KR20200057203A - method of manufacturing reflector sheet - Google Patents

method of manufacturing reflector sheet Download PDF

Info

Publication number
KR20200057203A
KR20200057203A KR1020180141255A KR20180141255A KR20200057203A KR 20200057203 A KR20200057203 A KR 20200057203A KR 1020180141255 A KR1020180141255 A KR 1020180141255A KR 20180141255 A KR20180141255 A KR 20180141255A KR 20200057203 A KR20200057203 A KR 20200057203A
Authority
KR
South Korea
Prior art keywords
sputtering
aluminum
silver
speed
film
Prior art date
Application number
KR1020180141255A
Other languages
Korean (ko)
Inventor
김창건
Original Assignee
주식회사 보이트씨앤아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 보이트씨앤아이 filed Critical 주식회사 보이트씨앤아이
Priority to KR1020180141255A priority Critical patent/KR20200057203A/en
Publication of KR20200057203A publication Critical patent/KR20200057203A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a method for manufacturing a reflector sheet having a reflectance of 97% or more while significantly lowering the production cost. The method comprises a first step of performing vacuum thermal deposition on a substrate at a high speed where the production speed, or the moving speed of a film, is 300 to 500 m/min using aluminum and taking a deposition-completed film roll out of a vacuum chamber; and a second step of mounting the roll on silver (Ag) sputtering equipment and performing silver (Ag) sputtering on the surface of the aluminum vacuum thermal deposited film at a speed of 5 to 15 m/min to manufacture a reflector sheet.

Description

반사필름 제조방법{method of manufacturing reflector sheet}{Method of manufacturing reflector sheet}

본 발명은 증착에 의하여 반사필름을 제조하는 방법에 관한 것이다. 즉, 폴리에틸렌테레프탈레이트(PET, polyethylene terephthalate) 필름 또는 기타 플라스틱 필름 기재 표면에 금속재료의 피막물질(Al, Ag, Zn, Cu 등)을 진공 증착 또는 스퍼터링 함으로써 표면 반사율을 증가시켜 반사시트를 제조하는 기술에 관한 것이다.The present invention relates to a method for manufacturing a reflective film by vapor deposition. That is, a polyethylene terephthalate (PET) film or other plastic film base material is vacuum-deposited or sputtered with a metallic material (Al, Ag, Zn, Cu, etc.) to increase the surface reflectance to produce a reflective sheet. It's about technology.

플라스틱 필름 기재(피착제) 위에 물리적 방법으로 금속재료의 피막물질을 박막으로 증착시키는 방법은 열증착(thermal evaporation), 스퍼터링(sputtering) 등이 있다. 상기 방법들은 진공 챔버 내부에서 피막 물질을 증발시켜 피착제 표면에 달라붙게 함으로써 수십 옹스트롬(Å) 또는 수천 옹스트롬(Å)의 박막 두께로 피착체 표면에 코팅층을 형성하게 하는 것이다. 피막 물질을 증발시키는 방법에 따라 열증착 방법과 스퍼터링 방법으로 나누어 지는데, 열증착 방법은 피막 물질과 피착체를 진공 챔버 내부에 넣고, 피막 물질 덩어리 전체를 가열하여 피막물질이 원자 또는 분자 상태로 증발하여 피착제 표면에 달라붙게 함으로써 피착체 표면을 피막물질로 박막 코팅을 하는 방법이다. 반면에 스퍼터링은 피막 물질 전체를 가열하지 않고 전자 빔(beam)과 아르곤 플라즈마를 사용하여 피막 물질의 표면으로부터 피막물질이 원자 또는 분자 상태로 증발하여 피착제 표면에 달라붙게 함으로써 피착체 표면을 피막물질로 박막 코팅을 하는 방법이다.A method of depositing a coating material of a metallic material into a thin film on a plastic film substrate (adhesive) by a physical method includes thermal evaporation, sputtering, and the like. In the above methods, a coating layer is formed on the surface of the adherend with a thin film thickness of tens of angstroms or thousands of angstroms by evaporating the coating material inside the vacuum chamber to adhere to the surface of the adherend. According to the method of evaporating the coating material, it is divided into a thermal evaporation method and a sputtering method. The thermal evaporation method places the coating material and the adherend inside a vacuum chamber, and heats the entire mass of the coating material to evaporate the coating material in atomic or molecular state It is a method of coating the surface of the adherend with a film material by coating it on the surface of the adherend. On the other hand, sputtering does not heat the entire coating material, but uses an electron beam and argon plasma to evaporate the coating material from the surface of the coating material in an atomic or molecular state and adhere to the surface of the adherend, thereby depositing the surface of the adherend It is a method of coating with a thin film.

피착체의 표면 반사율을 높이기 위하여 피착체 표면을 피막물질로 열증착 또는 스퍼터링 할때 사용하는 피막물질로서는 대표적으로 알루미늄(Al) 과 은(Ag)을 사용하는데, 은(Ag)은 알루미늄(Al)에 비하여 가격이 매우 비쌀 뿐 아니라 알루미늄에 비하여 증발 속도가 느리므로 생산 속도가 매우 느린 단점을 가지고 있다. 반면에 알루미늄은 은에 비하여 가격이 매우 저렴하고 증발 속도가 빠르므로 생산 속도가 매우 빠른 장점이 있다. 그러나 알루미늄은 동일한 두께로 코팅하였을 경우 은에 비하여 반사율이 낮은 단점이 있다. 따라서 알루미늄을 사용하여 증착 또는 스퍼터링을 할 경우 생산 속도가 빠르므로 생산성이 높고 생산 비용이 낮은 장점이 있다. 그러나 알루미늄은 금속 특성상 반사율에 한계가 있다. 만일 알루미늄만으로 증착 또는 스퍼터링을 실시할 경우 반사율은 약 94% 정도이며 그 이상의 반사율을 얻기 힘들다. 즉 알루미늄의 경우는 비록 증착 또는 스퍼터링 속도를 낮추어 코팅 두께를 높이더라도 반사율이 94%이상 올라가지 않는다. 따라서 알루미늄만 사용하여 증착 또는 스퍼터링을 실시하는 방법은 반사율이 97% 이상 요구되는 반사시트에는 적용할 수 없다.In order to increase the surface reflectivity of the adherend, aluminum (Al) and silver (Ag) are typically used as the coating material used when thermally depositing or sputtering the surface of the adherend with a coating material. Silver (Ag) is aluminum (Al). Compared to aluminum, the price is very expensive, and the evaporation rate is slow compared to aluminum, so the production rate is very slow. On the other hand, aluminum has the advantage of being very cheap compared to silver and having a very fast production rate because of its fast evaporation rate. However, when aluminum is coated with the same thickness, there is a disadvantage that the reflectivity is lower than that of silver. Therefore, when the deposition or sputtering using aluminum has a high production speed, there is an advantage of high productivity and low production cost. However, aluminum has a limited reflectance due to its metallic properties. If the deposition or sputtering is performed only with aluminum, the reflectance is about 94% and it is difficult to obtain a reflectance higher than that. That is, in the case of aluminum, even though the deposition or sputtering rate is lowered to increase the coating thickness, the reflectance does not rise more than 94%. Therefore, the method of performing vapor deposition or sputtering using only aluminum cannot be applied to a reflective sheet having a reflectance of 97% or more.

반면 은(Ag)으로 증착 또는 스퍼터링을 할 경우에는 약 97%의 반사율을 얻을 수 있으나, 생산 속도가 매우 느리고 생산 단가가 매우 비싸므로 경제성이 없다. 따라서 본 발명에서 해결하고자 하는 과제는 생산 단가를 획기적으로 낮추면서도 반사율이 97% 이상인 반사시트를 제조하는 방법에 관한 것이다.On the other hand, in the case of depositing or sputtering with silver (Ag), a reflectance of about 97% can be obtained, but there is no economic feasibility because the production speed is very slow and the production cost is very expensive. Therefore, the problem to be solved in the present invention relates to a method of manufacturing a reflective sheet having a reflectance of 97% or more while significantly lowering the production cost.

피막물질로써 알루미늄을 사용하여 증착 또는 스퍼터링 방법으로 피착체에 코팅을 할 경우 반사율을 최대 94% 까지 얻을 수 있다. 알루미늄은 증발 속도가 매우 빠르므로 열증착 방법으로 매우 빠른 속도로 증착하더라도 반사율을 94% 까지 얻을 수 있다. 도1과 같이 진공챔버(8) 내부에 언와인더(1)와 쿨링롤(4) 및 리와인더(2)에 걸쳐서 피착체인 필름(3)을 연결, 장착한다. 쿨링롤(4)을 냉각하고, 알루미늄(6)을 가열로(5)에서 가열하면 알루미늄 증기(7)가 피착체인 필름 표면 위에 달라 붙는다. 이와같은 알루미늄은 진공 열증착 장비를 사용하여 생산 스피드(필름 이동 속도)를 300 m/min 내지 500 m/min 의 고속으로 생산하여 반사율을 94% 을 얻을 수 있다. 이와 같이 알루미늄을 사용하여 고속으로 진공 열증착을 실시하면 생산성이 높고 또한 알루미늄은 가격도 저렴하기 때문에 매우 낮은 생산 비용으로 반사율 94% 의 증착 코팅 필름을 얻을 수 있다. When aluminum is used as the coating material, and the coating is applied to the adherend by vapor deposition or sputtering, a reflectance of up to 94% can be obtained. Aluminum has a very fast evaporation rate, so even if it is deposited at a very fast rate by a thermal evaporation method, the reflectance can be obtained up to 94%. As shown in Fig. 1, the film 3, which is the adherend, is mounted over the unwinder 1, the cooling roll 4, and the rewinder 2 inside the vacuum chamber 8 and mounted. When the cooling roll 4 is cooled, and the aluminum 6 is heated in the heating furnace 5, the aluminum vapor 7 adheres to the film surface to be adhered. Such aluminum can be produced at a high speed of 300 m / min to 500 m / min using a vacuum thermal vapor deposition equipment to obtain a reflectivity of 94%. As described above, when vacuum thermal evaporation is performed at high speed using aluminum, since the productivity is high and the aluminum is also inexpensive, a deposition coating film having a reflectivity of 94% can be obtained at a very low production cost.

그러나 만일 은(Ag)을 사용하여 열증착 또는 스퍼터링 방법으로 피착체에 코팅을 할 경우 97% 까지의 반사율을 얻을 수 있지만 은(Ag)은 증발 속도가 느리기 때문에 생산 스피드(필름의 이동 속도)를 약 0.5 m/min 내지 1 m/min 로 하여 증착 또는 스퍼터링 하여야 한다. 따라서 생산성이 알루미늄의 약 1/100 에 불과하므로 생산 비용이 약 100배로 증가하여 경제성이 없다. 따라서 본 발명에서는 반사율이 97% 이상이며 생산성도 매우 높은 반사시트 제조 방법을 제공한다.However, if silver (Ag) is used to coat the adherend by thermal evaporation or sputtering, a reflectance of up to 97% can be obtained, but silver (Ag) has a slow evaporation rate, so the production speed (moving speed of the film) is reduced. It should be deposited or sputtered at about 0.5 m / min to 1 m / min. Therefore, the productivity is only about 1/100 of that of aluminum, so the production cost is increased by about 100 times, so there is no economic feasibility. Accordingly, the present invention provides a method for manufacturing a reflective sheet having a reflectance of 97% or more and a very high productivity.

즉, 본 발명에서는 1단계로 알루미늄을 사용하여 생산 스피드(필름의 이동 속도) 300 m/min 내지 500 m/min 의 고속으로 진공 열증착을 하여 반사율 94% 의 반사필름을 생산한다. 증착 완료된 필름 롤을 진공 챔버에서 꺼내어 2단계로 은(Ag) 스퍼터링 장비에 롤을 장착하여 상기 알루미늄 진공 열증착이 된 필름 표면 위에 스피드 5 m/min 내지 15 m/min 으로 은(Ag) 스퍼터링을 한다. 스퍼터링 창지(도2)에서 언와인더(9)와 리와인더(10) 및 쿨링롤(12)을 통과하여 피착체 필름(11)을 장착한다. 진공챔버(17)에 진공을 걸어주고, 피착체 필름을 이동시키면서 아르곤(Ar) 가스 주입구(13,14)를 통하여 아르곤가스를 주입한다. 피착체가 은(Ag) 타겟(15,16)을 지나면서 피착체 표면에 은(Ag)이 코팅된다. 이와 같은 방법으로 스퍼터링을 실시하면 반사율 추가적으로 약 3% 정도 상승하여 반사율이 약 97% 이상의 반사필름을 얻을 수 있다.That is, in the present invention, aluminum is used in one step to produce vacuum reflective film having a reflectivity of 94% by performing vacuum thermal vapor deposition at a high speed of 300 m / min to 500 m / min. Take out the deposited film roll from the vacuum chamber and mount the roll on the silver (Ag) sputtering equipment in two steps to perform silver (Ag) sputtering at a speed of 5 m / min to 15 m / min on the aluminum vacuum heat-deposited film surface. do. In the sputtering window (FIG. 2), the adherend film 11 is mounted through the unwinder 9, the rewinder 10, and the cooling roll 12. Vacuum is applied to the vacuum chamber 17, and argon gas is injected through the argon (Ar) gas inlets 13 and 14 while moving the adherend film. As the adherend passes through the silver (Ag) targets 15 and 16, silver (Ag) is coated on the surface of the adherend. When sputtering is performed in this manner, the reflectance is additionally increased by about 3% to obtain a reflective film having a reflectivity of about 97% or more.

상기 설명한 바와 같이 만일 은(Ag)만 사용하여 열증착 또는 스퍼터링 방법으로 97% 이상의 반사율을 얻으려면 생산 스피드(필름의 이동 속도)를 약 0.5 m/min 내지 3 m/min 로 해야 하지만 본 발명의 방법과 같이 1단계로 스피드 300 m/min 내지 500 m/min 의 고속으로 알루미늄 열증착을 실시하여 약 94% 의 반사율을 갖는 반사시트를 생산한 후에, 2단계로 스피드 5 m/min 내지 15 m/min 의 속도로 은(Ag) 스퍼터링을 하면, 은(Ag)만을 사용하여 반사율 97% 를 얻기 위한 생산 공보다 약 5배 이상의 속력으로 97% 의 반사율을 갖는 반사시트를 생산할 수 있다. 따라서 매우 저렴한 생산 비용으로 고반사율의 반사시트를 생산할 수 있다.As described above, in order to obtain a reflectivity of 97% or more by thermal evaporation or sputtering using only silver (Ag), the production speed (moving speed of the film) should be about 0.5 m / min to 3 m / min. As a method, after performing aluminum thermal evaporation at a high speed of 300 m / min to 500 m / min in one step to produce a reflective sheet having a reflectivity of about 94%, the speed is 5 m / min to 15 m in two steps. When sputtering silver (Ag) at a rate of / min, it is possible to produce a reflective sheet having a reflectance of 97% at a speed of about 5 times or more than a production hole for obtaining a reflectance of 97% using only silver (Ag). Therefore, a highly reflective reflecting sheet can be produced at a very low production cost.

은(Ag)으로 증착 또는 스퍼터링을 할 경우에는 약 97%의 반사율을 얻을 수 있으나, 생산 속도가 매우 느리고 생산 단가가 매우 비싸므로 경제성이 없다. 따라서 본 발명의 방법과 같이 피막물질로써 알루미늄을 사용하여 1단계로 고속의 생산 스피드로 반사율 94%의 반사시트를 생산한 후 2단계로 피막물질로 은(Ag)은 사용하여 스퍼터링 할 경우 반사율이 97% 이상인 반사시트를 매우 낮은 생산 단가로 생산할 수 있다. 즉, 본 발명과 같은 방법을 사용하면 기존 은반사시트 생산 비용의 약 1/5 생산 비용으로 97% 이상의 반사율을 갖는 반사시트를 생산할 수 있다.In the case of deposition or sputtering with silver (Ag), a reflectance of about 97% can be obtained, but there is no economical efficiency because the production speed is very slow and the production cost is very expensive. Therefore, as in the method of the present invention, when aluminum is used as a coating material to produce a reflective sheet with a reflectivity of 94% at a high-speed production speed in one step and then silver (Ag) as a coating material in two steps, the reflectance is More than 97% of reflective sheets can be produced at very low production costs. That is, using the same method as the present invention, it is possible to produce a reflective sheet having a reflectivity of 97% or more at a production cost of about 1/5 of the production cost of the existing silver reflective sheet.

도면1은 피막물질로서 알루미늄을 사용하여 열증착(thermal evaporation) 방법으로 필름 표면에 증착을 하는 진공 증착 장치의 모식도이며, 도면2는 피막물질로서 은(Ag)을 사용하여 스퍼터링(sputtering) 방법으로 필름 표면에 증착을 하는 스퍼터링 장치의 모식도이며, 그림3은 피착체(PET film) 표면에 알루미늄과 은이 각각 열증착과 스퍼터링 방법에 의하여 코팅되는 단계를 표시한 것이다.Figure 1 is a schematic diagram of a vacuum deposition apparatus that deposits on the film surface by thermal evaporation using aluminum as a coating material, and Figure 2 is a sputtering method using silver (Ag) as a coating material. It is a schematic diagram of a sputtering device that deposits on the film surface, and Fig. 3 shows the steps in which aluminum and silver are coated on the surface of an adherend (PET film) by thermal evaporation and sputtering, respectively.

1단계로 프라이머 처리가 된 광학용 PET 필름 (코오롱사의 H34P) 위에 진공 열증착 장비를 사용하여 순도 99.9% 의 알루미늄(6)을 사용하여 진공 챔버 내부(8) 진공도를 1.0×10-4 mbar 내지 9.0×10-4 mbar 으로 하고 필름을 감싸고 돌아가는 쿨링롤(4)의 온도를 -10℃ 내지 -20℃ 로 하여 증착 스피드는 300 m/min 내지 500 m/min 의 속도로 증착하였다. 하기 실시예와 같은 조건으로 증착 필름을 제조하여 반사율 측정기(Minolta CM-3500d) 를 사용하여 표면 반사율을 측정하였다. 표1은 상기 조건으로 알루미늄 진공 열증착한 필름의 반사율 측정 결과이다.The vacuum level inside the vacuum chamber (8) is 1.0 × 10 -4 mbar using aluminum (6) with a purity of 99.9% using vacuum thermal evaporation equipment on an optical PET film (H34P from Kolon Corporation) that has been primed in one step. The deposition speed was deposited at a rate of 300 m / min to 500 m / min by setting the temperature of the cooling roll (4) wrapped around the film to -10 ° C to -20 ° C with 9.0 × 10 -4 mbar. A deposition film was prepared under the same conditions as in the following Examples, and surface reflectance was measured using a reflectometer (Minolta CM-3500d). Table 1 shows the reflectance measurement results of the aluminum vacuum heat-deposited film under the above conditions.

실시예Example 실시예Example 진공도
(×10-4 mbar)
Vacuum degree
(× 10 -4 mbar)
쿨링롤온도
(℃)
Cooling roll temperature
(℃)
증착스피드
(m/min)
Deposition speed
(m / min)
반사율
(%, L*)
reflectivity
(%, L * )
실시예1Example 1 7.57.5 -10-10 300300 89.189.1 실시예2Example 2 7.57.5 -10-10 400400 88.288.2 실시예3Example 3 7.57.5 -10-10 500500 83.783.7 실시예4Example 4 5.05.0 -15-15 300300 94.494.4 실시예5Example 5 5.05.0 -15-15 400400 91.891.8 실시예6Example 6 5.05.0 -15-15 500500 90.190.1 실시예7Example 7 2.52.5 -20-20 300300 94.694.6 실시예8Example 8 2.52.5 -20-20 400400 93.093.0 실시예9Example 9 2.52.5 -20-20 500500 92.292.2

상기 실시예 중에서 실시예 4 의 샘플(진공도 5.0×10-4 mbar, 쿨링롤 온도 -15 ℃, 증착스피드 300 m/min) 롤을 은(Ag) 스퍼터링 장비(도2)에 장착하여 알루미늄이 증착된 증착면 위에 다시한번 은(Ag)을 사용하여 스퍼터링 하였다. 스퍼터링 조건은 다음과 같다. Among the above examples, aluminum was deposited by mounting the sample of Example 4 (vacuum degree 5.0 × 10 -4 mbar, cooling roll temperature -15 ° C, deposition speed 300 m / min) on a silver (Ag) sputtering equipment (FIG. 2). Sputtering was once again performed using silver (Ag) on the deposited surface. The sputtering conditions are as follows.

은(Ag)을 타겟으로 하고 DC 스퍼터(5KW) 2대(15,16)를 사용하고, 진공챔버 내부(17) 압력은 5.0×10-4 mbar 로 고정하고, Ar 가스 주입구(13,14)를 통한 주입속도는 300 sccm(standard cubic centimeter per minute) 내지 500 sccm 으로 하여 스피드 변화를 주면서 sputtering 을 실시하였다. 표 2는 이와 같은 조건으로 스퍼터링을 하였을 경우 실시예이다.Targeting silver (Ag) and using two DC sputters (5KW) (15,16), the pressure inside the vacuum chamber (17) is fixed at 5.0 × 10 -4 mbar, and the Ar gas inlets (13,14) The injection speed through was 300 sccm (standard cubic centimeter per minute) to 500 sccm, and sputtering was performed while changing the speed. Table 2 is an example when sputtering is performed under these conditions.

실시예Example 피착체Adherend 실시예Example 진공도
(×10-4 mbar)
Vacuum degree
(× 10 -4 mbar)
Ar 주입속도
(sccm)
Ar injection speed
(sccm)
스퍼터링 스피드
(m/min)
Sputtering speed
(m / min)
반사율
(%, L*)
reflectivity
(%, L * )

H34P

H34P
실시예10Example 10 5.05.0 500500 0.50.5 98.198.1
실시예11Example 11 5.05.0 500500 22 71.471.4 실시예12Example 12 5.05.0 500500 1010 63.563.5

실시예4




Example 4


실시예13Example 13 5.05.0 300300 55 98.598.5
실시예14Example 14 5.05.0 300300 1010 97.197.1 실시예15Example 15 5.05.0 300300 1515 96.096.0 실시예16Example 16 5.05.0 500500 55 98.698.6 실시예17Example 17 5.05.0 500500 1010 97.797.7 실시예18Example 18 5.05.0 500500 1515 96.896.8

실시예 10 ~ 실시예 12 는 피착제로써 프라이머 처리가 된 광학용 PET 필름 (코오롱사의 H34P) 을 사용하여 스퍼터링을 실시한 예이고, 실시예 13 ~ 실시예 18 은 피착제로써 실시예4 에서 알루미늄 진공증착한 필름을 사용한 것이다. 즉 실시예 10 ~ 실시예 12 는 아무것도 증착되지 않은 투명 PET 필름 위에 은(Ag) 스퍼터링을 실시한 것이고, 실시예 13 ~ 실시예 18 은 알루미늄 열증착이 된 필름 표면에 다시 은(Ag) 스퍼터링을 실시한 것이다.Examples 10 to 12 are examples in which sputtering was performed using a primer-treated optical PET film (H34P from Kolon), and Examples 13 to 18 were aluminum vacuums in Example 4 as adherends. It is using a deposited film. That is, Examples 10 to 12 were performed with silver (Ag) sputtering on a transparent PET film on which nothing was deposited, and Examples 13 to 18 were again subjected to silver (Ag) sputtering on the surface of the aluminum heat-deposited film. will be.

아무것도 증착되지 않은 투명 PET 필름 위에 은(Ag) 스퍼터링을 실시하여 반사율 97% 이상을 얻기 위해서는 스퍼터링 스피드를 0.5 m/min 정도로 매우 느리게 하여야 한다. 그러나 알루미늄 진공증착한 표면 위에 다시 2차적으로 은(Ag) 스퍼터링을 할 경우에는 스퍼터링 스피드 5 m/min 내지 15 m/min 의 매우 빠른 속도로 진행하더라도 반사율 97% 의 표면을 얻을 수 있다. 즉, 상기 실시예13(진공도 5.0×10-4 mbar, Ar 주입속도 300 sccm, 스퍼터링 스피드 5 m/min), 실시예14(진공도 5.0×10-4 mbar, Ar 주입속도 300 sccm, 스퍼터링 스피드 10 m/min), 실시예16(진공도 5.0×10-4 mbar, Ar 주입속도 500 sccm, 스퍼터링 스피드 5 m/min), 실시예14(진공도 5.0×10-4 mbar, Ar 주입속도 500 sccm, 스퍼터링 스피드 10 m/min) 의 경우에 반사율이 97% 이상 얻을 수 있다.Sputtering speed must be very slow, about 0.5 m / min, to obtain silver (Ag) sputtering on a transparent PET film on which nothing is deposited to obtain a reflectivity of 97% or higher. However, when the silver (Ag) sputtering is performed again on the aluminum vacuum-deposited surface, a surface having a reflectivity of 97% can be obtained even when the sputtering speed is 5 m / min to 15 m / min at a very high speed. That is, Example 13 (vacuum degree 5.0 × 10-4 mbar, Ar injection speed 300 sccm, sputtering speed 5 m / min), Example 14 (vacuum degree 5.0 × 10-4 mbar, Ar injection speed 300 sccm, sputtering speed 10 m / min), Example 16 (vacuum degree 5.0 × 10-4 mbar, Ar injection speed 500 sccm, sputtering speed 5 m / min), Example 14 (vacuum degree 5.0 × 10-4 mbar, Ar injection speed 500 sccm, sputtering In the case of speed 10 m / min), a reflectance of 97% or more can be obtained.

1,9 : 언와인더
2,10 : 리와인더
3,11,18 : 피착체(PET film)
4,12 : 쿨링롤
5 : 보트
6 : 알루미늄
7 : 알루미늄 증기
8,17 : 진공 챔버
13,14 : 아르곤(Ar)가스 주입구
15,16 : 은(Ag) 타겟
19 : 알루미늄(Ag) 증착층
20 : 은(Ag) 증착층
1,9: Unwinder
2,10: Rewinder
3,11,18: PET film
4,12: Cooling roll
5: Boat
6: Aluminum
7: aluminum steam
8,17: Vacuum chamber
13,14: Argon (Ar) gas inlet
15,16: Silver (Ag) target
19: aluminum (Ag) deposition layer
20: silver (Ag) deposited layer

Claims (5)

PET 필름 또는 플라스틱 기재 표면에 알루미늄(Al)을 피막물질로 사용하여 열증착(thermal evaporation) 방법으로 코팅을 실시하는 단계와, 상기 알루미늄 열증착 코팅이 된 표면 위에 추가로 은(Ag)을 피막물질로 사용하여 스퍼터링(sputtering) 방법으로 코팅을 실시하는 단계를 포함하는 반사필름 생산 방법Coating the surface of the PET film or plastic substrate using aluminum (Al) as a coating material by a thermal evaporation method, and additionally coating silver (Ag) on the surface of the aluminum thermal deposition coating. Reflective film production method comprising the step of performing a coating by sputtering (sputtering) method using as 청구항1에서 열증착(thermal evaporation)시 사용하는 피막물질인 알루미늄은 순도가 90% 이상인 것을 사용하는 반사필름 생산 방법In claim 1, the coating material used for thermal evaporation (thermal evaporation) is a reflective film production method using a purity of 90% or more 청구항1에서 스퍼터링(sputtering)시 사용하는 피막물질인 은(Ag)은 순도가 90% 이상인 것을 사용하는 반사필름 생산 방법In claim 1, the coating material used for sputtering (sputtering) is silver (Ag) is a reflective film production method using a purity of 90% or more 청구항1의 방법으로 제작한 반사필름의 반사율이 97% 이상인 반사필름 제조방법Method of manufacturing a reflective film having a reflectance of 97% or more of the reflective film produced by the method of claim 1 청구항1에서 은(Ag)으로 스퍼터링(sputtering)을 실시할 때 PET 필름 또는 플라스틱 기재의 이동 속도가 5 m/min 이상인 반사필름 생산 방법
In claim 1, when sputtering with silver (Ag), the PET film or plastic substrate has a moving speed of 5 m / min or more.
KR1020180141255A 2018-11-16 2018-11-16 method of manufacturing reflector sheet KR20200057203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180141255A KR20200057203A (en) 2018-11-16 2018-11-16 method of manufacturing reflector sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180141255A KR20200057203A (en) 2018-11-16 2018-11-16 method of manufacturing reflector sheet

Publications (1)

Publication Number Publication Date
KR20200057203A true KR20200057203A (en) 2020-05-26

Family

ID=70915132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180141255A KR20200057203A (en) 2018-11-16 2018-11-16 method of manufacturing reflector sheet

Country Status (1)

Country Link
KR (1) KR20200057203A (en)

Similar Documents

Publication Publication Date Title
US4201649A (en) Low resistance indium oxide coatings
KR20120079716A (en) Anti-fingerprint coating method and device
US20130157044A1 (en) Coated article and method for making same
JP2007533856A5 (en)
CN105951051A (en) Method of preparing graded refractive index antireflection film by adopting oblique sputtering process
US4424103A (en) Thin film deposition
JP4580636B2 (en) Film forming apparatus and film forming method
KR20200057203A (en) method of manufacturing reflector sheet
US8512867B2 (en) Coated glass article and method for manufacturing same
JPS585855B2 (en) semi-reflective glass
CN108196329B (en) Preparation method of medium-wave infrared medium reinforced metal high-reflection film
US20070224342A1 (en) Apparatus and method for forming antireflection film
KR20140100734A (en) method of manufacturing silver reflector sheet
KR20140069837A (en) method of manufacturing reflector sheet
JP2006132002A (en) Process and apparatus for applying optical coating
Junghähnel et al. Thin‐Film Deposition on Flexible Glass by Plasma Processes
US20120164418A1 (en) Article having hard film and method for making the article
US20030104185A1 (en) Method for producing a multi-functional, multi-ply layer on a transparent plastic substrate and a multi-functional multi-ply layer produced according to said method
KR20140101912A (en) method of manufacturing silver reflector sheet
KR20120079717A (en) Anti-fingerprint coating method and device
JPS6143805B2 (en)
JPH0560904A (en) Optical parts and production thereof
JPH06306591A (en) Production of water-repellent hard-coated coating film
CN113917573B (en) Amorphous infrared film structure and preparation method thereof
JPH04260004A (en) Synthetic resin reflecting mirror

Legal Events

Date Code Title Description
E601 Decision to refuse application