JP2012036475A - Method for manufacturing rolling part and gear with long service life under hydrogen environment - Google Patents

Method for manufacturing rolling part and gear with long service life under hydrogen environment Download PDF

Info

Publication number
JP2012036475A
JP2012036475A JP2010179589A JP2010179589A JP2012036475A JP 2012036475 A JP2012036475 A JP 2012036475A JP 2010179589 A JP2010179589 A JP 2010179589A JP 2010179589 A JP2010179589 A JP 2010179589A JP 2012036475 A JP2012036475 A JP 2012036475A
Authority
JP
Japan
Prior art keywords
steel
rolling
gear
less
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179589A
Other languages
Japanese (ja)
Inventor
Takayuki Katsura
隆之 桂
Takeshi Fujimatsu
威史 藤松
Kazuhiko Hiraoka
和彦 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010179589A priority Critical patent/JP2012036475A/en
Publication of JP2012036475A publication Critical patent/JP2012036475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing steel components such as a bearing part and a gear whose service life is long even under a hydrogen-intrusion environment, taking the workability of the steel and the part into account.SOLUTION: In the method for manufacturing a rolling part or a gear whose service life in a hydrogen environment is excellent, the rolling part or the gear produced from the steel composed of, by mass%, 0.10 to 0.45% C, 0.01 to 1.0% Si, 0.10 to 2.0% Mn, 0.030% or less P, 0.035% or less S, 1.30 to 3.50% Cr, 0.003 to 0.10% Al and 0.004 to 0.050% N, and the balance being Fe and inevitable impurities is subjected to being 0.50 to 0.75% to form the surface layer having an amount of (C+N) carburization or carbonitriding treatment in a pattern shown in Fig.2.

Description

本発明は、水素が侵入する環境下において長寿命が要求される軸受を代表とする転動部品および歯車に用いられる鋼の熱処理方法に関するものである。   TECHNICAL FIELD The present invention relates to a rolling part typified by a bearing that requires a long life in an environment where hydrogen invades and a method for heat treating steel used for gears.

近年、自動車用部品をはじめとする動力伝達部品は環境負荷軽減を目指して小型軽量化が求められている。さらに、これらの部品には、使用環境の過酷化とメンテナンスフリー化といった相反する問題に対応できる特性も同時に要求されている。そのような状況の中で、軸受を代表とする転動部品や歯車においては、例えば潤滑油中に水が侵入する環境で使用された場合、あるいは潤滑油の分解によって水素が発生した場合などで、部品中に水素が侵入すると短期間で剥離や破損等の問題が生じることが知られている。したがって、水素侵入環境下での部品の長寿命化は重要な課題となっている。   In recent years, power transmission parts such as automobile parts are required to be reduced in size and weight in order to reduce the environmental load. Furthermore, these parts are also required to have characteristics that can cope with conflicting problems such as harsh use environments and maintenance-free. Under such circumstances, in rolling parts and gears represented by bearings, for example, when used in an environment where water penetrates into the lubricating oil, or when hydrogen is generated due to decomposition of the lubricating oil, etc. It is known that when hydrogen intrudes into a component, problems such as peeling and breakage occur in a short period of time. Therefore, extending the life of parts in a hydrogen intrusion environment is an important issue.

この問題に対する従来の技術として、Crによる転走面の酸化被膜形成により水素の侵入防止を図るものが提案されている(例えば、特許文献1参照。)。しかしながら、Crによる酸化被膜では根本的な解決にはならず、また使用中に被膜が破断する可能性があるため十分とは言えない。   As a conventional technique for solving this problem, a technique for preventing intrusion of hydrogen by forming an oxide film on a rolling surface with Cr has been proposed (see, for example, Patent Document 1). However, the Cr oxide film is not a fundamental solution and is not sufficient because the film may break during use.

また、従来の技術として、多量のTiもしくはAl添加によりTi炭化物・炭窒化物、もしくはAl窒化物を部品の表面近傍に分散析出させて、異物潤滑下とクリーン潤滑下において転動寿命を延長させている技術が提案されている(例えば、特許文献2参照。)。この技術は、微細に析出したTiもしくはAlの炭化物および炭窒化物が水素のトラップサイトとなること、およびこれらの炭化物・炭窒化物がオーステナイト結晶粒を細かくし、かつ硬度を上昇させることによって耐摩耗性を向上させ、長寿命を達成している。しかしながら、高炭素鋼をベースに、長寿命化に有効なTiもしくはAlの炭化物および炭窒化物が多量に生成し熱間加工性が低下するため、鋼材の圧延や部品へ鍛造する際の加工性に悪影響を及ぼす。さらに部品を切削する際の工具寿命が低下するという問題点もある。   In addition, as a conventional technique, Ti carbide, carbonitride, or Al nitride is dispersed and deposited near the surface of a component by adding a large amount of Ti or Al to extend the rolling life under foreign matter lubrication and clean lubrication. Have been proposed (see, for example, Patent Document 2). In this technology, finely precipitated Ti or Al carbides and carbonitrides become hydrogen trap sites, and these carbides / carbonitrides reduce the austenite crystal grains and increase the hardness. Improved wear and long life. However, based on high-carbon steel, a large amount of Ti or Al carbides and carbonitrides that are effective in extending the service life are produced, resulting in a decrease in hot workability. Therefore, workability when rolling steel and forging parts. Adversely affect. Furthermore, there is a problem that the tool life when cutting parts is reduced.

さらに従来の技術として、多量のCr含有による組織変化の遅延、Cr炭化物、炭窒化物によるピン留め効果と結晶粒径の微細化による粒界強度向上、組織変化伝播速度の遅延を図るものが提案されている(例えば、特許文献3参照。)。また、さらに従来の技術として、材料中のCrおよびNを高め、残留オーステナイトを安定化させることで白色組織変化を伴う早期剥離を抑制する技術が提案されている(例えば、特許文献4参照。)。しかしながら、これらの発明では、固溶C、N量について規定されていないため、十分とは言えない。また、鋼材として多量のCを含んでいるため、鋼材の圧延や部品へ鍛造が困難であり、さらに部品を切削する際の工具寿命が低下するという問題点もある。   Furthermore, as conventional technologies, a structure change delay due to a large amount of Cr content, a pinning effect by Cr carbide and carbonitride, an improvement in grain boundary strength by refining the crystal grain size, and a delay in structure change propagation speed are proposed. (For example, see Patent Document 3). Further, as a conventional technique, a technique has been proposed in which Cr and N in the material are increased and the retained austenite is stabilized to suppress early peeling accompanied by a white structure change (see, for example, Patent Document 4). . However, in these inventions, the amounts of solute C and N are not specified, and thus cannot be said to be sufficient. Moreover, since a large amount of C is contained as a steel material, it is difficult to roll the steel material or forge it into parts, and there is also a problem that the tool life when cutting the parts is reduced.

特許第3009254号公報Japanese Patent No. 3009254 特許第3591236号公報Japanese Patent No. 3591236 特開2005−147352公報JP 2005-147352 A 特開2007−262449公報JP 2007-262449 A

Sanyo Technical Report,15(2008),43.Sanyo Technical Report, 15 (2008), 43. Sanyo Technical Report,16(2009),45.Sanyo Technical Report, 16 (2009), 45.

本発明の解決しようとする課題は、鋼材および部品の加工性についても考慮して、水素侵入環境下でも長寿命な部品、例えば軸受部品や歯車の製造方法を提供することである。   The problem to be solved by the present invention is to provide a method of manufacturing a part having a long life even under a hydrogen intrusion environment, for example, a bearing part or a gear, in consideration of the workability of the steel material and the part.

上記のように、部品中に水素が侵入すると白色組織変化を生じ、短期間で剥離や破損等の問題が生じることが知られている。そこで、発明者は水素起因による剥離対策の創出を最終目標として、組織変化の生成機構、ならびに水素と短寿命剥離との因果関係の究明を進めてきた(例えば、非特許文献1、非特許文献2参照。)。その結果、水素起因による早期剥離は、鋼中に侵入した水素の塑性ひずみ局在化作用により、マルテンサイトブロックの界面に針状を呈する組織が形成され、これが疲労の進行によりき裂化して、伝ぱあるいは連結によって大型内部き裂となり、早期剥離を引き起こすこと、並びに白色組織変化は内部き裂の幾何学的な効果により引き起こされる二次的な現象であることを明らかにした。また、その対策としては、マルテンサイトブロック界面への水素の濃化を抑制することが重要であり、そのためにマルテンサイト中の固溶C、固溶Nを低減させることが有効であることを見出した。浸炭もしくは浸炭窒化処理により表層面の(C+N)量を抑えること、あるいはCr、Mo、Vといった炭化物や炭窒化物形成元素の添加並びに焼入れ温度の調整により、固溶C、固溶Nの低減が可能となる。   As described above, it is known that when hydrogen intrudes into a component, a white texture change occurs and problems such as peeling and breakage occur in a short period of time. Therefore, the inventor has advanced the investigation of the generation mechanism of the structure change and the causal relationship between hydrogen and short-life exfoliation with the ultimate goal of creating countermeasures for exfoliation caused by hydrogen (for example, Non-Patent Document 1, Non-Patent Document). 2). As a result, early exfoliation due to hydrogen is caused by the plastic strain localization of hydrogen that has penetrated into the steel, and a needle-like structure is formed at the interface of the martensite block. It has been clarified that propagation or connection leads to large internal cracks that cause premature detachment, and that the white texture change is a secondary phenomenon caused by the geometric effect of the internal cracks. Moreover, as a countermeasure, it is important to suppress hydrogen concentration at the martensite block interface, and for that purpose, it has been found that reducing solute C and solute N in martensite is effective. It was. By reducing the amount of (C + N) on the surface by carburizing or carbonitriding, or by adding carbides and carbonitride-forming elements such as Cr, Mo, V, and adjusting the quenching temperature, solid solution C and solid solution N can be reduced. It becomes possible.

すなわち、課題を解決するための手段として、請求項1の発明では、質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理により該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜0.75%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法である。   That is, as a means for solving the problem, in the invention of claim 1, in mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 2.0%, P: 0.030% or less, S: 0.035% or less, Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0 A rolling part or gear made of a steel material containing 0.050% and the balance being Fe and inevitable impurities is subjected to carburizing or carbonitriding treatment to reduce the (C + N) amount in the steel material surface of the rolling part or gear to 0.1. It is a manufacturing method of a rolling part or a gear excellent in life in a hydrogen environment characterized by being 50 to 0.75%.

請求項2の発明では、質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、さらにMo:0.01〜1.20%、V:0.01〜0.50%、Ni:0.10〜2.0%、Nb:0.01〜2.0%、Ti:0.01〜0.17%、B:0.0001〜0.005%のうち1種または2種以上を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理により該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜0.75%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法である。なお、Bを含有するときは浸炭窒化処理は行わないものとする。   In the invention of claim 2, in mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% S: 0.035% or less, Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, and Mo: 0 0.01 to 1.20%, V: 0.01 to 0.50%, Ni: 0.10 to 2.0%, Nb: 0.01 to 2.0%, Ti: 0.01 to 0.17 %, B: One or more of 0.0001 to 0.005%, and the remaining rolling parts or gears made of steel with Fe and inevitable impurities are subjected to carburizing or carbonitriding treatment. The life in a hydrogen environment characterized by the amount of (C + N) in the steel surface layer of moving parts or gears being 0.50 to 0.75% The is a manufacturing method of the rolling part or gear. When B is contained, carbonitriding is not performed.

請求項3の発明では、質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理し、これらの浸炭もしくは窒化処理後の焼入れ温度をTとするとき、焼入れ温度Tは下記の式(1)を満足するものとし、該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜2.0%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法である。
800℃≦焼入れ温度T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃・・・(1)
In the invention of claim 3, by mass, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% S: 0.035% or less, Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, with the balance being Fe and When rolling parts or gears made of steel, which is an inevitable impurity, are carburized or carbonitrided, and the quenching temperature after carburizing or nitriding is T, the quenching temperature T satisfies the following formula (1). The rolling component or gear having a long life in a hydrogen environment, characterized in that the amount of (C + N) in the steel surface layer of the rolling component or gear is 0.50 to 2.0%. It is a manufacturing method.
800 ° C. ≦ quenching temperature T ≦ 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. (1)

請求項4の発明では、質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、さらにMo:0.01〜1.20%、V:0.01〜0.50%、Ni:0.10〜2.0%、Nb:0.01〜2.0%、Ti:0.01〜0.17%、B:0.0001〜0.005%のうち1種または2種以上を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理し、これらの浸炭もしくは窒化処理後の焼入れ温度をTとするとき、焼入れ温度Tは下記の式(1)を満足するものとし、該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜2.0%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法である。なお、Bを含有するときは浸炭窒化処理は行わないものとする。
800℃≦焼入れ温度T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃・・・(1)
In the invention of claim 4, in mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% S: 0.035% or less, Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, and Mo: 0 0.01 to 1.20%, V: 0.01 to 0.50%, Ni: 0.10 to 2.0%, Nb: 0.01 to 2.0%, Ti: 0.01 to 0.17 %, B: One or more of 0.0001 to 0.005%, and the remaining rolling parts or gears made of steel with Fe and inevitable impurities are carburized or carbonitrided, and these When the quenching temperature after carburizing or nitriding of T is T, the quenching temperature T satisfies the following formula (1), and the rolling parts Properly is rolling part or gear manufacturing method having excellent life under hydrogen environment, characterized in that a 0.50 to 2.0 percent of (C + N) content in the steel surface layer of the gear. When B is contained, carbonitriding is not performed.
800 ° C. ≦ quenching temperature T ≦ 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. (1)

本願発明における鋼成分の限定理由を以下に説明する。なお、以下%は質量%を示す。   The reasons for limiting the steel components in the present invention will be described below. Hereinafter, “%” represents “% by mass”.

C:0.10〜0.45%
Cは、強度を付与するために必要な元素であるが、0.10%未満であると、浸炭、ならびに浸炭窒化後の芯部強度を確保することができず、0.45%を超えると靱性が低下するとともに素材の硬度が上昇して加工性が低下する。そこでCは0.10〜0.45%とし、望ましくは0.14〜0.28%とする。
C: 0.10 to 0.45%
C is an element necessary for imparting strength, but if it is less than 0.10%, it cannot ensure carburization and core strength after carbonitriding, and if it exceeds 0.45% As the toughness decreases, the hardness of the material increases and the workability decreases. Therefore, C is set to 0.10 to 0.45%, preferably 0.14 to 0.28%.

Si:0.01〜1.0%
Siは、鋼の脱酸に有効な元素であるとともに、鋼に必要な焼入性を付与し強度を高めるために添加する。また、焼戻し軟化抵抗を向上するために潤滑不良状態での転動寿命にも有効な元素であるが、1.0%を超えると浸炭、ならびに浸炭窒化特性が低下し、さらに素材硬度が上昇して加工性が低下する。そこでSiは0.01〜1.0%とし、望ましくは、0.10〜0.70%とする。
Si: 0.01 to 1.0%
Si is an element effective for deoxidation of steel, and is added to impart hardenability necessary for steel and increase strength. In addition, it is an element effective for rolling life in a poorly lubricated state in order to improve temper softening resistance. However, if it exceeds 1.0%, carburizing and carbonitriding properties deteriorate and the material hardness increases. Processability is reduced. Therefore, Si is set to 0.01 to 1.0%, preferably 0.10 to 0.70%.

Mn:0.10〜2.0%
Mnは、鋼の焼入性を向上させる元素であるが、0.10%未満では焼入性の向上を確保することができず、また脱酸が不十分であり、2.0%を超えると素材の硬度が上昇して加工性が低下する。そこで、Mnは0.10〜2.0%とし、望ましくは、0.20〜1.60%とする。
Mn: 0.10 to 2.0%
Mn is an element that improves the hardenability of the steel, but if it is less than 0.10%, the improvement of hardenability cannot be ensured, and deoxidation is insufficient, exceeding 2.0%. And the hardness of the material increases and the workability decreases. Therefore, Mn is set to 0.10 to 2.0%, preferably 0.20 to 1.60%.

P:0.030%以下
Pは、粒界に偏析して靱性および疲労強度を低下させて部品強度を低下させる元素であるため、0.030%以下とする。
P: 0.030% or less P is an element that segregates at grain boundaries to lower toughness and fatigue strength and lower part strength, so is 0.030% or less.

S:0.035%以下
Sは添加すると被削性に有効なMnSを形成するが、MnSは転動疲労寿命、冷間加工性および靱性を劣化させる元素である。そこで、Sは、0.035%以下とする。
S: 0.035% or less When added, S forms MnS effective for machinability, but MnS is an element that deteriorates rolling fatigue life, cold workability, and toughness. Therefore, S is set to 0.035% or less.

Cr:1.30〜3.50%
Crは鋼に焼入性や強度向上を与え、さらにCやNと化合物を作ることにより固溶C、固溶Nを低減させ、マルテンサイトのブロック界面への水素の濃化を抑えることに有効である。また、この炭化物あるいは炭窒化物は水素のトラップサイトとなり、水素の無害化にも有効である。Crが1.30%未満では、これらの効果は十分に得られず、3.50%を超えると硬さの上昇を招き加工性が低下する。そこで、Crは、1.30〜3.50%とする。
Cr: 1.30 to 3.50%
Cr gives hardenability and strength improvement to steel, and further reduces C and N by forming a compound with C and N, and is effective in suppressing hydrogen concentration at the block interface of martensite. It is. Further, this carbide or carbonitride serves as a hydrogen trap site and is also effective in detoxifying hydrogen. If Cr is less than 1.30%, these effects cannot be sufficiently obtained. If it exceeds 3.50%, the hardness is increased and the workability is lowered. Therefore, Cr is set to 1.30 to 3.50%.

Al:0.003〜0.10%
Alは、鋼の脱酸作用を有すると同時に、窒素と結合してAlNを生成し、結晶粒の粗大化を抑制する効果を有するが、0.003%未満では脱酸効果が不十分であり、0.10%より多くなり過ぎると酸化物が増加して疲労強度を低下し、さらに加工性が低下する。そこで、Alは0.003〜0.10%とする。
Al: 0.003-0.10%
Al has the effect of deoxidizing steel, and at the same time combines with nitrogen to produce AlN and suppresses the coarsening of crystal grains, but the deoxidation effect is insufficient at less than 0.003%. If it exceeds 0.10%, oxides increase, fatigue strength decreases, and workability further decreases. Therefore, Al is made 0.003 to 0.10%.

N:0.004〜0.050%
Nは、鋼中のAlやNbと化合物を生成し、浸炭時におけるオーステナイト結晶粒の粗大化を防止する作用を有するが、Nが0.004%未満であると結晶粒粗大化を防止する効果が小さく、0.050%より多すぎると窒化物が増加して疲労強度および加工性が低下する。そこでNは0.004〜0.050%とする。ただし、後述のBを添加する場合は、Nが存在するとBNが生成してB添加の効果が無くなるため、Nは0.015%以下とする。
N: 0.004 to 0.050%
N forms a compound with Al and Nb in steel and has an effect of preventing coarsening of austenite crystal grains at the time of carburizing. Effect of preventing coarsening of grains when N is less than 0.004% Is too small, and if it is more than 0.050%, nitrides increase and fatigue strength and workability deteriorate. Therefore, N is set to 0.004 to 0.050%. However, in the case of adding B, which will be described later, if N is present, BN is generated and the effect of adding B is lost, so N is made 0.015% or less.

Mo:0.01〜1.20%
Moは、鋼の焼入性、強度および靱性を向上させる元素であり、さらにCやNと化合物物を作ることにより固溶C、固溶Nを低減させ、マルテンサイトのブロック界面への水素の濃化を抑えることに有効である。また、この炭化物あるいは炭窒化物は水素のトラップサイトとなり、水素の無害化にも有効である。ただし、Moが多すぎると加工性が低下し、かつ鋼材コストが上昇するため、Moは0.01〜1.20%とする。
Mo: 0.01 to 1.20%
Mo is an element that improves the hardenability, strength, and toughness of steel. Further, by forming a compound with C and N, solid solution C and solid solution N are reduced, and hydrogen is introduced into the martensite block interface. It is effective in suppressing concentration. Further, this carbide or carbonitride serves as a hydrogen trap site and is also effective in detoxifying hydrogen. However, when there is too much Mo, workability will fall and the steel material cost will rise, so Mo is made 0.01 to 1.20%.

V:0.01〜0.50%
Vは、鋼の焼入性および強度を向上させる元素であり、さらにCやNと化合物を作ることにより固溶C、固溶Nを低減させ、マルテンサイトのブロック界面への水素の濃化を抑えることに有効である。また、この炭化物あるいは炭窒化物は水素のトラップサイトとなり、水素の無害化にも有効である。ただし、Vが多すぎると加工性が低下し、かつ鋼材コストが上昇するため、Vは0.01〜0.50%とする。
V: 0.01 to 0.50%
V is an element that improves the hardenability and strength of steel. Further, by forming a compound with C and N, solid solution C and solid solution N are reduced, and hydrogen is concentrated at the block interface of martensite. It is effective to suppress. Further, this carbide or carbonitride serves as a hydrogen trap site and is also effective in detoxifying hydrogen. However, if V is too much, workability is reduced and the steel material cost is increased, so V is set to 0.01 to 0.50%.

Ni:0.10〜2.0%
Niは、鋼の焼入性および靱性の向上に有効な元素であるが、0.10%未満ではその効果は小さく、2.0%を超えると素材の硬度が上昇しすぎて加工性を低下させ、かつ、鋼材コストが上昇する。そこでNiは0.1〜2.0%とする。
Ni: 0.10 to 2.0%
Ni is an element effective for improving the hardenability and toughness of steel. However, if it is less than 0.10%, its effect is small, and if it exceeds 2.0%, the hardness of the material increases so much that the workability decreases. And the steel material cost increases. Therefore, Ni is made 0.1 to 2.0%.

Nb:0.01〜0.20%
Nbは、微細なNbの炭化物および炭窒化物を形成して浸炭時のオーステナイト結晶粒の粗大化を抑制する。また、この炭化物あるいは炭窒化物は水素のトラップサイトとなり、水素の無害化にも有効であるが、0.01%未満ではその効果は小さく、0.20%を超えるとNbの炭化物や炭窒化物が粗大化して結晶粒粗大化抑制効果が低下する。そこで、Nbは0.01〜0.20%とする。
Nb: 0.01-0.20%
Nb forms fine Nb carbides and carbonitrides to suppress coarsening of austenite crystal grains during carburization. Further, this carbide or carbonitride serves as a hydrogen trap site and is effective for detoxification of hydrogen. However, if it is less than 0.01%, the effect is small, and if it exceeds 0.20%, Nb carbide or carbonitride. A thing coarsens and the crystal grain coarsening inhibitory effect falls. Therefore, Nb is set to 0.01 to 0.20%.

Ti:0.01〜0.17%
Tiは、TiCとして鋼中に微細に析出し、鋼を分散強化し、疲労き裂の生成、伝播を抑制する元素である。また、Tiの炭化物あるいは炭窒化物は水素のトラップサイトとなり、水素の無害化にも有効であるが、0.01%以下ではその効果は小さく、0.17%を超えると加工性が低下する。そこで、Tiは0.01〜0.17%とする。
Ti: 0.01 to 0.17%
Ti is an element which precipitates finely in steel as TiC, disperses and strengthens the steel, and suppresses the generation and propagation of fatigue cracks. Further, Ti carbide or carbonitride serves as a hydrogen trap site and is effective for detoxification of hydrogen. However, the effect is small at 0.01% or less, and the workability decreases when it exceeds 0.17%. . Therefore, Ti is set to 0.01 to 0.17%.

B:0.0001〜0.005%
Bは、極微量の添加によって鋼の焼入れ性を著しく向上させる元素であり、かつ粒界に偏析し粒界破壊を抑制することにより浸炭後の疲労強度や衝撃強度を向上させるが、0.0001%未満ではその効果が十分でなく、0.005%を超えてもその効果は飽和する。そこで、Bは0.0001〜0.005%とする。なお、Bを添加する際は窒化は行わず、浸炭のみを行うものとする。
B: 0.0001 to 0.005%
B is an element that remarkably improves the hardenability of steel by addition of a very small amount, and segregates at the grain boundary and suppresses grain boundary fracture, thereby improving fatigue strength and impact strength after carburization. If it is less than%, the effect is not sufficient, and if it exceeds 0.005%, the effect is saturated. Therefore, B is set to 0.0001 to 0.005%. In addition, when adding B, nitriding is not performed but only carburizing is performed.

浸炭もしくは浸炭窒化処理により表層面の(C+N)量:0.50〜0.75%
上記のように、水素侵入起因の早期破損は、マルテンサイトブロック界面への水素の濃化が原因であり、マルテンサイト中の固溶(C+N)量を0.75%以下に低減させることで長寿命化が可能となる。ただし、転動疲労寿命に必要な硬さを確保するには0.50%以上の(C+N)量が必要なため、浸炭もしくは浸炭窒化処理後の最表面の(C+N)量を0.50〜0.75%とすることで、水素侵入起因の早期破損を抑制することができる。
(C + N) content on the surface layer by carburizing or carbonitriding: 0.50 to 0.75%
As described above, the early breakage due to hydrogen intrusion is caused by the concentration of hydrogen at the martensite block interface, which is prolonged by reducing the solid solution (C + N) amount in martensite to 0.75% or less. Life can be extended. However, since an amount of (C + N) of 0.50% or more is necessary to ensure the hardness necessary for the rolling fatigue life, the amount of (C + N) on the outermost surface after carburizing or carbonitriding is set to 0.50. By setting it as 0.75%, early breakage due to hydrogen intrusion can be suppressed.

浸炭もしくは浸炭窒化後の焼入れ温度T:800℃≦T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃、かつ表層面の(C+N)量:0.50〜2.0%
炭化物あるいは炭窒化物を生成するCr、Mo、Vを添加し、上記の式を満足させる温度にて焼入れを行うことにより、マルテンサイト中の固溶(C+N)量を低減させ、上述のように水素起因の早期破損を抑制することが可能となる。ただし、焼入れ温度Tが800℃未満の場合は網目状炭化物が多量に生成するため、800℃≦T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃とする。また、表層面の(C+N)量が2.0%を超えても網目状炭化物が多量に生成するため、表層面の(C+N)量は0.50〜2.0%とする。
Quenching temperature after carburizing or carbonitriding T: 800 ° C. ≦ T ≦ 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. and (C + N) amount on the surface layer: 0.50-2. 0%
By adding Cr, Mo, and V that generate carbide or carbonitride and quenching at a temperature that satisfies the above formula, the amount of solid solution (C + N) in martensite is reduced, as described above. It is possible to suppress early damage caused by hydrogen. However, when the quenching temperature T is less than 800 ° C., a large amount of reticulated carbide is generated, and therefore 800 ° C. ≦ T ≦ 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. Further, even if the amount of (C + N) on the surface layer exceeds 2.0%, a large amount of network carbide is generated, so the amount of (C + N) on the surface layer is set to 0.50 to 2.0%.

上記の手段としたことで、従来の鋼材からなる部品に水素が侵入すると早期破損等の問題を生じるような水素環境下においても、本発明による部品、例えば軸受部品は、鋼材中に水素が侵入しても剥離を生じることなく、したがって長寿命であり、かつ、本発明における鋼材は被削性も良好であるので、超硬工具の摩耗量が少なく、加工性に優れているなど、本発明は従来にない効果を奏する。   By adopting the means described above, even in a hydrogen environment in which hydrogen may invade a conventional steel part and cause problems such as early breakage, the part according to the present invention, for example, a bearing part, has hydrogen penetrating into the steel part. However, the steel material in the present invention has good machinability without causing peeling, so the wear amount of the carbide tool is small, and the workability is excellent. Produces an unprecedented effect.

スラスト型転動疲労試験片の形状を示し、(a)は正面図、(b)は側面図である。The shape of a thrust type | mold rolling fatigue test piece is shown, (a) is a front view, (b) is a side view. 熱処理パターンを示し、(a)は浸炭および焼入れを示し、(b)は浸炭窒化及び焼入れを示す、図である。It is a figure which shows the heat processing pattern, (a) shows carburizing and hardening, (b) shows carbonitriding and hardening.

本発明の実施の形態について以下に説明する。表1に示す化学組成の各成分を含有する本発明の実施の形態における鋼(以下、「実施例鋼」という。)および比較用の鋼(以下、「比較例鋼」という。)を100kg真空溶解炉で溶製して鋼とした。次いで、これらの鋼を1200℃で熱間鍛造して直径65mmの棒鋼に製造し、900℃に90分間保持した後、空冷して焼ならし処理を行った。その後、600℃に4時間保持した後、空冷して低温焼なまし処理を行った。なお、表1の比較例鋼の網かけ部分は本発明の実施例鋼の成分範囲から外れることを示している。さらに、表1の実施例鋼の各成分元素の記載において、本発明における鋼の成分元素の組成範囲に満たない範囲の値は、実操業上の不可避不純物として含有されているものである。   Embodiments of the present invention will be described below. A steel (hereinafter referred to as “Example Steel”) and a comparative steel (hereinafter referred to as “Comparative Example Steel”) according to an embodiment of the present invention containing each component having the chemical composition shown in Table 1 are vacuumed at 100 kg. It was made into steel by melting in a melting furnace. Subsequently, these steels were hot-forged at 1200 ° C. to produce 65 mm diameter steel bars, held at 900 ° C. for 90 minutes, and then air-cooled and normalized. Then, after maintaining at 600 ° C. for 4 hours, it was air-cooled and subjected to a low-temperature annealing treatment. In addition, it has shown that the shaded part of the comparative example steel of Table 1 remove | deviates from the component range of the Example steel of this invention. Furthermore, in description of each component element of Example steel of Table 1, the value of the range which is less than the composition range of the component element of steel in this invention is contained as an unavoidable impurity on actual operation.

Figure 2012036475
Figure 2012036475

その後、上記で製造した棒鋼から、図1に示す、外径:φ60mm、内径:φ20mm、厚さD:8.3mmである、スラスト型転動疲労試験片1の形状に加工した。   Then, it processed into the shape of the thrust type | mold rolling fatigue test piece 1 which is outer diameter: (phi) 60mm, inner diameter: (phi) 20mm, and thickness D: 8.3mm from the steel bar manufactured above.

この加工した形状のスラスト型転動疲労試験片1を、図2の(a)の浸炭+焼入れパターンに示す、930℃に加熱し、同温度で0.5時間の均熱と3.0時間の浸炭と2.5時間の拡散を行った後、任意の温度T℃に下げ、同温度に0.5時間保持した後、さらに60℃に油中焼入れ(O.Q.)する浸炭焼入れ条件により、種々の表面炭素濃度を狙った浸炭焼入れを行い、スラスト型転動疲労試験片1に準備した。   The thrust type rolling fatigue test piece 1 of this machined shape is heated to 930 ° C. as shown in the carburization + quenching pattern of FIG. 2A, soaking at the same temperature for 0.5 hours and 3.0 hours. Carburizing and Carburizing Conditions for Carburizing and Diffusion for 2.5 Hours, Lowering to Arbitrary Temperature T ° C, Holding at that Temperature for 0.5 Hours, and Quenching in Oil (OQ) to 60 ° C Thus, carburizing and quenching aiming at various surface carbon concentrations was performed, and a thrust type rolling fatigue test piece 1 was prepared.

さらにスラスト型転動疲労試験片1を、図2の(b)の浸炭窒化+焼入れパターンに示す、930℃に加熱し、同温度で0.5時間の均熱と3.0時間の浸炭と2.5時間の拡散を行い、任意の温度T℃に下げ、同温度で1.5時間の浸窒処理を施した後、さらに60℃に油中焼入れする浸炭窒化焼入れ条件により、種々の表面炭素濃度および窒素濃度を狙った浸炭窒化焼入れを行い、スラスト型転動疲労試験片1に準備した。   Further, the thrust type rolling fatigue test piece 1 is heated to 930 ° C. shown in the carbonitriding + quenching pattern of FIG. 2B, and soaking at the same temperature for 0.5 hours and carburizing for 3.0 hours. Depending on the carbonitriding quenching conditions in which diffusion is performed for 2.5 hours, the temperature is lowered to an arbitrary temperature T ° C., nitriding treatment is performed at the same temperature for 1.5 hours, and then further quenched in oil at 60 ° C. Carbonitriding and quenching aimed at carbon concentration and nitrogen concentration was performed, and a thrust type rolling fatigue test piece 1 was prepared.

その後、これらの準備した全てのスラスト型転動疲労試験片1は、180℃で1.5時間保持する焼戻し処理を行い、仕上げ加工として表面を研磨して、厚さD:8.0mmとし、スラスト型転動疲労試験片1に仕上げた。   Thereafter, all the prepared thrust type rolling fatigue test pieces 1 were subjected to a tempering treatment that was held at 180 ° C. for 1.5 hours, and the surface was polished as a finishing process to a thickness D of 8.0 mm. A thrust type rolling fatigue test piece 1 was finished.

水素侵入環境を模擬するために、転動試験前のスラスト型転動疲労試験片1に水素チャージを行った。この水素チャージの条件は、濃度20%のチオシアン酸アンモニウム溶液に、比液250ml/枚、50℃で、スラスト型転動疲労試験片1を48時間保持するものとした。水素チャージを行った後、直ちにスラスト型転動疲労試験片1を洗浄してバフ研磨にて試験面の腐食生成物を除去した後、最大接触面圧5.3GPaにてスラスト型転動疲労試験機によって、試験片の表面から剥離までの転動疲労試験のサイクル数を求めた。   In order to simulate the hydrogen intrusion environment, the thrust type rolling fatigue test piece 1 before the rolling test was charged with hydrogen. The hydrogen charging condition was that the thrust type rolling fatigue test piece 1 was held for 48 hours in an ammonium thiocyanate solution having a concentration of 20% at a specific solution of 250 ml / sheet and 50 ° C. Immediately after hydrogen charging, the thrust type rolling fatigue test piece 1 is washed and the corrosion products on the test surface are removed by buffing, and then the thrust type rolling fatigue test is performed at a maximum contact surface pressure of 5.3 GPa. The number of cycles of the rolling fatigue test from the surface of the test piece to peeling was determined by a machine.

各鋼種の750℃+39×(Cr%+0.8×Mo%+3×V%)℃の計算値(表2において計算温度 T0と記載)、スラスト型転動疲労試験片1の焼入れ温度T、熱処理方法、EPMAにて分析した表面(C+N)量、さらに転動疲労試験によるL50寿命、および、浸炭または浸炭窒化前の低温焼なまし状態での10分間切削後の工具:超硬JIS P20、刃先R:0.4mm、周速:150m/min、切込み:0.5mm、送り:0.25mm/rev、切削油:無し、とする各条件下での、旋削工具摩耗量を併せて表2に示した。なお、表2において、網掛けをしている部分は、表面(C+N)量が0.50〜0.75%を外れており、かつ焼入れ温度T:800℃≦T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃を満足していない場合の焼入れ温度、表面(C+N)量が0.5%未満もしくは2.0%を超えるもの、水素チャージしたスラスト型転動疲労試験片1の転動疲労のL50寿命が15×106サイクル未満、10分間超硬工具摩耗量が0.10mmを超えるものである。 Calculated value of 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. for each steel type (described as calculation temperature T0 in Table 2), quenching temperature T of thrust type rolling fatigue test piece 1, heat treatment Method, surface (C + N) amount analyzed by EPMA, L 50 life by rolling fatigue test, and tool after cutting for 10 minutes in low temperature annealing state before carburizing or carbonitriding: Carbide JIS P20, Table 2 shows the amount of wear of the turning tool under the conditions of cutting edge R: 0.4 mm, peripheral speed: 150 m / min, cutting depth: 0.5 mm, feed: 0.25 mm / rev, and cutting oil: none. It was shown to. In Table 2, the shaded portion has a surface (C + N) amount outside 0.50 to 0.75% and a quenching temperature T: 800 ° C. ≦ T ≦ 750 ° C. + 39 × (Cr % + 0.8 × Mo% + 3 × V%) Quenching temperature when not satisfying ° C, surface (C + N) amount less than 0.5% or more than 2.0%, hydrogen type thrust type rolling The L 50 life of rolling fatigue of the fatigue test piece 1 is less than 15 × 10 6 cycles, and the wear amount of the carbide tool exceeds 10 mm for 10 minutes.

Figure 2012036475
Figure 2012036475

したがって、表2から、実施例鋼のNo.A〜Eは焼入れ温度や表面(C+N)量の調整によって、L50寿命は15×106サイクル以上の結果が得られ、かつ、超硬工具摩耗量も0.10mm以下であったため、長寿命と被削性とを両立している。なお、たとえ本発明の実施例鋼の組成範囲を成分を有するものであっても、表2の焼入れ温度、もしくは表面(C+N)量が外れるものは、固溶(C+N)量が適正ではない、あるいは多量の網目状炭化物が生成するために、L50寿命が15×106サイクル未満であって、網かけで示すように、上記の長寿命の効果は得られていないものであり、本発明の対象外であるので、備考で対象外と示した。 Therefore, from Table 2, No. of the example steel. A to E have a long life because the L 50 life is 15 × 10 6 cycles or more by adjusting the quenching temperature and the surface (C + N) amount, and the wear amount of the carbide tool is 0.10 mm or less. And machinability. In addition, even if the composition range of the example steel of the present invention has a component, the quenching temperature in Table 2 or the surface (C + N) amount deviates from the solid solution (C + N) amount, Alternatively, since a large amount of reticulated carbide is generated, the L 50 life is less than 15 × 10 6 cycles, and as shown by the netting, the above-mentioned long life effect is not obtained. Because it is out of scope, it was marked as out of scope in the remarks.

比較例鋼のNo.F〜Iについては、No.F〜Hは、L50寿命は優れるが、超硬工具摩耗量が多いもので、すなわち被削性が悪いために、部品の加工工程において問題が発生するので、本発明の対象外であるので、備考で対象外と示した。さらに、比較例鋼のNo.Iは本発明に必要なCrの添加量が少ないため、L50寿命が15×106サイクル未満の低サイクルで剥離に至ったため、本発明の対象外であるので、備考で対象外と示した。 Comparative Example Steel No. For F to I, no. F to H are excellent in L 50 life, but have a large amount of carbide tool wear. That is, since machinability is poor, a problem occurs in the part machining process, so it is out of the scope of the present invention. , Indicated in the remarks as out of scope. Furthermore, No. of comparative example steel. Since I has less amount of Cr necessary for the present invention, since the L 50 life has reached the release of low-cycle of less than 15 × 10 6 cycles, because it is outside the scope of the present invention, shown covered Remarks .

1 スラスト転動疲労試験片   1 Thrust rolling fatigue test piece

Claims (4)

質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理により該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜0.75%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法。   In mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% or less, S: 0.035 %: Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, the balance being Fe and inevitable impurities. Rolling parts or gears are subjected to carburizing or carbonitriding to reduce the (C + N) amount in the steel surface of the rolling parts or gears to 0.50 to 0.75% in a hydrogen environment. A method of manufacturing rolling parts or gears with excellent service life. 質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、さらにMo:0.01〜1.20%、V:0.01〜0.50%、Ni:0.10〜2.0%、Nb:0.01〜2.0%、Ti:0.01〜0.17%、B:0.0001〜0.005%のうち1種または2種以上を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理により該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜0.75%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法。なお、Bを鋼材に含有するときは浸炭窒化処理は行わないものとする。   In mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% or less, S: 0.035 %: Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, and Mo: 0.01 to 1.20% , V: 0.01 to 0.50%, Ni: 0.10 to 2.0%, Nb: 0.01 to 2.0%, Ti: 0.01 to 0.17%, B: 0.0001 Rolling parts or gears made of steel containing one or more of ~ 0.005%, the balance being Fe and inevitable impurities, carburized or carbonitrided by rolling steel or carbonitriding treatment Rolling parts with excellent life in a hydrogen environment characterized by the amount of (C + N) in the layer surface being 0.50 to 0.75% Method of manufacturing a gear. When B is contained in the steel material, carbonitriding is not performed. 質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理し、これらの浸炭もしくは窒化処理後の焼入れ温度をTとするとき、焼入れ温度Tは下記の式(1)を満足するものとし、該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜2.0%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法。
800℃≦焼入れ温度T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃・・・(1)
In mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% or less, S: 0.035 %: Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, the balance being Fe and inevitable impurities. When rolling parts or gears are carburized or carbonitrided and the quenching temperature after carburizing or nitriding is T, the quenching temperature T satisfies the following formula (1). Or the manufacturing method of the rolling component or gear excellent in the lifetime in the hydrogen environment characterized by making the amount of (C + N) in the steel surface layer of a gear into 0.50 to 2.0%.
800 ° C. ≦ quenching temperature T ≦ 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. (1)
質量%で、C:0.10〜0.45%、Si:0.01〜1.0%、Mn:0.10〜2.0%、P:0.030%以下、S:0.035%以下、Cr:1.30〜3.50%、Al:0.003〜0.10%、N:0.004〜0.050%を含有し、さらにMo:0.01〜1.20%、V:0.01〜0.50%、Ni:0.10〜2.0%、Nb:0.01〜2.0%、Ti:0.01〜0.17%、B:0.0001〜0.005%のうち1種または2種以上を含有し、残部がFeおよび不可避不純物である鋼材からなる転動部品もしくは歯車を、浸炭もしくは浸炭窒化処理し、これらの浸炭もしくは窒化処理後の焼入れ温度をTとするとき、焼入れ温度Tは下記の式(1)を満足するものとし、該転動部品もしくは歯車の鋼材表層面中の(C+N)量を0.50〜2.0%とすることを特徴とする水素環境下での寿命に優れた転動部品もしくは歯車の製造方法。なお、Bを鋼材に含有するときは浸炭窒化処理は行わないものとする。
800℃≦焼入れ温度T≦750℃+39×(Cr%+0.8×Mo%+3×V%)℃・・・(1)
In mass%, C: 0.10 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, P: 0.030% or less, S: 0.035 %: Cr: 1.30 to 3.50%, Al: 0.003 to 0.10%, N: 0.004 to 0.050%, and Mo: 0.01 to 1.20% , V: 0.01 to 0.50%, Ni: 0.10 to 2.0%, Nb: 0.01 to 2.0%, Ti: 0.01 to 0.17%, B: 0.0001 Rolling parts or gears comprising steel material containing one or more of ~ 0.005%, the balance being Fe and inevitable impurities, carburized or carbonitrided, and after these carburized or nitrided When the quenching temperature is T, the quenching temperature T satisfies the following formula (1), and the steel material table of the rolling part or gear (C + N) amount from 0.50 to 2.0% and rolling part or production process of a gear having excellent life under hydrogen environment, characterized in that in the surface. When B is contained in the steel material, carbonitriding is not performed.
800 ° C. ≦ quenching temperature T ≦ 750 ° C. + 39 × (Cr% + 0.8 × Mo% + 3 × V%) ° C. (1)
JP2010179589A 2010-08-10 2010-08-10 Method for manufacturing rolling part and gear with long service life under hydrogen environment Pending JP2012036475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179589A JP2012036475A (en) 2010-08-10 2010-08-10 Method for manufacturing rolling part and gear with long service life under hydrogen environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179589A JP2012036475A (en) 2010-08-10 2010-08-10 Method for manufacturing rolling part and gear with long service life under hydrogen environment

Publications (1)

Publication Number Publication Date
JP2012036475A true JP2012036475A (en) 2012-02-23

Family

ID=45848769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179589A Pending JP2012036475A (en) 2010-08-10 2010-08-10 Method for manufacturing rolling part and gear with long service life under hydrogen environment

Country Status (1)

Country Link
JP (1) JP2012036475A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185379A (en) * 2013-03-25 2014-10-02 Nachi Fujikoshi Corp Hydrogen-brittle type carbonitrided bearing part excellent in surface fatigue strength
WO2019080492A1 (en) * 2017-10-24 2019-05-02 南京钢铁股份有限公司 High-strength hull steel with excellent low-temperature toughness and one-steel multi-grade heat treatment technology therefor
KR20190066416A (en) * 2017-12-05 2019-06-13 현대자동차주식회사 Method of carbonitriding process for metal products
CN115110002A (en) * 2022-06-30 2022-09-27 马鞍山钢铁股份有限公司 Nb-Ti microalloyed high-temperature carburization resistant high-torque output gear steel, manufacturing method thereof and high-temperature carburization treatment method
CN115667566A (en) * 2020-03-31 2023-01-31 日本制铁株式会社 Carburized bearing component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239747A (en) * 1999-02-24 2000-09-05 Nissan Motor Co Ltd Manufacture of rolling parts made of steel, excellent in rolling fatigue strength, and rolling parts
JP2001073072A (en) * 1999-08-30 2001-03-21 Kobe Steel Ltd Carbo-nitrided parts excellent in pitching resistance
JP2002286115A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Highly strength gear and its producing method
WO2006118243A1 (en) * 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. Carburized induction-hardened component
JP2008248284A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Gear excellent in low cycle fatigue strength
JP2008280583A (en) * 2007-05-10 2008-11-20 Daido Steel Co Ltd Case-hardening steel excellent in surface fatigue strength due to hydrogen embrittlement
WO2010137607A1 (en) * 2009-05-27 2010-12-02 住友金属工業株式会社 Carburized component and manufacturing method therefor
JP2011225936A (en) * 2010-04-20 2011-11-10 Daido Steel Co Ltd Carbonitrided steel of hydrogen embrittlement type having excellent surface fatigue strength

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239747A (en) * 1999-02-24 2000-09-05 Nissan Motor Co Ltd Manufacture of rolling parts made of steel, excellent in rolling fatigue strength, and rolling parts
JP2001073072A (en) * 1999-08-30 2001-03-21 Kobe Steel Ltd Carbo-nitrided parts excellent in pitching resistance
JP2002286115A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Highly strength gear and its producing method
WO2006118243A1 (en) * 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. Carburized induction-hardened component
JP2008248284A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Gear excellent in low cycle fatigue strength
JP2008280583A (en) * 2007-05-10 2008-11-20 Daido Steel Co Ltd Case-hardening steel excellent in surface fatigue strength due to hydrogen embrittlement
WO2010137607A1 (en) * 2009-05-27 2010-12-02 住友金属工業株式会社 Carburized component and manufacturing method therefor
JP2011225936A (en) * 2010-04-20 2011-11-10 Daido Steel Co Ltd Carbonitrided steel of hydrogen embrittlement type having excellent surface fatigue strength

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185379A (en) * 2013-03-25 2014-10-02 Nachi Fujikoshi Corp Hydrogen-brittle type carbonitrided bearing part excellent in surface fatigue strength
WO2019080492A1 (en) * 2017-10-24 2019-05-02 南京钢铁股份有限公司 High-strength hull steel with excellent low-temperature toughness and one-steel multi-grade heat treatment technology therefor
KR20190066416A (en) * 2017-12-05 2019-06-13 현대자동차주식회사 Method of carbonitriding process for metal products
KR102463834B1 (en) * 2017-12-05 2022-11-04 현대자동차주식회사 Method of carbonitriding process for metal products
CN115667566A (en) * 2020-03-31 2023-01-31 日本制铁株式会社 Carburized bearing component
CN115667566B (en) * 2020-03-31 2024-01-16 日本制铁株式会社 Carburized bearing component
CN115110002A (en) * 2022-06-30 2022-09-27 马鞍山钢铁股份有限公司 Nb-Ti microalloyed high-temperature carburization resistant high-torque output gear steel, manufacturing method thereof and high-temperature carburization treatment method
CN115110002B (en) * 2022-06-30 2023-08-11 马鞍山钢铁股份有限公司 Nb-Ti microalloyed high temperature resistant carburized high torque output gear steel and manufacturing method and high temperature carburization treatment method thereof

Similar Documents

Publication Publication Date Title
JP4819201B2 (en) Soft nitriding steel, soft nitriding steel component and manufacturing method thereof
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JP6610808B2 (en) Soft nitriding steel and parts
JPWO2015098106A1 (en) Manufacturing method of carburized steel parts and carburized steel parts
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP6098769B2 (en) Soft nitriding steel and parts and methods for producing them
JP2012036475A (en) Method for manufacturing rolling part and gear with long service life under hydrogen environment
JP5018995B1 (en) Bearing steel with excellent workability after spheroidizing annealing and excellent hydrogen fatigue resistance after quenching and tempering
JP5224969B2 (en) Rolling parts with long life in a hydrogen environment
JP4737601B2 (en) High temperature nitriding steel
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP4847681B2 (en) Ti-containing case-hardened steel
JP2016188421A (en) Carburized component
JP2000273574A (en) Steel for carburizing or carbonitriding treatment
JP6447064B2 (en) Steel parts
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6263390B2 (en) Gear steel and gears with excellent fatigue resistance
JP5503417B2 (en) Case-hardened steel parts with excellent sliding characteristics
CN107532252B (en) Case hardening steel
JP2015045036A (en) Skin hardening steel for gear excellent in pitching resistance under hydrogen environment
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6569650B2 (en) Case-hardened steel
JP2019031745A (en) Carburized component
JP2021021129A (en) Carburized steel member made of machine structural steel with excellent pitching resistance on ground surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150414

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150605