KR20200081150A - Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same - Google Patents

Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same Download PDF

Info

Publication number
KR20200081150A
KR20200081150A KR1020180171332A KR20180171332A KR20200081150A KR 20200081150 A KR20200081150 A KR 20200081150A KR 1020180171332 A KR1020180171332 A KR 1020180171332A KR 20180171332 A KR20180171332 A KR 20180171332A KR 20200081150 A KR20200081150 A KR 20200081150A
Authority
KR
South Korea
Prior art keywords
solar cell
layer
tio
semiconductor layer
etch stop
Prior art date
Application number
KR1020180171332A
Other languages
Korean (ko)
Other versions
KR102169011B1 (en
Inventor
김효진
이광철
위다연
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020180171332A priority Critical patent/KR102169011B1/en
Publication of KR20200081150A publication Critical patent/KR20200081150A/en
Application granted granted Critical
Publication of KR102169011B1 publication Critical patent/KR102169011B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed are a solar cell having a TiO_2 nanotube, and an apparatus for generating hydrogen and electricity using the same. According to one embodiment of the present invention, provided is the solar cell comprising: a semiconductor layer; a front electrode formed in an upper part of the semiconductor layer; an etch stop layer formed in the upper part of the semiconductor layer and preventing the semiconductor layer from being etched; a rear electrode formed in a lower part of the semiconductor layer; and a TiO_2 nanotube layer formed on the etch stop layer.

Description

이산화티타늄 나노튜브를 갖는 태양전지 및 이를 이용한 수소 및 전기 발생장치{Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same}Solar cell with Titanium dioxide nanotubes and hydrogen and electricity generator using the same {Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same}

본 발명은 양극산화법에 의해 제조된 TiO2(또는, '이산화티타늄') 나노튜브를 갖는 태양전지 및 이를 이용한 수소 발생장치에 관한 것이다.The present invention relates to a solar cell having TiO 2 (or'titanium dioxide') nanotubes prepared by anodization and a hydrogen generating device using the same.

이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information for this embodiment, and do not constitute a prior art.

도 1은 종래의 태양전지의 구조를 도시한 도면이다.1 is a view showing the structure of a conventional solar cell.

태양전지(100)는 반도체층(110)에 입사된 빛으로 전자와 정공의 pn 접합을 유도하여, 광 에너지를 전기 에너지로 변환시킨다. 빛이 입사됨에 따라, 반도체층(110) 내부에서는 전자(Electron)와 정공(Hole)의 쌍이 생성되며, pn 접합에서 발생한 전기장에 의해 전자는 n형 반도체로 이동하고, 정공은 p형 반도체로 이동한다. The solar cell 100 induces a pn junction of electrons and holes with light incident on the semiconductor layer 110 to convert light energy into electrical energy. As light enters, a pair of electrons and holes is generated inside the semiconductor layer 110, and electrons move to the n-type semiconductor and holes move to the p-type semiconductor by the electric field generated at the pn junction. do.

태양전지(100)의 효율을 높이기 위해서는 반도체층(110)의 표면에서 반사되는 빛의 손실을 최소화하여, 활성층(미도시)으로 도달하는 광전자(Photon)의 수를 증가시키는 것이 매우 중요하다. 이에 따라, 반도체층(110)은 상면에 무반사 코팅층(Anti-reflective Coating, 미도시)을 포함함으로써, 종래의 태양전지(100)가 갖는 문제점을 극복할 수 있다. In order to increase the efficiency of the solar cell 100, it is very important to minimize the loss of light reflected from the surface of the semiconductor layer 110 to increase the number of photons reaching the active layer (not shown). Accordingly, the semiconductor layer 110 may overcome the problem of the conventional solar cell 100 by including an anti-reflective coating (not shown) on the upper surface.

여기서, 무반사 코팅층(미도시)은 반도체층(110) 표면에서 반사되는 빛을 현저히 감소시킬 수 있으며, 결과적으로, 태양전지(100)의 광전 효과를 증가시킨다. Here, the anti-reflection coating layer (not shown) can significantly reduce the light reflected from the surface of the semiconductor layer 110, and consequently, increases the photoelectric effect of the solar cell 100.

최근들어, 무반사 코팅층(미도시)은 반도체층(110) 상에 증착된 Ti(또는, '타이타늄')을 양극산화하는 방법에 의해 제조될 수 있는데, Ti를 양극산화하여 무반사 코팅층(미도시)을 형성하는 과정에서 다음과 같은 문제점이 발생할 수 있다. Recently, the anti-reflection coating layer (not shown) may be manufactured by a method of anodizing Ti (or'titanium') deposited on the semiconductor layer 110, and an anti-reflection coating layer (not shown) by anodizing Ti In the process of forming the following problems may occur.

Ti가 산화되면서 반도체층(110)의 표면까지 식각되거나 손상될 수 있으며, 원치않는 반도체층(110)의 산화, 식각 또는 손상은 태양전지(100)의 효율 저하를 야기한다.As Ti is oxidized, the surface of the semiconductor layer 110 may be etched or damaged, and the unwanted oxidation, etching, or damage of the semiconductor layer 110 causes the efficiency of the solar cell 100 to deteriorate.

한편, 물을 분해시켜 수소 에너지를 제조하는 방법으로는, 물의 전기 분해를 이용한 방법, 탄화수소에 고온의 수증기를 반응시키는 증기 개질 방법 및 광촉매를 이용한 광화학적 방법 등이 있다.On the other hand, as a method of producing hydrogen energy by decomposing water, there are a method using electrolysis of water, a steam reforming method in which hot water vapor is reacted with hydrocarbon, and a photochemical method using a photocatalyst.

물의 전기 분해를 이용한 수소 에너지 제조 방법은 물에 전기 에너지를 공급하여 수소와 산소로 분해시키는 방법이다. 이러한 방법은 전기에너지 공급을 위한 전력소비 및 생산비가 많이 들기 때문에, 경제성이 떨어진다.The method of producing hydrogen energy using electrolysis of water is a method of supplying electrical energy to water to decompose it into hydrogen and oxygen. Since this method requires a lot of power consumption and production cost for supplying electric energy, it is less economical.

증기 개질을 이용한 방법은 탄화수소를 수증기와 반응시켜 수소를 제조하는 방법으로써, 자원고갈이 예상되는 화석 연료에 의존하게 되므로, 그 사용이 제한적이며, 공정 과정 중에 발생되는 다량의 CO2는 환경오염을 유발시키는 원인이 된다.By way method using a steam reforming is to the hydrocarbon react with water vapor to produce hydrogen, since it depends on fossil fuel depletion is expected, its use is limited, a large amount of CO 2 generated during the manufacturing process is the environmental pollution It is a cause to cause.

마지막으로, 광촉매를 이용한 수소 제조 방법은 광촉매 전극에 빛을 조사했을 때, 발생하는 전자와 정공을 활용함으로써 수소와 산소를 제조하는 방법이나, 현재, 기초 연구 단계에 머물러 있기 때문에, 그 효율이 매우 떨어지는 단점이 있다.Lastly, the method of producing hydrogen using a photocatalyst is a method of producing hydrogen and oxygen by utilizing electrons and holes generated when light is irradiated to a photocatalyst electrode. There is a downside.

따라서, 환경오염을 줄이고, 저가의 생산비로 보다 많은 양의 수소 에너지를 제조할 수 있는 방법을 모색해야 한다.Therefore, it is necessary to find a way to reduce environmental pollution and to produce a larger amount of hydrogen energy at a low cost.

본 발명의 일 실시예는, TiO2 나노튜브를 안정적으로 제조할 수 있는 방법을 제공하는 데 일 목적이 있다. One embodiment of the present invention has an object to provide a method for stably producing TiO 2 nanotubes.

본 발명의 일 실시예는, 양극산화를 이용하여 TiO2 나노튜브를 갖는 태양전지를 제공하는 데 일 목적이 있다.One embodiment of the present invention has an object to provide a solar cell having TiO 2 nanotubes using anodization.

또한, 본 발명의 일 실시예는, TiO2 나노튜브를 갖는 태양전지를 이용하여 수소를 발생시키는 장치를 제공하는 데 일 목적이 있다.In addition, an embodiment of the present invention has an object to provide a device for generating hydrogen using a solar cell having a TiO 2 nanotube.

본 발명의 일 측면에 의하면, 태양전지에 있어서, 반도체층, 상기 반도체층의 상부에 형성되는 전면전극, 상기 반도체층의 상부에 형성되고, 상기 반도체층이 식각되지 않도록 하는 식각정지층, 상기 반도체층의 하부에 형성되는 후면전극 및 상기 식각정지층 상에 형성되는 TiO2 나노튜브층을 포함하는 것을 특징으로 하는 태양전지를 제공한다.According to an aspect of the present invention, in a solar cell, a semiconductor layer, a front electrode formed on an upper portion of the semiconductor layer, an etch stop layer formed on an upper portion of the semiconductor layer to prevent the semiconductor layer from being etched, and the semiconductor It provides a solar cell comprising a rear electrode formed on the lower layer and a TiO 2 nanotube layer formed on the etch stop layer.

본 발명의 일 측면에 의하면, 상기 반도체층은, 3-5족 반도체 화합물, 실리콘(Si) 또는 CIGS 중 어느 하나로 구성되는 것을 특징으로 한다.According to an aspect of the present invention, the semiconductor layer is characterized by being composed of any one of a group 3-5 semiconductor compound, silicon (Si) or CIGS.

본 발명의 일 측면에 의하면, 상기 식각정지층은, 상기 반도체층 상에 BiVO4, SrTiO3 및 TiO2중 어느 하나를 증착시켜 형성되는 것을 특징으로 한다.According to an aspect of the present invention, the etch stop layer is formed by depositing any one of BiVO 4 , SrTiO 3 and TiO 2 on the semiconductor layer.

본 발명의 일 측면에 의하면, 상기 TiO2 나노튜브층은, Ti 박막층을 양극산화하여 제조하는 것을 특징으로 한다.According to an aspect of the present invention, the TiO 2 nanotube layer is characterized by being prepared by anodizing the Ti thin film layer.

본 발명의 일 측면에 의하면, 상기 Ti 박막층은, 상기 식각정지층 상에 Ti를 증착시켜 형성되는 것을 특징으로 한다.According to an aspect of the present invention, the Ti thin film layer is formed by depositing Ti on the etch stop layer.

본 발명의 일 측면에 의하면, 반도체층을 준비하는 반도체층 준비과정, 상기 반도체층 상에 기 설정된 두께로 BiVO4, SrTiO3 및 TiO2중 어느 하나를 증착시키는 식각정지층 형성과정, 상기 식각정지층 상에 기 설정된 두께로 Ti를 증착시키는 Ti 박막층 형성과정 및 상기 Ti 박막층을 양극산화시켜, TiO2 나노튜브층을 형성시키는 TiO2 나노튜브층 형성과정을 포함하는 것을 특징으로 하는 태양전지 제조방법을 제공한다.According to an aspect of the present invention, a semiconductor layer preparation process for preparing a semiconductor layer, an etch stop layer formation process for depositing any one of BiVO 4 , SrTiO 3 and TiO 2 to a predetermined thickness on the semiconductor layer, the etch stop by oxidizing the Ti thin film layer formation process and the Ti thin film layer depositing Ti to a predetermined thickness on the layer positive electrode, a method of manufacturing a solar cell comprising the TiO 2 nano-tube layer formation process for forming a TiO 2 nano-tube layer Gives

본 발명의 일 측면에 의하면, 상기 식각정지층 형성과정은, 전자 빔 증착방식 또는 스퍼터링 증착방식 중 어느 하나에 의해 상기 반도체층 상에 BiVO4, SrTiO3 및 TiO2중 어느 하나가 증착되는 것을 특징으로 한다.According to an aspect of the present invention, in the process of forming the etch stop layer, any one of BiVO 4 , SrTiO 3 and TiO 2 is deposited on the semiconductor layer by either an electron beam deposition method or a sputtering deposition method. Is done.

본 발명의 일 측면에 의하면, 상기 TiO2 나노튜브층 형성과정은, 상기 Ti 박막층을 갖는 태양전지를 전해액이 구비된 반응조에 침지시켜 양극산화하는 것을 특징으로 한다.According to one aspect of the present invention, the TiO 2 nanotube layer forming process is characterized in that the solar cell having the Ti thin film layer is immersed in a reaction tank equipped with an electrolyte to anodize.

본 발명의 일 측면에 의하면, 상기 TiO2 나노튜브층 형성과정은, 양극산화된 Ti 박막층을 기 설정된 시간 동안 기 설정된 온도로 열처리하는 것을 더 포함하는 것을 특징으로 한다.According to an aspect of the present invention, the TiO 2 nanotube layer formation process is characterized in that it further comprises heat-treating the anodized Ti thin film layer at a predetermined temperature for a predetermined time.

본 발명의 일 측면에 의하면, 내부에 빈 공간을 구비하는 반응조, 상기 반응조에 배치되어 있는 식각정지층을 포함하는 태양전지 및 복수 개의 와이어 형태의 백금이 서로 교차되어 망(網) 형태의 구조물로 구성되어, 상기 태양전지의 전극과 연결되어 있는 백금 망을 포함하는 것을 특징으로하는 수소 발생장치를 제공한다.According to one aspect of the present invention, a reaction tank having an empty space therein, a solar cell including an etch stop layer disposed in the reaction tank, and a plurality of wire-type platinum cross each other to form a network structure. It is configured, and provides a hydrogen generator, characterized in that it comprises a platinum network connected to the electrode of the solar cell.

본 발명의 일 측면에 의하면, 상기 반응조는, 전해액을 구비하는 것을 특징으로 한다.According to one aspect of the present invention, the reaction tank is characterized in that it comprises an electrolytic solution.

본 발명의 일 측면에 의하면, 상기 백금 망은, 전극 도선에 의해 상기 태양전지와 연결되는 것을 특징으로 한다.According to an aspect of the present invention, the platinum network is characterized in that it is connected to the solar cell by an electrode lead.

본 발명의 일 측면에 의하면, 상기 태양전지는, 전자를 상기 백금 망으로 방출하는 것을 특징으로 한다.According to an aspect of the present invention, the solar cell is characterized in that it emits electrons into the platinum network.

본 발명의 일 측면에 의하면, 상기 태양전지는, 정공을 전해액으로 방출하는 것을 특징으로 한다.According to an aspect of the present invention, the solar cell is characterized in that it releases holes into the electrolyte.

이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 태양전지 표면에 식각정지층을 형성시킴으로써, TiO2 나노튜브를 안정적으로 제조할 수 있는 장점이 있다.As described above, according to an aspect of the present invention, by forming an etch stop layer on the surface of the solar cell, there is an advantage that the TiO 2 nanotubes can be stably produced.

본 발명의 일 측면에 따르면, 양극산화를 이용하여 제조된 TiO2 나노튜브를 갖는 태양전지에 의해, 태양전지의 표면에서 반사되는 빛의 반사량이 최소화됨으로써, 태양전지의 광전효과를 증가시킬 수 있는 장점이 있다. According to one aspect of the invention, by the solar cell having a TiO 2 nanotubes prepared by using anodization, the amount of light reflected from the surface of the solar cell is minimized, which can increase the photoelectric effect of the solar cell There are advantages.

또한, 본 발명의 일 측면에 따르면, TiO2 나노튜브를 갖는 태양전지를 백금(Pt)으로 제조된 망(網) 형태의 구조물과 연결시킴으로써, 전기 및 태양열 이외에도 수소를 생산할 수 있는 장점이 있다.In addition, according to one aspect of the present invention, by connecting a solar cell having a TiO 2 nanotube with a structure made of platinum (Pt), there is an advantage in that hydrogen can be produced in addition to electricity and solar heat.

도 1은 종래의 태양전지의 구조를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 태양전지의 구조를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 식각정지층이 형성되는 과정을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 Ti 박막층이 형성되는 과정을 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 Ti 박막층을 양극산화하여 TiO2 나노튜브층을 제조하는 과정을 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 Ti 박막층의 양극산화 시간에 대한 태양전지의 반사율을 도시한 그래프이다.
도 7은 본 발명의 일 실시예에 따른 TiO2 나노튜브층을 전자 현미경으로 확대한 사진을 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 수소 발생장치를 도시한 도면이다.
1 is a view showing the structure of a conventional solar cell.
2 is a view showing the structure of a solar cell according to an embodiment of the present invention.
3 is a view showing a process of forming an etch stop layer according to an embodiment of the present invention.
4 is a view showing a process of forming a Ti thin film layer according to an embodiment of the present invention.
5 is a view showing a process of manufacturing a TiO 2 nanotube layer by anodizing the Ti thin film layer according to an embodiment of the present invention.
6 is a graph showing the reflectivity of a solar cell with respect to anodization time of a Ti thin film layer according to an embodiment of the present invention.
7 is a view showing an enlarged photograph of a TiO 2 nanotube layer according to an embodiment of the present invention under an electron microscope.
8 is a view showing a hydrogen generator according to an embodiment of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.The present invention can be applied to various changes and may have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing each drawing, similar reference numerals are used for similar components.

제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B can be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components. For example, the first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component. The term and/or includes a combination of a plurality of related described items or any one of a plurality of related described items.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When an element is said to be "connected" or "connected" to another component, it is understood that other components may be directly connected to or connected to the other component, but there may be other components in between. It should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. It should be understood that terms such as “include” or “have” in the present application do not preclude the existence or addition possibility of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification. .

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains.

일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined in the present application. Does not.

도 2는 본 발명의 일 실시예에 따른 태양전지의 구조를 도시한 도면이다.2 is a view showing the structure of a solar cell according to an embodiment of the present invention.

태양전지(200)는 반도체층(210), 전면전극(220), 후면전극(225), 식각정지층(230) 및 TiO2 나노튜브층(240)을 포함한다.The solar cell 200 includes a semiconductor layer 210, a front electrode 220, a rear electrode 225, an etch stop layer 230, and a TiO 2 nanotube layer 240.

태양전지(200)는 태양광의 광자(Photon)를 전기로 변환시키는 pn 접합의 광전 효과를 이용하여 전기 에너지를 발생시킨다. The solar cell 200 generates electric energy using a photoelectric effect of a pn junction that converts photons of sunlight into electricity.

보다 구체적으로 설명하면, 반도체층(210)은 n형 반도체층(212), p형 반도체층(214) 및 pn 접합층(216)을 포함한다. In more detail, the semiconductor layer 210 includes an n-type semiconductor layer 212, a p-type semiconductor layer 214, and a pn junction layer 216.

n형 반도체층(210)은 빛에 의해 전자(Electron)를 생성한다. n형 반도체층(212)은 n형 물질로 도핑(Doping)된 3-5족 화합물 반도체로 구성될 수 있으나, 이에 한정되지 않으며, 실리콘(Si) 및 CIGS(구리 인듐 갈륨 셀렌화물)와 같은 재질로 구성될 수도 있다.The n-type semiconductor layer 210 generates electrons by light. The n-type semiconductor layer 212 may be composed of a group 3-5 compound semiconductor doped with an n-type material, but is not limited thereto, and materials such as silicon (Si) and CIGS (copper indium gallium selenide) It may be composed of.

p형 반도체층(214)은 빛에 의해 정공(Hole)을 생성한다. 마찬가지로, p형 반도체층(214)은 p형 물질로 도핑된 3-5족 화합물 반도체로 구성될 수 있으나, 이에 한정되지 않으며, 실리콘(Si) 및 CIGS(구리 인듐 갈륨 셀렌화물)와 같은 재질로 구성될 수도 있다.The p-type semiconductor layer 214 generates holes by light. Similarly, the p-type semiconductor layer 214 may be composed of a group 3-5 compound semiconductor doped with a p-type material, but is not limited thereto, and is made of a material such as silicon (Si) and CIGS (copper indium gallium selenide). It may be configured.

n형 반도체층(212) 및 p형 반도체층(214)에서 각각 전자 및 정공이 생성됨에 따라, pn 접합층(216)에서는 전기장이 발생한다. pn 접합층(216)에서 발생된 전기장에 의해, n형 반도체층(212)의 전자는 전면전극(220)으로 이동하게 되며, p형 반도체층(214)의 정공은 후면전극(225)으로 이동하게 된다. 이에 따라, 전면전극(220)과 후면전극(225) 사이에 전위치가 발생함으로써, 광전효과를 유도한다.As electrons and holes are generated in the n-type semiconductor layer 212 and the p-type semiconductor layer 214, an electric field is generated in the pn junction layer 216, respectively. Due to the electric field generated by the pn junction layer 216, electrons of the n-type semiconductor layer 212 move to the front electrode 220, and holes of the p-type semiconductor layer 214 move to the back electrode 225. Is done. Accordingly, all positions are generated between the front electrode 220 and the back electrode 225, thereby inducing a photoelectric effect.

전면전극(220)은 n형 반도체층(212)의 상부면에 배치되며, n형 반도체층(212)으로부터 생성된 전자는 전면전극(220)으로 이동한다. 전면전극(220)의 상부에는 후술할 식각정지층(230) 및 TiO2 나노튜브층(240)이 형성되기 때문에, 전면전극(220)은 기 설정된 패턴을 갖는 형태로 구성될 수 있다. 전면전극(220)은 금속과 같은 도전성 물질로 구성될 수 있으며, 투명한 재질의 ITO 전극으로 구현될 수도 있다. The front electrode 220 is disposed on the upper surface of the n-type semiconductor layer 212, and electrons generated from the n-type semiconductor layer 212 move to the front electrode 220. Since the etch stop layer 230 and the TiO 2 nanotube layer 240, which will be described later, are formed on the front electrode 220, the front electrode 220 may be configured to have a predetermined pattern. The front electrode 220 may be made of a conductive material such as metal, or may be implemented with a transparent material ITO electrode.

후면전극(225)은 p형 반도체층(214)의 하부면에 형성되며, p형 반도체층(214)에서 생성된 정공은 후면전극(225)으로 이동한다. 후면전극(225)은 p형 반도체층(214)과 밀착 접촉될 수 있는 판 형태의 구조로 구현될 수 있다. 후면전극(225)은 금속과 같은 도전성 물질로 구성될 수 있다.The back electrode 225 is formed on the lower surface of the p-type semiconductor layer 214, and the holes generated in the p-type semiconductor layer 214 move to the back electrode 225. The back electrode 225 may be embodied in a plate-like structure that can be in close contact with the p-type semiconductor layer 214. The back electrode 225 may be made of a conductive material such as metal.

TiO2 나노튜브층(240)이 Ti 박막층(미도시)의 양극산화에 의해 제조될 때, 식각정지층(230)은 양극산화 과정 상에서 반도체층(210)의 표면이 산화, 식각 또는 손상되지 않도록 반도체층(210)을 보호한다. 식각정지층(230)이 반도체층(210) 표면을 보호함에 따라, 태양전지(200)의 광전효율이 저하되는 것을 방지할 수 있다. When the TiO 2 nanotube layer 240 is manufactured by anodization of a Ti thin film layer (not shown), the etch stop layer 230 does not cause the surface of the semiconductor layer 210 to be oxidized, etched or damaged during the anodization process. The semiconductor layer 210 is protected. As the etch stop layer 230 protects the surface of the semiconductor layer 210, it is possible to prevent the photoelectric efficiency of the solar cell 200 from being lowered.

식각정지층(230)은 BiVO4(비스무트 바나데이트), SrTiO3(스트론튬 티탄산염) 및 TiO2중 어느 하나로 구성될 수 있으며, BiVO4, SrTiO3 및 TiO2중 어느 하나의 물질은 반도체층(210)의 상면에 증착되어 형성된다. 식각정지층(230)이 형성되는 과정에 대해서는 도 3을 참조하여 후술하도록 한다.Etch stop layer 230 is BiVO 4 (bismuth vanadate), SrTiO 3 (strontium titanate) And TiO 2 , and any one of BiVO 4 , SrTiO 3 and TiO 2 is formed by depositing on the upper surface of the semiconductor layer 210. The process of forming the etch stop layer 230 will be described later with reference to FIG. 3.

TiO2 나노튜브층(240)은 태양전지(200) 표면에서 반사되는 빛의 반사율을 저감시키는 무반사 코팅층의 역할을 수행한다. TiO2 나노튜브층(240)은 식각정지층(230)의 표면에 Ti 박막층(미도시)을 증착시킨 후, 이를 양극산화시킴으로써 제조된다. 이와 같이, TiO2 나노튜브층(240)이 Ti 박막층(미도시)을 양극산화시켜 제조됨에 따라, Ti 박막층(미도시)에 굴곡이나 흠결이 있더라도 TiO2 나노튜브층(240)은 밀도 높게 형성될 수 있다. 이에 따라, 태양전지(200)의 반사율은 더욱 낮아지고, 광전효과는 증가하게 된다. TiO2 나노튜브층(240)이 제조되는 과정에 대해서는 도 4 내지 도 5를 참조하여 상세하게 설명하도록 한다.The TiO 2 nanotube layer 240 serves as an anti-reflective coating layer that reduces the reflectance of light reflected from the surface of the solar cell 200. The TiO 2 nanotube layer 240 is prepared by depositing a Ti thin film layer (not shown) on the surface of the etch stop layer 230 and anodizing it. As described above, as the TiO 2 nanotube layer 240 is manufactured by anodizing the Ti thin film layer (not shown), the TiO 2 nanotube layer 240 is formed at a high density even if the Ti thin film layer (not shown) has bends or defects. Can be. Accordingly, the reflectance of the solar cell 200 is further lowered, and the photoelectric effect is increased. The process of manufacturing the TiO 2 nanotube layer 240 will be described in detail with reference to FIGS. 4 to 5.

도 3은 본 발명의 일 실시예에 따른 식각정지층이 형성되는 과정을 도시한 도면이다.3 is a view showing a process of forming an etch stop layer according to an embodiment of the present invention.

도 3(a)는 식각정지층이 형성되는 과정을 도시한 단면도이며, 도 3(b)는 평면도이다.3(a) is a cross-sectional view showing a process of forming an etch stop layer, and FIG. 3(b) is a plan view.

식각정지층(230)을 반도체층(210)의 상면에 형성하기 위해, 반도체층(210)의 상면은 BOE(Buffered Oxide Etchant) 세정액에 의해 세정되며, 반도체층(210)에 남아 있는 BOE 세정액은 DI(Deionized) Water에 의해 제거된다. 세정이 완료되면, 반도체층(210)의 상면은 N2 가스에 의해 건조된다. 이로써, 반도체층(210)의 상면에 부착된 불순물 및 산화물이 제거될 수 있도록 한다. 반도체층(210)의 상면에 부착된 불순물 및 산화물은 시트르산(Critic Acid)을 포함하는 수용액에 침지됨에 따라 용해될 수도 있다.In order to form the etch stop layer 230 on the top surface of the semiconductor layer 210, the top surface of the semiconductor layer 210 is washed with a buffered oxide etchant (BOE) cleaning solution, and the BOE cleaning solution remaining on the semiconductor layer 210 is It is removed by DI (Deionized) Water. When the cleaning is completed, the upper surface of the semiconductor layer 210 is dried by N 2 gas. Accordingly, impurities and oxides attached to the upper surface of the semiconductor layer 210 may be removed. Impurities and oxides attached to the upper surface of the semiconductor layer 210 may be dissolved as immersed in an aqueous solution containing citric acid.

불순물 및 산화물이 제거된 반도체층(210)의 상면에는 식각정지층(230)이 형성된다. 상술한 바와 같이, 식각정지층(230)은 BiVO4, SrTiO3 및 TiO2중 어느 하나로 구성될 수 있다. 식각정지층(230)을 형성하는 방법으로는 전자 빔(Electron Beam) 증착방식 또는 스퍼터링(Sputtering) 증착방식이 있으며, 식각정지층(230)은 둘 중 어느 하나의 방법에 의해 제조될 수 있다. 보다 구체적으로 설명하면, 전자 빔 방식은 이온화된 BiVO4, SrTiO3 및 TiO2중 어느 하나를 고진공 상태에서 반도체층(210) 표면으로 조사하는 방법이며, 스퍼터링 방식은 이온화된 BiVO4, SrTiO3 및 TiO2중 어느 하나를 진공상태에서 금속원과 같은 충돌체에 출동시킨 후, 튀어나온 입자를 반도체층(210)의 상면에 증착시키는 방법이다. 이때, 반도체층(210)의 상면에 형성된 식각정지층(230)의 두께는 약 100㎚ 내외로 구성될 수 있다.An etch stop layer 230 is formed on an upper surface of the semiconductor layer 210 from which impurities and oxides have been removed. As described above, the etch stop layer 230 may be formed of any one of BiVO 4 , SrTiO 3 and TiO 2 . The method of forming the etch stop layer 230 is an electron beam (Electron Beam) deposition method or a sputtering (Sputtering) deposition method, the etch stop layer 230 may be manufactured by either method. More specifically, the electron beam method is a method of irradiating any one of ionized BiVO 4 , SrTiO 3 and TiO 2 to the surface of the semiconductor layer 210 in a high vacuum state, and the sputtering method is ionized BiVO 4 , SrTiO 3 and It is a method of depositing the protruding particles on the upper surface of the semiconductor layer 210 after driving any one of TiO 2 to a collider such as a metal source in a vacuum. At this time, the thickness of the etch stop layer 230 formed on the upper surface of the semiconductor layer 210 may be configured to about 100 nm.

후속 공정에서 식각정지층(230)의 상면에는 TiO2 나노튜브층(240)이 형성되는데, 상술한 바와 같이, TiO2 나노튜브층(240)은 Ti 박막층(미도시)을 양극산화시킴으로써 제조된다. Ti 박막층(미도시)이 양극산화되는 과정에서, Ti 박막층(미도시)의 하부에 위치한 반도체층(210)이 원치않게 식각되거나 손상될 수 있는데, 여기서, 식각정지층(230)은 양극산화에 의해 반도체층(210)이 산화, 식각 또는 손상되지 않도록 반도체층(210)을 보호하는 역할을 한다.In a subsequent process, a TiO 2 nanotube layer 240 is formed on the top surface of the etch stop layer 230. As described above, the TiO 2 nanotube layer 240 is manufactured by anodizing a Ti thin film layer (not shown). . In the process of anodizing the Ti thin film layer (not shown), the semiconductor layer 210 located under the Ti thin film layer (not shown) may be undesirably etched or damaged, where the etch stop layer 230 is used for anodizing. By doing so, the semiconductor layer 210 serves to protect the semiconductor layer 210 from oxidation, etching, or damage.

도 4는 본 발명의 일 실시예에 따른 Ti 박막층이 형성되는 과정을 도시한 도면이고, 도 5는 본 발명의 일 실시예에 따른 Ti 박막층을 양극산화하여 TiO2 나노튜브층을 제조하는 과정을 도시한 도면이다.4 is a view showing a process in which a Ti thin film layer is formed according to an embodiment of the present invention, and FIG. 5 is a process of preparing a TiO 2 nanotube layer by anodizing the Ti thin film layer according to an embodiment of the present invention. It is a drawing shown.

도 4(a)는 Ti 박막층이 형성되는 과정을 도시한 단면도이고, 도 4(b)는 평면도이다.Figure 4 (a) is a cross-sectional view showing a process of forming a Ti thin film layer, Figure 4 (b) is a plan view.

도 4에 도시된 바와 같이, Ti 박막층(235)은 TiO2 나노튜브층(240)을 형성하기 위한 층으로서, 식각정지층(230)의 상면에 형성된다. Ti 박막층(235)은 전자 빔에 의해 식각정지층(230)의 상면에 Ti가 증착된 형태로 형성되며, 이때, Ti 박막층(235)의 두께는 약 500㎚ 내외로 구성될 수 있다.4, the Ti thin film layer 235 is a layer for forming the TiO 2 nanotube layer 240, and is formed on the top surface of the etch stop layer 230. The Ti thin film layer 235 is formed by depositing Ti on the top surface of the etch stop layer 230 by an electron beam. At this time, the Ti thin film layer 235 may have a thickness of about 500 nm.

도 5(a)는 Ti 박막층을 양극산화하여 TiO2 나노튜브층을 제조하는 과정을 도시한 단면도이고, 도 5(b)는 평면도이다.5(a) is a cross-sectional view showing a process of preparing a TiO 2 nanotube layer by anodizing the Ti thin film layer, and FIG. 5(b) is a plan view.

도 5를 참조하면, TiO2 나노튜브층(240)은 Ti 박막층(235)이 양극산화됨에 따라 제조된다. Ti 박막층(235)이 양극산화되는 과정은 다음과 같다. Ti 박막층(235)을 갖는 태양전지(200)는 전해액을 구비한 반응조(미도시)에 침지되며, Ti 박막층(235)은 양(+)극과 연결된다. 양(+)극에 전류가 흐르게 되면, Ti 박막층(235)에서는 산화반응이 발생하며, 이에 따라, TiO2 나노튜브층(240)이 형성된다.Referring to FIG. 5, the TiO 2 nanotube layer 240 is prepared as the Ti thin film layer 235 is anodized. The process of anodizing the Ti thin film layer 235 is as follows. The solar cell 200 having the Ti thin film layer 235 is immersed in a reaction tank (not shown) equipped with an electrolyte, and the Ti thin film layer 235 is connected to a positive (+) electrode. When a current flows to the positive (+) electrode, an oxidation reaction occurs in the Ti thin film layer 235, and accordingly, the TiO 2 nanotube layer 240 is formed.

보다 구체적으로 설명하면, 농도 0.3M(Mole, 몰) 수준의 불화암모늄(NH4F), 0.1M 수준의 인산(H3PO4) 및 물(H2O)을 혼합한 1L의 에틸렌글리콜계 전해액이 제조되면, Ti 박막층(235)을 갖는 태양전지(200)는 약 250mL의 전해액이 구비된 반응조(미도시)에 태양전지(200)의 기판(미도시)이 약 1.5㎝ 정도 잠기도록 침지된다. 여기서, 반응조(미도시)는 유리 재질로 구성될 수 있으나, 이에 한정되지 않으며, PV, 아크릴 및 테프론 등의 재질로 구성될 수도 있다.More specifically, 1 L of ethylene glycol based on a mixture of ammonium fluoride (NH 4 F) at a concentration of 0.3 M (Mole, mol), phosphoric acid (H 3 PO 4 ) at a level of 0.1 M, and water (H 2 O). When the electrolyte solution is prepared, the solar cell 200 having the Ti thin film layer 235 is immersed so that the substrate (not shown) of the solar cell 200 is submerged about 1.5 cm in a reaction tank (not shown) equipped with about 250 mL of the electrolyte solution. do. Here, the reaction tank (not shown) may be made of a glass material, but is not limited thereto, and may be made of materials such as PV, acrylic, and Teflon.

태양전지(200)가 적정 pH를 갖는 전해액이 담긴 반응조에 침지되면, 양(+)극에는 Ti 박막층(235)이 연결되고, 음(-)극에는 태양전지(200)의 기판(미도시)이 연결된다. 이때, 전극 간의 간격은 약 3㎝ 정도로 구성될 수 있으며, 유효 전류밀도를 고려하여 양(+)극의 길이는 음(-)극의 길이보다 길게 구성될 수 있다.When the solar cell 200 is immersed in a reaction tank containing an electrolyte having an appropriate pH, a Ti thin film layer 235 is connected to the positive (+) electrode and a substrate (not shown) of the solar cell 200 is connected to the negative (-) electrode. It is connected. At this time, the distance between the electrodes may be configured to about 3 cm, and considering the effective current density, the length of the positive (+) pole may be longer than that of the negative (-) pole.

전극에 기 설정된 값의 전류가 인가되면, 양(+)극과 연결된 Ti 박막층(235)에서는 산화반응이 발생하며, 양극산화에 의해 Ti는 TiO2로 산화된다. When a current having a predetermined value is applied to the electrode, an oxidation reaction occurs in the Ti thin film layer 235 connected to the positive (+) electrode, and Ti is oxidized to TiO 2 by anodization.

양극산화가 완료된 태양전지(200)는 DI Water를 이용하여 5~10분간 세정된 후, 건조된다. 그리고 태양전지(200)는 기 설정된 온도의 노(爐, Furance)에서 일정 시간 동안 열처리된 후, 상온에서 냉각된다. 이에 따라, 냉각이 완료된 태양전지(200)의 상부에는 TiO2 나노튜브층(240)이 형성된다.After the anodization is completed, the solar cell 200 is washed using DI Water for 5 to 10 minutes, and then dried. In addition, the solar cell 200 is heat-treated for a predetermined time in a furnace at a preset temperature and then cooled at room temperature. Accordingly, a TiO 2 nanotube layer 240 is formed on an upper portion of the solar cell 200 that has been cooled.

Ti 박막층(235)이 양극산화되는 시간에 따라 태양전지(200) 표면에서 반사되는 태양광의 반사율은 상이한데, Ti 박막층(235)이 양극산화되는 시간이 길어질수록, TiO2 나노튜브층(240)은 더 넓은 범위의 태양광 스펙트럼을 무반사한다. 이에 대해서는 도 6을 참조하여 설명하도록 한다.The reflectivity of sunlight reflected from the surface of the solar cell 200 is different according to the time when the Ti thin film layer 235 is anodized. The longer the time the Ti thin film layer 235 is anodized, the TiO 2 nanotube layer 240. Reflects a broader spectrum of sunlight. This will be described with reference to FIG. 6.

도 6은 본 발명의 일 실시예에 따른 Ti 박막층의 양극산화 시간에 대한 태양전지의 반사율을 도시한 그래프이다.6 is a graph showing the reflectivity of a solar cell with respect to anodization time of a Ti thin film layer according to an embodiment of the present invention.

도 6에 도시된 바와 같이, Ti 박막층(235)을 15분 정도 양극산화하였을 때, 800㎚의 파장대역을 갖는 태양광에 대한 태양전지(200)의 반사율은 약 25%를 나타낸다. Ti 박막층(235)이 양극산화되는 시간이 증가함에 따라 반사율은 감소하며, 특히, Ti 박막층(235)이 120분 정도 양극산화되어 TiO2 나노튜브층(240)이 제조됨에 따라, 태양전지(200)는 800㎚대의 파장대역을 갖는 태양광을 거의 반사시키지 않는다.As illustrated in FIG. 6, when the Ti thin film layer 235 is anodized for about 15 minutes, the reflectivity of the solar cell 200 with respect to sunlight having a wavelength band of 800 nm represents about 25%. As the time for the Ti thin film layer 235 to be anodized increases, the reflectance decreases. In particular, as the Ti thin film layer 235 is anodized for about 120 minutes, the TiO 2 nanotube layer 240 is manufactured, and thus the solar cell 200 ) Rarely reflects sunlight having a wavelength band of 800 nm.

한편, Ti 박막층(235)이 양극산화되는 시간이 길어짐에 따라, Ti 박막층(235)의 하부에 위치한 반도체층(210) 표면에 가해지는 손상은 더욱 증가할 수 있다. 따라서, 본 발명의 일 실시예에 따른 태양전지(200)는 반도체층(210)의 상면에 식각정지층(230)을 포함함으로써, Ti 박막층(235)이 양극산화되는 시간이 길어져도, 반도체층(210)의 표면이 산화, 식각 또는 손상되는 것을 방지할 수 있다. 결과적으로, 이는, 태양전지(200)의 효율이 저하되는 것을 방지할 수 있다.Meanwhile, as the time for the Ti thin film layer 235 to be anodized increases, damage to the surface of the semiconductor layer 210 located under the Ti thin film layer 235 may increase. Therefore, the solar cell 200 according to an embodiment of the present invention includes an etch stop layer 230 on the upper surface of the semiconductor layer 210, so that even if the time for the Ti thin film layer 235 to be anodized increases, the semiconductor layer The surface of the 210 can be prevented from being oxidized, etched or damaged. As a result, this can prevent the efficiency of the solar cell 200 from being lowered.

다시, 도 5를 참조하면, 배경기술에서 언급했듯이, TiO2 나노튜브층(240)은 태양전지(200)로 입사되는 태양광의 반사율을 저하시키는 무반사 코팅층과 같은 역할을 수행한다. TiO2 나노튜브층(240)의 하부에는 TiO2로 구성된 식각정지층(230)이 형성될 수 있는데, TiO2 나노튜브층(240)과 식각정지층(230)이 동일한 재질로 구성됨에 따라, 태양광의 반사를 방지하는 TiO2 나노튜브층(240)의 표면적이 증가된다. TiO2 나노튜브층(240)의 표면적 증가는 태양광이 반사되는 것을 더욱 효과적으로 방지하며, 태양전지(200)의 효율을 증대시킨다.Referring again to FIG. 5, as mentioned in the background art, the TiO 2 nanotube layer 240 serves as an anti-reflective coating layer that reduces the reflectance of sunlight incident on the solar cell 200. The lower portion of the TiO 2 nano-tube layer 240. There is an etch stop layer 230, consisting of TiO 2 can be formed, depending on the TiO 2 nanotube layer 240 and the etch stop layer 230 is composed of the same material, The surface area of the TiO 2 nanotube layer 240 that prevents reflection of sunlight is increased. Increasing the surface area of the TiO 2 nanotube layer 240 prevents sunlight from being reflected more effectively and increases the efficiency of the solar cell 200.

도 7은 본 발명의 일 실시예에 따른 TiO2 나노튜브층을 전자 현미경으로 확대한 사진을 도시한 도면이다.7 is a view showing an enlarged photograph of a TiO 2 nanotube layer according to an embodiment of the present invention under an electron microscope.

도 7(a)는 TiO2 나노튜브층(240)의 단면을 도시한 도면이고, 도 7(b)는 TiO2 나노튜브층(240)의 상면을 도시한 도면이다. TiO2 나노튜브층(240)은 기공이 형성된 불완전한 구(球) 모양으로 구현될 수 있으나, 이에 한정되지 않으며, 외부 환경 조건 또는 양극산화 시의 시험 조건 등에 따라 TiO2 나노튜브층(240)의 형태는 달라질 수 있다. 7(a) is a view showing a cross section of the TiO 2 nanotube layer 240, and FIG. 7(b) is a view showing a top surface of the TiO 2 nanotube layer 240. TiO 2 nano-tube layer (240) may be implemented as a partial sphere (球) shaped pores is formed, not limited to this, and the TiO 2 nano-tube layer 240 depending on the test conditions in terms external environment or anodizing The shape can vary.

도 8은 본 발명의 일 실시예에 따른 수소 발생장치를 도시한 도면이다.8 is a view showing a hydrogen generator according to an embodiment of the present invention.

도 8을 참조하면, 수소 발생장치(800)는 태양전지(200), 백금 망(810), 전극 도선(820), 반응조(830) 및 전해액(835)을 포함한다. Referring to FIG. 8, the hydrogen generator 800 includes a solar cell 200, a platinum network 810, an electrode conductor 820, a reaction tank 830, and an electrolyte 835.

태양전지(200)는 태양광의 입사에 의해 pn 접합면을 갖는 반도체층(210)내에서 전자와 정공의 이동이 발생하게 되며, 이에 따라, 빛 에너지를 전기 에너지로 변환시킨다. 태양전지(200)는 태양광에 의해 발열되어 온도가 상승하는데, 이때 발생하는 열을 이용하여 열 에너지로도 사용할 수 있다. 이와 같이, 태양전지(200)는 전기 에너지뿐만 아니라 열 에너지를 생산할 수 있으며, 나아가, 별도의 장치와 결합시켜 수소 에너지를 생산하도록 구현될 수 있다.The solar cell 200 causes the movement of electrons and holes in the semiconductor layer 210 having a pn junction surface by the incidence of sunlight, thereby converting light energy into electrical energy. The solar cell 200 is heated by sunlight and the temperature is increased, but it can also be used as thermal energy by using the heat generated at this time. As such, the solar cell 200 can produce not only electrical energy but also thermal energy, and can be implemented to produce hydrogen energy by combining with a separate device.

태양전지(200)는 산화 및 환원 반응을 촉진시키는 촉매제의 성질을 갖는 백금 망(810)과 결합됨으로써 수소를 발생시킬 수 있다. 태양전지(200)는 전극 도선(820)에 의해 백금 망(810)과 연결된 채로 반응조(830) 내의 전해액(835)에 침지된다. 이때, 전해액(835)은 물(H2O)을 포함한다. The solar cell 200 can generate hydrogen by being combined with a platinum network 810 having a property of a catalyst that promotes an oxidation and reduction reaction. The solar cell 200 is immersed in the electrolyte 835 in the reaction tank 830 while being connected to the platinum network 810 by an electrode lead 820. At this time, the electrolyte 835 includes water (H 2 O).

태양전지(200)가 광을 입사시켜 흡수함으로써 반도체층(210)에서는 전자(e-)와 정공(h+)이 생성되며, 전자(e-)는 백금 망(810)으로 이동하고, 정공(h+)은 전해액(835)으로 이동한다. 정공(h+)은 전해액(835)의 물(H2O)과 반응하여 산화됨으로써, 다음과 같이, 산소를 발생시킨다.By the solar cell 200 is absorbed by the incident light in the semiconductor layer 210, electron (e -) and holes, and (h +) are generated, electron (e -) moved to the platinum net 810, and a hole ( h + ) moves to the electrolyte 835. The hole (h + ) is oxidized by reacting with water (H 2 O) of the electrolyte 835, thereby generating oxygen as follows.

2H2O(l) + 4h+ → 4H+(ion) + O2(g)2H 2 O(l) + 4h + → 4H + (ion) + O 2 (g)

이와 동시에, 수소이온(H+)은 광전극에서 전해액(835)을 거쳐 백금 망(810)의 음극으로 이동하며, 광흡수에 의해 백금 망(810)으로 이동한 전자(e-)는 백금 망(810)의 음극 표면에서 반응하여 환원됨으로써, 다음과 같이, 수소를 발생시킨다.At the same time, hydrogen ions (H + ) move from the photoelectrode to the cathode of the platinum network 810 through the electrolyte 835, and electrons (e ) moved to the platinum network 810 by light absorption absorb platinum. By reacting and reducing on the cathode surface of 810, hydrogen is generated as follows.

4H+(ion) + 4e- → 2H2(g) 4H + (ion) + 4e - → 2H 2 (g)

백금 망(810)은 태양전지(200)와 결합되어 수소를 환원시킨다. 상술한 바와 같이, 백금 망(810)으로 이동된 전자(e-)에 의해 전해액(835) 내의 수소이온(H+)이 환원됨으로써, 수소가스(H2)가 발생한다. 백금 망(810)은 복수 개의 와이어 형태의 백금(pt)이 서로 교차되는 그물(Net) 형태의 구조로 구현될 수 있는데, 이는, 백금 망(810)의 기공률을 증가시켜 전해액(835)이 백금 망(810)을 잘 통과할 수 있도록 함으로써 환원 반응을 촉진시키는 효과가 있다.The platinum network 810 is combined with the solar cell 200 to reduce hydrogen. As described above, hydrogen ions (H + ) in the electrolytic solution 835 are reduced by electrons (e ) moved to the platinum network 810, thereby generating hydrogen gas (H 2 ). The platinum network 810 may be embodied as a net-type structure in which a plurality of wire-type platinum pt cross each other, which increases the porosity of the platinum network 810 so that the electrolyte 835 is platinum. It is effective to promote the reduction reaction by allowing the network 810 to pass well.

전극 도선(820)은 태양전지(200)의 양(+)극과 백금 망(810)의 음(-)극을 연결시키며, 산화 및 환원 반응에 의해 발생하는 가스에 의한 손상을 방지하기 위해, 고무 또는 테프론으로 코팅되어 있는 재질로 구성될 수 있다.The electrode conductor 820 connects the positive (+) electrode of the solar cell 200 and the negative (-) electrode of the platinum network 810, and to prevent damage due to gas generated by oxidation and reduction reactions, It can be made of a material coated with rubber or Teflon.

반응조(830)는 전해액(835)을 포함하고 있으며, 수소 발생장치(800)의 산화 및 환원 반응이 일어나는 공간이다. 반응조(830)는 투명한 성질을 갖는 유리 또는 플라스틱의 재질로 구성될 수 있다.The reaction tank 830 includes an electrolyte 835 and is a space where oxidation and reduction reactions of the hydrogen generator 800 occur. The reaction tank 830 may be made of a glass or plastic material having transparent properties.

전해액(835)은 전해질이 물(H2O)에 녹아 이온(Ion) 형태로 쪼개져 전류가 흐르는 액체상태의 물질로서, 태양전지(200)에서 빠져나간 전자(e-)의 빈공간은 전해액(835) 내의 전해질 이온에 의해 보충된다.The electrolyte 835 is a liquid material in which an electric current flows when the electrolyte is dissolved in water (H 2 O) and split in an ion form, and the empty space of the electron (e ) exiting the solar cell 200 is an electrolyte ( 835).

이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which this embodiment belongs will be capable of various modifications and variations without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical spirit of the present embodiment, but to explain, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of the present embodiment should be interpreted by the claims below, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present embodiment.

100: 종래의 태양전지
110: 반도체층
120: 전면전극
125: 후면전극
200: 본 발명의 일 실시예에 따른 태양전지
210: 반도체층
212: n형 반도체층
214: p형 반도체층
216: pn 접합층
220: 전면전극
225: 후면전극
230: 식각정지층
240: TiO2 나노튜브층
800: 수소 발생장치
810: 백금 망
820: 전극 도선
830: 반응조
835: 전해액
100: conventional solar cell
110: semiconductor layer
120: front electrode
125: back electrode
200: solar cell according to an embodiment of the present invention
210: semiconductor layer
212: n-type semiconductor layer
214: p-type semiconductor layer
216: pn junction layer
220: front electrode
225: rear electrode
230: etch stop layer
240: TiO 2 nanotube layer
800: hydrogen generator
810: platinum network
820: electrode lead
830: reaction tank
835: electrolyte

Claims (14)

태양전지에 있어서,
반도체층;
상기 반도체층의 상부에 형성되는 전면전극;
상기 반도체층의 상부에 형성되고, 상기 반도체층이 식각되지 않도록 하는 식각정지층;
상기 반도체층의 하부에 형성되는 후면전극; 및
상기 식각정지층 상에 형성되는 TiO2 나노튜브층
을 포함하는 것을 특징으로 하는 태양전지.
In the solar cell,
Semiconductor layer;
A front electrode formed on the semiconductor layer;
An etch stop layer formed on the semiconductor layer and preventing the semiconductor layer from being etched;
A back electrode formed under the semiconductor layer; And
TiO 2 nanotube layer formed on the etch stop layer
A solar cell comprising a.
제1항에 있어서,
상기 반도체층은,
3-5족 반도체 화합물, 실리콘(Si) 또는 CIGS 중 어느 하나로 구성되는 것을 특징으로 하는 태양전지.
According to claim 1,
The semiconductor layer,
A solar cell comprising a group 3-5 semiconductor compound, silicon (Si), or CIGS.
제1항에 있어서,
상기 식각정지층은,
상기 반도체층 상에 BiVO4, SrTiO3 및 TiO2중 어느 하나를 증착시켜 형성되는 것을 특징으로 하는 태양전지.
According to claim 1,
The etch stop layer,
A solar cell characterized by being formed by depositing any one of BiVO 4 , SrTiO 3 and TiO 2 on the semiconductor layer.
제1항에 있어서,
상기 TiO2 나노튜브층은,
Ti 박막층을 양극산화하여 제조하는 것을 특징으로 하는 태양전지.
According to claim 1,
The TiO 2 nanotube layer,
A solar cell characterized by manufacturing a Ti thin film layer by anodizing.
제4항에 있어서,
상기 Ti 박막층은,
상기 식각정지층 상에 Ti를 증착시켜 형성되는 것을 특징으로 하는 태양전지.
According to claim 4,
The Ti thin film layer,
A solar cell formed by depositing Ti on the etch stop layer.
반도체층을 준비하는 반도체층 준비과정;
상기 반도체층 상에 기 설정된 두께로 BiVO4, SrTiO3 및 TiO2중 어느 하나를 증착시키는 식각정지층 형성과정;
상기 식각정지층 상에 기 설정된 두께로 Ti를 증착시키는 Ti 박막층 형성과정; 및
상기 Ti 박막층을 양극산화시켜, TiO2 나노튜브층을 형성시키는 TiO2 나노튜브층 형성과정
을 포함하는 것을 특징으로 하는 태양전지 제조방법.
A semiconductor layer preparation process for preparing a semiconductor layer;
An etch stop layer forming process of depositing any one of BiVO 4 , SrTiO 3 and TiO 2 on a predetermined thickness on the semiconductor layer;
A Ti thin film layer forming process of depositing Ti to a predetermined thickness on the etch stop layer; And
By anodizing the Ti thin film layer, TiO 2 TiO 2 nano-tube layer formation process of forming a nano-tube layer
Solar cell manufacturing method comprising a.
제6항에 있어서,
상기 식각정지층 형성과정은,
전자 빔 증착방식 또는 스퍼터링 증착방식 중 어느 하나에 의해 상기 반도체층 상에 BiVO4, SrTiO3 및 TiO2중 어느 하나가 증착되는 것을 특징으로 하는 태양전지 제조방법.
The method of claim 6,
The process of forming the etch stop layer,
A method of manufacturing a solar cell, wherein any one of BiVO 4 , SrTiO 3 and TiO 2 is deposited on the semiconductor layer by either an electron beam deposition method or a sputtering deposition method.
제6항에 있어서,
상기 TiO2 나노튜브층 형성과정은,
상기 Ti 박막층을 갖는 태양전지를 전해액이 구비된 반응조에 침지시켜 양극산화하는 것을 특징으로 하는 태양전지 제조방법.
The method of claim 6,
The TiO 2 nanotube layer forming process,
A method of manufacturing a solar cell, characterized in that the solar cell having the Ti thin film layer is immersed in a reaction tank equipped with an electrolyte to perform anodization.
제8항에 있어서,
상기 TiO2 나노튜브층 형성과정은,
양극산화된 Ti 박막층을 기 설정된 시간 동안 기 설정된 온도로 열처리하는 것을 더 포함하는 것을 특징으로 하는 태양전지 제조방법.
The method of claim 8,
The TiO 2 nanotube layer forming process,
A method of manufacturing a solar cell, further comprising heat-treating the anodized Ti thin film layer at a predetermined temperature for a predetermined time.
내부에 빈 공간을 구비하는 반응조;
상기 반응조에 배치되어 있는 식각정지층을 포함하는 태양전지; 및
복수 개의 와이어 형태의 백금이 서로 교차되어 망(網) 형태의 구조물로 구성되어, 상기 태양전지의 전극과 연결되어 있는 백금 망
을 포함하는 것을 특징으로하는 수소 발생장치.
A reaction tank having an empty space therein;
A solar cell including an etch stop layer disposed in the reaction tank; And
A plurality of wire-shaped platinum intersecting each other to form a network-like structure, and the platinum network connected to the electrode of the solar cell
Hydrogen generator comprising a.
제10항에 있어서,
상기 반응조는,
전해액을 구비하는 것을 특징으로 하는 수소 발생장치.
The method of claim 10,
The reaction tank,
Hydrogen generator comprising an electrolytic solution.
제10항에 있어서,
상기 백금 망은,
전극 도선에 의해 상기 태양전지와 연결되는 것을 특징으로 하는 수소 발생장치.
The method of claim 10,
The platinum network,
Hydrogen generator characterized in that it is connected to the solar cell by an electrode lead.
제10항에 있어서,
상기 태양전지는,
전자를 상기 백금 망으로 방출하는 것을 특징으로 하는 수소 발생장치.
The method of claim 10,
The solar cell,
Hydrogen generator characterized in that it emits electrons into the platinum network.
제10항에 있어서,
상기 태양전지는,
정공을 전해액으로 방출하는 것을 특징으로 하는 수소 발생장치.
The method of claim 10,
The solar cell,
Hydrogen generator, characterized in that to release the hole into the electrolyte.
KR1020180171332A 2018-12-27 2018-12-27 Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same KR102169011B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180171332A KR102169011B1 (en) 2018-12-27 2018-12-27 Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180171332A KR102169011B1 (en) 2018-12-27 2018-12-27 Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same

Publications (2)

Publication Number Publication Date
KR20200081150A true KR20200081150A (en) 2020-07-07
KR102169011B1 KR102169011B1 (en) 2020-10-22

Family

ID=71603004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180171332A KR102169011B1 (en) 2018-12-27 2018-12-27 Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same

Country Status (1)

Country Link
KR (1) KR102169011B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240116156A (en) 2023-01-20 2024-07-29 김현범 Automatic ventilator using AMBU bag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003226A (en) * 1998-06-26 2000-01-15 구자홍 Method of fabricating ferroelectric capacitor
KR20100002441A (en) * 2008-06-30 2010-01-07 경성대학교 산학협력단 Photovoltaic cell with ti-mesh/tio2 nano tube
KR101076355B1 (en) * 2009-09-07 2011-10-25 주식회사 신성홀딩스 Solar cell and manufacturing method of the same
KR101493477B1 (en) * 2013-12-23 2015-02-16 전남대학교산학협력단 Photoelectrode with light scattering layer and One-pot synthesis of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003226A (en) * 1998-06-26 2000-01-15 구자홍 Method of fabricating ferroelectric capacitor
KR20100002441A (en) * 2008-06-30 2010-01-07 경성대학교 산학협력단 Photovoltaic cell with ti-mesh/tio2 nano tube
KR101076355B1 (en) * 2009-09-07 2011-10-25 주식회사 신성홀딩스 Solar cell and manufacturing method of the same
KR101493477B1 (en) * 2013-12-23 2015-02-16 전남대학교산학협력단 Photoelectrode with light scattering layer and One-pot synthesis of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240116156A (en) 2023-01-20 2024-07-29 김현범 Automatic ventilator using AMBU bag

Also Published As

Publication number Publication date
KR102169011B1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
Khoomortezaei et al. Triple layer heterojunction WO3/BiVO4/BiFeO3 porous photoanode for efficient photoelectrochemical water splitting
Chandrasekaran et al. Nanostructured silicon photoelectrodes for solar water electrolysis
Reyes-Gil et al. Comparison between the quantum yields of compact and porous WO3 photoanodes
Tsui et al. Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic, and photovoltaic devices
JP5743039B2 (en) PHOTOSEMICONDUCTOR ELECTRODE AND METHOD FOR PHOTOLYZING WATER USING PHOTOELECTROCHEMICAL CELL INCLUDING
Kim et al. α-Fe 2 O 3 on patterned fluorine doped tin oxide for efficient photoelectrochemical water splitting
KR102120147B1 (en) Solar cell and method of manufacturing the same
KR101724692B1 (en) Manufacturing method of titanium dioxide nanorod using hydrothermal method and photoelectrode comprising titanium dioxide nanorod prepared therefrom
JP2007239048A (en) Light energy conversion apparatus and semiconductor photoelectrode
US20200385873A1 (en) Photocatalytic electrode for water splitting and water splitting device
Zhao et al. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays
CN101814375A (en) Preparation method of nitrogen-doped titanium dioxide nano line electrode
Choi et al. Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation
KR101453605B1 (en) Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells
KR102169011B1 (en) Solar cell with Titanium Dioxide Nanotubes and Apparatus for Generating Hydrogen and Electricity Using the Same
KR101401887B1 (en) Solar cell and manufacturing method for the solar cell
CN107268020B (en) A kind of Ta3N5The preparation method and Ta of film3N5The application of film
Kim et al. Characterization of a composite film prepared by deposition of TiO2 on porous Si
Kim et al. A durable VO 2 transition layer and defect inactivation in BiVO 4 via spontaneous valence-charge control
KR20090020058A (en) Dye-sensitized solar cells having electron recombination protection layer and method for manufacturing the same
CN115305498B (en) Photoelectrode and preparation method thereof, pt-based alloy catalyst and preparation method thereof
CN105932372B (en) Modification method of photoelectrochemical response and photoelectrochemical cell
Fu et al. Fabrication of Ni‐Doped PbTiO3‐Coated TiO2 Nanorod Arrays for Improved Photoelectrochemical Performance
JP6741626B2 (en) High efficiency back electrode type solar cell and manufacturing method thereof
Cho et al. Nanolayered CuWO 4 Decoration on Fluorine-Doped SnO 2 Inverse Opals for Solar Water Oxidation

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right