으로 실험을 수행하여 cDNA를 만든 후, NA (N6)를 하기 표 4에 나타낸 말단의 프라이머들을 이용하여 PCR을 통해 증폭(PCR 조건: 94℃ 30초, 57℃ 1분, 72℃ 2분/ 35회)하였으며, 하기 실험의 재료로 사용하였다.After performing the experiment in the same manner as in Example 2-1 to make cDNA, NA (N6) was amplified through PCR using primers at the ends shown in Table 4 below (PCR conditions: 94°C 30 seconds, 57°C) 1 minute, 72°
2-3. H5N6형 고병원성 인플루엔자 A 바이러스의 벡터 클로닝2-3. Vector cloning of H5N6 highly pathogenic influenza A virus
상기 실시예 2-1 및 2-2에서 PCR를 이용하여 증폭한 유전자 HA 및 NA를 v2pHW(KCDC)에 In-Fusion HD Cloning kit(Takara, 미국)로 접합시킨 후 대장균(E. coli, stella competent cells)를 이용하여 형질전환 시킨 후 LB broth(바이오 사이언스, 한국)를 이용하여 37℃ 회전배양기(shaking incubator)에 18시간 배양증폭한 후 Plasmid DNA purification Kit(iNtRON, 한국)로 정제하여 HA 및 NA 유전자를 얻었다.Genes HA and NA amplified using PCR in Examples 2-1 and 2-2 were conjugated to v2pHW (KCDC) with an In-Fusion HD Cloning kit (Takara, USA), and then E. coli, stella competent cells) and transformed with LB broth (Bio Science, Korea) for 18 hours in a 37°C shaking incubator, purified with Plasmid DNA purification Kit (iNtRON, Korea), and HA and NA Genes were obtained.
2-4. 저병원성 인프루엔자 A/PR/8/34(H1N1) 주의 벡터 클로닝2-4. Vector cloning of low pathogenic influenza A/PR/8/34 (H1N1)
A/PR/8/34 (H1N1) 바이러스(ATCC, 미국)에서 상기 실시예 2-1 내지 2-3와 동일한 방법으로 실험을 수행하여 PB2, PB1, PA, NP, M, NS 유전자들을 상기 표 3에 나타난 특정 프라이머들을 이용하여 PCR을 통해 증폭(PCR 조건: 94℃ 30초, 57℃ 1분, 72℃ 4분/35회)한 후, v2pHW(KCDC)에 In-Fusion HD Cloning kit(Takara, 미국)로 접합시킨 후 대장균(E. coli, stella competent cells)를 이용하여 형질전환한 후 LB broth(바이오사이언스, 한국)를 이용하여 37℃ 회전배양기(shaking incubator)에 18시간 배양증폭한 후 Plasmid DNA purification Kit(iNtRON, 한국)로 정제하여 PB2, PB1, PA, NP, M 및 NS 유전자를 얻었다.In the A/PR/8/34 (H1N1) virus (ATCC, USA), PB2, PB1, PA, NP, M, and NS genes were tested in the same manner as in Examples 2-1 to 2-3 above. After amplification through PCR using the specific primers shown in 3 (PCR conditions: 94°C 30 seconds, 57°
2-5. 약독화 H5N6형 재조합 인플루엔자 A 바이러스 제조2-5. Preparation of attenuated H5N6-type recombinant influenza A virus
상기 실시에 2-3 및 2-4에서 수득한 플라스미드(plasmid)를 293T 세포를 37℃, 5% CO2에 배양 후 각각의 플라스미드 0.5 ul씩 리포펙타민 LTX and Plus Reagent(Lipofectamin LTX and Plus Reagent, Invitrogen, 미국)으로 접종(transfection) 48시간 후 상층액을 10일령된 특정병원체부재(SPF, specific pathogen free) 부화란에 접종(105.0 EID50/0.1ml)하여 약독화된 재조합 H5N6 혈청형 바이러스 주(이하 rgAIV_H35(H5N6)로 명명함)를 수득하였다(기탁기관: Animal and Plant Quarantine Agency, 기탁일 2018년 3월 28일).The plasmids obtained in 2-3 and 2-4 in the above embodiment were cultured in 293T cells at 37° C., 5% CO 2 , and 0.5 ul of each plasmid was used for Lipofectamine LTX and Plus Reagent (Lipofectamin LTX and Plus Reagent) , Invitrogen, USA) After 48 hours of transfection, attenuated recombinant H5N6 serotypes were inoculated by inoculation (10 5.0 EID 50 /0.1ml) into 10 days old specific pathogen free (SPF) embryonated eggs. Virus strain (hereinafter referred to as rgAIV_H35 (H5N6)) was obtained (Depository: Animal and Plant Quarantine Agency, deposit date March 28, 2018).
실시예 3. 사독백신의 제조방법Example 3. Preparation method of Zadok vaccine
상기 실시예 1 및 2에서 수득한 rgAIV_Gimje2(H5N8)주(기탁기관: Korea Veterinary Culture Collection, KVCC, 기탁일: 2018년 3월 28일, 기탁번호: VR1800010) 및 rgAIV_H35(H5N6)주(기탁기관: Korea Veterinary Culture Collection, KVCC, 기탁일: 2018년 3월 28일, 기탁번호: VR1800018)를 각각 100개의 10일령의 SPF 부화란에 접종 후 37℃ 배양기에서 72시간 배양한다. 72시간 배양된 부화란을 4℃에서 6시간 냉장 한 후 요수를 수득한다. 수득한 요수를 1/10로 농축한 후 농축한 바이러스를 0.01% 포르말린(formalin)으로 4℃에서 12시간 불활화 시킨다. RgAIV_Gimje2 (H5N8) stocks obtained from Examples 1 and 2 above (depository: Korea Veterinary Culture Collection, KVCC, deposit date: March 28, 2018, deposit number: VR1800010) and rgAIV_H35 (H5N6) stock (depository organization: Korea Veterinary Culture Collection, KVCC, Deposit Date: March 28, 2018, Deposit Number: VR1800018) were inoculated into 100 10-day-old SPF incubated eggs, respectively, and cultured in a 37°C incubator for 72 hours. After hatching the incubated eggs cultured for 72 hours at 4°C for 6 hours, urine is obtained. After concentrating the obtained urine to 1/10, the concentrated virus is inactivated with 0.01% formalin at 4°C for 12 hours.
실험예Experimental Example
실험예 1. HA 분절부위의 고병원성 유전자 존재 제거 여부 검증Experimental Example 1. Verification of elimination of the presence of highly pathogenic genes in the HA segment
상기 실시예 1 및 2에서 수득한 rgAIV_Gimje2(H5N8) 및 rgAIV_H35(H5N6)의 HA 유전자 제거 여부를 검증하기 위하여 하기와 같이 실험을 수행하였다.In order to verify whether or not to remove the HA gene of rgAIV_Gimje2 (H5N8) and rgAIV_H35 (H5N6) obtained in Examples 1 and 2, an experiment was performed as follows.
1-1. 유전자 분석에 의한 검증1-1. Verification by genetic analysis
고병원성 조류 인플루엔자는 HA 단백질 분절부위에 고병원성 유전자 (RRRKK: AGA AGA AGA AAA AAG)가 있어 가금에게 전신 장기에 감염하여 치명적인 질병을 야기하기에 이에 대한 백신을 개발하기 위해서는 HA 단백질 분절 부위에 RRRKK가 제거된 약독화된 백신주를 개발하여야 한다.The highly pathogenic avian influenza has a high pathogenic gene (RRRKK: AGA AGA AGA AAA AAG) at the HA protein segment, so that RRRKK is removed at the HA protein segment to develop a vaccine against poultry systemic organ infection and fatal disease. An attenuated vaccine strain should be developed.
rgAIV_Gimje2(H5N8) 및 rgAIV_H35(H5N6) 백신주로부터 상기 실시예 1-1의 실험방법에 따라 HA 유전자를 PCR로 증폭하여 v2pHW 벡터에 클로닝한 후 Briddye Terminaor v3.1 Cycle Sequencing Kit((주)바이오닉스, 한국)를 이용한 Applied Biosystems 3730XL DNA Analyzer로 염기서열을 얻은 후 CLC 프로그램(미국)을 이용하여 고병원성 유전자 제거를 확인하였다.After amplifying the HA gene by PCR according to the experimental method of Example 1-1 from the rgAIV_Gimje2 (H5N8) and rgAIV_H35 (H5N6) vaccine strains, cloning them into a v2pHW vector, and then Briddye Terminaor v3.1 Cycle Sequencing Kit (Bionix, Korea) After obtaining the base sequence with Applied Biosystems 3730XL DNA Analyzer using the CLC program (USA) was confirmed to remove the high pathogenic gene.
실험결과, 하기 표 5 및 표 6에 나타난 바와 같이 rgAIV_Gimje2(H5N8) 및 rgAIV_H35(H5N6) 백신주에서 고병원성 유전자 KRRK가 제거되었음을 확인할 수 있었다.As a result of the experiment, as shown in Tables 5 and 6, it was confirmed that the highly pathogenic gene KRRK was removed from the rgAIV_Gimje2 (H5N8) and rgAIV_H35 (H5N6) vaccine strains.
1-2. 10일령의 부화란에 접종하여 검증1-2. Inoculation into 10-day-old incubation eggs and verification
고병원성 유전자 RRRKK를 가지고 있는 고병원성 조류 인플루엔자 바이러스를 10일령의 부화란에 접종하면 계태아가 사망함으로써 등불로 검란 시 혈관이 보이지 않는다.When a highly pathogenic avian influenza virus having the high pathogenic gene RRRKK is inoculated into a 10-day-old hatchery egg, the embryo is killed and the blood vessels are not visible during blacking by lanterns.
고병원성 조류 인플루엔자 바이러스와 상기 실시예 1 및 2에서 수득한 상기 약독화된 rgAIV_Gimje2(H5N8) 및 rgAIV_H35(H5N6) 백신주를 10일령의 부화란에 각각 접종하여 72시간 후에 등불을 이용하여 계태아의 상태를 검란하였다.A highly pathogenic avian influenza virus and the attenuated rgAIV_Gimje2 (H5N8) and rgAIV_H35 (H5N6) vaccine strains obtained in Examples 1 and 2 were inoculated into 10-day-old incubated eggs, respectively, and the status of fetal embryos was measured using lanterns after 72 hours. It was censored.
도 1a 및 도 1b에 나타난 바와 같이, 고병원성 조류 인플루엔자 바이러스를 접종받은 부화란은 등불로 검란하니 혈관이 거의 보이지 않았던 반면에, 약독화된 rgAIV_Gimje2(H5N8) 또는 rgAIV_H35(H5N6) 백신주를 접종한 부화란은 태아가 죽지 않아 선명한 혈관을 확인할 수 있었다.As shown in Figures 1a and 1b, the hatching eggs inoculated with the highly pathogenic avian influenza virus were blacked out by lanterns, and the blood vessels were hardly visible, whereas the hatched eggs inoculated with the attenuated rgAIV_Gimje2 (H5N8) or rgAIV_H35 (H5N6) vaccine strains Silver fetus did not die, it was possible to identify clear blood vessels.
실험예 2. 백신주의 안전성 및 면역성 검증Experimental Example 2. Safety and immunity verification of vaccine strains
상기 실시예 3에서 수득한 백신의 H5N8형 또는 H5N6형 고병원성 조류 인플루엔자 바이러스에 대한 안전성 및 면역성을 확인하기 위하여 SPF 닭을 사용하여 하기와 같이 실험을 수행하였다.To confirm the safety and immunity of the vaccine obtained in Example 3 against H5N8 type or H5N6 type highly pathogenic avian influenza virus, experiments were performed as follows using SPF chicken.
2-1. rgAIV_Gimje2(H5N8) 백신주의 안전성 실험2-1. Safety test of rgAIV_Gimje2(H5N8) vaccine strain
SPF 닭은 실제 목적동물로 사용하기 위해 개발된 백신이므로 H5N8형 고병원성 조류 인플루엔자 백신 효능 검정에 사용하였다. 10수의 6주령 SPF 닭의 이두근(biceps muscle)에 1 ml(500 ul/dose) rgAIV_Gimje2(H5N8) 조류 인플루엔자 백신 항원(109.0 EID50/0.1ml)을 접종하였다. 접종 2주 후 혈청을 수득하여 항체역가를 혈구응집억제반응(HI, hemagglutination inhibition)에 의해 검증하였다. 대조군으로 사용한 10마리의 SPF 닭은 생리식염수를 접종하여 효능 비교하였다.Since SPF chicken is a vaccine developed for use as an actual target animal, it was used for the H5N8 type highly pathogenic avian influenza vaccine efficacy assay. 10 ml of 6 week old SPF chickens were inoculated with 1 ml (500 ul/dose) rgAIV_Gimje2 (H5N8) avian influenza vaccine antigen (10 9.0 EID 50 /0.1 ml). After 2 weeks of inoculation, serum was obtained to verify antibody titer by hemagglutination inhibition (HI). The 10 SPF chickens used as controls were inoculated with physiological saline to compare efficacy.
그 결과, 하기 표 7에 나타난 바와 같이 백신을 접종 받은 10마리의 SPF닭 모두는 혈구응집억제역가(HI) 역가가 27 이상을 나타냈으며, 사망, 체중 감소 등의 특별한 임상증상을 나타내지 않음을 확인할 수 있었다.As a result, as shown in Table 7 below, all 10 SPF chickens vaccinated showed a hemagglutination inhibitory titer (HI) titer of 2 7 or more, and did not show any special clinical symptoms such as death and weight loss. I could confirm.
2-2. rgAIV_H35(H5N6) 백신주의 안전성 실험2-2. Safety test of rgAIV_H35(H5N6) vaccine strain
상기 실험예 2-1과 동일한 방법으로 rgAIV_H35(H5N6) 백신주에 대한 안전성에 대한 실험을 실시한 결과, 하기 표 8에 나타난 바와 같이 백신을 접종 받은 10마리의 SPF닭 모두는 혈구응집억제역가(HI) 역가가 27 이상을 나타냈으며, 사망, 체중 감소 등의 특별한 임상증상을 나타내지 않음을 확인할 수 있었다.As a result of conducting an experiment for safety against the rgAIV_H35 (H5N6) vaccine strain in the same manner as in Experimental Example 2-1, as shown in Table 8 below, all 10 SPF chickens vaccinated with the hemagglutination inhibitory titer (HI) Titers showed 2 7 or higher, and it was confirmed that there were no special clinical symptoms such as death or weight loss.
실험예 3. 백신주의 효능 검증Experimental Example 3. Validation of vaccine strain
상기 실시예 3에서 수득한 rgAIV_Gimje2(H5N8) 및 rgAIV_H35(H5N6) 백신 항원의 효능을 검증하기 위하여 하기와 같이 실험을 수행하였다.In order to verify the efficacy of the rgAIV_Gimje2 (H5N8) and rgAIV_H35 (H5N6) vaccine antigens obtained in Example 3, an experiment was performed as follows.
10마리의 6주령의 SPF 닭에 오른쪽 다리의 이두근에 1 ml씩 rgAIV_Gimje2(H5N8) 또는 rgAIV_H35(H5N6) 조류 인플루엔자 백신 항원을 접종(109.0 EID50/0.1ml)하고, 3주 후 백신을 접종하지 않은 10마리의 대조군과 함께 106 Egg Infectious dose(EID50)을 코로 공격 접종하여 14일간 생존 여부를 판정하였다.10 6-week-old SPF chickens were inoculated with rgAIV_Gimje2 (H5N8) or rgAIV_H35 (H5N6) avian influenza vaccine antigen (10 9.0 EID 50 /0.1 ml) in the biceps muscle of the right leg (10 9.0 EID 50 /0.1 ml), and not vaccinated after 3 weeks to 10 6 Egg Infectious dose (EID 50 ) of the 10 animals with the control group that was determined 14 days survival by the nose attack inoculation.
3-1. rgAIV_Gimje2(H5N8)에 대한 조직학적 바이러스 역가 검증3-1. Histological virus titer validation for rgAIV_Gimje2 (H5N8)
상기 실험예 3의 실험방법에 따라 106 Egg Infectious dose(EID50)를 코로 접종 후 3일째 및 5일째에 실험군 및 대조군으로부터 면봉을 이용하여 스왑을 실시하여 바이러스 역가(log10EID50/0,1 ml)를 측정하였다.Virus titer (log 10 EID 50 /0, according to the experimental method of Experimental Example 3) was performed using swabs from the experimental group and the control group on the 3rd and 5th days after inoculation with 10 6 Egg Infectious dose (EID 50 ). 1 ml) was measured.
(바이러스 역가, log10TCID50/0.1ml, 평균±표준편차)Number of virus discharges/survival.
(Viral titer, log 10 TCID 50 /0.1ml, mean ± standard deviation)
(3.9±0.5)4/4
(3.9±0.5)
(3.3±0.7)2/4
(3.3±0.7)
(2.7)1/4
(2.7)
(1.5±0.4)2/4
(1.5±0.4)
(3.5±1.2)3/4
(3.5±1.2)
(3.3)1/4
(3.3)
그 결과, rgAIV_Gimje2(H5N8) 백신 항원(사독 백신)을 접종 받은 실험군은 인후두 스왑샘플에서 고병원성 H5N8 조류 인플루엔자 바이러스가 검출되지 않았던 반면에, 대조군은 인후두 스왑샘플에서 높은 역가의 바이러스가 검출되었음을 확인할 수 있었다(표 9).As a result, in the experimental group inoculated with the rgAIV_Gimje2 (H5N8) vaccine antigen (independent vaccine), the highly pathogenic H5N8 avian influenza virus was not detected in the pharyngeal swab sample, whereas the control group was confirmed to have detected a high titer virus in the pharyngeal swab sample. Table 9.
따라서, 본 발명의 rgAIV_Gimje2(H5N8) 사독 백신은 H5N8형의 고병원성 인플루엔자 바이러스에 대하여 우수한 방어능을 나타냄을 확인하였다. Therefore, it was confirmed that the rgAIV_Gimje2 (H5N8) poison vaccine of the present invention shows excellent defense against H5N8-type highly pathogenic influenza virus.
3-2. rgAIV_H35(H5N6)에 대한 조직학적 바이러스 역가 검증3-2. Histological virus titer validation for rgAIV_H35 (H5N6)
상기 실험예 3의 실험방법에 따라 106 Egg Infectious dose(EID50)를 코로 접종 후 3일째 및 5일째에 실험군 및 대조군으로부터 면봉을 이용하여 스왑을 실시하여 바이러스 역가(log10EID50/0,1 ml)를 측정하였다.Virus titer (log 10 EID 50 /0,1) was performed using a swab from the experimental group and the control group on the 3rd and 5th days after inoculation with 10 6 Egg Infectious dose (EID50) according to the experimental method of Experimental Example 3 above. ml) was measured.
(바이러스 역가, log10TCID50/0.1ml, 평균±표준편차)Number of virus discharges/survival.
(Viral titer, log 10 TCID 50 /0.1ml, mean ± standard deviation)
그 결과, rgAIV_H35(H5N6) 백신 항원(사독 백신)을 접종 받은 실험군은 인후두 스왑샘플에서 고병원성 H5N6 조류 인플루엔자 바이러스가 검출되지 않았던 반면에, 대조군은 인후두 스왑샘플에서 높은 역가의 바이러스가 검출되었음을 확인할 수 있었다(표 10).As a result, in the experimental group inoculated with the rgAIV_H35 (H5N6) vaccine antigen (independent vaccine), the highly pathogenic H5N6 avian influenza virus was not detected in the pharyngeal swab sample, whereas the control group was confirmed to have detected a high titer virus in the pharyngeal swab sample. Table 10.
따라서, 본 발명의 rgAIV_H35(H5N6) 사독 백신은 H5N6형의 고병원성 인플루엔자 바이러스에 대하여 우수한 방어능을 나타냄을 확인하였다. Therefore, it was confirmed that the rgAIV_H35 (H5N6) poison vaccine of the present invention exhibits excellent defense against H5N6 type highly pathogenic influenza virus.
실험예 4. 백신주의 면역원성 검증Experimental Example 4. Verification of immunogenicity of vaccine strains
SPF 닭은 실제 목적동물로 사용하기 위해 개발된 백신이므로 고병원성 H5N8 조류 인플루엔자 백신 효능 검정에 사용하였다. 10수의 6주령 SPF 닭의 이두근(biceps muscle)에 1 ml(500 ul/dose) rgAIV_Gimje2(H5N8) 또는 rgAIV_H35(H5N6) 조류 인플루엔자 백신 항원을 접종 15주 동안 혈청을 수득하여 항체역가 변화를 혈구응집억제반응(HI, hemagglutination inhibition)에 의해 검증하였다. Since SPF chicken is a vaccine developed for use as an actual target animal, it was used for the high-pathogenic H5N8 avian influenza vaccine efficacy assay. 1 ml (500 ul/dose) of rgAIV_Gimje2 (H5N8) or rgAIV_H35 (H5N6) avian influenza vaccine antigen was obtained from 10-week-old 6-week-old SPF chicken biceps muscles to obtain serum for 15 weeks to induce antibody titer changes. It was verified by inhibition reaction (HI, hemagglutination inhibition).
국제수역사무국(world organization for animal health, OIE)는 가금에서 HI 역가 27 이상이면, 폐사방어는 물론 바이러스 배출도 감소로 기준을 설정하고 있다. The World Organization for Animal Health (OIE) is setting standards for poultry reduction as well as reduction of viral emissions if poultry is above 2 7 in poultry.
4-1. rgAIV_Gimje2(H5N8)의 역가 측정4-1. Titer measurement of rgAIV_Gimje2(H5N8)
도 3a의 실험결과와 같이, 항체는 rgAIV_Gimje2(H5N8) 백신 접종 후 15주까지 27 이상의 고역가가 유지됨을 확인하였다(표 11 및 도 3a). 표 11의 'wpv'는 'weeks post vaccination'을 의미한다.As shown in the experimental results of Figure 3a, it was confirmed that the antibody maintained a high titer of 2 7 or more until 15 weeks after vaccination with rgAIV_Gimje2 (H5N8) (Table 11 and Figure 3a). 'Wpv' in Table 11 means'weeks post vaccination'.
4-2. rgAIV_H35(H5N6)의 역가 측정4-2. Titer measurement of rgAIV_H35(H5N6)
도 3b의 실험결과와 같이, 항체는 rgAIV_H35(H5N6) 백신 접종 후 15주까지 27 이상의 고역가가 유지됨을 확인하였다(표 12 및 도 3b).3B, it was confirmed that the antibody maintained a high titer of 2 7 or more until 15 weeks after vaccination with rgAIV_H35 (H5N6) (Table 12 and FIG. 3B).
<110> REPUBLIC OF KOREA(Animal and Plant Quarantine Agency) <120> Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same <130> PN180377D <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 1733 <212> RNA <213> Influenza A virus <400> 1 ttcactctgt caaaatggag aacatagtgc ttcttcttgc aatagttagc cttgttaaag 60 gtgatcagat ttgcattggt taccatgcaa acaactcgac agagcaagtt gacacgataa 120 tggaaaagaa cgtcactgtt acacatgccc aagacatact ggaaaaaaca cacaacggga 180 agctctgcga tctaaatggg gtgaagcctc tgattttaaa ggattgtagt gtagctggat 240 ggctcctcgg aaactcaatg tgcgacgaat tcatcagagt gccggaatgg tcttacatag 300 tggagagggc taacccagct aatgacctct gttacccagg gagcctcaat gactatgaag 360 aactgaaaca cctgttgagc agaataaatc attttgagaa gattctgatc atccccaaga 420 gttcttggcc caatcatgaa acatcattag gggtgagcgc agcttgtcca taccagggaa 480 cgccctcctt tttcagaaat gtggtatggc ttatcaaaaa gaacgatgca tacccaacaa 540 taaagataag ctacaataat accaatcggg aagatctctt gatactgtgg gggattcatc 600 attccaacaa tgcagaagag cagacaaatc tctataagaa cccaaccacc tatatttcag 660 ttggaacatc aacattaaac cagagattgg taccaaaaat ggctactaga tcccaagtaa 720 acgggcaacg gggaagaatg gacttcttct ggacaatttt aaaaccgaat gatgcaatcc 780 acttcgagag taatggaaat ttcattgctc cagaatatgc atacaaaatt gtcaagaaag 840 gggactcaac aattatgaaa agtgaagtgg aatatggcca ctgcaacacc aaatgtcaaa 900 ccccagtagg agcgataaac tctagtatgc cattccacaa tatacatcct ctcaccatcg 960 gggaatgccc caaatatgtg aagtcaaaca agttggtcct tgcgactggg ctcagaaata 1020 gtcctcaaag agaaacaaga ggactatttg gagctatagc aggttttata gagggaggat 1080 ggcagggaat ggttgatggt tggtatgggt accaccatag caatgagcag ggaagtgggt 1140 acgctgcaga caaagaatcc acccaaaagg caatagatgg agttaccaat aaggtcaact 1200 cgatcattga caaaatgaac actcaatttg aggcagttgg aagggagttt aataacttag 1260 aaaggaggat agagaatttg aacaagaaaa tggaagacgg attcctagat gtctggacct 1320 ataatgctga acttctagtt ctcatggaaa acgagaggac tctagatttc catgactcaa 1380 atgtcaagaa cctttacgac aaagccagac tgcagcttag ggataatgca aaggagctgg 1440 gtaacggttg tttcgagttc tatcacaaat gtgataatga atgtatggaa agtgtgagaa 1500 atgggacgta tgactaccct cagtattcag aagaagcaag attaaaaaga gaagaaataa 1560 gcggagtgaa attagaatca ataggaactt accaaatact gtcaatttat tcaacagtgg 1620 cgagttccct agcactggca atcatggtgg ctggtctatc tttatggatg tgctccaatg 1680 ggtcgttaca gtgcagaatt tgcatttaaa tttgtgagct cagattgtag tta 1733 <210> 2 <211> 1413 <212> RNA <213> Influenza A virus <400> 2 atgaatccaa atcagaaaat agtgaccgtt ggctccattt cattagggtt ggttgtattc 60 aatgttctac tgcatgccgt gagcatcata ttaatggtgt tagccctggg gaaaagtgaa 120 aacaatggaa tctgcaaggg aactatagta agggaatata atgaaacagt taggatagag 180 aaagtgactc aatggtacaa tactagtgta gtcgaatatg taccgcattg gaacgagggc 240 gcttatataa ataacaccga accaatatgt gatgtcaagg gctttgcacc tttttccaag 300 gacaacggga taagagttgg ctccagggga catatttttg tcataaggga gcctttcgtc 360 tcttgttcac ctgtagagtg cagaactttc ttcctcactc agggagctct actcaatgac 420 aaacactcaa atggaacagt gaaggataga agcccattca gaactctcat gagtgtcgaa 480 gtgggtcaat cacccaatgt atatcaagca aggtttgaag ctgtagcatg gtcagcaaca 540 gcctgtcatg atggcaagaa atggatgacg attggtgtaa cagggccaga ttctaaagca 600 gtagcagtag tccattacgg aggggtgcct actgatgttg ttaactcctg ggcgggagat 660 atattaagga ctcaggagtc atcttgtact tgcattcaag gtaattgtta ttgggtaatg 720 actgacggtc cagccaatag acaggcgcag tatagaatat acaaagcaaa tcaaggcaaa 780 ataattgacc aaacagatgt cagctttagt ggaggacata ttgaggaatg ttcttgttat 840 ccaaatgatg gtaaagtgga atgcgtgtgt agagacaact ggacgggaac taacaggcct 900 gtgctagtca tttcgcctga tctctcttac agggttgggt atttatgtgc aggattgccc 960 agtgacactc caagagggga agatgctcaa tttgtcggtt catgcactag tcccatggga 1020 aatcagggat atggcgtaaa aggtttcggg tttcgacagg gaactgatgt gtgggtgggg 1080 cggacaatta gtcgaacctc caggtcaggg tttgaaataa taaggataaa gaatggttgg 1140 acgcagacaa gcaaagaaca gattagaagg caggtggttg ttgataattt gaattggtcg 1200 ggatacagtg ggtctttcac tttaccagta gaattgtctg ggaggggatg tttagtcccc 1260 tgtttttggg tcgaaatgat cagaggcagg ccagaagaaa gaacaatctg gacctctagt 1320 agctccattg taatgtgtgg agttgatcat gaaattgccg attggtcatg gcacgatgga 1380 gctattcttc cctttgacat cgataagatg taa 1413 <210> 3 <211> 2313 <212> RNA <213> Influenza A virus <400> 3 tcaattatat tcaatatgga aagaataaaa gaactaagaa atctaatgtc gcagtctcgc 60 acccgcgaga tactcacaaa aaccaccgtg gaccatatgg ccataatcaa gaagtacaca 120 tcaggaagac aggagaagaa cccagcactt aggatgaaat ggatgatggc aatgaaatat 180 ccaattacag cagacaagag gataacggaa atgattcctg agagaaatga gcaaggacaa 240 actttatgga gtaaaatgaa tgatgccgga tcagaccgag tgatggtatc accactggct 300 gtgacatggt ggaataggaa tggaccaata acaaatacag ttcattatcc aaaaatctac 360 aaaacttatt ttgaaagagt cgaaaggcta aagcatggaa cctttggccc tgtccatttt 420 agaaaccaag tcaaaatacg tcggagagtt gacataaatc ctggtcatgc agatctcagt 480 gccaaggagg cacaggatgt aatcatggaa gttgttttcc ctaacgaagt gggagccagg 540 atactaacat cggaatcgca actaacgata accaaagaga agaaagaaga actccaggat 600 tgcaaaattt ctcctttgat ggttgcatac atgttggaga gagaactggt ccgcaaaacg 660 agattcctcc cagtggctgg tggaacaagc agtgtgtaca ttgaagtgtt gcatttgact 720 caaggaacat gctgggaaca gatgtatact ccaggagggg aagtgaggaa tgatgatgtt 780 gatcaaagct tgattattgc tgctaggaac atagtgagaa gagctgcagt atcagcagat 840 ccactagcat ctttattgga gatgtgccac agcacacaga ttggtggaat taggatggta 900 gacatcctta ggcagaaccc aacagaagag caagccgtgg atatatgcaa ggctgcaatg 960 ggactgagaa ttagctcatc cttcagtttt ggtggattca catttaagag aacaagcgga 1020 tcatcagtca agagagagga agaggtgctt acgggcaatc ttcaaacatt gaagataaga 1080 gtgcatgagg gatatgaaga gttcacaatg gttgggagaa gagcaacagc catactcaga 1140 aaagcaacca ggagattgat tcagctgata gtgagtggga gagacgaaca gtcgattgcc 1200 gaagcaataa ttgtggccat ggtattttca caagaggatt gtatgataaa agcagtcaga 1260 ggtgatctga atttcgtcaa tagggcgaat cagcgattga atcctatgca tcaactttta 1320 agacattttc agaaggatgc gaaagtgctt tttcaaaatt ggggagttga acctatcgac 1380 aatgtgatgg gaatgattgg gatattgccc gacatgactc caagcatcga gatgtcaatg 1440 agaggagtga gaatcagcaa aatgggtgta gatgagtact ccagcacgga gagggtagtg 1500 gtgagcattg accgtttttt gagaatccgg gaccaacgag gaaatgtact actgtctccc 1560 gaggaggtca gtgaaacaca gggaacagag aaactgacaa taacttactc atcgtcaatg 1620 atgtgggaga ttaatggtcc tgaatcagtg ttggtcaata cctatcaatg gatcatcaga 1680 aactgggaaa ctgttaaaat tcagtggtcc cagaacccta caatgctata caataaaatg 1740 gaatttgaac catttcagtc tttagtacct aaggccatta gaggccaata cagtgggttt 1800 gtaagaactc tgttccaaca aatgagggat gtgcttggga catttgatac cgcacagata 1860 ataaaacttc ttcccttcgc agccgctcca ccaaagcaaa gtagaatgca gttctcctca 1920 tttactgtga atgtgagggg atcaggaatg agaatacttg taaggggcaa ttctcctgta 1980 ttcaactata acaaggccac gaagagactc acagttctcg gaaaggatgc tggcacttta 2040 actgaagacc cagatgaagg cacagctgga gtggagtccg ctgttctgag gggattcctc 2100 attctgggca aagaggacaa gagatatggg ccagcactaa gcatcaatga actgagcaac 2160 cttgcgaaag gagagaaggc taatgtgcta attgggcaag gagacgtggt gttggtaatg 2220 aaacggaaac gggactctag catacttact gacagccaga cagcgaccaa aagaattcgg 2280 atggccatca attagtgtcg aatagtttaa aaa 2313 <210> 4 <211> 2313 <212> RNA <213> Influenza A virus <400> 4 gcaaaccatt tgaatggatg tcaatccgac cttacttttc ttaaaagtgc cagcacaaaa 60 tgctataagc acaactttcc cttatactgg agaccctcct tacagccatg ggacaggaac 120 aggatacacc atggatactg tcaacaggac acatcagtac tcagaaaagg gaagatggac 180 aacaaacacc gaaactggag caccgcaact caacccgatt gatgggccac tgccagaaga 240 caatgaacca agtggttatg cccaaacaga ttgtgtattg gaggcgatgg ctttccttga 300 ggaatcccat cctggtattt ttgaaaactc gtgtattgaa acgatggagg ttgttcagca 360 aacacgagta gacaagctga cacaaggccg acagacctat gactggactc taaatagaaa 420 ccaacctgct gcaacagcat tggccaacac aatagaagtg ttcagatcaa atggcctcac 480 ggccaatgag tctggaaggc tcatagactt ccttaaggat gtaatggagt caatgaacaa 540 agaagaaatg gggatcacaa ctcattttca gagaaagaga cgggtgagag acaatatgac 600 taagaaaatg ataacacaga gaacaatggg taaaaagaag cagagattga acaaaaggag 660 ttatctaatt agagcattga ccctgaacac aatgaccaaa gatgctgaga gagggaagct 720 aaaacggaga gcaattgcaa ccccagggat gcaaataagg gggtttgtat actttgttga 780 gacactggca aggagtatat gtgagaaact tgaacaatca gggttgccag ttggaggcaa 840 tgagaagaaa gcaaagttgg caaatgttgt aaggaagatg atgaccaatt ctcaggacac 900 cgaactttct ttcaccatca ctggagataa caccaaatgg aacgaaaatc agaatcctcg 960 gatgtttttg gccatgatca catatatgac cagaaatcag cccgaatggt tcagaaatgt 1020 tctaagtatt gctccaataa tgttctcaaa caaaatggcg agactgggaa aagggtatat 1080 gtttgagagc aagagtatga aacttagaac tcaaatacct gcagaaatgc tagcaagcat 1140 cgatttgaaa tatttcaatg attcaacaag aaagaagatt gaaaaaatcc gatcgctctt 1200 aatagagggg actgcatcat tgagccctgg aatgatgatg ggcatgttca atatgttaag 1260 cactgtatta ggcgtctcca tcctgaatct tggacaaaag agatacacca agactactta 1320 ctggtgggat ggtcttcaat cctctgacga ttttgctctg attgtgaatg cacccaatca 1380 tgaagggatt caagccggag tcgacaggtt ttatcgaacc tgtaagctac ttggaatcaa 1440 tatgagcaag aaaaagtctt acataaacag aacaggtaca tttgaattca caagtttttt 1500 ctatcgttat gggtttgttg ccaatttcag catggagctt cccagttttg gggtgtctgg 1560 gatcaacgag tcagcggaca tgagtattgg agttactgtc atcaaaaaca atatgataaa 1620 caatgatctt ggtccagcaa cagctcaaat ggcccttcag ttgttcatca aagattacag 1680 gtacacgtac cgatgccata gaggtgacac acaaatacaa acccgaagat catttgaaat 1740 aaagaaactg tgggagcaaa cccgttccaa agctggactg ctggtctccg acggaggccc 1800 aaatttatac aacattagaa atctccacat tcctgaagtc tgcctaaaat gggaattgat 1860 ggatgaggat taccaggggc gtttatgcaa cccactgaac ccatttgtca gccataaaga 1920 aattgaatca atgaacaatg cagtgatgat gccagcacat ggtccagcca aaaacatgga 1980 gtatgatgct gttgcaacaa cacactcctg gatccccaaa agaaatcgat ccatcttgaa 2040 tacaagtcaa agaggagtac ttgaggatga acaaatgtac caaaggtgct gcaatttatt 2100 tgaaaaattc ttccccagca gttcatacag aagaccagtc gggatatcca gtatggtgga 2160 ggctatggtt tccagagccc gaattgatgc acggattgat ttcgaatctg gaaggataaa 2220 gaaagaagag ttcactgaga tcatgaagat ctgttccacc attgaagagc tcagacggca 2280 aaaatagtga atttagcttg tccttcatga aaa 2313 <210> 5 <211> 2206 <212> RNA <213> Influenza A virus <400> 5 gtactgatcc aaaatggaag attttgtgcg acaatgcttc aatccgatga ttgtcgagct 60 tgcggaaaaa acaatgaaag agtatgggga ggacctgaaa atcgaaacaa acaaatttgc 120 agcaatatgc actcacttgg aagtatgctt catgtattca gattttcact tcatcaatga 180 gcaaggcgag tcaataatcg tagaacttgg tgatccaaat gcacttttga agcacagatt 240 tgaaataatc gagggaagag atcgcacaat ggcctggaca gtagtaaaca gtatttgcaa 300 cactacaggg gctgagaaac caaagtttct accagatttg tatgattaca aggagaatag 360 attcatcgaa attggagtaa caaggagaga agttcacata tactatctgg aaaaggccaa 420 taaaattaaa tctgagaaaa cacacatcca cattttctcg ttcactgggg aagaaatggc 480 cacaaaggca gactacactc tcgatgaaga aagcagggct aggatcaaaa ccagactatt 540 caccataaga caagaaatgg ccagcagagg cctctgggat tcctttcgtc agtccgagag 600 aggagaagag acaattgaag aaaggtttga aatcacagga acaatgcgca agcttgccga 660 ccaaagtctc ccgccgaact tctccagcct tgaaaatttt agagcctatg tggatggatt 720 cgaaccgaac ggctacattg agggcaagct gtctcaaatg tccaaagaag taaatgctag 780 aattgaacct tttttgaaaa caacaccacg accacttaga cttccgaatg ggcctccctg 840 ttctcagcgg tccaaattcc tgctgatgga tgccttaaaa ttaagcattg aggacccaag 900 tcatgaagga gagggaatac cgctatatga tgcaatcaaa tgcatgagaa cattctttgg 960 atggaaggaa cccaatgttg ttaaaccaca cgaaaaggga ataaatccaa attatcttct 1020 gtcatggaag caagtactgg cagaactgca ggacattgag aatgaggaga aaattccaaa 1080 gactaaaaat atgaagaaaa caagtcagct aaagtgggca cttggtgaga acatggcacc 1140 agaaaaggta gactttgacg actgtaaaga tgtaggtgat ttgaagcaat atgatagtga 1200 tgaaccagaa ttgaggtcgc ttgcaagttg gattcagaat gagtttaaca aggcatgcga 1260 actgacagat tcaagctgga tagagctcga tgagattgga gaagatgtgg ctccaattga 1320 acacattgca agcatgagaa ggaattattt cacatcagag gtgtctcact gcagagccac 1380 agaatacata atgaaggggg tgtacatcaa tactgccttg cttaatgcat cttgtgcagc 1440 aatggatgat ttccaattaa ttccaatgat aagcaagtgt agaactaagg agggaaggcg 1500 aaagaccaac ttgtatggtt tcatcataaa aggaagatcc cacttaagga atgacaccga 1560 cgtggtaaac tttgtgagca tggagttttc tctcactgac ccaagacttg aaccacataa 1620 atgggagaag tactgtgttc ttgagatagg agatatgctt ataagaagtg ccataggcca 1680 ggtttcaagg cccatgttct tgtatgtgag aacaaatgga acctcaaaaa ttaaaatgaa 1740 atggggaatg gagatgaggc gttgcctcct ccagtcactt caacaaattg agagtatgat 1800 tgaagctgag tcctctgtca aagagaaaga catgaccaaa gagttctttg agaacaaatc 1860 agaaacatgg cccattggag agtcccccaa aggagtggag gaaagttcca ttgggaaggt 1920 ctgcaggact ttattagcaa agtcggtatt caacagcttg tatgcatctc cacaactaga 1980 aggattttca gctgaatcaa gaaaactgct tcttatcgtt caggctctta gggacaacct 2040 tgaacctggg acctttgatc ttggggggct atatgaagca attgaggagt gcctgattaa 2100 tgatccctgg gttttgctta atgcttcttg gttcaactcc ttccttacac atgcattgag 2160 ttagttgtgg cagtgctact atttgctatc catactgtcc aaaaaa 2206 <210> 6 <211> 1537 <212> RNA <213> Influenza A virus <400> 6 tagataatca ctcactgagt gacatcaaaa tcatggcgtc tcaaggcacc aaacgatctt 60 acgaacagat ggagactgat ggagaacgcc agaatgccac tgaaatcaga gcatccgtcg 120 gaaaaatgat tggtggaatt ggacgattct acatccaaat gtgcaccgaa ctcaaactca 180 gtgattatga gggacggttg atccaaaaca gcttaacaat agagagaatg gtgctctctg 240 cttttgacga aaggagaaat aaataccttg aagaacatcc cagtgcgggg aaagatccta 300 agaaaactgg aggacctata tacaggagag taaacggaaa gtggatgaga gaactcatcc 360 tttatgacaa agaagaaata aggcgaatct ggcgccaagc taataatggt gacgatgcaa 420 cggctggtct gactcacatg atgatctggc attccaattt gaatgatgca acttatcaga 480 ggacaagagc tcttgttcgc accggaatgg atcccaggat gtgctctctg atgcaaggtt 540 caactctccc taggaggtct ggagccgcag gtgctgcagt caaaggagtt ggaacaatgg 600 tgatggaatt ggtcagaatg atcaaacgtg ggatcaatga tcggaacttc tggaggggtg 660 agaatggacg aaaaacaaga attgcttatg aaagaatgtg caacattctc aaagggaaat 720 ttcaaactgc tgcacaaaaa gcaatgatgg atcaagtgag agagagccgg aacccaggga 780 atgctgagtt cgaagatctc acttttctag cacggtctgc actcatattg agagggtcgg 840 ttgctcacaa gtcctgcctg cctgcctgtg tgtatggacc tgccgtagcc agtgggtacg 900 actttgaaag ggagggatac tctctagtcg gaatagaccc tttcagactg cttcaaaaca 960 gccaagtgta cagcctaatc agaccaaatg agaatccagc acacaagagt caactggtgt 1020 ggatggcatg ccattctgcc gcatttgaag atctaagagt attaagcttc atcaaaggga 1080 cgaaggtgct cccaagaggg aagctttcca ctagaggagt tcaaattgct tccaatgaaa 1140 atatggagac tatggaatca agtacacttg aactgagaag caggtactgg gccataagga 1200 ccagaagtgg aggaaacacc aatcaacaga gggcatctgc gggccaaatc agcatacaac 1260 ctacgttctc agtacagaga aatctccctt ttgacagaac aaccattatg gcagcattca 1320 atgggaatac agaggggaga acatctgaca tgaggaccga aatcataagg atgatggaaa 1380 gtgcaagacc agaagatgtg tctttccagg ggcggggagt cttcgagctc tcggacgaaa 1440 aggcagcgag cccgatcgtg ccttcctttg acatgagtaa tgaaggatct tatttcttcg 1500 gagacaatgc agaggagtac gacaattaaa gaaaaat 1537 <210> 7 <211> 1000 <212> RNA <213> Influenza A virus <400> 7 gtagatattg aaagatgagt cttctaaccg aggtcgaaac gtacgtactc tctatcatcc 60 cgtcaggccc cctcaaagcc gagatcgcac agagacttga agatgtcttt gcagggaaga 120 acaccgatct tgaggttctc atggaatggc taaagacaag accaatcctg tcacctctga 180 ctaaggggat tttaggattt gtgttcacgc tcaccgtgcc cagtgagcga ggactgcagc 240 gtagacgctt tgtccaaaat gcccttaatg ggaacgggga tccaaataac atggacaaag 300 cagttaaact gtataggaag ctcaagaggg agataacatt ccatggggcc aaagaaatct 360 cactcagtta ttctgctggt gcacttgcca gttgtatggg cctcatatac aacaggatgg 420 gggctgtgac cactgaagtg gcatttggcc tggtatgtgc aacctgtgaa cagattgctg 480 actcccagca tcggtctcat aggcaaatgg tgrcaacaac caatccacta atcagacatg 540 agaacagaat ggttttagcc agcactacag ctaaggctat ggagcaaatg gctggatcga 600 gtgagcaagc agcagaggcc atggaggttg ctattcgggc taggcaaatg gtgcaggcaa 660 tgagaaccat tgggactcat cctagctcca gtgctggtct gaaaaatgat cttcttgaaa 720 atttgcaggc ctatcagaaa cgaatggggg tgcagatgca acggttcaag tgatcctctc 780 attattgcct caartatcat tgggatcttg cacttgayat tgtggattct tgatcgtctt 840 tttttcaaat gcatttaccg tctctttaaa tacggtttga aaagagggcc ttctacggaa 900 ggagtgccaa agtctatgag ggaagaatat caaaaggaac agcagagtgc tgtggatgct 960 gacgatggtc attttgtcag catagagctg gagtaaaaaa 1000 <210> 8 <211> 861 <212> RNA <213> Influenza A virus <400> 8 tgacaaaaac ataatggatc caaacactgt gtcaagcttt caggtagatt gctttctttg 60 gcatgtccgc aaacgagttg cagaccaaga actaggtgat gccccattcc ttgatcggct 120 tcgccgagat cagaaatccc taagaggaag gggcagtact ctcggtctgg acatcaagac 180 agccacacgt gctggaaagc agatagtgga gcggattctg aaagaagaat ccgatgaggc 240 acttaaaatg accatggcct ctgtacctgc gtcgcgttac ctaactgaca tgactcttga 300 ggaaatgtca agggactggt ccatgctcat acccaagcag aaagtggcag gccctctttg 360 tatcagaatg gaccaggcga tcatggataa gaacatcata ctgaaagcga acttcagtgt 420 gatttttgac cggctggaga ctctaatatt gctaagggct ttcaccgaag agggagcaat 480 tgttggcgaa atttcaccat tgccttctct tccaggacat actgctgagg atgtcaaaaa 540 tgcagttgga gtcctcatcg gaggacttga atggaatgat aacacagttc gagtctctga 600 aactctacag agattcgctt ggagaagcag taatgagaat gggagacctc cactcactcc 660 aaaacagaaa cgagaaatgg cgggaacaat taggtcagaa gtttgaagaa ataagatggt 720 tgattgaaga agtgagacac aaactgaaga taacagagaa tagttttgag caaataacat 780 ttatgcaagc cttacatcta ttgcttgaag tggagcaaga gataagaact ttctcgtttc 840 agcttattta gtactaaaaa a 861 <210> 9 <211> 1783 <212> RNA <213> Influenza A virus <400> 9 tccgaagttg ggggggagca aaagcagggg ttcactctgt caaaatggag aacatagtgc 60 ttcttcttgc aatagttagc cttgttaaaa gtgatcagat ttgcattggt taccatgcaa 120 acaactcgac agagcaagtt gacacgataa tggaaaagaa cgtcactgtt acacatgccc 180 aagacatact ggagaaaaca cacaacggga agctctgcga tctaaatgga gtgaagcctc 240 tgattttaaa ggattgtagt gtagctggat ggctcctcgg aaacccaatg tgcgacgaat 300 tcatcagagt gccggaatgg tcttacatag tggagaggga taatccagct aatgacctct 360 gttacccagg gagcctcaat gactatgaag aactgaaaca cctgttgagc agaataaatc 420 attttgagaa gattctgatc atccccaaga gttcttggcc caatcatgaa acatcattag 480 gggtgagcgc agcttgtcca taccagggag cgccctcctt tttcagaaat gtggtatggc 540 ttatcaaaaa gaacgatgca taccccacaa taaagataag ctacaataat accaatcggg 600 aagatctctt gatactgtgg gggattcatc attccaacaa tgcagaagag cagacaaatc 660 tctataaaaa cccaaccacc tatatttcag ttggaacatc aacattaaac cagagattgg 720 taccaaaaat agctactaga tcccaagtaa acgggcaacg tggaagaatg gacttcttct 780 ggacaatttt gaaaccgaat gatgcaattc atttcgagag taatggaaat ttcattgctc 840 cagaatatgc atacaaaatt gtcaagaaag gggactcaac aattatgaaa agtggagtgg 900 aatatggcca ctgcaacacc aaatgtcaaa ccccagtagg agcgataaac tctagtatgc 960 cgttccacaa tatacatcct ctcaccattg gggaatgccc caaatacgtg aagtcaaaca 1020 agttggtcct tgcgactggg ctcagaaata gtcctcaaag agaaacaaga ggactatttg 1080 gagctatagc aggttttata gagggaggat ggcagggaat ggttgatggt tggtatggct 1140 accaccatat caatgagcag gggagtgggt acgctgcaga caaagagtcc acccaaaagg 1200 caatagatgg agttaccaat aaggtcaact cgatcattga caaaatgaac actcaatttg 1260 aggcagttgg aagggagttt aataacttag aaaggaggat agagaatttg aacaagaaaa 1320 tggaagacgg attcctagat gtctggacct ataatgctga acttctagtt ctcatggaaa 1380 acgagaggac tctagatttc catgactcaa atgtcaagaa cctttacgac aaagtcagac 1440 tgcagcttag ggataatgca aaggagctgg gtaacggttg tttcgaattc tatcacaaat 1500 gtgataatga atgtatggaa agtgtgagaa atgggacgta tgactaccct cagtactcag 1560 aagaagcaag attaaaaaga gaagaaataa gcggagttaa attagaatca ataggaactt 1620 accaaatact gccaatttat tcaacagtgg cgagttccct agcactggca atcatggtgg 1680 ctggtctatc tttatggatg tgctccaatg ggtcgttaca gtgcagaatt tgcatttaaa 1740 tttgtgagct cagattgtag ttaaaaacac ccttgtttct act 1783 <210> 10 <211> 1435 <212> RNA <213> Influenza A virus <400> 10 gaaaatgaat ccaaatcaga agataatatg catttcagcc acaggaatga cactatcggt 60 agtaagcctg ctaataggaa ttgccaattt aggcctaaac atcggacttc actataaggt 120 gggtgatgca ccaactgttg atatcccgag catgaatgaa accaactcaa ccacaacaat 180 aataaacaat aatactcaaa ataatttcac aaatatcact aacattataa taaacaaaga 240 ggaggaaaga atatttctaa acctgactaa gcctctatgt gaggtaaact catggcacat 300 tctatcgaag gacaatgcaa taagaatagg ggaggatgct catatactag tcacaaggga 360 gccctattta tcctgtgatc cgcaaagctg taggatgttt gctctgagcc aaggcacgac 420 actcagagga cggcatgcga acggaactat acatgacaga agcccattca gagctctcgt 480 gagctgggaa atgggtcaag cgcccagtcc atacaacgtt agggtcgaat gtataggatg 540 gtcaagcaca tcatgccacg atggcatatc aagaatgtcg atatgcatgt cggggccaaa 600 caacaatgcg tcagcagtgg tctggtacgg gggtaggcca gtaacagaaa tcccatcatg 660 ggcaggaaat attctcagaa ctcaggaatc agaatgcgtg tgtcataaag gggtctgtcc 720 agtagtcatg acagatggcc cagcaaatag tagagcagca actaagataa tttatttcaa 780 agaggggaag atacagaaaa ttgaagaatt gagagggaat gcccagcaca ttgaggaatg 840 ttcatgctat ggggcagcaa gggtaatcaa atgtgtgtgc agggacaatt ggaaaggggc 900 aaacagacca gtaatcacta tagatcctga aatgatgact cacacaagca agtatttgtg 960 ctcaagggta ttaaccgata caagtcgccc caatgatccc actagcggga actgtgatgc 1020 tccgataatg ggggagagcc cagatcctgg ggtgaagggg tttgcattct tggatggaga 1080 gaattcatgg cttggaagga caattagcaa agactccaga tcaggctacg aaatattaaa 1140 ggtcccaaat gcagaaactg atacccagtc agggccaaca tcacaccaga taattgtcaa 1200 caacccaaac tggtcgggat actcaggagc gttcatagac tattgggcaa acaaagagtg 1260 cttcaatcct tgtttttatg tggaactaat cagagggaga cccaaggaga gtagtgtact 1320 gtggacttca aatagcattg tagctctctg tggatccaaa gagcgattgg gatcatggtc 1380 ctggcacgat ggtgctgaga tcatctactt taagtaggaa taatttagga aaaaa 1435 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HA1F <400> 11 tccgaagttg ggggggagca aaagcagggg 30 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> H26-MuCl-H5R <400> 12 cctcttgttt ctctttgagg actatttctg agccc 35 <210> 13 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> H26-MuCl-H5F <400> 13 ctcaaagaga aacaagagga ctatttggag ctata 35 <210> 14 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> NS-890R <400> 14 gggccgccgg gttattagta gaaacaaggg tg 32 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> N1-1F <400> 15 tccgaagttg ggggggagca aaagcaggag 30 <210> 16 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> N1-1413R <400> 16 gggccgccgg gttattagta gaaacaagga gt 32 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB2-1F <400> 17 tccgaagttg ggggggagcg aaagcaggtc 30 <210> 18 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB2-2341R <400> 18 gggccgccgg gttattagta gaaacaaggt cg 32 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB1-1F <400> 19 tccgaagttg ggggggagcg aaagcaggca 30 <210> 20 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB1-2341R <400> 20 gggccgccgg gttattagta gaaacaaggc at 32 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-PA-1F <400> 21 tccgaagttg ggggggagcg aaagcaggta 30 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-PA-2233R <400> 22 gggccgccgg gttattagta gaaacaaggt ac 32 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-NP-1F <400> 23 tccgaagttg ggggggagca aaagcagggt 30 <210> 24 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-NP-1565R <400> 24 gggccgccgg gttattagta gaaacaaggg ta 32 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-M-1F <400> 25 tccgaagttg ggggggagca aaagcaggta 30 <210> 26 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-M-1027R <400> 26 gggccgccgg gttattagta gaaacaaggt ag 32 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-NS-1F <400> 27 tccgaagttg ggggggagca aaagcagggt 30 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-NS-890R <400> 28 gggccgccgg gttattagta gaaacaaggg tg 32 <210> 29 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> N6-1F <400> 29 tccgaagttg ggggggagca aaagcagggt gaaaatg 37 <210> 30 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> N6-890R <400> 30 gggccgccgg gttattagta gaaacaaggg tgtttt 36 <110> REPUBLIC OF KOREA (Animal and Plant Quarantine Agency) <120> Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same <130> PN180377D <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 1733 <212> RNA <213> Influenza A virus <400> 1 ttcactctgt caaaatggag aacatagtgc ttcttcttgc aatagttagc cttgttaaag 60 gtgatcagat ttgcattggt taccatgcaa acaactcgac agagcaagtt gacacgataa 120 tggaaaagaa cgtcactgtt acacatgccc aagacatact ggaaaaaaca cacaacggga 180 agctctgcga tctaaatggg gtgaagcctc tgattttaaa ggattgtagt gtagctggat 240 ggctcctcgg aaactcaatg tgcgacgaat tcatcagagt gccggaatgg tcttacatag 300 tggagagggc taacccagct aatgacctct gttacccagg gagcctcaat gactatgaag 360 aactgaaaca cctgttgagc agaataaatc attttgagaa gattctgatc atccccaaga 420 gttcttggcc caatcatgaa acatcattag gggtgagcgc agcttgtcca taccagggaa 480 cgccctcctt tttcagaaat gtggtatggc ttatcaaaaa gaacgatgca tacccaacaa 540 taaagataag ctacaataat accaatcggg aagatctctt gatactgtgg gggattcatc 600 attccaacaa tgcagaagag cagacaaatc tctataagaa cccaaccacc tatatttcag 660 ttggaacatc aacattaaac cagagattgg taccaaaaat ggctactaga tcccaagtaa 720 acgggcaacg gggaagaatg gacttcttct ggacaatttt aaaaccgaat gatgcaatcc 780 acttcgagag taatggaaat ttcattgctc cagaatatgc atacaaaatt gtcaagaaag 840 gggactcaac aattatgaaa agtgaagtgg aatatggcca ctgcaacacc aaatgtcaaa 900 ccccagtagg agcgataaac tctagtatgc cattccacaa tatacatcct ctcaccatcg 960 gggaatgccc caaatatgtg aagtcaaaca agttggtcct tgcgactggg ctcagaaata 1020 gtcctcaaag agaaacaaga ggactatttg gagctatagc aggttttata gagggaggat 1080 ggcagggaat ggttgatggt tggtatgggt accaccatag caatgagcag ggaagtgggt 1140 acgctgcaga caaagaatcc acccaaaagg caatagatgg agttaccaat aaggtcaact 1200 cgatcattga caaaatgaac actcaatttg aggcagttgg aagggagttt aataacttag 1260 aaaggaggat agagaatttg aacaagaaaa tggaagacgg attcctagat gtctggacct 1320 ataatgctga acttctagtt ctcatggaaa acgagaggac tctagatttc catgactcaa 1380 atgtcaagaa cctttacgac aaagccagac tgcagcttag ggataatgca aaggagctgg 1440 gtaacggttg tttcgagttc tatcacaaat gtgataatga atgtatggaa agtgtgagaa 1500 atgggacgta tgactaccct cagtattcag aagaagcaag attaaaaaga gaagaaataa 1560 gcggagtgaa attagaatca ataggaactt accaaatact gtcaatttat tcaacagtgg 1620 cgagttccct agcactggca atcatggtgg ctggtctatc tttatggatg tgctccaatg 1680 ggtcgttaca gtgcagaatt tgcatttaaa tttgtgagct cagattgtag tta 1733 <210> 2 <211> 1413 <212> RNA <213> Influenza A virus <400> 2 atgaatccaa atcagaaaat agtgaccgtt ggctccattt cattagggtt ggttgtattc 60 aatgttctac tgcatgccgt gagcatcata ttaatggtgt tagccctggg gaaaagtgaa 120 aacaatggaa tctgcaaggg aactatagta agggaatata atgaaacagt taggatagag 180 aaagtgactc aatggtacaa tactagtgta gtcgaatatg taccgcattg gaacgagggc 240 gcttatataa ataacaccga accaatatgt gatgtcaagg gctttgcacc tttttccaag 300 gacaacggga taagagttgg ctccagggga catatttttg tcataaggga gcctttcgtc 360 tcttgttcac ctgtagagtg cagaactttc ttcctcactc agggagctct actcaatgac 420 aaacactcaa atggaacagt gaaggataga agcccattca gaactctcat gagtgtcgaa 480 gtgggtcaat cacccaatgt atatcaagca aggtttgaag ctgtagcatg gtcagcaaca 540 gcctgtcatg atggcaagaa atggatgacg attggtgtaa cagggccaga ttctaaagca 600 gtagcagtag tccattacgg aggggtgcct actgatgttg ttaactcctg ggcgggagat 660 atattaagga ctcaggagtc atcttgtact tgcattcaag gtaattgtta ttgggtaatg 720 actgacggtc cagccaatag acaggcgcag tatagaatat acaaagcaaa tcaaggcaaa 780 ataattgacc aaacagatgt cagctttagt ggaggacata ttgaggaatg ttcttgttat 840 ccaaatgatg gtaaagtgga atgcgtgtgt agagacaact ggacgggaac taacaggcct 900 gtgctagtca tttcgcctga tctctcttac agggttgggt atttatgtgc aggattgccc 960 agtgacactc caagagggga agatgctcaa tttgtcggtt catgcactag tcccatggga 1020 aatcagggat atggcgtaaa aggtttcggg tttcgacagg gaactgatgt gtgggtgggg 1080 cggacaatta gtcgaacctc caggtcaggg tttgaaataa taaggataaa gaatggttgg 1140 acgcagacaa gcaaagaaca gattagaagg caggtggttg ttgataattt gaattggtcg 1200 ggatacagtg ggtctttcac tttaccagta gaattgtctg ggaggggatg tttagtcccc 1260 tgtttttggg tcgaaatgat cagaggcagg ccagaagaaa gaacaatctg gacctctagt 1320 agctccattg taatgtgtgg agttgatcat gaaattgccg attggtcatg gcacgatgga 1380 gctattcttc cctttgacat cgataagatg taa 1413 <210> 3 <211> 2313 <212> RNA <213> Influenza A virus <400> 3 tcaattatat tcaatatgga aagaataaaa gaactaagaa atctaatgtc gcagtctcgc 60 acccgcgaga tactcacaaa aaccaccgtg gaccatatgg ccataatcaa gaagtacaca 120 tcaggaagac aggagaagaa cccagcactt aggatgaaat ggatgatggc aatgaaatat 180 ccaattacag cagacaagag gataacggaa atgattcctg agagaaatga gcaaggacaa 240 actttatgga gtaaaatgaa tgatgccgga tcagaccgag tgatggtatc accactggct 300 gtgacatggt ggaataggaa tggaccaata acaaatacag ttcattatcc aaaaatctac 360 aaaacttatt ttgaaagagt cgaaaggcta aagcatggaa cctttggccc tgtccatttt 420 agaaaccaag tcaaaatacg tcggagagtt gacataaatc ctggtcatgc agatctcagt 480 gccaaggagg cacaggatgt aatcatggaa gttgttttcc ctaacgaagt gggagccagg 540 atactaacat cggaatcgca actaacgata accaaagaga agaaagaaga actccaggat 600 tgcaaaattt ctcctttgat ggttgcatac atgttggaga gagaactggt ccgcaaaacg 660 agattcctcc cagtggctgg tggaacaagc agtgtgtaca ttgaagtgtt gcatttgact 720 caaggaacat gctgggaaca gatgtatact ccaggagggg aagtgaggaa tgatgatgtt 780 gatcaaagct tgattattgc tgctaggaac atagtgagaa gagctgcagt atcagcagat 840 ccactagcat ctttattgga gatgtgccac agcacacaga ttggtggaat taggatggta 900 gacatcctta ggcagaaccc aacagaagag caagccgtgg atatatgcaa ggctgcaatg 960 ggactgagaa ttagctcatc cttcagtttt ggtggattca catttaagag aacaagcgga 1020 tcatcagtca agagagagga agaggtgctt acgggcaatc ttcaaacatt gaagataaga 1080 gtgcatgagg gatatgaaga gttcacaatg gttgggagaa gagcaacagc catactcaga 1140 aaagcaacca ggagattgat tcagctgata gtgagtggga gagacgaaca gtcgattgcc 1200 gaagcaataa ttgtggccat ggtattttca caagaggatt gtatgataaa agcagtcaga 1260 ggtgatctga atttcgtcaa tagggcgaat cagcgattga atcctatgca tcaactttta 1320 agacattttc agaaggatgc gaaagtgctt tttcaaaatt ggggagttga acctatcgac 1380 aatgtgatgg gaatgattgg gatattgccc gacatgactc caagcatcga gatgtcaatg 1440 agaggagtga gaatcagcaa aatgggtgta gatgagtact ccagcacgga gagggtagtg 1500 gtgagcattg accgtttttt gagaatccgg gaccaacgag gaaatgtact actgtctccc 1560 gaggaggtca gtgaaacaca gggaacagag aaactgacaa taacttactc atcgtcaatg 1620 atgtgggaga ttaatggtcc tgaatcagtg ttggtcaata cctatcaatg gatcatcaga 1680 aactgggaaa ctgttaaaat tcagtggtcc cagaacccta caatgctata caataaaatg 1740 gaatttgaac catttcagtc tttagtacct aaggccatta gaggccaata cagtgggttt 1800 gtaagaactc tgttccaaca aatgagggat gtgcttggga catttgatac cgcacagata 1860 ataaaacttc ttcccttcgc agccgctcca ccaaagcaaa gtagaatgca gttctcctca 1920 tttactgtga atgtgagggg atcaggaatg agaatacttg taaggggcaa ttctcctgta 1980 ttcaactata acaaggccac gaagagactc acagttctcg gaaaggatgc tggcacttta 2040 actgaagacc cagatgaagg cacagctgga gtggagtccg ctgttctgag gggattcctc 2100 attctgggca aagaggacaa gagatatggg ccagcactaa gcatcaatga actgagcaac 2160 cttgcgaaag gagagaaggc taatgtgcta attgggcaag gagacgtggt gttggtaatg 2220 aaacggaaac gggactctag catacttact gacagccaga cagcgaccaa aagaattcgg 2280 atggccatca attagtgtcg aatagtttaa aaa 2313 <210> 4 <211> 2313 <212> RNA <213> Influenza A virus <400> 4 gcaaaccatt tgaatggatg tcaatccgac cttacttttc ttaaaagtgc cagcacaaaa 60 tgctataagc acaactttcc cttatactgg agaccctcct tacagccatg ggacaggaac 120 aggatacacc atggatactg tcaacaggac acatcagtac tcagaaaagg gaagatggac 180 aacaaacacc gaaactggag caccgcaact caacccgatt gatgggccac tgccagaaga 240 caatgaacca agtggttatg cccaaacaga ttgtgtattg gaggcgatgg ctttccttga 300 ggaatcccat cctggtattt ttgaaaactc gtgtattgaa acgatggagg ttgttcagca 360 aacacgagta gacaagctga cacaaggccg acagacctat gactggactc taaatagaaa 420 ccaacctgct gcaacagcat tggccaacac aatagaagtg ttcagatcaa atggcctcac 480 ggccaatgag tctggaaggc tcatagactt ccttaaggat gtaatggagt caatgaacaa 540 agaagaaatg gggatcacaa ctcattttca gagaaagaga cgggtgagag acaatatgac 600 taagaaaatg ataacacaga gaacaatggg taaaaagaag cagagattga acaaaaggag 660 ttatctaatt agagcattga ccctgaacac aatgaccaaa gatgctgaga gagggaagct 720 aaaacggaga gcaattgcaa ccccagggat gcaaataagg gggtttgtat actttgttga 780 gacactggca aggagtatat gtgagaaact tgaacaatca gggttgccag ttggaggcaa 840 tgagaagaaa gcaaagttgg caaatgttgt aaggaagatg atgaccaatt ctcaggacac 900 cgaactttct ttcaccatca ctggagataa caccaaatgg aacgaaaatc agaatcctcg 960 gatgtttttg gccatgatca catatatgac cagaaatcag cccgaatggt tcagaaatgt 1020 tctaagtatt gctccaataa tgttctcaaa caaaatggcg agactgggaa aagggtatat 1080 gtttgagagc aagagtatga aacttagaac tcaaatacct gcagaaatgc tagcaagcat 1140 cgatttgaaa tatttcaatg attcaacaag aaagaagatt gaaaaaatcc gatcgctctt 1200 aatagagggg actgcatcat tgagccctgg aatgatgatg ggcatgttca atatgttaag 1260 cactgtatta ggcgtctcca tcctgaatct tggacaaaag agatacacca agactactta 1320 ctggtgggat ggtcttcaat cctctgacga ttttgctctg attgtgaatg cacccaatca 1380 tgaagggatt caagccggag tcgacaggtt ttatcgaacc tgtaagctac ttggaatcaa 1440 tatgagcaag aaaaagtctt acataaacag aacaggtaca tttgaattca caagtttttt 1500 ctatcgttat gggtttgttg ccaatttcag catggagctt cccagttttg gggtgtctgg 1560 gatcaacgag tcagcggaca tgagtattgg agttactgtc atcaaaaaca atatgataaa 1620 caatgatctt ggtccagcaa cagctcaaat ggcccttcag ttgttcatca aagattacag 1680 gtacacgtac cgatgccata gaggtgacac acaaatacaa acccgaagat catttgaaat 1740 aaagaaactg tgggagcaaa cccgttccaa agctggactg ctggtctccg acggaggccc 1800 aaatttatac aacattagaa atctccacat tcctgaagtc tgcctaaaat gggaattgat 1860 ggatgaggat taccaggggc gtttatgcaa cccactgaac ccatttgtca gccataaaga 1920 aattgaatca atgaacaatg cagtgatgat gccagcacat ggtccagcca aaaacatgga 1980 gtatgatgct gttgcaacaa cacactcctg gatccccaaa agaaatcgat ccatcttgaa 2040 tacaagtcaa agaggagtac ttgaggatga acaaatgtac caaaggtgct gcaatttatt 2100 tgaaaaattc ttccccagca gttcatacag aagaccagtc gggatatcca gtatggtgga 2160 ggctatggtt tccagagccc gaattgatgc acggattgat ttcgaatctg gaaggataaa 2220 gaaagaagag ttcactgaga tcatgaagat ctgttccacc attgaagagc tcagacggca 2280 aaaatagtga atttagcttg tccttcatga aaa 2313 <210> 5 <211> 2206 <212> RNA <213> Influenza A virus <400> 5 gtactgatcc aaaatggaag attttgtgcg acaatgcttc aatccgatga ttgtcgagct 60 tgcggaaaaa acaatgaaag agtatgggga ggacctgaaa atcgaaacaa acaaatttgc 120 agcaatatgc actcacttgg aagtatgctt catgtattca gattttcact tcatcaatga 180 gcaaggcgag tcaataatcg tagaacttgg tgatccaaat gcacttttga agcacagatt 240 tgaaataatc gagggaagag atcgcacaat ggcctggaca gtagtaaaca gtatttgcaa 300 cactacaggg gctgagaaac caaagtttct accagatttg tatgattaca aggagaatag 360 attcatcgaa attggagtaa caaggagaga agttcacata tactatctgg aaaaggccaa 420 taaaattaaa tctgagaaaa cacacatcca cattttctcg ttcactgggg aagaaatggc 480 cacaaaggca gactacactc tcgatgaaga aagcagggct aggatcaaaa ccagactatt 540 caccataaga caagaaatgg ccagcagagg cctctgggat tcctttcgtc agtccgagag 600 aggagaagag acaattgaag aaaggtttga aatcacagga acaatgcgca agcttgccga 660 ccaaagtctc ccgccgaact tctccagcct tgaaaatttt agagcctatg tggatggatt 720 cgaaccgaac ggctacattg agggcaagct gtctcaaatg tccaaagaag taaatgctag 780 aattgaacct tttttgaaaa caacaccacg accacttaga cttccgaatg ggcctccctg 840 ttctcagcgg tccaaattcc tgctgatgga tgccttaaaa ttaagcattg aggacccaag 900 tcatgaagga gagggaatac cgctatatga tgcaatcaaa tgcatgagaa cattctttgg 960 atggaaggaa cccaatgttg ttaaaccaca cgaaaaggga ataaatccaa attatcttct 1020 gtcatggaag caagtactgg cagaactgca ggacattgag aatgaggaga aaattccaaa 1080 gactaaaaat atgaagaaaa caagtcagct aaagtgggca cttggtgaga acatggcacc 1140 agaaaaggta gactttgacg actgtaaaga tgtaggtgat ttgaagcaat atgatagtga 1200 tgaaccagaa ttgaggtcgc ttgcaagttg gattcagaat gagtttaaca aggcatgcga 1260 actgacagat tcaagctgga tagagctcga tgagattgga gaagatgtgg ctccaattga 1320 acacattgca agcatgagaa ggaattattt cacatcagag gtgtctcact gcagagccac 1380 agaatacata atgaaggggg tgtacatcaa tactgccttg cttaatgcat cttgtgcagc 1440 aatggatgat ttccaattaa ttccaatgat aagcaagtgt agaactaagg agggaaggcg 1500 aaagaccaac ttgtatggtt tcatcataaa aggaagatcc cacttaagga atgacaccga 1560 cgtggtaaac tttgtgagca tggagttttc tctcactgac ccaagacttg aaccacataa 1620 atgggagaag tactgtgttc ttgagatagg agatatgctt ataagaagtg ccataggcca 1680 ggtttcaagg cccatgttct tgtatgtgag aacaaatgga acctcaaaaa ttaaaatgaa 1740 atggggaatg gagatgaggc gttgcctcct ccagtcactt caacaaattg agagtatgat 1800 tgaagctgag tcctctgtca aagagaaaga catgaccaaa gagttctttg agaacaaatc 1860 agaaacatgg cccattggag agtcccccaa aggagtggag gaaagttcca ttgggaaggt 1920 ctgcaggact ttattagcaa agtcggtatt caacagcttg tatgcatctc cacaactaga 1980 aggattttca gctgaatcaa gaaaactgct tcttatcgtt caggctctta gggacaacct 2040 tgaacctggg acctttgatc ttggggggct atatgaagca attgaggagt gcctgattaa 2100 tgatccctgg gttttgctta atgcttcttg gttcaactcc ttccttacac atgcattgag 2160 ttagttgtgg cagtgctact atttgctatc catactgtcc aaaaaa 2206 <210> 6 <211> 1537 <212> RNA <213> Influenza A virus <400> 6 tagataatca ctcactgagt gacatcaaaa tcatggcgtc tcaaggcacc aaacgatctt 60 acgaacagat ggagactgat ggagaacgcc agaatgccac tgaaatcaga gcatccgtcg 120 gaaaaatgat tggtggaatt ggacgattct acatccaaat gtgcaccgaa ctcaaactca 180 gtgattatga gggacggttg atccaaaaca gcttaacaat agagagaatg gtgctctctg 240 cttttgacga aaggagaaat aaataccttg aagaacatcc cagtgcgggg aaagatccta 300 agaaaactgg aggacctata tacaggagag taaacggaaa gtggatgaga gaactcatcc 360 tttatgacaa agaagaaata aggcgaatct ggcgccaagc taataatggt gacgatgcaa 420 cggctggtct gactcacatg atgatctggc attccaattt gaatgatgca acttatcaga 480 ggacaagagc tcttgttcgc accggaatgg atcccaggat gtgctctctg atgcaaggtt 540 caactctccc taggaggtct ggagccgcag gtgctgcagt caaaggagtt ggaacaatgg 600 tgatggaatt ggtcagaatg atcaaacgtg ggatcaatga tcggaacttc tggaggggtg 660 agaatggacg aaaaacaaga attgcttatg aaagaatgtg caacattctc aaagggaaat 720 ttcaaactgc tgcacaaaaa gcaatgatgg atcaagtgag agagagccgg aacccaggga 780 atgctgagtt cgaagatctc acttttctag cacggtctgc actcatattg agagggtcgg 840 ttgctcacaa gtcctgcctg cctgcctgtg tgtatggacc tgccgtagcc agtgggtacg 900 actttgaaag ggagggatac tctctagtcg gaatagaccc tttcagactg cttcaaaaca 960 gccaagtgta cagcctaatc agaccaaatg agaatccagc acacaagagt caactggtgt 1020 ggatggcatg ccattctgcc gcatttgaag atctaagagt attaagcttc atcaaaggga 1080 cgaaggtgct cccaagaggg aagctttcca ctagaggagt tcaaattgct tccaatgaaa 1140 atatggagac tatggaatca agtacacttg aactgagaag caggtactgg gccataagga 1200 ccagaagtgg aggaaacacc aatcaacaga gggcatctgc gggccaaatc agcatacaac 1260 ctacgttctc agtacagaga aatctccctt ttgacagaac aaccattatg gcagcattca 1320 atgggaatac agaggggaga acatctgaca tgaggaccga aatcataagg atgatggaaa 1380 gtgcaagacc agaagatgtg tctttccagg ggcggggagt cttcgagctc tcggacgaaa 1440 aggcagcgag cccgatcgtg ccttcctttg acatgagtaa tgaaggatct tatttcttcg 1500 gagacaatgc agaggagtac gacaattaaa gaaaaat 1537 <210> 7 <211> 1000 <212> RNA <213> Influenza A virus <400> 7 gtagatattg aaagatgagt cttctaaccg aggtcgaaac gtacgtactc tctatcatcc 60 cgtcaggccc cctcaaagcc gagatcgcac agagacttga agatgtcttt gcagggaaga 120 acaccgatct tgaggttctc atggaatggc taaagacaag accaatcctg tcacctctga 180 ctaaggggat tttaggattt gtgttcacgc tcaccgtgcc cagtgagcga ggactgcagc 240 gtagacgctt tgtccaaaat gcccttaatg ggaacgggga tccaaataac atggacaaag 300 cagttaaact gtataggaag ctcaagaggg agataacatt ccatggggcc aaagaaatct 360 cactcagtta ttctgctggt gcacttgcca gttgtatggg cctcatatac aacaggatgg 420 gggctgtgac cactgaagtg gcatttggcc tggtatgtgc aacctgtgaa cagattgctg 480 actcccagca tcggtctcat aggcaaatgg tgrcaacaac caatccacta atcagacatg 540 agaacagaat ggttttagcc agcactacag ctaaggctat ggagcaaatg gctggatcga 600 gtgagcaagc agcagaggcc atggaggttg ctattcgggc taggcaaatg gtgcaggcaa 660 tgagaaccat tgggactcat cctagctcca gtgctggtct gaaaaatgat cttcttgaaa 720 atttgcaggc ctatcagaaa cgaatggggg tgcagatgca acggttcaag tgatcctctc 780 attattgcct caartatcat tgggatcttg cacttgayat tgtggattct tgatcgtctt 840 tttttcaaat gcatttaccg tctctttaaa tacggtttga aaagagggcc ttctacggaa 900 ggagtgccaa agtctatgag ggaagaatat caaaaggaac agcagagtgc tgtggatgct 960 gacgatggtc attttgtcag catagagctg gagtaaaaaa 1000 <210> 8 <211> 861 <212> RNA <213> Influenza A virus <400> 8 tgacaaaaac ataatggatc caaacactgt gtcaagcttt caggtagatt gctttctttg 60 gcatgtccgc aaacgagttg cagaccaaga actaggtgat gccccattcc ttgatcggct 120 tcgccgagat cagaaatccc taagaggaag gggcagtact ctcggtctgg acatcaagac 180 agccacacgt gctggaaagc agatagtgga gcggattctg aaagaagaat ccgatgaggc 240 acttaaaatg accatggcct ctgtacctgc gtcgcgttac ctaactgaca tgactcttga 300 ggaaatgtca agggactggt ccatgctcat acccaagcag aaagtggcag gccctctttg 360 tatcagaatg gaccaggcga tcatggataa gaacatcata ctgaaagcga acttcagtgt 420 gatttttgac cggctggaga ctctaatatt gctaagggct ttcaccgaag agggagcaat 480 tgttggcgaa atttcaccat tgccttctct tccaggacat actgctgagg atgtcaaaaa 540 tgcagttgga gtcctcatcg gaggacttga atggaatgat aacacagttc gagtctctga 600 aactctacag agattcgctt ggagaagcag taatgagaat gggagacctc cactcactcc 660 aaaacagaaa cgagaaatgg cgggaacaat taggtcagaa gtttgaagaa ataagatggt 720 tgattgaaga agtgagacac aaactgaaga taacagagaa tagttttgag caaataacat 780 ttatgcaagc cttacatcta ttgcttgaag tggagcaaga gataagaact ttctcgtttc 840 agcttattta gtactaaaaa a 861 <210> 9 <211> 1783 <212> RNA <213> Influenza A virus <400> 9 tccgaagttg ggggggagca aaagcagggg ttcactctgt caaaatggag aacatagtgc 60 ttcttcttgc aatagttagc cttgttaaaa gtgatcagat ttgcattggt taccatgcaa 120 acaactcgac agagcaagtt gacacgataa tggaaaagaa cgtcactgtt acacatgccc 180 aagacatact ggagaaaaca cacaacggga agctctgcga tctaaatgga gtgaagcctc 240 tgattttaaa ggattgtagt gtagctggat ggctcctcgg aaacccaatg tgcgacgaat 300 tcatcagagt gccggaatgg tcttacatag tggagaggga taatccagct aatgacctct 360 gttacccagg gagcctcaat gactatgaag aactgaaaca cctgttgagc agaataaatc 420 attttgagaa gattctgatc atccccaaga gttcttggcc caatcatgaa acatcattag 480 gggtgagcgc agcttgtcca taccagggag cgccctcctt tttcagaaat gtggtatggc 540 ttatcaaaaa gaacgatgca taccccacaa taaagataag ctacaataat accaatcggg 600 aagatctctt gatactgtgg gggattcatc attccaacaa tgcagaagag cagacaaatc 660 tctataaaaa cccaaccacc tatatttcag ttggaacatc aacattaaac cagagattgg 720 taccaaaaat agctactaga tcccaagtaa acgggcaacg tggaagaatg gacttcttct 780 ggacaatttt gaaaccgaat gatgcaattc atttcgagag taatggaaat ttcattgctc 840 cagaatatgc atacaaaatt gtcaagaaag gggactcaac aattatgaaa agtggagtgg 900 aatatggcca ctgcaacacc aaatgtcaaa ccccagtagg agcgataaac tctagtatgc 960 cgttccacaa tatacatcct ctcaccattg gggaatgccc caaatacgtg aagtcaaaca 1020 agttggtcct tgcgactggg ctcagaaata gtcctcaaag agaaacaaga ggactatttg 1080 gagctatagc aggttttata gagggaggat ggcagggaat ggttgatggt tggtatggct 1140 accaccatat caatgagcag gggagtgggt acgctgcaga caaagagtcc acccaaaagg 1200 caatagatgg agttaccaat aaggtcaact cgatcattga caaaatgaac actcaatttg 1260 aggcagttgg aagggagttt aataacttag aaaggaggat agagaatttg aacaagaaaa 1320 tggaagacgg attcctagat gtctggacct ataatgctga acttctagtt ctcatggaaa 1380 acgagaggac tctagatttc catgactcaa atgtcaagaa cctttacgac aaagtcagac 1440 tgcagcttag ggataatgca aaggagctgg gtaacggttg tttcgaattc tatcacaaat 1500 gtgataatga atgtatggaa agtgtgagaa atgggacgta tgactaccct cagtactcag 1560 aagaagcaag attaaaaaga gaagaaataa gcggagttaa attagaatca ataggaactt 1620 accaaatact gccaatttat tcaacagtgg cgagttccct agcactggca atcatggtgg 1680 ctggtctatc tttatggatg tgctccaatg ggtcgttaca gtgcagaatt tgcatttaaa 1740 tttgtgagct cagattgtag ttaaaaacac ccttgtttct act 1783 <210> 10 <211> 1435 <212> RNA <213> Influenza A virus <400> 10 gaaaatgaat ccaaatcaga agataatatg catttcagcc acaggaatga cactatcggt 60 agtaagcctg ctaataggaa ttgccaattt aggcctaaac atcggacttc actataaggt 120 gggtgatgca ccaactgttg atatcccgag catgaatgaa accaactcaa ccacaacaat 180 aataaacaat aatactcaaa ataatttcac aaatatcact aacattataa taaacaaaga 240 ggaggaaaga atatttctaa acctgactaa gcctctatgt gaggtaaact catggcacat 300 tctatcgaag gacaatgcaa taagaatagg ggaggatgct catatactag tcacaaggga 360 gccctattta tcctgtgatc cgcaaagctg taggatgttt gctctgagcc aaggcacgac 420 actcagagga cggcatgcga acggaactat acatgacaga agcccattca gagctctcgt 480 gagctgggaa atgggtcaag cgcccagtcc atacaacgtt agggtcgaat gtataggatg 540 gtcaagcaca tcatgccacg atggcatatc aagaatgtcg atatgcatgt cggggccaaa 600 caacaatgcg tcagcagtgg tctggtacgg gggtaggcca gtaacagaaa tcccatcatg 660 ggcaggaaat attctcagaa ctcaggaatc agaatgcgtg tgtcataaag gggtctgtcc 720 agtagtcatg acagatggcc cagcaaatag tagagcagca actaagataa tttatttcaa 780 agaggggaag atacagaaaa ttgaagaatt gagagggaat gcccagcaca ttgaggaatg 840 ttcatgctat ggggcagcaa gggtaatcaa atgtgtgtgc agggacaatt ggaaaggggc 900 aaacagacca gtaatcacta tagatcctga aatgatgact cacacaagca agtatttgtg 960 ctcaagggta ttaaccgata caagtcgccc caatgatccc actagcggga actgtgatgc 1020 tccgataatg ggggagagcc cagatcctgg ggtgaagggg tttgcattct tggatggaga 1080 gaattcatgg cttggaagga caattagcaa agactccaga tcaggctacg aaatattaaa 1140 ggtcccaaat gcagaaactg atacccagtc agggccaaca tcacaccaga taattgtcaa 1200 caacccaaac tggtcgggat actcaggagc gttcatagac tattgggcaa acaaagagtg 1260 cttcaatcct tgtttttatg tggaactaat cagagggaga cccaaggaga gtagtgtact 1320 gtggacttca aatagcattg tagctctctg tggatccaaa gagcgattgg gatcatggtc 1380 ctggcacgat ggtgctgaga tcatctactt taagtaggaa taatttagga aaaaa 1435 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HA1F <400> 11 tccgaagttg ggggggagca aaagcagggg 30 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> H26-MuCl-H5R <400> 12 cctcttgttt ctctttgagg actatttctg agccc 35 <210> 13 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> H26-MuCl-H5F <400> 13 ctcaaagaga aacaagagga ctatttggag ctata 35 <210> 14 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> NS-890R <400> 14 gggccgccgg gttattagta gaaacaaggg tg 32 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> N1-1F <400> 15 tccgaagttg ggggggagca aaagcaggag 30 <210> 16 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> N1-1413R <400> 16 gggccgccgg gttattagta gaaacaagga gt 32 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB2-1F <400> 17 tccgaagttg ggggggagcg aaagcaggtc 30 <210> 18 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB2-2341R <400> 18 gggccgccgg gttattagta gaaacaaggt cg 32 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB1-1F <400> 19 tccgaagttg ggggggagcg aaagcaggca 30 <210> 20 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-PB1-2341R <400> 20 gggccgccgg gttattagta gaaacaaggc at 32 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-PA-1F <400> 21 tccgaagttg ggggggagcg aaagcaggta 30 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-PA-2233R <400> 22 gggccgccgg gttattagta gaaacaaggt ac 32 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-NP-1F <400> 23 tccgaagttg ggggggagca aaagcagggt 30 <210> 24 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-NP-1565R <400> 24 gggccgccgg gttattagta gaaacaaggg ta 32 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-M-1F <400> 25 tccgaagttg ggggggagca aaagcaggta 30 <210> 26 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-M-1027R <400> 26 gggccgccgg gttattagta gaaacaaggt ag 32 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Phw-NS-1F <400> 27 tccgaagttg ggggggagca aaagcagggt 30 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Phw-NS-890R <400> 28 gggccgccgg gttattagta gaaacaaggg tg 32 <210> 29 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> N6-1F <400> 29 tccgaagttg ggggggagca aaagcagggt gaaaatg 37 <210> 30 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> N6-890R <400> 30 gggccgccgg gttattagta gaaacaaggg tgtttt 36
Claims (9)
(a) 서열번호 9의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 HA(hemagglutinin) 및 서열번호 10의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조하는 단계;
(b) 서열번호 3 내지 8의 뉴클레오타이드 서열로 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)를 각각 벡터에 클로닝하여 재조합 플라스미드를 제조하는 단계;
(c) 단계 (a) 및 (b)의 재조합 플라스미드를 패키징 세포(packaging cell)에 트랜스펙션(transfection)하는 단계; 및
(d) 패키징 세포의 배양 상층액으로부터 H5N6형 재조합 인플루엔자 A 바이러스를 수득하는 단계.
Method for preparing H5N6 recombinant influenza A virus comprising the following steps:
(a) A recombinant plasmid by cloning a H5N6 type highly pathogenic influenza A virus-derived HA (hemagglutinin) consisting of the nucleotide sequence of SEQ ID NO: 9 and a NA (neuraminidase) derived from a H5N6 type highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 10 into a vector, respectively. Preparing a;
(b) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (non-matrix protein) derived from the low-pathogenic influenza A virus consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 -structuring a recombinant plasmid by cloning each structural vector) into a vector;
(c) transfecting the recombinant plasmids of steps (a) and (b) into packaging cells; And
(d) obtaining H5N6 recombinant influenza A virus from culture supernatant of packaging cells.
The method according to claim 1, wherein the H5N6 type highly pathogenic influenza A virus of step (a) is A/duck/Korea/H35/2017 (H5N6).
According to claim 1, H5N6 type H pathogenic influenza A virus-derived HA of the step (a) is H5N6 deleted by Lys-Arg-Arg-Lys located at the carboxy terminal site of HA1 constituting the HA, H5N6 Method for the production of a recombinant recombinant influenza A virus.
The method of claim 1, wherein the low pathogenic influenza A virus of step (b) is A/PR/8/34 (H1N1).
The method of claim 1, wherein the packaging cell of step (c) is a cell selected from the group consisting of 293T, MDCK, Vero, DF1, PK15, and ST1 cells, the method for producing H5N6 recombinant influenza A virus.
(ⅱ) 서열번호 10의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 바이러스 유래 NA(neuraminidase); 및
(iii) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)의 8개 negative-sense ssRNA를 포함하는,
H5N6형 재조합 인플루엔자 A 바이러스.
(Iv) HA (hemagglutinin) derived from H5N6 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 9;
(Ii) a H5N6 type highly pathogenic virus-derived NA (neuraminidase) consisting of the nucleotide sequence of SEQ ID NO: 10; And
(iii) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (PB2) derived from the low-pathogenic influenza A virus, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 containing 8 negative-sense ssRNAs of non-structural proteins,
Recombinant H5N6 influenza A virus.
The H5N6 type recombinant influenza A virus according to claim 6, wherein the H5N6 type highly pathogenic influenza A virus-derived HA is deleted of Lys-Arg-Arg-Lys located at the carboxy terminal site of HA1 constituting the HA.
(ⅱ) 서열번호 10의 뉴클레오타이드 서열로 이루어진 H5N6형 고병원성 인플루엔자 A 바이러스 유래 NA(neuraminidase); 및
(iii) 서열번호 3 내지 8의 뉴클레오타이드 서열로 각각 이루어진 저병원성 인플루엔자 A 바이러스 유래 PB2(polymerase B2), PB1(polymerase B1), PA(polymerase A), NP(nucleocapsid), M(matrix protein) 및 NS(non-structural protein)의 8개 negative-sense ssRNA를 포함하는,
H5N6형 재조합 인플루엔자 A 바이러스를 포함하는 H5 혈청형 인플루엔자 A 바이러스에 대한 백신 조성물.
(Iv) HA (hemagglutinin) derived from H5N6 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 9;
(Ii) NA (neuraminidase) derived from H5N6 highly pathogenic influenza A virus consisting of the nucleotide sequence of SEQ ID NO: 10; And
(iii) PB2 (polymerase B2), PB1 (polymerase B1), PA (polymerase A), NP (nucleocapsid), M (matrix protein), and NS (PB2) derived from the low-pathogenic influenza A virus, each consisting of the nucleotide sequences of SEQ ID NOs: 3 to 8 containing 8 negative-sense ssRNAs of non-structural proteins,
Vaccine composition for H5 serotype influenza A virus comprising H5N6 type recombinant influenza A virus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200060632A KR102239380B1 (en) | 2020-05-20 | 2020-05-20 | Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200060632A KR102239380B1 (en) | 2020-05-20 | 2020-05-20 | Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190001282A Division KR102182999B1 (en) | 2019-01-04 | 2019-01-04 | Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200085238A true KR20200085238A (en) | 2020-07-14 |
KR102239380B1 KR102239380B1 (en) | 2021-04-12 |
Family
ID=71526661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200060632A KR102239380B1 (en) | 2020-05-20 | 2020-05-20 | Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102239380B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180074373A (en) * | 2016-12-23 | 2018-07-03 | 삼성전자주식회사 | Vehicle and Method for controlling thereof |
-
2020
- 2020-05-20 KR KR1020200060632A patent/KR102239380B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180074373A (en) * | 2016-12-23 | 2018-07-03 | 삼성전자주식회사 | Vehicle and Method for controlling thereof |
Non-Patent Citations (3)
Title |
---|
Euro Surveill. 23 (7) (2018) pp. 1-8. * |
J. Avian Dis. 63 (sp1) (2018) pp. 193-202. * |
Virology, vol. 505 (2017) pp. 33-41. * |
Also Published As
Publication number | Publication date |
---|---|
KR102239380B1 (en) | 2021-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102180774B1 (en) | H5N8 strain Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4A comprising the same | |
CN113186173B (en) | Novel coronavirus pneumonia vaccine based on attenuated influenza virus vector | |
CN102802666B (en) | Swine Influenza Hemagglutinin Variants | |
US11389523B2 (en) | Vectors for eliciting immune responses to non-dominant epitopes in the hemagglutinin (HA) protein | |
US9504741B2 (en) | Immune methods against influenza viruses and combinatorial vaccines thereof | |
CN117098551A (en) | Influenza virus encoding truncated NS1 protein and SARS-COV receptor binding domain | |
KR102027758B1 (en) | Attenuated swine influenza vaccines and methods of making and use thereof | |
MX2014001754A (en) | Influenza h5 vaccines. | |
RU2734118C2 (en) | Recombinant virus-like particles (vlp) using bovine immunodeficiency virus group-specific antigen (gag) protein | |
KR102091281B1 (en) | Recombinant Influenza A virus H5N6 strain and Vaccine Composition for Highly Pathogenic Influenza A virus comprising the same | |
Choi et al. | Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene | |
Abolnik et al. | Dose immunogenicity study of a plant-produced influenza virus-like particle vaccine in layer hens | |
KR102182997B1 (en) | H5N6 strain Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4D comprising the same | |
KR102182987B1 (en) | Recombinant Influenza A virus H5N1 strain and Vaccine Composition for Highly Pathogenic Influenza A virus comprising the same | |
US20160361409A1 (en) | H5 proteins of h5n1 influenza virus for use as a medicament | |
US20160038583A1 (en) | Influenza hemagglutinin variants and uses therefor | |
KR102076794B1 (en) | Recombinant swine influenza virus and uses thereof | |
KR102239380B1 (en) | Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same | |
CN115975953A (en) | Newcastle disease virus for encoding avian influenza H5N1 HA and application of Newcastle disease virus in preparation of bio-adjuvant bivalent vaccine | |
KR102182999B1 (en) | Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4B comprising the same | |
KR102556305B1 (en) | H9N2 Strain Genetic Recombinant Low Pathogenic Avian Influenza A Virus, Manufacturing Method and Vaccine Composition Thereof Using H9N2 Avian Influenza Virus Belonging to Y280 Lineage | |
US12090199B2 (en) | H5N6 recombinant influenza virus, a composition for preparing the same, and a vaccine composition containing the same | |
US20220401549A1 (en) | Novel prime-boost influenza vaccine | |
KR101788236B1 (en) | Avirulent and highly immunogenic influenza virus | |
Sadler et al. | A locally administered single cycle influenza vaccine expressing a non-fusogenic stabilised haemagglutinin stimulates strong T-cell and neutralising antibody immunity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |