KR20200069651A - Fabrication method of nanopatterned transparent substrate by Ag Nano Ink - Google Patents

Fabrication method of nanopatterned transparent substrate by Ag Nano Ink Download PDF

Info

Publication number
KR20200069651A
KR20200069651A KR1020180156941A KR20180156941A KR20200069651A KR 20200069651 A KR20200069651 A KR 20200069651A KR 1020180156941 A KR1020180156941 A KR 1020180156941A KR 20180156941 A KR20180156941 A KR 20180156941A KR 20200069651 A KR20200069651 A KR 20200069651A
Authority
KR
South Korea
Prior art keywords
transparent substrate
reflection
nano
manufacturing
substrate
Prior art date
Application number
KR1020180156941A
Other languages
Korean (ko)
Other versions
KR102172734B1 (en
Inventor
하태권
김동주
장경수
Original Assignee
(주)서영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)서영 filed Critical (주)서영
Priority to KR1020180156941A priority Critical patent/KR102172734B1/en
Publication of KR20200069651A publication Critical patent/KR20200069651A/en
Application granted granted Critical
Publication of KR102172734B1 publication Critical patent/KR102172734B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/2018Masking pattern obtained by selective application of an ink or a toner, e.g. ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

An objective of the present invention is to minimize the loss of transmittance by forming an anti-reflection pattern with a thickness as thin as possible directly on a transparent substrate, and at the same time, to consider commercialization to achieve process stability with excellent large area uniformity, in manufacturing an anti-reflection transparent substrate. According to the objective of the present invention, provided is a method for manufacturing an anti-reflection nanostructure capable of minimizing the amount of light reflection caused by a difference in a refractive index between air and a substrate material, by forming an anti-reflection nanopattern with a protruding end having a period less than a light wavelength on a transparent substrate by using metal thin film deposition, heat treatment, and full etching.

Description

Ag 나노 잉크를 통한 나노패턴 투명기판 제조 방법{Fabrication method of nanopatterned transparent substrate by Ag Nano Ink}Fabrication method of nanopatterned transparent substrate by Ag nano ink

본 발명은 반사방지 투명기판과 관련되며, 좀 더 상세하게는, 디스플레이 화면을 이루는 투명기판의 반사방지 강화 기술에 관한 것으로, 투명기판 상에 반사방지용 나노구조를 제조하는 방법에 관한 것이다. The present invention relates to an anti-reflection transparent substrate, and more particularly, to a technique for enhancing anti-reflection of a transparent substrate constituting a display screen, and to a method for manufacturing an anti-reflection nanostructure on a transparent substrate.

최근 사용이 증대되고 있는 휴대폰, 스마트폰, 태블릿 PC 등과 같은 휴대용 전자 기기의 등장으로 인하여, 강화유리, 폴리머 등으로 이루어지는 휴대용 전자 기기의 화면을 보호하기 위한 화면 보호용 기판의 광학적 특성이 향상되어야 할 필요가 있다. 나아가, 화면 보호용 기판이 아니라, 직접 휴대용 전자 기기의 화면을 대체할 수 있는 기판의 필요성 역시 점차 증대되고 있는 실정이다. 현재 휴대용 전자 기기의 화면에 사용되기 위한 유연소자 구현을 위한 기술적 요구는 LCD 및 LED로 대변되는 디스플레이와 박막 및 유기 태양전지에서 광범위하게 대두되고 있다. 고투과율 통한 광투과성의 향상, 명암의 향상, 고스트 이미지의 제거 등은 투명 기판의 상용화를 위한 핵심 요소 기술로 알려져 있다. 폴리머 고유의 물질 특성으로는 완전히 구현될 수 없는 이러한 요소 기술들은 폴리머 기판 표면상의 화학 및 구조적 변형과 이종의 코팅물질의 추가 등을 통해 시도되어 왔다. 표면 강도 향상을 위해서는 기판소재인 polycarbonate 소재의 표면경화가 필요하나 열처리시 필름 구조의 손상으로 인하여 적용이 불가능하다. 이러한 폴리머 기판의 문제점을 해결하기 위하여 투명기판을 비롯한 투명기판에 직접 패터닝하는 연구가 활성화 되고 있다. Due to the emergence of portable electronic devices such as mobile phones, smart phones, tablet PCs, etc., which have been recently used, the optical properties of the screen protecting substrate for protecting the screen of portable electronic devices made of tempered glass, polymer, etc., need to be improved. There is. Furthermore, the need for a substrate that can directly replace a screen of a portable electronic device, not a screen protection substrate, is also gradually increasing. Currently, technical demands for realizing flexible devices for use in screens of portable electronic devices are widely emerging in displays represented by LCDs and LEDs, thin films, and organic solar cells. The improvement of light transmittance through high transmittance, enhancement of contrast, and removal of ghost images, etc., are known as key element technologies for commercialization of transparent substrates. These element technologies, which cannot be fully realized with polymer-specific material properties, have been attempted through chemical and structural modifications on the surface of the polymer substrate and the addition of heterogeneous coating materials. In order to improve the surface strength, it is necessary to harden the surface of polycarbonate, a substrate material, but it is impossible to apply it due to damage to the film structure during heat treatment. In order to solve the problems of the polymer substrate, research on directly patterning a transparent substrate including a transparent substrate is being activated.

공개특허 10-2017-0090895호의 경우, 터치패널 기판으로서 유연성 투명 필름 위에 도전성 금속 나노구조를 형성한 다음, 시인성 향상을 위해 반사방지용 유무기 입자를 도포하는 방법을 제안한다. 여러층을 형성하는 상기 공보의 제조방법은 설비와 공정에 들어가는 비용과 두꺼워지는 층상 구조로 인해 높은 광 투과율을 요하는 경우에는 바람직하지 못하다. In the case of published patent 10-2017-0090895, a method of forming a conductive metal nanostructure on a flexible transparent film as a touch panel substrate, and then applying an anti-reflective organic/inorganic particle to improve visibility is proposed. The method of manufacturing the above-mentioned gazette to form multiple layers is not preferable when high light transmittance is required due to the cost of entering equipment and processes and the thickened layered structure.

본 발명의 목적은 반사방지 투명기판 제조에서, 투명기판에 직접 최대한 얇은 두께로 반사방지용 패턴을 형성하여 투과도의 손실을 최소화하고자 하며, 동시에 상용화를 고려하여 우수한 대면적 균일도와 함께 공정 안정성을 이룰 수 있도록 하는 것이다. The object of the present invention is to minimize the loss of transmittance by forming an anti-reflection pattern in the thickness as thin as possible directly on the transparent substrate in the manufacture of an anti-reflective transparent substrate, and at the same time, considering commercialization, it is possible to achieve process stability with excellent large area uniformity. It is to be.

상기 목적에 따라 본 발명은, 금속박막 형성, 열처리, 전면식각을 이용하여 투명 기판 상에 광파장 이하의 주기를 갖는 끝이 돌기형인 반사방지 나노패턴을 형성함으로써, 공기와 기판 물질간의 굴절률차로 인해 발생하는 빛의 반사량을 최소화할 수 있도록 한 반사방지 나노구조의 제조방법을 제공한다.According to the above object, the present invention is caused by a difference in refractive index between air and the substrate material by forming an anti-reflective nanopattern with a protruding end having a period of light wavelength or less on a transparent substrate using metal thin film formation, heat treatment, and front etching. It provides a method of manufacturing an anti-reflection nanostructure to minimize the amount of reflected light.

본 발명이 이루고자 하는 기술적 과제는 Ag Nano Ink(금속 박막)를 통한 나노패턴 형성할 수 있는 새로운 박막 형성 공정의 도입을 통해 투명 기판에 직접 최대한 얇은 두께로 형성하여 투과도의 손실을 최소화할 필요가 있으며, 동시에 상용화를 고려하여 우수한 대면적 균일도와 함께 공정 안정성을 이룰 필요가 있다. The technical problem to be achieved by the present invention is to minimize the loss of transmittance by forming a thin film as directly as possible on the transparent substrate through the introduction of a new thin film forming process capable of forming a nano pattern through Ag Nano Ink (metal thin film). At the same time, it is necessary to achieve process stability with excellent large area uniformity in consideration of commercialization.

또한, 다양한 기판 위에 직접 패터닝하여 제조하는 방법에 관한 것으로, 좀 더 상세하게는, 투명 기판 상에 Ag Nano Ink(금속 박막)를 코팅하는 단계, 코팅된 Ag Nano Ink(금속 박막)를 열처리 단계, 반사방지 나노구조 형성을 위한 투명 기판 전면 식각 단계, 그리고 마지막으로 잔류된 Ag Nano Ink(금속 박막)를 제거하는 단계를 포함하여, 비교적 간단한 제조공정으로 반사방지 나노구조 투명기판을 제조하는 방법을 제공 한다.In addition, it relates to a method of manufacturing by directly patterning on a variety of substrates, more specifically, the step of coating the Ag Nano Ink (metal thin film) on the transparent substrate, the heat treatment step of the coated Ag Nano Ink (metal thin film), Provides a method of manufacturing an antireflective nanostructured transparent substrate with a relatively simple manufacturing process, including the step of etching the entire surface of the transparent substrate for forming an antireflective nanostructure, and finally removing the remaining Ag Nano Ink (metal thin film). do.

즉, 본 발명은, That is, the present invention,

반사방지 나노패턴 투명 기판 제조 방법에 있어서,In the method of manufacturing an anti-reflection nano pattern transparent substrate,

투명 기판 위에 Ag 나노잉크를 코팅하는 단계;Coating the Ag nanoink on a transparent substrate;

코팅된 Ag 나노잉크를 열처리하는 단계;Heat-treating the coated Ag nanoink;

반사방지 나노구조가 형성되도록 투명 기판 전면을 식각하는 단계; 및Etching the entire surface of the transparent substrate to form an anti-reflection nanostructure; And

잔류된 Ag 나노잉크를 제거하는 단계;를 포함하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조방법을 제공한다.It provides a method for manufacturing an anti-reflection nano-pattern transparent substrate comprising a; removing the residual Ag nano-ink.

상기에 있어서, 투명 기판 위해 Ag 나노잉크를 코팅 하는 단계는,In the above, the step of coating the Ag nano-ink for a transparent substrate,

석영(Qaurtz) 기판에 스핀코팅으로 Ag 나노잉크를 10~20nm 두께로 형성하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조 방법을 제공한다.It provides a method for manufacturing an anti-reflection nano-pattern transparent substrate characterized in that Ag nano-ink is formed in a thickness of 10 to 20 nm by spin coating on a quartz (Qaurtz) substrate.

상기에 있어서, 상기 코팅된 Ag 나노잉크의 열처리 단계는, 400~700℃ 범위에서 5~10분 이내로 열처리된 후, Ag 나노잉크 입자들이 300~500nm 이하의 간격으로 배열되게 한 것을 특징으로 반사방지 나노패턴 투명 기판 제조 방법을 제공한다.In the above, the heat treatment step of the coated Ag nano-ink, after heat treatment within 5 to 10 minutes in the range of 400 ~ 700 ℃, Ag nano-ink particles are arranged at intervals of 300 ~ 500nm or less anti-reflection Provided is a method of manufacturing a nanopattern transparent substrate.

상기에 있어서, 반사방지 나노구조가 형성되도록 투명 기판 전면의 식각단계는, 나노 반사방지 구조가 형성되도록 플라즈마 건식 식각법을 이용하며, 건식 식각 조건은, In the above, the etching step of the front surface of the transparent substrate so that the anti-reflection nanostructure is formed, the plasma dry etching method is used so that the nano-reflection prevention structure is formed, and the dry etching conditions are:

10/10sccm 내지 70/10sccm의 SF6/O2 공급 속도, 100 내지 200W의 ICP 전력, 70 내지 130Wdml RF 전력, 및 15~17 mtorr의 운전 압력으로 7~10분 이하로 식각 하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조 방법을 제공한다.It is characterized by etching in less than 7 to 10 minutes with an SF 6 /O 2 supply speed of 10/10 sccm to 70/10 sccm, an ICP power of 100 to 200 W, 70 to 130 Wdml RF power, and an operating pressure of 15 to 17 mtorr. Provided is a method of manufacturing an antireflection nanopattern transparent substrate.

상기에 있어서, 잔류된 Ag 나노잉크를 제거하는 단계는, 플라즈마 세정 공정을 포함하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조 방법을 제공한다.In the above, the step of removing the residual Ag nano-ink provides a method of manufacturing an anti-reflection nano-patterned transparent substrate comprising a plasma cleaning process.

또한, 본 발명은, 상기 방법으로 제조되어 투과율이 98% 수준으로 향상된 반사방지 나노패턴 투명기판을 제공한다.In addition, the present invention provides an anti-reflection nano-pattern transparent substrate prepared by the above method and having improved transmittance to 98%.

본 발명의 반사방지 기판제조장법에 따르면, 투명 기판 상에 광파장 이하의 주기를 갖는 끝이 돌기형인 반사방지 나노패턴을 형성함으로써, 공기와 기판 물질간의 굴절률차로 인해 발생하는 빛의 반사량을 최소화한 반사방지 투명기판을 제조할 수 있으며, 투명기판에 직접 얇은 두께로 반사방지용 패턴을 형성하기 때문에 별도의 필름을 적용하는 것보다 투과도의 손실을 최소화할 수 있고, 대면적 균일도를 유지할 수 있으며, 제조 공정의 안정성을 지녀 상용화에 유리하다. According to the anti-reflection substrate manufacturing method of the present invention, by forming an anti-reflection nano pattern having a protruding end having a period of light wavelength or less on a transparent substrate, reflection minimizing the amount of reflection of light generated due to a difference in refractive index between air and the substrate material It is possible to manufacture an anti-transparent substrate, and since it forms a pattern for anti-reflection with a thin thickness directly on the transparent substrate, it is possible to minimize the loss of transmittance, maintain a large area uniformity, and maintain a large area uniformity than applying a separate film. Its stability is advantageous for commercialization.

도 1은 Ag Nano Ink를 통한 나노패턴 투명기판 제조 모식도.
도 2는 투명기판에 제작된 나노 반사방지 구조체 SEM사진.
도 3은 제작된 나노 반사방지 투명 기판 투과율 평가 결과.
1 is a schematic diagram of manufacturing a nano-pattern transparent substrate through Ag Nano Ink.
Figure 2 SEM photograph of nano-reflective structure fabricated on a transparent substrate.
3 is a nano-reflective prepared transparent substrate transmittance evaluation results.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따라 디스플레이 화면을 구성하는 투명기판에 대해 직접적으로 반사방지용 나노패턴을 형성하는 과정을 보여준다.1 shows a process of directly forming an anti-reflection nano pattern on a transparent substrate constituting a display screen according to the present invention.

투명기판은 유리 또는 유연성 있는 투명 폴리머 기판 또는 석영기판일 수 있지만 바람직하게는 석영 기판을 사용한다. 투명기판 위에 나노패턴을 직접 형성하여 반사를 방지하고 투과율을 높이는 것이다. The transparent substrate may be a glass or flexible transparent polymer substrate or a quartz substrate, but preferably a quartz substrate is used. It is to form a nano pattern directly on a transparent substrate to prevent reflection and increase transmittance.

나노패턴을 형성하는 방법은 Ag 나노잉크를 코팅 한 다음 열처리로 패턴을 형성하는 것이다. The method of forming the nanopattern is to coat the Ag nanoink and then form the pattern by heat treatment.

즉, 투명 기판 위에 Ag 나노잉크를 코팅하고, 코팅된 Ag 나노잉크를 열처리하여 코팅된 Ag 나노 잉크층에서 열에 의한 용매의 증발을 일으켜 Ag 나노잉크 입자들이 무작위적으로 그러나 전체적으로는 균일한 패턴을 형성한다. 크기가 일정하지 않고 간격도 다양하게 배열된 둥근 점들로 이루어진 패턴을 형성한다. 따라서 이와 같이 형성된 패턴을 마스크로 이용하면 기판 자체를 패터닝할 수 있다. That is, Ag nano ink is coated on a transparent substrate, and heat treatment of the coated Ag nano ink causes evaporation of the solvent by heat in the coated Ag nano ink layer, so that the Ag nano ink particles form a random but uniform pattern as a whole. do. It forms a pattern of round dots that are not uniformly sized and have various spacings. Therefore, when the pattern formed as described above is used as a mask, the substrate itself can be patterned.

상기에서 Ag 나노잉크는 10~20nm 두께로 도포하며, 스핀 코팅을 비롯하여 블레이드 코팅, 딥 코팅 등을 실시할 수 있다. In the above, Ag nano-ink is applied to a thickness of 10 ~ 20nm, spin coating, blade coating, dip coating, etc. may be performed.

Ag 나노잉크가 코팅된 기판의 열처리는, 400~700℃ 범위에서 5~10분 이내로 실시한다. 고온에서 비교적 단시간 내에 열처리가 완료될 수 있으며, 석영기판은 상기 온도에서 매우 안정적이며, 유리기판을 사용할 경우 석영기판에 비해 약간 낮은 온도, 즉, 유리의 융점을 넘지 않는 온도에서 열처리를 실시할 수 있다. The heat treatment of the Ag nano-ink coated substrate is performed within 5 to 10 minutes in the range of 400 to 700°C. Heat treatment can be completed in a relatively short time at a high temperature, the quartz substrate is very stable at the above temperature, and when a glass substrate is used, heat treatment may be performed at a temperature slightly lower than that of the quartz substrate, that is, a temperature not exceeding the melting point of the glass. have.

상기 열처리는 Ag 나노잉크 입자로 하여금 300~500nm 이하의 간격으로 무작위하면서도 전체적으로 균일하게 배열되게 한다. The heat treatment causes Ag nanoink particles to be randomly and uniformly arranged at intervals of 300 to 500 nm or less.

형성된 패턴을 마스크로 삼아 식각 공정을 실시하면, Ag 잉크가 마스킹 되지 않은 부분의 기판 면이 식각되어 나노구조체가 형성된다. 이후, 잔류하는 Ag 나노잉크를 제거하면 기판 면에 끝이 돌기형인 반사방지 나노패턴이 형성된다. 형성된 나노패턴은 도 2의 SEM 사진에 나와있다. When the etching process is performed using the formed pattern as a mask, the surface of the substrate in which the Ag ink is not masked is etched to form a nanostructure. Thereafter, when the remaining Ag nanoink is removed, an antireflection nanopattern having a protruding end is formed on the surface of the substrate. The formed nanopattern is shown in the SEM photograph of FIG. 2.

식각 공정은 플라즈마 건식 식각법을 이용하며, 건식 식각 조건은, 다음과 같다. The etching process uses a plasma dry etching method, and the dry etching conditions are as follows.

즉, SF6/O2를 공급속도 10/10sccm 내지 70/10sccm로 공급하고, 100 내지 200W의 ICP 전력과, 70 내지 130W의 RF 전력을 인가하며, 식각공정을 실시하는 챔버 내 압력은 15~17 mtorr로 유지하며, 7~10분 이하로 식각한다. 상기 식각 공정의 조건은 반사방지에 효과적인 깊이와 형상의 나노구조체를 신속하게 완료하여 준다. That is, SF 6 / O 2 is supplied at a supply speed of 10/10 sccm to 70/10 sccm, ICP power of 100 to 200 W and RF power of 70 to 130 W are applied, and the pressure in the chamber for performing the etching process is 15 to 15 It is maintained at 17 mtorr and etched in 7-10 minutes. The conditions of the etching process quickly complete a nanostructure having a depth and shape effective for preventing reflection.

식각 공정 이후, 잔류된 Ag 나노잉크의 제거는, 플라즈마 세정 공정을 이용하는 것이 바람직하다. 동일 챔버 내에서 연이어 실시할 수 있어 설비와 노력을 절감한다. After the etching process, it is preferable to use a plasma cleaning process to remove the residual Ag nanoink. It can be carried out consecutively in the same chamber, saving equipment and effort.

상기에서 Ag 나노잉크 입자 자체의 직경도 상기 간격과 비슷하여 300~1,000nm 정도로 형성되어 식각된 기판의 나노구조체의 크기도 그와 같이 된다. In the above, the diameter of the Ag nano-ink particle itself is similar to the above-described spacing, and thus is formed at about 300 to 1,000 nm, so that the size of the nanostructure of the etched substrate is the same.

이러한 나노패턴은 광파장 이하의 주기를 갖도록 형성되어 공기와 기판 물질간의 굴절률차로 인해 발생하는 빛의 반사량을 최소화할 수 있다. The nanopattern is formed to have a period of less than or equal to the wavelength of light, thereby minimizing the amount of reflection of light generated due to a difference in refractive index between air and the substrate material.

도 3에는 본 발명에 따른 나노패턴을 양면에 지닌 석영기판의 투과율이 최대 98.12%임을 보여준다. Figure 3 shows that the transmittance of the quartz substrate having the nano-pattern according to the present invention on both sides is up to 98.12%.

또한, 투명기판에 직접 얇은 두께로 반사방지용 패턴을 형성하기 때문에 별도의 필름을 적용하는 것보다 투과도의 손실을 최소화할 수 있고, 대면적 균일도를 유지할 수 있으며, 제조 공정의 안정성을 지녀 상용화에 유리하다. In addition, since the anti-reflection pattern is formed in a thin thickness directly on the transparent substrate, the loss of transmittance can be minimized, the uniformity of the large area can be maintained, and the stability of the manufacturing process is advantageous for commercialization. Do.

또한, 본 발명은 비교적 공정이 간단하며, 설비도 복잡하지 않고, 열처리 공정 역시 전체 기판 면에 형성되는 패턴 자체가 무작위하면서도 균일도를 나타낼 수 있어 열처리 장비를 구성하는 데 무리가 없다. In addition, the present invention is relatively simple process, the equipment is not complicated, and the heat treatment process also has a random pattern and uniformity on the entire substrate surface, so it is easy to construct a heat treatment equipment.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The rights of the present invention are not limited to the embodiments described above but are defined by the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.

Claims (6)

반사방지 나노패턴 투명 기판 제조 방법에 있어서,
투명 기판 위에 Ag 나노잉크를 코팅하는 단계;
코팅된 Ag 나노잉크를 열처리하는 단계;
반사방지 나노구조가 형성되도록 투명 기판 전면을 식각하는 단계; 및
잔류된 Ag 나노잉크를 제거하는 단계;를 포함하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조방법.
In the method of manufacturing an anti-reflection nano pattern transparent substrate,
Coating the Ag nanoink on a transparent substrate;
Heat-treating the coated Ag nanoink;
Etching the entire surface of the transparent substrate to form an anti-reflection nanostructure; And
A method of manufacturing an anti-reflection nano-pattern transparent substrate, comprising removing the remaining Ag nano-ink.
제1항에 있어서, 투명 기판 위해 Ag 나노잉크를 코팅 하는 단계는,
석영(Qaurtz) 기판에 스핀코팅으로 Ag 나노잉크를 10~20nm 두께로 형성하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조 방법.
According to claim 1, The step of coating the Ag nano-ink for a transparent substrate,
Method of manufacturing an anti-reflection nano-pattern transparent substrate, characterized in that Ag nano-ink is formed in a thickness of 10 to 20 nm by spin coating on a quartz (Qaurtz) substrate.
제1항에 있어서, 상기 코팅된 Ag 나노잉크의 열처리 단계는, 400~700℃ 범위에서 5~10분 이내로 열처리된 후, Ag 나노잉크 입자들이 300~500nm 이하의 간격으로 배열되게 한 것을 특징으로 반사방지 나노패턴 투명 기판 제조 방법.The method of claim 1, wherein the heat treatment step of the coated Ag nanoink is characterized in that the Ag nanoink particles are arranged at intervals of 300 to 500 nm or less after being heat treated within 5 to 10 minutes in a range of 400 to 700°C. Method for manufacturing anti-reflection nano-pattern transparent substrate. 제1항에 있어서, 반사방지 나노구조가 형성되도록 투명 기판 전면의 식각단계는, 나노 반사방지 구조가 형성되도록 플라즈마 건식 식각법을 이용하며, 건식 식각 조건은,
10/10sccm 내지 70/10sccm의 SF6/O2 공급 속도, 100 내지 200W의 ICP 전력, 70 내지 130Wdml RF 전력, 및 15~17 mtorr의 운전 압력으로 7~10분 이하로 식각 하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조 방법.
The method of claim 1, wherein the etching step of the front surface of the transparent substrate so that the anti-reflection nanostructure is formed, the plasma dry etching method is used to form the anti-reflection structure, and the dry etching conditions are:
It is characterized by etching in less than 7 to 10 minutes with an SF 6 /O 2 supply speed of 10/10 sccm to 70/10 sccm, an ICP power of 100 to 200 W, 70 to 130 Wdml RF power, and an operating pressure of 15 to 17 mtorr. Method for manufacturing anti-reflection nano-pattern transparent substrate.
제1항에 있어서, 잔류된 Ag 나노잉크를 제거하는 단계는, 플라즈마 세정 공정을 포함하는 것을 특징으로 하는 반사방지 나노패턴 투명 기판 제조 방법.The method of claim 1, wherein the step of removing the residual Ag nanoink comprises a plasma cleaning process. 제1항 내지 제5항 중 어느 한 항으로 제조된 반사방지 나노패턴 투명기판.



An antireflection nanopattern transparent substrate made of any one of claims 1 to 5.



KR1020180156941A 2018-12-07 2018-12-07 Fabrication method of nanopatterned transparent substrate by Ag Nano Ink KR102172734B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180156941A KR102172734B1 (en) 2018-12-07 2018-12-07 Fabrication method of nanopatterned transparent substrate by Ag Nano Ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180156941A KR102172734B1 (en) 2018-12-07 2018-12-07 Fabrication method of nanopatterned transparent substrate by Ag Nano Ink

Publications (2)

Publication Number Publication Date
KR20200069651A true KR20200069651A (en) 2020-06-17
KR102172734B1 KR102172734B1 (en) 2020-11-02

Family

ID=71405746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180156941A KR102172734B1 (en) 2018-12-07 2018-12-07 Fabrication method of nanopatterned transparent substrate by Ag Nano Ink

Country Status (1)

Country Link
KR (1) KR102172734B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012554A (en) * 2010-08-02 2012-02-10 광주과학기술원 Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure
KR20120060185A (en) * 2012-05-14 2012-06-11 주식회사 와이텔포토닉스 Solar cells using substrate integrated with antireflection nano structure and method for fabricating the same
KR20170044907A (en) * 2015-10-16 2017-04-26 (주)뉴옵틱스 Dry cleaning method for cylindrical mold of nanopattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012554A (en) * 2010-08-02 2012-02-10 광주과학기술원 Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure
KR20120060185A (en) * 2012-05-14 2012-06-11 주식회사 와이텔포토닉스 Solar cells using substrate integrated with antireflection nano structure and method for fabricating the same
KR20170044907A (en) * 2015-10-16 2017-04-26 (주)뉴옵틱스 Dry cleaning method for cylindrical mold of nanopattern

Also Published As

Publication number Publication date
KR102172734B1 (en) 2020-11-02

Similar Documents

Publication Publication Date Title
TWI713653B (en) Glass laminate with protective film
CN111183373B (en) Antireflection film, method for producing same, and polarizing plate with antireflection layer
KR101283665B1 (en) Forming Method Of Nano Structure For High Light-Transmissive And Super-Water-Repellent Surface
TWI587187B (en) Substrate attached with decorative material and method for manufacturing the same, touch panel and information display device
TWI480572B (en) A transparent conductive element, an input device, and a display device
JPWO2013191092A1 (en) Antireflection structure, manufacturing method thereof, and display device
WO2012098694A1 (en) Transparent conductive element, input device, and display device
JP3360898B2 (en) Method for producing antireflection member and polarizing plate
CN102969393A (en) Method for patterning indium tin oxide film (ITO) film on substrate
CN110183113A (en) The preparation method of glare proof glass
WO2016192364A1 (en) Production method for slit electrode, slit electrode and display panel
KR102172734B1 (en) Fabrication method of nanopatterned transparent substrate by Ag Nano Ink
KR20170112310A (en) Transparent electrode structure and method for manufacturing thereof
KR20160059957A (en) Antiglare film, antiglare polarizing plate and image display device
CN110456555B (en) Color filter and preparation method thereof
CN106773523A (en) A kind of mask plate and preparation method thereof
KR20120114975A (en) Method for manufacturing a master mold, and method for manufacturing a anti-reflection film using the mold
CN105892123A (en) Base color homogenizing method of flexible liquid crystal display
TW201910911A (en) Method for manufacturing pattern, laminate and method for manufacturing touch panel
US20160122880A1 (en) Method and device for forming protrusion by masking on surface of basic material
KR101751260B1 (en) Method of producting anti-reflective layer for display device
JP2008158265A (en) Color filter and manufacturing method of color filter
TWI549030B (en) Conductive transparent laminates, patterned conductive transparent laminates and touch panels
WO2020186570A1 (en) Anti-reflection film and manufacturing method therefor, and display panel
KR20130015667A (en) Transparent conductive film and method for fabricating the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant