KR20200060414A - High-strength marine steel with excellent low-temperature toughness and its one-stage multi-stage heat treatment process - Google Patents

High-strength marine steel with excellent low-temperature toughness and its one-stage multi-stage heat treatment process Download PDF

Info

Publication number
KR20200060414A
KR20200060414A KR1020207010336A KR20207010336A KR20200060414A KR 20200060414 A KR20200060414 A KR 20200060414A KR 1020207010336 A KR1020207010336 A KR 1020207010336A KR 20207010336 A KR20207010336 A KR 20207010336A KR 20200060414 A KR20200060414 A KR 20200060414A
Authority
KR
South Korea
Prior art keywords
temperature
minutes
quenching
heat treatment
tempering
Prior art date
Application number
KR1020207010336A
Other languages
Korean (ko)
Other versions
KR102222958B1 (en
Inventor
장롱 씨에
판펑 왕
싱 진
빙쥔 장
치롱 후
Original Assignee
난징 아이론 앤드 스틸 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난징 아이론 앤드 스틸 컴퍼니 리미티드 filed Critical 난징 아이론 앤드 스틸 컴퍼니 리미티드
Publication of KR20200060414A publication Critical patent/KR20200060414A/en
Application granted granted Critical
Publication of KR102222958B1 publication Critical patent/KR102222958B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Abstract

저온인성이 우수한 고강도 선박용 철강 및 이의 일강다단 열처리 공정을 제공하며, 상기 철강의 화학성분(질량백분율)은 C 0.12-0.15%, Si 0.20-0.30%, Mn 1.40-1.70%, Ni 0.12-0.15%, Cr 0.16-0.25%, Mo 0.08-0.12%, Nb 0.020-0.030%, Ti 0.012-0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0020-0.0030%, 및 잔여량 Fe와 불가피한 불순물이다. 다양한 담금질 및 템퍼링 공정을 조합해 저온인성이 우수하고 E460~E550 강도 등급을 충족시키는 고강도의 최대 두께 50mm 선박용 강판을 생산할 수 있으며, 이는 합금 비용이 낮고 공정 적응성이 광범위하다. It provides high-strength marine steel with excellent low-temperature toughness and a single-stage multi-stage heat treatment process, and the chemical composition (mass percentage) of the steel is C 0.12-0.15%, Si 0.20-0.30%, Mn 1.40-1.70%, Ni 0.12-0.15% , Cr 0.16-0.25%, Mo 0.08-0.12%, Nb 0.020-0.030%, Ti 0.012-0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0020-0.0030%, and residual Fe and It is an inevitable impurity. By combining various quenching and tempering processes, it is possible to produce high-strength, maximum-thickness 50mm marine steel sheets that have excellent low-temperature toughness and meet E460 ~ E550 strength grades, which have low alloy cost and wide process adaptability.

Description

저온인성이 우수한 고강도 선박용 철강 및 이의 일강다단 열처리 공정High-strength marine steel with excellent low-temperature toughness and its one-stage multi-stage heat treatment process

본 발명은 야금 기술 분야에 속하며 선박용 철강 및 이의 열처리 공정에 관한 것으로, 더욱 상세하게는 저온인성이 우수한 고강도 선박용 철강 및 이의 일강다단(one-steel multi-grade) 열처리 공정에 관한 것이다.The present invention belongs to the field of metallurgy technology and relates to a ship steel and heat treatment process thereof, and more particularly, to a high-strength ship steel excellent in low temperature toughness and a one-steel multi-grade heat treatment process.

21세기에 들어서면서 과학 기술과 경제 세계화가 진행됨에 따라 해양 자원 개발과 해상 운송 산업이 점점 더 많은 주목을 받고 있다. 조선 산업에서 2010년 중국 조선 준공량의 세계 시장 점유율은 41.9%를 기록했으며, 신규 수주량의 세계 시장 점유율은 48.5%, 기확보 수주량의 세계 시장 점유율은 40.8%로 모두 세계 1위를 차지했다. 중국은 이미 세계 조선 산업의 중심이다. 해양 엔지니어링 장비 제조 산업의 급성장은 업스트림 철강 산업에 기회를 제공하는 동시에 해양 철강 수요의 성장도 견인할 것이다.As the scientific and technological and economic globalization progresses into the 21st century, the marine resource development and marine transportation industries are getting more and more attention. In the shipbuilding industry, the global market share of Chinese shipbuilding completed in 2010 was 41.9%, the world market share of new orders was 48.5%, and the world market share of previously secured orders was 40.8%, ranking first in the world. China is already the center of the global shipbuilding industry. The rapid growth of the offshore engineering equipment manufacturing industry will provide opportunities for the upstream steel industry while driving the growth of offshore steel demand.

현재 대부분의 중후판 생산에는 제어 압연 및 제어 냉각 공정이 채택되고 있으나 생산비용이 낮은 대신 조직 및 역학적 성능의 안정성이 담금질 템퍼링 생산 공정(고온 담금질+고온 템퍼링)에 미치지 못한다. 따라서 담금질 템퍼링 공정이 여전히 중후판 생산의 중요한 수단으로 사용되고 있다. 최근 저온인성이 우수한 고강도 선박용 철강 생산 측면에서 어느 정도 성과가 있었으며, 일부 특허가 공개적으로 발표되었다. 중국 특허 번호 CN103361551A는 "V-N 미량합금 기반의 고인성 선박용 강판 및 이의 제조방법"을 개시하였으며, V, Ti, Nb 등 다양한 합금 원소를 첨가하여 미세입자 강화 및 침전 강화의 작용을 이용함으로써 강판의 강도와 및 충격 인성을 개선하였으나, 항복 강도는 395MPa에 불과하며 -20℃일 때의 충격 인성만 제공한다. 중국 특허 번호 CN104357742A는 "두꺼운 420MPa 등급 해양 엔지니어링용 열간 압연 강판 및 이의 제조 방법"을 개시하였으며, 저가 금속 C, Mn의 고용 강화 및 강판 내 기타 합금 원소의 배합비 최적화를 통해 귀금속 사용량을 줄이는 동시에 강판의 강도를 보장하였으나, -40℃에서의 충격 흡수 에너지가 88J에 불과하다.Control rolling and control cooling processes are currently adopted for most of heavy plate production, but the stability of tissue and mechanical performance does not reach the quenching and tempering production process (high temperature quenching + high temperature tempering) instead of low production cost. Therefore, the tempering process is still used as an important means of producing heavy plates. Recently, there have been some achievements in terms of producing high-strength marine steel with excellent low-temperature toughness, and some patents have been published publicly. Chinese Patent No. CN103361551A discloses "VN microalloy based high toughness marine steel sheet and its manufacturing method" and added various alloy elements such as V, Ti, Nb to strengthen the strength of steel sheet by using the action of strengthening fine particles and strengthening precipitation Although the vortex and impact toughness were improved, the yield strength was only 395 MPa and only the impact toughness at -20 ° C was provided. China Patent No. CN104357742A discloses "Thick 420MPa grade hot rolled steel sheet for marine engineering and its manufacturing method", while reducing the amount of precious metals while reducing the amount of precious metals by strengthening the employment of low-cost metals C and Mn and optimizing the mixing ratio of other alloy elements in the steel sheet. Although the strength was ensured, the shock absorption energy at -40 ° C was only 88J.

요약하면, 귀금속합금 원소 용량을 줄이고 일강다단(one-steel multi-grade)의 유연 제조방식을 구현하여 생산비용은 낮추되 생산효율을 향상시키는 것은 현재 고성능 선박용 철강 생산에 있어서 해결해야 할 시급한 문제이다.In summary, reducing the cost of precious metal alloy elements and implementing a one-steel multi-grade flexible manufacturing method to lower production costs but improve production efficiency is an urgent problem to be solved in the production of high-performance marine steel. .

본 발명이 해결하고자 하는 기술적 과제는, 현재 강도 등급, 두께에 따라 선박용 철강에 다른 합금 성분 방안을 적용해야 하고 합금 원가가 높으며 생산 공정이 복잡한 종래 기술의 문제를 해결하기 위하여, 저온인성이 우수한 고강도 선박용 철강 성분 방안 및 일강다단(one-steel multi-grade, E460-E550) 유연 제조 공정 방식에 사용할 수 있는 저온인성이 우수한 고강도 선박용 철강 및 이의 일강다단 열처리 공정을 제공하는 것이다.The technical problem to be solved by the present invention is to solve the problems of the prior art, which requires a different alloy component method to the ship steel according to the current strength class, thickness, alloy cost is high, and the production process is complex, high strength with excellent low-temperature toughness The present invention is to provide a high-strength marine steel having excellent low-temperature toughness and a single-steel multi-stage heat treatment process that can be used in a ship steel component scheme and a one-steel multi-grade (E460-E550) flexible manufacturing process method.

상기 기술적 과제를 해결하기 위한 본 발명의 기술적 해결책은 하기와 같다.The technical solution of the present invention for solving the above technical problem is as follows.

저온인성이 우수한 고강도 선박용 철강에 있어서, 상기 선박용 철강의 질량백분율에 따른 화학성분은 C: 0.12-0.15%, Si: 0.20-0.30%, Mn: 1.40-1.70%, Ni: 0.12-0.15%, Cr: 0.16-0.25%, Mo: 0.08-0.12%, Nb: 0.020-0.030%, Ti: 0.012-0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B: 0.0020-0.0030%, 및 잔여량 Fe와 불가피한 불순물이다. 본 발명의 저온인성이 우수한 고강도 선박용 철강 성분에 있어서, Nb+V+Mo의 총 함량은 0.17% 이하이다.In high-strength marine steel with excellent low-temperature toughness, the chemical composition according to the mass percentage of the marine steel is C: 0.12-0.15%, Si: 0.20-0.30%, Mn: 1.40-1.70%, Ni: 0.12-0.15%, Cr : 0.16-0.25%, Mo: 0.08-0.12%, Nb: 0.020-0.030%, Ti: 0.012-0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B: 0.0020-0.0030%, and The remaining amount of Fe and unavoidable impurities. In the high-strength marine steel component having excellent low-temperature toughness of the present invention, the total content of Nb + V + Mo is 0.17% or less.

본 발명의 저온인성이 우수한 고강도 선박용 철강의 일강다단 열처리 공정에 있어서, E460-E550의 상이한 강도 등급에 대하여 열처리 공정은 정상 담금질 또는 이상영역(intercritical) 담금질을 채택한다. 정상 담금질 온도는 880-930℃이고, 정상 담금질 온도 유지 시간은 20-60분이며, 그 후 실온으로 수냉시키고, 담금질을 거쳐 실온으로 냉각된 빌릿에 대하여 템퍼링을 진행하며, 템퍼링 온도는 600-670℃이고, 템퍼링 온도 유지 시간은 30-90분이다. 이상영역 담금질 온도는 790-850℃이고, 이상영역 온도 유지 시간은 20-60분이며, 그 후 실온으로 수냉시키고, 담금질을 거쳐 실온으로 냉각된 빌릿에 대하여 템퍼링을 진행하며, 템퍼링 온도는 440-635℃이고, 담금질 온도 유지 시간은 30-90분이다.In the high-strength marine steel single-stage heat treatment process having excellent low-temperature toughness of the present invention, for different strength grades of E460-E550, the heat treatment process adopts normal quenching or intercritical quenching. The normal quenching temperature is 880-930 ° C, the normal quenching temperature holding time is 20-60 minutes, then water-cooled to room temperature, tempering is performed on the billet cooled to room temperature through quenching, and the tempering temperature is 600-670 ℃, and the tempering temperature holding time is 30-90 minutes. Abnormal zone quenching temperature is 790-850 ℃, abnormal zone temperature holding time is 20-60 minutes, then water cooled to room temperature, tempering is performed on the billet cooled to room temperature through quenching, and tempering temperature is 440- 635 ° C, and the quenching temperature holding time is 30-90 minutes.

본 발명은 다음의 기술적 사상을 기반으로 저온인성이 우수한 고강도 선박용 철강을 제조한다. ① Mo, Nb, V 등 귀금속합금 원소는 미세입자 강화 및 석출 강화의 역할을 할 수 있다. 그러나 과량의 합금 원소는 합금 원가를 증가시킬 뿐만 아니라 철강의 성능에 악영향을 미칠 수 있다(예를 들어, Mo는 철강의 저온인성을 저하시킬 수 있음). 따라서 성분 설계 시, Nb+V+Mo의 총 함량을 0.17% 이하로 줄이고(E500와 E550 선박용 철강 중 Nb+V+Mo의 총 함량은 통상적으로 0.25%보다 높음) Mn, B 등의 저가 금속 함량을 증가시켜, 강도가 변하지 않도록 보장하는 동시에 철강의 저온인성과 담금질성을 향상시켜 합금 원가를 효과적으로 절감한다. ② 본 발명의 정상 담금질 열처리 공정은 모두 완전 오스테나이트화(complete austenitizing)이다. 즉 담금질 가열 온도는 Ac3점(일반적으로 880-960℃)보다 높고, 그 이후 더 높은 온도에서 템퍼링을 진행하여(일반적으로 600-670℃), 에너지 소모가 심각하고 수득한 제품의 성능은 특정 철강 등급의 요건만 충족시킬 수 있으며 공정 적응성이 낮다. 그러나 이상영역 담금질 공정은 담금질 온도가 낮고(일반적으로 720-850℃) 템퍼링 온도도 낮아(400-640℃), 공정 윈도우가 넓고 에너지 소모가 적다. ③ 본 발명의 이상영역 담금질 공정은 α+γ 이상영역에서 담금질을 수행하므로, 페라이트(ferrite)의 높은 가소성과 인성뿐만 아니라 마르텐사이트(martensite) 변태에 따른 경질 템퍼링 조직의 고강도 특성을 이용하여 고인성의 최적 배합을 구현한다. 또한 담금질 온도가 변함에 따라 이상 함량도 지속적으로 변하기 때문에, 이로 인한 강도 변화가 E460~E550의 다양한 강도 등급 요건을 충족시키고, 철강의 성분이 바뀌지 않는 상황에서 일강다단의 유연 생산을 구현하며, 현재 강도 등급과 두께에 따라 선박용 철강에 다른 합금 성분 방안을 적용해야 하고 합금 원가가 높으며 생산 공정이 복잡한 종래 기술의 문제를 해결한다.The present invention manufactures high-strength marine steel with excellent low-temperature toughness based on the following technical idea. ① Mo, Nb, V and other precious metal alloy elements can play a role of strengthening fine particles and strengthening precipitation. However, excessive alloying elements not only increase the cost of the alloy, but can also adversely affect the performance of the steel (for example, Mo can lower the low-temperature toughness of the steel). Therefore, when designing a component, the total content of Nb + V + Mo is reduced to 0.17% or less (the total content of Nb + V + Mo in E500 and E550 marine steels is usually higher than 0.25%) and low-cost metal content such as Mn and B Increases the strength of the steel and improves the low-temperature toughness and hardenability of the steel, effectively reducing the cost of the alloy. ② All of the normal quenching heat treatment processes of the present invention are complete austenitizing. That is, the quenching heating temperature is higher than the A c3 point (generally 880-960 ° C), after which tempering is performed at a higher temperature (generally 600-670 ° C), the energy consumption is serious and the performance of the obtained product is specific Only steel grade requirements can be met and process adaptability is low. However, the quenching process in the abnormal region has a low quenching temperature (typically 720-850 ° C) and a low tempering temperature (400-640 ° C), a wide process window and low energy consumption. ③ Since the quenching process in the abnormal region of the present invention performs quenching in the α + γ abnormal region, high plasticity and toughness of ferrite, as well as high toughness using hard tempering structure due to martensite transformation Optimal formulation is achieved. In addition, since the anomaly content constantly changes as the quenching temperature changes, the resulting change in strength meets the various strength class requirements of E460 ~ E550, and the flexible production of a single stage is realized in a situation where the composition of steel does not change. Depending on the strength class and thickness, different alloy composition methods must be applied to marine steel, and the alloy cost is high and the production process solves the problems of the conventional technology.

본 발명의 유익한 효과는 다음과 같다.The beneficial effects of the present invention are as follows.

1. 성분을 최적화함으로써 Mo, Nb, V 등 귀금속의 함량을 줄였으며, 이로 인한 강도와 담금질성 저하는 Mn, B 등 저가 원소 첨가로 보완하였다. 상기 성분 방안은 E460-E550의 등급과 두께에 따른 선박용 철강의 요건을 동시에 충족시킴으로써 조직 생산이 복잡하고 합금 원가가 높은 문제를 해결하였다.1. By optimizing the components, the contents of precious metals such as Mo, Nb, and V were reduced, and the strength and hardenability were reduced by adding low-cost elements such as Mn and B. The above-described composition method solved the problem of high production cost and complicated tissue production by simultaneously meeting the requirements of marine steel according to the grade and thickness of E460-E550.

2. 정상 담금질과 이상영역 담금질의 두 가지 담금질 공정을 제공하여 다른 템퍼링 공정과 결합함으로써, E460~E550의 상이한 강도 등급에 따라 저온인성이 우수한 고강도 선박용 철강을 생산하였으며, 이는 공정 적응성이 넓고 일강다단의 유연 생산을 구현해준다.2. Providing two quenching processes, normal quenching and abnormal zone quenching, combined with other tempering processes to produce high-strength marine steels with excellent low-temperature toughness according to different strength grades of E460 ~ E550, which have wide process adaptability and high strength. Of flexible production.

3. 이상영역 담금질+저온 템퍼링 공정은 강인성의 최적 배합을 구현하였으며, 담금질 템퍼링 처리를 대체하는 동시에 상기 고강도 철강이 가진 우수한 저온인성과 연신율도 보장하며, 에너지 소모가 적고 생산주기가 단축된다.3. The ideal zone quenching + low temperature tempering process has realized the optimum formulation of toughness, and it replaces the quenching tempering treatment, and at the same time guarantees the excellent low-temperature toughness and elongation of the high-strength steel, reduces energy consumption and shortens the production cycle.

본 발명은 철강 등급과 강판 두께에 따라 다른 성분이 필요하여 조직 생산이 어려웠던 문제를 해결함으로써 일강다단의 유연 제조를 구현하였고, 이상영역 담금질과 비교적 낮은 온도의 템퍼링 공정을 채택함으로써 생산주기를 단축시키고 에너지 소모를 줄이며 생산 원가를 낮추었다.The present invention implements flexible manufacturing of a single stage by solving the problem that it is difficult to produce tissue due to the need for different components depending on the steel grade and the thickness of the steel sheet, and shortens the production cycle by adopting an abnormal region quenching and a relatively low temperature tempering process. Reduced energy consumption and lowered production costs.

도 1은 본 발명의 실시예 2에 따른 열처리 후의 금속 조직도이다.
도 2는 본 발명의 실시예 4에 따른 열처리 후의 금속 조직도이다.
도 3은 본 발명의 실시예 10에 따른 열처리 후의 금속 조직도이다.
1 is a metal structure diagram after heat treatment according to Example 2 of the present invention.
2 is a metal structure diagram after heat treatment according to Example 4 of the present invention.
3 is a metal structure diagram after heat treatment according to Example 10 of the present invention.

실시예 1:Example 1:

본 실시예 강판의 두께는 42mm이며, 질량백분율에 따른 화학성분은 C 0.13%, Si 0.20%, Mn 1.45%, Ni 0.12%, Cr 0.16%, Mo 0.08%, Nb 0.023%, Ti 0.014%, V≤0.02%, P≤0.015%, S≤0.0022%, B 0.002% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 42 mm, and the chemical composition according to the mass percentage is C 0.13%, Si 0.20%, Mn 1.45%, Ni 0.12%, Cr 0.16%, Mo 0.08%, Nb 0.023%, Ti 0.014%, V ≤0.02%, P≤0.015%, S≤0.0022%, B 0.002% and residual Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 820℃까지 가열하고 50분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Abnormal zone quenching: The test steel is heated to 820 ° C., the temperature is maintained for 50 minutes, and then water cooled to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 635℃까지 가열하고 60분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 635 ° C., the temperature is maintained for 60 minutes, and then removed from air cooling.

상기 처리 후, 시험강의 항복 강도는 505MPa이고, 인장 강도는 605MPa이고, 연신율은 22.20%이고, -40℃ 충격 흡수 에너지는 각각 216/240/250J이며, 이는 E460 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 505 MPa, the tensile strength was 605 MPa, the elongation was 22.20%, and the shock absorption energy at -40 ° C was 216/240 / 250J, respectively, which could satisfy the E460 strength rating requirements.

실시예 2:Example 2:

본 실시예 강판의 두께는 27mm이며, 이의 화학 성분은 실시예 1과 동일하다.The thickness of the steel sheet in this example is 27 mm, and its chemical composition is the same as in Example 1.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 790℃까지 가열하고 35분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Quenching of abnormal areas: The test steel is heated to 790 ° C, and the temperature is maintained for 35 minutes, followed by water cooling to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 600℃까지 가열하고 45분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 600 ° C., the temperature is maintained for 45 minutes, and then taken out from air cooling.

상기 처리 후, 템퍼링 조직은 도 1에 도시된 바와 같이 페라이트+템퍼링된 소르바이트(tempered sorbite)이고, 페라이트 부피율은 32%이다. 시험강의 항복 강도는 521MPa이고, 인장 강도는 615MPa이고, 연신율은 22.60%이고, -40℃ 충격 흡수 에너지는 각각 218/216/215J이며, 이는 E460 강도 등급의 요건을 충족시킬 수 있다.After the treatment, the tempering tissue is ferrite + tempered sorbite as shown in Figure 1, and the ferrite volume fraction is 32%. The yield strength of the test steel is 521MPa, the tensile strength is 615MPa, the elongation is 22.60%, and the shock absorption energy of -40 ° C is 218/216 / 215J, respectively, which can satisfy the requirements of the E460 strength class.

실시예 3:Example 3:

본 실시예 강판의 두께는 50mm이며, 질량백분율에 따른 화학성분은 C 0.12%, Si 0.24%, Mn 1.56%, Ni 0.14%, Cr 0.23%, Mo 0.09%, Nb 0.025%, Ti 0.012%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0027% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 50 mm, and the chemical composition according to the mass percentage is C 0.12%, Si 0.24%, Mn 1.56%, Ni 0.14%, Cr 0.23%, Mo 0.09%, Nb 0.025%, Ti 0.012%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0027% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 790℃까지 가열하고 60분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Quenching of abnormal areas: The test steel is heated to 790 ° C, and the temperature is maintained for 60 minutes, followed by water cooling to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 560℃까지 가열하고 90분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 560 ° C., the temperature is maintained for 90 minutes, and then taken out from air cooling.

상기 처리 후, 시험강의 항복 강도는 580MPa이고, 인장 강도는 662MPa이고, 연신율은 21.28%이고, -40℃ 충격 흡수 에너지는 각각 202/204/211J이며, 이는 E500 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 580 MPa, the tensile strength was 662 MPa, the elongation was 21.28%, and the shock absorption energy at -40 ° C was 202/204 / 211J, respectively, which could meet the E500 strength rating requirements.

실시예 4:Example 4:

본 실시예 강판의 두께는 30mm이며, 질량백분율에 따른 화학성분은 C 0.12%, Si 0.26%, Mn 1.57%, Ni 0.12%, Cr 0.20%, Mo 0.12%, Nb 0.027%, Ti 0.008%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0024% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 30 mm, and the chemical composition according to the mass percentage is C 0.12%, Si 0.26%, Mn 1.57%, Ni 0.12%, Cr 0.20%, Mo 0.12%, Nb 0.027%, Ti 0.008%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0024% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 850℃까지 가열하고 40분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Quenching of abnormal areas: The test steel is heated to 850 ° C., the temperature is maintained for 40 minutes, and then water cooled to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 635℃까지 가열하고 54분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 635 ° C., the temperature is maintained for 54 minutes, and then removed from air cooling.

상기 처리 후, 템퍼링 조직은 도 2에 도시된 바와 같이 페라이트+템퍼링된 소르바이트이고, 페라이트 부피율은 11.5%이다. 시험강의 항복 강도는 587MPa이고, 인장 강도는 659MPa이고, 연신율은 19.84%이고, -40℃ 충격 흡수 에너지는 각각 224/239/228J이며, 이는 E500 강도 등급의 요건을 충족시킬 수 있다.After the treatment, the tempering tissue is ferrite + tempered sorbite as shown in Figure 2, and the ferrite volume fraction is 11.5%. The yield strength of the test steel was 587 MPa, the tensile strength was 659 MPa, the elongation was 19.84%, and the shock absorption energy at -40 ° C was 224/239 / 228J, respectively, which could satisfy the requirements of the E500 strength class.

실시예 5:Example 5:

본 실시예 강판의 두께는 46mm이며, 질량백분율에 따른 화학성분은 C 0.13%, Si 0.30%, Mn 1.60%, Ni 0.15%, Cr 0.22%, Mo 0.10%, Nb 0.020%, Ti 0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0026% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 46 mm, and the chemical composition according to the mass percentage is C 0.13%, Si 0.30%, Mn 1.60%, Ni 0.15%, Cr 0.22%, Mo 0.10%, Nb 0.020%, Ti 0.018%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0026% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 790℃까지 가열하고 60분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Quenching of abnormal areas: The test steel is heated to 790 ° C, and the temperature is maintained for 60 minutes, followed by water cooling to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 440℃까지 가열하고 90분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 440 ° C., the temperature is maintained for 90 minutes, and then removed from air cooling.

상기 처리 후, 시험강의 항복 강도는 606MPa이고, 인장 강도는 750MPa이고, 연신율은 17.88%이고, -40℃ 충격 흡수 에너지는 각각 166/162/171J이며, 이는 E550 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 606 MPa, the tensile strength was 750 MPa, the elongation was 17.88%, and the shock absorption energy at -40 ° C was 166/162 / 171J, respectively, which could meet the E550 strength rating requirements.

실시예 6:Example 6:

본 실시예 강판의 두께는 18mm이며, 이의 화학성분은 실시예 5와 동일하다.The thickness of the steel sheet in this example is 18 mm, and its chemical composition is the same as in Example 5.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 820℃까지 가열하고 27분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Abnormal zone quenching: The test steel is heated to 820 ° C, and the temperature is maintained for 27 minutes, followed by water cooling to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 520℃까지 가열하고 40분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 520 ° C, maintained at a temperature for 40 minutes, and then taken out from air cooling.

상기 처리 후, 시험강의 항복 강도는 635MPa이고, 인장 강도는 739MPa이고, 연신율은 19.84%이고, -40℃ 충격 흡수 에너지는 각각 195/114/183J이며, 이는 E550 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 635 MPa, the tensile strength was 739 MPa, the elongation was 19.84%, and the shock absorption energy at -40 ° C was 195/114 / 183J, respectively, which could meet the E550 strength rating requirements.

실시예 7:Example 7:

본 실시예 강판의 두께는 16mm이며, 질량백분율에 따른 화학성분은 C 0.15%, Si 0.25%, Mn 1.70%, Ni 0.13%, Cr 0.18%, Mo 0.10%, Nb 0.026%, Ti 0.017%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0025% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 16 mm, and the chemical composition according to the mass percentage is C 0.15%, Si 0.25%, Mn 1.70%, Ni 0.13%, Cr 0.18%, Mo 0.10%, Nb 0.026%, Ti 0.017%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0025% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 이상영역 담금질: 시험강을 850℃까지 가열하고 25분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Abnormal zone quenching: The test steel is heated to 850 ° C, and the temperature is maintained for 25 minutes, followed by water cooling to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 540℃까지 가열하고 35분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 540 ° C., the temperature is maintained for 35 minutes, and then removed from air cooling.

상기 처리 후, 시험강의 항복 강도는 734MPa이고, 인장 강도는 789MPa이고, 연신율은 17.04%이고, -40℃충격 흡수 에너지는 각각 191/203/193J이며, 이는 E550 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 734 MPa, the tensile strength was 789 MPa, the elongation was 17.04%, and the shock absorption energy at -40 ° C was 191/203 / 193J, respectively, which could meet the E550 strength rating requirements.

실시예 8:Example 8:

본 실시예 강판의 두께는 38mm이며, 질량백분율에 따른 화학성분은 C 0.12%, Si 0.27%, Mn 1.40%, Ni 0.14%, Cr 0.20%, Mo 0.11%, Nb 0.030%, Ti 0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0028% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 38 mm, and the chemical composition according to the mass percentage is C 0.12%, Si 0.27%, Mn 1.40%, Ni 0.14%, Cr 0.20%, Mo 0.11%, Nb 0.030%, Ti 0.018%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0028% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 정상 담금질: 시험강을 880℃까지 가열하고 40분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Normal quenching: The test steel is heated to 880 ° C., the temperature is maintained for 40 minutes, and then water cooled to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 670℃까지 가열하고 60분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 670 ° C., the temperature is maintained for 60 minutes, and then removed from air cooling.

상기 처리 후, 시험강의 항복 강도는 655MPa이고, 인장 강도는 696MPa이고, 연신율은 20.48%이고, -40℃ 충격 흡수 에너지는 각각 226/248/230J이며, 이는 E550 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 655 MPa, the tensile strength was 696 MPa, the elongation was 20.48%, and the shock absorption energy at -40 ° C was 226/248 / 230J, respectively, which could satisfy the E550 strength rating requirements.

실시예 9:Example 9:

본 실시예 강판의 두께는 22mm이며, 질량백분율에 따른 화학성분은 C 0.14%, Si 0.25%, Mn 1.50%, Ni 0.10%, Cr 0.25%, Mo 0.09%, Nb 0.024%, Ti 0.014%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0030% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 22 mm, and the chemical composition according to the mass percentage is C 0.14%, Si 0.25%, Mn 1.50%, Ni 0.10%, Cr 0.25%, Mo 0.09%, Nb 0.024%, Ti 0.014%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0030% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 정상 담금질: 시험강을 900℃까지 가열하고 30분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Normal quenching: The test steel is heated to 900 ° C., the temperature is maintained for 30 minutes, and then water cooled to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 635℃까지 가열하고 40분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 635 ° C., the temperature is maintained for 40 minutes, and then taken out from air cooling.

상기 처리 후, 시험강의 항복 강도는 740MPa이고, 인장 강도는 778MPa이고, 연신율은 18.76%이고, -40℃충격 흡수 에너지는 각각 215/215/210J이며, 이는 E550 강도 등급 요건을 충족시킬 수 있다.After the treatment, the yield strength of the test steel was 740 MPa, the tensile strength was 778 MPa, the elongation was 18.76%, and the shock absorption energy at -40 ° C was 215/215 / 210J, respectively, which could meet the E550 strength rating requirements.

실시예 10:Example 10:

본 실시예 강판의 두께는 10mm이며, 질량백분율에 따른 화학성분은 C 0.15%, Si 0.28%, Mn 1.65%, Ni 0.15%, Cr 0.18%, Mo 0.10%, Nb 0.030%, Ti 0.012%, V≤0.02%, P≤0.015%, S≤0.002%, B 0.0028% 및 잔여량 Fe이다.The thickness of the steel sheet in this example is 10 mm, and the chemical composition according to the mass percentage is C 0.15%, Si 0.28%, Mn 1.65%, Ni 0.15%, Cr 0.18%, Mo 0.10%, Nb 0.030%, Ti 0.012%, V ≤0.02%, P≤0.015%, S≤0.002%, B 0.0028% and residual amount Fe.

상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행한다. 완제품 선박용 강판으로부터 샘플을 채취한 후, 인장 및 저온 충격 시험을 수행한다.A billet is prepared according to the above components, and the billet is heated to 1050-1150 ° C to control rolling to a prescribed thickness, cooled to room temperature after rolling, and then subjected to heat treatment. After taking samples from the finished steel sheet for ships, tensile and low-temperature impact tests are performed.

시험강 열처리 공정은 하기와 같다.The test steel heat treatment process is as follows.

(1) 정상 담금질: 시험강을 930℃까지 가열하고 20분 동안 온도를 유지한 다음 실온으로 수냉한다.(1) Normal quenching: The test steel is heated to 930 ° C, and the temperature is maintained for 20 minutes, followed by water cooling to room temperature.

(2) 템퍼링: 담금질을 거쳐 실온으로 냉각한 샘플을 600℃까지 가열하고 30분 동안 온도를 유지한 다음 공랭에서 꺼낸다.(2) Tempering: After quenching, the sample cooled to room temperature is heated to 600 ° C., the temperature is maintained for 30 minutes, and then taken out from air cooling.

상기 처리를 거친 후, 템퍼링 구조는 도 3에 도시된 바와 같이 템퍼링된 소르바이트이며, 초석 페라이트(proeutectoid ferrite)가 없다. 시험강의 항복 강도는 772MPa이고, 인장 강도는 816MPa이고, 연신율은 17.32%이고, -40℃ 충격 흡수 에너지는 각각 188/220/192J이며, 이는 E550 강도 등급 요건을 충족시킬 수 있다.After the above treatment, the tempering structure is a sorbite tempered as shown in Fig. 3, and there is no proeutectoid ferrite. The yield strength of the test steel is 772MPa, the tensile strength is 816MPa, the elongation is 17.32%, and the shock absorption energy at -40 ° C is 188/220 / 192J, respectively, which can meet the E550 strength rating requirements.

표 1 본 발명의 실시예에 따른 화학성분 범위(wt%)Table 1 Chemical composition range (wt%) according to an embodiment of the present invention

Figure pct00001
Figure pct00001

표 2 본 발명의 실시예에 따른 역학적 성능Table 2 Mechanical performance according to an embodiment of the present invention

Figure pct00002
Figure pct00002

표 2로부터 각 실시예의 역학적 성능이 모두 대응하는 선박용 철강의 등급 요건을 충족시킬 수 있으며 어느 정도 여유가 있다는 것을 알 수 있다.It can be seen from Table 2 that the mechanical performance of each embodiment can meet the requirements of the grade of the corresponding marine steel and there is some margin.

상기 실시예 이외에도, 본 발명에는 다른 실시예가 있을 수 있다. 동등한 대체 또는 동등한 변환에 의해 형성된 임의의 기술적 해결책은 모두 본 발명의 보호범위 내에 속한다.In addition to the above embodiments, there may be other embodiments in the present invention. Any technical solutions formed by equivalent substitutions or equivalent conversions are all within the scope of the present invention.

Claims (5)

저온인성이 우수한 고강도 선박용 철강에 있어서,
상기 선박용 철강의 질량백분율에 따른 화학성분은 C: 0.12-0.15%, Si: 0.20-0.30%, Mn: 1.40-1.70%, Ni: 0.12-0.15%, Cr: 0.16-0.25%, Mo: 0.08-0.12%, Nb: 0.020-0.030%, Ti: 0.012-0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B: 0.0020-0.0030%, 및 잔여량 Fe와 불가피한 불순물인 것을 특징으로 하는 저온인성이 우수한 고강도 선박용 철강.
In high-strength marine steel with excellent low-temperature toughness,
Chemical composition according to the mass percentage of the ship steel is C: 0.12-0.15%, Si: 0.20-0.30%, Mn: 1.40-1.70%, Ni: 0.12-0.15%, Cr: 0.16-0.25%, Mo: 0.08- 0.12%, Nb: 0.020-0.030%, Ti: 0.012-0.018%, V≤0.02%, P≤0.015%, S≤0.002%, B: 0.0020-0.0030%, and the residual amount of Fe and inevitable impurities High-strength marine steel with excellent low-temperature toughness.
제1항에 있어서,
상기 성분에 따라 빌릿을 제조하고, 빌릿을 1050-1150℃까지 가열하여 규정된 두께로 제어 압연하고, 압연 후 실온으로 냉각한 다음 열처리를 수행하는 것을 특징으로 하는 저온인성이 우수한 고강도 선박용 철강.
According to claim 1,
High-strength marine steel with excellent low-temperature toughness, characterized in that a billet is prepared according to the above components, the billet is heated to 1050-1150 ° C, controlled rolling to a prescribed thickness, and then cooled to room temperature after rolling to perform heat treatment.
E460-E550의 상이한 강도 등급에 대하여 열처리 공정은 정상 담금질 또는 이상영역(intercritical) 담금질을 채택하고;
상기 정상 담금질 온도는 880-930℃이고, 정상 담금질 온도 유지 시간은 20-60분이며, 그 후 실온으로 수냉시키고, 담금질을 거쳐 실온으로 냉각된 빌릿에 대하여 템퍼링을 진행하며, 템퍼링 온도는 600-670℃이고, 템퍼링 온도 유지 시간은 30-90분이고;
상기 이상영역 담금질 온도는 790-850℃이고, 이상영역 온도 유지 시간은 20-60분이며, 그 후 실온으로 수냉시키고, 담금질을 거쳐 실온으로 냉각된 빌릿에 대하여 템퍼링을 진행하며, 템퍼링 온도는 440-635℃이고, 담금질 온도 유지 시간은 30-90분이인 것을 특징으로 하는 제1항 또는 제2항에 따른 저온인성이 우수한 고강도 선박용 철강의 일강다단 열처리 공정.
For different strength classes of E460-E550, the heat treatment process adopts normal quenching or intercritical quenching;
The normal quenching temperature is 880-930 ° C, the normal quenching temperature holding time is 20-60 minutes, and then water-cooled to room temperature, tempering is performed on the billet cooled to room temperature through quenching, and the tempering temperature is 600- 670 ° C, and the tempering temperature holding time was 30-90 minutes;
The anomaly zone quenching temperature is 790-850 ° C, the abnormal zone temperature holding time is 20-60 minutes, and then water-cooled to room temperature, tempering is performed on the billet cooled to room temperature through quenching, and the tempering temperature is 440. -635 ℃, and the quenching temperature holding time is 30-90 minutes.
제3항에 있어서,
판 두께는 42mm, 열처리 공정은 820℃ 담금질, 50분 온도 유지, 635℃ 템퍼링, 60분 온도 유지;
판 두께는 27mm, 열처리 공정은 790℃ 담금질, 35분 온도 유지, 600℃ 템퍼링, 45분 온도 유지;
판 두께는 50mm, 열처리 공정은 790℃ 담금질, 60분 온도 유지, 560℃ 템퍼링, 90분 온도 유지;
판 두께는 30mm, 열처리 공정은 850℃ 담금질, 40분 온도 유지, 635℃ 템퍼링, 54분 온도 유지;
판 두께는 46mm, 열처리 공정은 790℃ 담금질, 60분 온도 유지, 440℃ 템퍼링, 90분 온도 유지;
판 두께는 18mm, 열처리 공정은 820℃ 담금질, 27분 온도 유지, 520℃ 템퍼링, 40분 온도 유지;
판 두께는 16mm, 열처리 공정은 850℃ 담금질, 25분 온도 유지, 540℃ 템퍼링, 35분 온도 유지;
하는 것을 특징으로 하는 저온인성이 우수한 고강도 선박용 철강의 일강다단 열처리 공정.
According to claim 3,
Plate thickness is 42mm, heat treatment process is 820 ℃ quenching, 50 minutes temperature maintenance, 635 ℃ tempering, 60 minutes temperature maintenance;
Plate thickness is 27mm, heat treatment process is 790 ℃ quenching, 35 minutes temperature maintenance, 600 ℃ tempering, 45 minutes temperature maintenance;
Plate thickness is 50mm, heat treatment process is 790 ℃ quenching, 60 minutes temperature maintenance, 560 ℃ tempering, 90 minutes temperature maintenance;
Plate thickness is 30mm, heat treatment process is 850 ℃ quenching, 40 minutes temperature maintenance, 635 ℃ tempering, 54 minutes temperature maintenance;
Plate thickness is 46mm, heat treatment process is 790 ℃ quenching, 60 minutes temperature maintenance, 440 ℃ tempering, 90 minutes temperature maintenance;
Plate thickness is 18mm, heat treatment process is 820 ℃ quenching, temperature maintenance at 27 minutes, tempering at 520 ℃, temperature maintenance at 40 minutes;
Plate thickness is 16mm, heat treatment process is 850 ℃ quenching, 25 minutes temperature maintenance, 540 ℃ tempering, 35 minutes temperature maintenance;
One-stage multi-stage heat treatment process of high-strength marine steel excellent in low-temperature toughness, characterized in that.
제3항에 있어서,
판 두께는 38mm, 열처리 공정은 880℃ 담금질, 40분 온도 유지, 670℃ 템퍼링, 60분 온도 유지;
판 두께는 22mm, 열처리 공정은 900℃ 담금질, 30분 온도 유지, 635℃ 템퍼링, 40분 온도 유지;
판 두께는 10mm, 열처리 공정은 930℃ 담금질, 20분 온도 유지, 600℃ 템퍼링, 30분 온도 유지;
하는 것을 특징으로 하는 저온인성이 우수한 고강도 선박용 철강의 일강다단 열처리 공정.
According to claim 3,
Plate thickness is 38mm, heat treatment process is 880 ℃ quenching, 40 minutes temperature maintenance, 670 ℃ tempering, 60 minutes temperature maintenance;
The plate thickness is 22 mm, the heat treatment process is quenched at 900 ° C, temperature maintained at 30 minutes, tempering at 635 ° C, temperature maintained at 40 minutes;
Plate thickness is 10mm, heat treatment process is 930 ℃ quenching, 20 minutes temperature maintenance, 600 ℃ tempering, 30 minutes temperature maintenance;
One-stage multi-stage heat treatment process of high-strength marine steel excellent in low-temperature toughness, characterized in that.
KR1020207010336A 2017-10-24 2018-05-25 High-strength ship steel with excellent low-temperature toughness and its one-gang multi-stage heat treatment process KR102222958B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710999904.3 2017-10-24
CN201710999904.3A CN107805758B (en) 2017-10-24 2017-10-24 A kind of high intensity superior low-temperature toughness hull steel and one steel multistage heat treatment process
PCT/CN2018/088338 WO2019080492A1 (en) 2017-10-24 2018-05-25 High-strength hull steel with excellent low-temperature toughness and one-steel multi-grade heat treatment technology therefor

Publications (2)

Publication Number Publication Date
KR20200060414A true KR20200060414A (en) 2020-05-29
KR102222958B1 KR102222958B1 (en) 2021-03-05

Family

ID=61585365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207010336A KR102222958B1 (en) 2017-10-24 2018-05-25 High-strength ship steel with excellent low-temperature toughness and its one-gang multi-stage heat treatment process

Country Status (3)

Country Link
KR (1) KR102222958B1 (en)
CN (1) CN107805758B (en)
WO (1) WO2019080492A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805758B (en) * 2017-10-24 2019-06-04 南京钢铁股份有限公司 A kind of high intensity superior low-temperature toughness hull steel and one steel multistage heat treatment process
CN112430713A (en) * 2019-08-24 2021-03-02 兰州兰石集团有限公司铸锻分公司 Heat treatment process suitable for mining frame under low-temperature condition
CN114959511A (en) * 2022-05-13 2022-08-30 河北普阳钢铁有限公司 Manufacturing method of 700MPa grade high-toughness explosion-proof steel plate
CN115386692A (en) * 2022-09-26 2022-11-25 中国第一汽车股份有限公司 Heat treatment method for improving hardness of low alloy steel
CN115522138A (en) * 2022-10-27 2022-12-27 神拓科技有限公司 Preparation process of high-strength shield tunneling machine hobbing cutter ring
CN116043149A (en) * 2022-12-16 2023-05-02 成都先进金属材料产业技术研究院股份有限公司 Homogenization treatment method for low-expansion high-temperature alloy group furnace
CN115838904A (en) * 2022-12-20 2023-03-24 衡阳华菱钢管有限公司 Method for manufacturing 850 MPa-grade high-strength high-toughness seamless steel pipe
CN117165831B (en) * 2023-11-02 2024-01-30 江苏省沙钢钢铁研究院有限公司 Bridge steel plate and flexible production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080190A (en) * 2011-02-14 2011-06-01 东北大学 Hardening and tempering steel plate for engineering machinery with 7000MPa grade yield strength and preparation method thereof
CN102787275A (en) * 2012-08-28 2012-11-21 济钢集团有限公司 Low-cost manufacturing method for high-intensity quenched and tempered steel plate
CN104532158A (en) * 2014-12-19 2015-04-22 宝山钢铁股份有限公司 800MPa-grade (yield strength) quenched-tempered high-strength steel and production method thereof
KR101657828B1 (en) * 2014-12-24 2016-10-04 주식회사 포스코 Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608155B2 (en) * 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP5509923B2 (en) * 2010-02-25 2014-06-04 新日鐵住金株式会社 Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP2012036475A (en) * 2010-08-10 2012-02-23 Sanyo Special Steel Co Ltd Method for manufacturing rolling part and gear with long service life under hydrogen environment
PE20150779A1 (en) * 2012-09-19 2015-05-30 Jfe Steel Corp ABRASION RESISTANT STEEL PLATE THAT HAS EXCELLENT HARDNESS AT LOW TEMPERATURES AND EXCELLENT RESISTANCE TO CORROSION WEAR
CN106756544B (en) * 2016-12-12 2019-06-04 南京钢铁股份有限公司 A kind of production method of the big thickness Q690D high-strength steel of ultralow carbon equivalent
CN107805758B (en) * 2017-10-24 2019-06-04 南京钢铁股份有限公司 A kind of high intensity superior low-temperature toughness hull steel and one steel multistage heat treatment process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080190A (en) * 2011-02-14 2011-06-01 东北大学 Hardening and tempering steel plate for engineering machinery with 7000MPa grade yield strength and preparation method thereof
CN102787275A (en) * 2012-08-28 2012-11-21 济钢集团有限公司 Low-cost manufacturing method for high-intensity quenched and tempered steel plate
CN104532158A (en) * 2014-12-19 2015-04-22 宝山钢铁股份有限公司 800MPa-grade (yield strength) quenched-tempered high-strength steel and production method thereof
KR101657828B1 (en) * 2014-12-24 2016-10-04 주식회사 포스코 Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same

Also Published As

Publication number Publication date
KR102222958B1 (en) 2021-03-05
WO2019080492A1 (en) 2019-05-02
CN107805758B (en) 2019-06-04
CN107805758A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
KR102222958B1 (en) High-strength ship steel with excellent low-temperature toughness and its one-gang multi-stage heat treatment process
CN102534383B (en) High-tenacity steel plate for oceengineering and manufacturing method thereof
CN107988550B (en) Steel for pressurized water reactor nuclear power station pressure vessel support and manufacturing method thereof
CN110791702B (en) Marine steel plate with good welding performance and low yield ratio and manufacturing method thereof
CN102877007B (en) Steel plate for low-crack sensitivity pressure container with thickness being more than or equal to 80mm and manufacture method of steel plate
CN104498821B (en) Medium-manganese high-strength steel for automobiles and production method thereof
CN102719744B (en) Steel for low-temperature structures and manufacture method of steel
CN105506494A (en) High-toughness hot-rolled high-strength steel with yield strength being 800 MPa and manufacturing method of high-toughness hot-rolled high-strength steel
CN102021497A (en) Hot-rolled sheet coils of X80 pipe line steel and manufacturing method thereof
CN102876999A (en) Steel plate for hardening and tempering type low temperature pressure vessel and method for producing steel plate
CN104532156A (en) Quenched and tempered high strength steel with 1300 MPa grade of yield strength and production method thereof
CN102691018A (en) Low-compression ratio super-strength steel plate for ocean engineering and manufacturing method thereof
CN102400053A (en) Steel plate for building structure with yield strength of 460 MPa, and manufacturing method thereof
CN101824581A (en) High-yield strength (450MPa), high-strength and weather-resistant steel plate and production method thereof
CN103468905A (en) 485MPa grade pipeline steel hot-rolled coil plate and manufacturing method thereof
CN109609845A (en) A kind of 500MPa grades of weathering steel and its production method
CN101619419B (en) Steel plate for low-carbon high-niobium high strength welding structure and method for manufacturing same
CN103320701A (en) Ferrite bainite advanced high strength steel plate and manufacturing method thereof
CN105200329A (en) Tensile strength-700MPa level easy-to-weld low-internal-stress structural steel plate and manufacturing method thereof
CN103484768A (en) High-strength engineering steel plate with length of larger than or equal to 30 m and production method
CN103866203A (en) Seamless steel pipe for large-aperture high-strength bridge and TMCP production method thereof
CN104294161A (en) High-temperature-resistant free-cutting high-strength steel
CN113737090B (en) High-strength and high-toughness alloy structural steel and preparation method thereof
CN104313468A (en) Steel plate for 460MPa grade low-alloy high-strength structure and production method of steel plate
CN103184391A (en) Annular plate steel used for top cover of million-kilowatt-level large-scale hydraulic turbine and manufacturing method thereof

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right