KR20200043834A - Method for modifying surfaces using rare earth metal oxide solution mixed with binder - Google Patents

Method for modifying surfaces using rare earth metal oxide solution mixed with binder Download PDF

Info

Publication number
KR20200043834A
KR20200043834A KR1020180124699A KR20180124699A KR20200043834A KR 20200043834 A KR20200043834 A KR 20200043834A KR 1020180124699 A KR1020180124699 A KR 1020180124699A KR 20180124699 A KR20180124699 A KR 20180124699A KR 20200043834 A KR20200043834 A KR 20200043834A
Authority
KR
South Korea
Prior art keywords
binder
rare earth
earth metal
metal oxide
surface modification
Prior art date
Application number
KR1020180124699A
Other languages
Korean (ko)
Other versions
KR102174483B1 (en
Inventor
이한보람
이혜진
고병국
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020180124699A priority Critical patent/KR102174483B1/en
Publication of KR20200043834A publication Critical patent/KR20200043834A/en
Application granted granted Critical
Publication of KR102174483B1 publication Critical patent/KR102174483B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Abstract

The present invention provides a surface modification method using a rare earth metal oxide solution mixed with a binder. Particularly, the surface modification method is a hydrophobic coating method which includes the steps of: a) dissolving a rare earth metal precursor in ethanol; b) adding aqueous hydroxide solution to the solution to form a rare earth metal oxide; c) adding a binder to the rare earth metal oxide solution; and d) coating the rare earth metal oxide and binder solution onto a substrate. The method uses a polymer binder to increase the adhesion between the substrate and the rare metal oxide layer. Polyacrylic acid (PAA) is used as polymer binder and the carboxyl groups present in the PAA binder forms binder-binder hydrogen bonding, and thus the strong cohesion of the hydrogen bonding causes binding of the nanoparticles used herein with the binder, thereby forming a hydrophobic coating layer having high adhesion.

Description

바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법{METHOD FOR MODIFYING SURFACES USING RARE EARTH METAL OXIDE SOLUTION MIXED WITH BINDER}METHOD FOR MODIFYING SURFACES USING RARE EARTH METAL OXIDE SOLUTION MIXED WITH BINDER

본 발명은 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법에 관한 것으로, 구체적으로 a) 희토류 금속 전구체를 에탄올에 용해시키는 단계; b) 상기 용액에 수산화물 수용액을 첨가하여 희토류 금속 산화물을 제조하는 단계; c) 희토류 금속 산화물 용액에 바인더를 첨가하는 단계;및 d) 상기 희토류 금속 산화물 및 바인더 용액을 기판위에 코팅하는 단계를 포함하는 소수성 코팅방법을 제공한다. The present invention relates to a surface modification method using a rare earth metal oxide solution mixed with a binder, specifically, a) dissolving a rare earth metal precursor in ethanol; b) preparing a rare earth metal oxide by adding an aqueous hydroxide solution to the solution; c) adding a binder to the rare earth metal oxide solution; and d) coating the rare earth metal oxide and binder solution on a substrate.

열판, 유리용기 등을 비롯한 주방용품·생활용품 분야, 각종 마감재 분야, 송수관 등을 비롯한 배관 분야, 반도체 분야, 건설 분야, 디스플레이 스크린 분야, 항공 분야 및 금속 배선 관련 분야 등 다양한 분야에서 소수성(Hydrophobic) 내지 발수성(Water repellency) 소재에 대한 수요가 증가하고 있다.Hydrophobicity in various fields such as hot plate, glassware, kitchenware and household goods, various finishing materials, water pipes, piping, semiconductor, construction, display screen, aviation and metal wiring. There is an increasing demand for water repellency materials.

이를 위해, 친수성(hydrophilic) 기재를 소수성으로 표면 개질하기 위한 시도들이 진행되고 있으며, 예를 들어 유기(Organic) 고분자 개질제를 이용해 친수성 표면을 소수성화시킨 제품들이 시판된 바 있다. To this end, attempts have been made to modify the surface of a hydrophilic substrate with hydrophobicity, and products, for example, having a hydrophilic surface hydrophobicized using an organic polymer modifier have been commercially available.

그러나, 소수성 특성을 지니는 종래의 유기 폴리머 물질은 열에 취약하여 고온으로 가열시 열화되고 그 소수성 특성을 상실하는 문제가 있다. 이러한 기존 고분자 개질제의 열악한 열적 안정성은 내열성이 특히 요구되는 산업 분야에의 적용에 큰 걸림돌이 되고 있다.However, the conventional organic polymer material having hydrophobic properties is vulnerable to heat and deteriorates when heated to a high temperature and loses its hydrophobic properties. The poor thermal stability of these existing polymer modifiers has become a major obstacle to application in industrial fields where heat resistance is particularly required.

희토류 산화물(Rare Earth Oxide; REO)은 세라믹 소재로써 열에 강하고 내구성이 우수할 뿐만 아니라 독특한 전자구조로 인하여 안정적으로 소수성을 유지하여 요리도구나 주방용품뿐만 아니라 반도체 부품에도 응용할 수 있다.Rare Earth Oxide (REO) is a ceramic material that is not only resistant to heat and has excellent durability, but also has stable hydrophobicity due to its unique electronic structure, and can be applied to not only cooking utensils, kitchen utensils, but also semiconductor components.

그러나 희토류 금속 산화물을 적절한 응용분야에 적용하기 위해선 코팅 기술이 필수적이다. 선행 연구로 sol-gel공정을 기반으로 희토류 금속 산화물 나노입자를 합성하고, 이를 스핀코팅이나 스프레이코팅을 이용하여 원하는 표면을 코팅하였을 시에 기판과 코팅 층의 접착력이 좋지 않아 코팅 층이 쉽게 제거 된다는 단점이 확인 되었다. However, in order to apply rare earth metal oxides to appropriate applications, coating technology is essential. When a rare earth metal oxide nanoparticle is synthesized based on a sol-gel process as a prior study, and the desired surface is coated using spin coating or spray coating, the adhesion between the substrate and the coating layer is poor, so that the coating layer is easily removed. Cons were identified.

이는 단지 희토류 금속 산화물만의 문제가 아니며 스핀코팅이나 스프레이코팅에서 전반적으로 관찰되는 단점이다.This is not only a problem of rare earth metal oxides, but is a disadvantage that is generally observed in spin coating or spray coating.

한국등록특허 제10-1617396호Korean Registered Patent No. 10-1617396

본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 한 것으로, 바인더와 희토류 금속 산화물을 혼합하여 이를 기판 위에 코팅함으로써 간단한 코팅 방법으로 우수한 소수성, 열적 안정성 및 내구성과 더불어, 코팅 층과 기판 표면 사이의 접착력을 향상시킬 수 있는 새로운 표면 개질 방법을 제공하는 것을 기술적 과제로 한다.The present invention is to solve the problems of the prior art as described above, by mixing a binder and a rare earth metal oxide and coating it on a substrate, with excellent hydrophobicity, thermal stability and durability in a simple coating method, between the coating layer and the substrate surface It is a technical problem to provide a new surface modification method capable of improving adhesion.

상기 기술적 과제를 해결하고자, 본 발명은 a) 희토류 금속 전구체를 에탄 또는 아이소프로필 알코올에 용해시키는 단계; b) 상기 용액에 수산화물 수용액을 첨가하여 희토류 금속 산화물을 제조하는 단계; c) 희토류 금속 산화물 용액에 바인더를 첨가하는 단계;및 d) 상기 희토류 금속 산화물 및 바인더 용액을 기판 위에 코팅하는 단계;를 포함하는 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법을 제공한다. In order to solve the above technical problem, the present invention comprises a) dissolving a rare earth metal precursor in ethane or isopropyl alcohol; b) preparing a rare earth metal oxide by adding an aqueous hydroxide solution to the solution; c) adding a binder to the rare earth metal oxide solution; and d) coating the rare earth metal oxide and binder solution on a substrate; provides a method for surface modification using a rare earth metal oxide solution containing a binder.

본 발명의 일 실시 예에서, 상기 희토류 금속 전구체는 사마륨(Sm), 프라세오디뮴(Pr), 유로퓸(Eu), 가돌리듐(Gd), 란타넘(La), 테르븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 에르븀(Er), 톨륨(Tm) 및 루테늄(Lu)로 이루어진 군에서 선택되는 적어도 어느 하나의 희토류 금속을 포함하는 질산염(nitrate) 또는 염화물(chloride)인 것을 특징으로 하며, 바람직하게는 질산세륨(Cerium nitrate hexahydrate, (Ce(NO3))3·6H2O) 또는 염화세륨(Cerium Chloride, CeCl3) 중 어느 하나이고, 가장 바람직하게는 질산세륨(Cerium nitrate hexahydrate, (Ce(NO3))3·6H2O)이다. In one embodiment of the present invention, the rare earth metal precursor is samarium (Sm), praseodymium (Pr), europium (Eu), gadolinium (Gd), lanthanum (La), terbium (Tb), dysprosium (Dy), Characterized in that it is a nitrate or chloride containing at least one rare earth metal selected from the group consisting of holmium (Ho), erbium (Er), tolium (Tm) and ruthenium (Lu), and is preferable. Preferably, it is either cerium nitrate hexahydrate ((Ce (NO 3 )) 3 · 6H 2 O) or cerium chloride (Cerium Chloride, CeCl 3 ), most preferably cerium nitrate hexahydrate, (Ce (NO 3 )) 3 · 6H 2 O).

상기 질산세륨(Cerium nitrate hexahydrate, (Ce(NO3))3·6H2O)은 에탄올 용액내에서 세륨 이온(Ce3+)로 분해되며, 후에 첨가되는 수산화물의 수산기(또는 히드록시기; OH-)와 결합하여 세륨 수산화물(Ce-OH) 형태로 형성된다. 또한, 상기 세륨 수산화물은 다시 축합 반응을 통하여 H2O가 분해되면서 세륨 산화물(CeO2)을 형성한다.The cerium nitrate hexahydrate ((Ce (NO 3 )) 3 · 6H 2 O) is decomposed into cerium ions (Ce 3+ ) in an ethanol solution, and hydroxyl groups (or hydroxyl groups; OH-) are added later. It is combined with and is formed in the form of cerium hydroxide (Ce-OH). In addition, cerium hydroxide forms cerium oxide (CeO 2 ) while H 2 O is decomposed again through a condensation reaction.

상기 에탄올은 유기용매로써 에탄올 대신에 같은 알코올 계열인 아이소프로필 알코올(Isopropyl alcohol, IPA)를 사용할 수 있다. As the organic solvent, isopropyl alcohol (IPA), which is an alcohol-based alcohol, may be used instead of ethanol.

상기 수산화물은 NaOH 및 KOH 중에서 선택되는 적어도 어느 하나 또는 이들의 혼합물이 사용될 수 있다. 또한, 상기 수산화물 수용액은 물에 일정 농도로 용해되어 수용액의 형태로 사용될 수 있다. 상기 수산화물 수용액은 수산화물의 농도가 0.01 ~ 1M인 수용액이 사용될 수 있으며, 바람직하게는 0.1M의 수용액이 사용된다. 상기 수산화물 수용액은 수산화물의 농도가 너무 낮으면 세륨 수산화물의 형성이 부족하게 된다.The hydroxide may be at least one selected from NaOH and KOH or a mixture thereof. In addition, the aqueous hydroxide solution may be dissolved in water at a predetermined concentration and used in the form of an aqueous solution. As the aqueous hydroxide solution, an aqueous solution having a concentration of hydroxide of 0.01 to 1M may be used, and preferably, an aqueous solution of 0.1M is used. The aqueous hydroxide solution is insufficient in the formation of cerium hydroxide when the concentration of the hydroxide is too low.

상기 수산화물은 전구체 용액에 투입되어 전구체의 이온에 수산기를 공급하여 전구체가 수산화물의 형태를 가지도록 한다. 또한, 상기 전구체 수산화물은 후에 축합 반응을 통하여 산화물로 형성된다. 따라서, 상기 수산화물은 전구체로부터 전해질 산화물을 형성하기 위하여 필요한 산소의 공급원으로 작용하게 된다.The hydroxide is introduced into the precursor solution to supply a hydroxyl group to the ions of the precursor so that the precursor has the form of a hydroxide. In addition, the precursor hydroxide is later formed of an oxide through a condensation reaction. Thus, the hydroxide acts as a source of oxygen needed to form the electrolyte oxide from the precursor.

본 발명의 일 실시예에서, 상기 바인더는 카르복실기를 함유한 고분자인 것을 특징으로 하며, 바람직하게는 폴리아크릴산, 폴리아스파틱산, 및 폴리글루타민산으로 구성된 군으로부터 1종 이상 선택되며, 더욱 바람직하게는 폴리아크릴산인 것을 특징으로 한다. In one embodiment of the present invention, the binder is characterized in that it is a polymer containing a carboxyl group, preferably one or more selected from the group consisting of polyacrylic acid, polyaspartic acid, and polyglutamic acid, more preferably poly It is characterized by being acrylic acid.

상기 고분자 바인더는 코팅층과 표면과의 접착제 역할을 해주어 기존의 취약한 접착성의 한계를 보완할 수 있다. 상기 고분자 바인더에 있는 카르복실기가 바인더-바인더간의 수소결합을 형성한다. 이 수소결합의 강한 응집력 때문에 발명에 사용된 CeO2 입자들이 바인더와 결합을 이루어 접착력이 높은 소수성 코팅층을 형성할 수 있다.The polymer binder serves as an adhesive between the coating layer and the surface, thereby compensating for the limitation of the existing weak adhesiveness. The carboxyl group in the polymer binder forms a hydrogen bond between the binder and the binder. Due to this strong cohesion of hydrogen bonding, CeO 2 particles used in the invention can be combined with a binder to form a hydrophobic coating layer with high adhesion.

상기 폴리아크릴산(Polyacrylic acid, PAA)의 경우 열분해 온도는 120℃ 이상이기 때문에 소결 과정에서 고분자의 안전성에 큰 문제가 없다. 또한 PAA 바인더의 폴리머 분자간 수소결합은 선형의 결합을 이어주는 역할을 할 수 있으며 이는 단순한 1차원 선형 폴리머 보다 강한 결합을 보여주어 코팅층과 기판과의 접착력을 향상시킬 수 있다.In the case of the polyacrylic acid (Polyacrylic acid, PAA), since the thermal decomposition temperature is 120 ° C or higher, there is no great problem in the safety of the polymer during the sintering process. In addition, the hydrogen bond between polymer molecules of the PAA binder can play a role in connecting linear bonds, which can show stronger bonds than simple one-dimensional linear polymers, thereby improving adhesion between the coating layer and the substrate.

본 발명의 일 실시예에서, 상기 a)단계 및 b) 단계는 100 ~ 140℃의 온도에서 수행되며, 상기 코팅은 스핀코팅 방법에 의하여 수행되며, 스핀코팅은 1000 rpm 60초를 1cycle로 하여 3 ~ 12 cycles 수행되는 것이 바람직하다. 허용된 온도 범위(100 ~ 140 ℃) 이하에서 교반을 할 경우에는 결합을 위한 충분한 에너지가 공급되지 않아 CeO2 입자의 형성이 부족할 수 있다. 또한 허용된 온도 범위 이상에서 교반 시에는 결합력이 강해져서 CeO2 입자의 크기가 증가하여 추후에 성공적인 소수성 표면을 만들 수 없다.In one embodiment of the present invention, steps a) and b) are performed at a temperature of 100 to 140 ° C., the coating is performed by a spin coating method, and spin coating is performed at 1000 rpm 60 seconds as 1 cycle 3 It is desirable to perform ~ 12 cycles. When agitation is performed under an allowable temperature range (100 to 140 ° C.), sufficient energy for bonding may not be supplied, and thus formation of CeO 2 particles may be insufficient. In addition, when stirring over the allowable temperature range, the bonding strength becomes strong, and the size of the CeO 2 particles increases, so that a successful hydrophobic surface cannot be formed later.

본 발명의 일 실시예에서, 상기 d) 단계 이후, 80℃에서 24시간 동안 소결하는 단계를 더 포함할 수 있다. In one embodiment of the present invention, after the step d), may further include the step of sintering at 80 ℃ for 24 hours.

본 발명은 기판과 희토류 금속산화물 층과의 접착력을 높이기 위해 고분자 바인더를 사용한 기술에 관한 것으로, 고분자 바인더는 폴리아크릴산(PAA)를 사용하였으며 PAA 바인더에 있는 카르복실기가 바인더-바인더간의 수소결합을 형성하며, 이 수소결합의 강한 응집력 때문에 발명에 사용된 CeO2 나노입자들이 바인더와 결합을 이루어 접착력이 높은 소수성 코팅층을 형성할 수 있다.The present invention relates to a technique using a polymer binder to increase the adhesion between the substrate and the rare earth metal oxide layer, the polymer binder used polyacrylic acid (PAA) and the carboxyl group in the PAA binder forms a hydrogen bond between the binder and the binder, , Due to the strong cohesion of hydrogen bonding, CeO 2 nanoparticles used in the invention can be combined with a binder to form a hydrophobic coating layer with high adhesion.

또한 PAA 바인더와 희토류 금속 산화물을 혼합하여 코팅하기 때문에 간단하게 코팅이 가능하다는 장점이 있고 습식법을 사용하기 때문에 대규모 코팅이 가능하다.In addition, since it is coated by mixing PAA binder and rare earth metal oxide, it has the advantage of simple coating and large-scale coating is possible because it uses a wet method.

도 1은 본 발명에 따른 폴리아크릴산(PAA) 바인더의 화학구조(좌)와 폴리아크릴산의 수소결합을 나타내는 도면이다.
도 2는 혼합된 CeO2나노입자와 폴리아크릴산(PAA) 바인더의 코팅 구조를 나타내는 도면이다.
도 3은 본 발명 실시예 1 내지 4에 따른 CeO2 나노입자와 PAA 바인더가 코팅된 Si 기판의 접촉각을 보여주는 도면이다.
1 is a view showing the hydrogen structure of the polyacrylic acid and the chemical structure (left) of the polyacrylic acid (PAA) binder according to the present invention.
2 is a view showing the coating structure of the mixed CeO 2 nanoparticles and a polyacrylic acid (PAA) binder.
3 is a view showing a contact angle of a Si substrate coated with CeO 2 nanoparticles and PAA binder according to Examples 1 to 4 of the present invention.

이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for the understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.

실시예 1Example 1

먼저 질산세륨(cerium nitrate hexahydrate), 수산화나트륨(sodium hydroxide), 에탄올, 폴리아크릴산(Polyacrylic acid) 바인더를 준비하였다.First, cerium nitrate hexahydrate, sodium hydroxide, ethanol, and polyacrylic acid binders were prepared.

질산세륨 0.06M을 120℃ 에탄올에 빠르게 교반하여 용해시킨 후 수산화나트륨 0.10M 용액을 천천히 첨가한 후 120℃에서 1시간 30분 동안 교반하였다.After dissolving 0.06M of cerium nitrate rapidly in ethanol at 120 ° C, a 0.10M sodium hydroxide solution was slowly added thereto, followed by stirring at 120 ° C for 1 hour and 30 minutes.

그 후 30분 동안 실온으로 용액을 식힌 뒤 최종적으로 만들어진 입자는 에탄올로 세 번 세척한다. 또한, 이렇게 얻은 CeO2 나노입자를 추가적인 분석 진행을 위해 에탄올에 분산시켰다.After cooling the solution to room temperature for 30 minutes, the final particles are washed three times with ethanol. In addition, the CeO 2 nanoparticles thus obtained were dispersed in ethanol for further analysis.

이렇게 얻은 CeO2 나노입자 용액 10ml와 폴리아크릴산(PAA) 바인더 0.001g을 혼합한다.10 ml of the CeO 2 nanoparticle solution thus obtained is mixed with 0.001 g of a polyacrylic acid (PAA) binder.

CeO2 나노입자 용액과 PAA바인더가 혼합된 용액(CeO2/PAA 바인더 용액)은 1000 rpm으로 60초 동안 스핀코팅을 통해 실리콘 기판 위에 코팅 하였으며, 이를 3회 진행하였다. 코팅이 끝난 후 80℃에서 24시간 동안 소결하여 기판 위에 필름을 만들었다.The CeO 2 nanoparticle solution and the PAA binder mixture solution (CeO 2 / PAA binder solution) were coated on a silicon substrate through spin coating at 1000 rpm for 60 seconds, and this was performed three times. After the coating was completed, the film was sintered at 80 ° C. for 24 hours to form a film on the substrate.

기판은 Si wafer를 사용했고 이 기판을 아세톤(acetone), IPA(isopropyl alcohol), 증류수(distilled water) 순으로 세척하였다. Si wafer was used as the substrate, and the substrate was washed with acetone, isopropyl alcohol (IPA), and distilled water.

실시예 2Example 2

상기 코팅을 6회 진행한 것을 제외하고는, 실시예 1과 동일하다.It was the same as in Example 1, except that the coating was performed 6 times.

실시예 3Example 3

상기 코팅을 9회 진행한 것을 제외하고는, 실시예 1과 동일하다.It was the same as in Example 1, except that the coating was performed 9 times.

실시예 4Example 4

상기 코팅을 12회 진행한 것을 제외하고는, 실시예 1과 동일하다.It is the same as in Example 1, except that the coating was performed 12 times.

실험예: 접촉각 측정Experimental Example: Measurement of contact angle

실시예 1 내지 4 에 의하여 코팅된 표면에 대해 탈이온수 액적의 접촉각을 측정하여 하기 표 1 및 도 3에 나타내었다. 접촉각은 Contact angle analyzer(SDL200TEZD, FEMTOFA)을 이용하여 1.4 ~ 2㎕ 물방울을 코팅된 기판에 떨어트려 접촉각을 측정하였다.The contact angles of the deionized water droplets on the surfaces coated by Examples 1 to 4 were measured and are shown in Table 1 and FIG. 3 below. The contact angle was measured using a contact angle analyzer (SDL200TEZD, FEMTOFA) by dropping 1.4 to 2 µl droplets onto the coated substrate.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 접촉각(CA)Contact angle (CA) 92.2°92.2 ° 90.1°90.1 ° 96.2°96.2 ° 104.4°104.4 °

상기 [표 1]을 참조하면, 본 발명에 따라 CeO2/PAA 바인더 용액으로 스핀 코팅한 기판은 모든 실시예에서 90°이상의 접촉각이 측정 되었으며, 기판이 성공적으로 소수성을 띄고 있는 것을 확인하였다. Referring to [Table 1], a substrate coated with a CeO 2 / PAA binder solution according to the present invention was measured to have a contact angle of 90 ° or more in all examples, and it was confirmed that the substrate successfully exhibited hydrophobicity.

또한 스핀코팅 횟수가 증가함에 따라서 소수성이 강해지는 경향을 나타내었다.Also, as the number of spin coatings increased, hydrophobicity tended to increase.

Claims (12)

a) 희토류 금속 전구체를 에탄올에 용해시키는 단계;
b) 상기 용액에 수산화물 수용액을 첨가하여 희토류 금속 산화물을 제조하는 단계;
c) 희토류 금속 산화물 용액에 바인더를 첨가하는 단계;및
d) 상기 희토류 금속 산화물 및 바인더 용액을 기판 위에 코팅하는 단계;를 포함하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
a) dissolving the rare earth metal precursor in ethanol;
b) preparing a rare earth metal oxide by adding an aqueous hydroxide solution to the solution;
c) adding a binder to the rare earth metal oxide solution; and
d) coating the rare earth metal oxide and binder solution on a substrate; including, surface modification method using a rare earth metal oxide solution mixed with a binder.
상기 희토류 금속 전구체는 Sm, Pr, Eu, Gd, La, Tb, Dy, Ho, Er, Tm 및 Lu로 이루어진 군에서 선택되는 적어도 어느 하나의 희토류 금속을 포함하는 질산염(nitrate) 또는 염화물(chloride)인 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
The rare earth metal precursor is nitrate or chloride containing at least one rare earth metal selected from the group consisting of Sm, Pr, Eu, Gd, La, Tb, Dy, Ho, Er, Tm and Lu Characterized in that, the surface modification method using a rare earth metal oxide solution mixed with a binder.
제2항에 있어서,
상기 희토류 금속 전구체는 질산세륨(Cerium nitrate hexahydrate, (Ce(NO3))3·6H2O) 또는 염화세륨(Cerium Chloride, CeCl3) 중 어느 하나인 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 2,
The rare earth metal precursor is any one of cerium nitrate (Cerium nitrate hexahydrate, (Ce (NO 3 )) 3 · 6H 2 O) or cerium chloride (Cerium Chloride, CeCl 3 ), a rare earth metal mixed with a binder Method of surface modification using oxide solution.
제1항에 있어서,
상기 바인더는 카르복실기를 함유한 고분자인 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 1,
The binder is characterized in that the polymer containing a carboxyl group, surface modification method using a rare earth metal oxide solution mixed with a binder.
제4항에 있어서,
상기 카르복실기 함유 고분자는 폴리아크릴산, 폴리아스파틱산, 및 폴리글루타민산으로 구성된 군으로부터 1종 이상 선택되는 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 4,
The carboxyl group-containing polymer is polyacrylic acid, poly aspartic acid, and polyglutamic acid, characterized in that one or more selected from the group consisting of, surface modification method using a rare earth metal oxide solution mixed with a binder.
제1항에 있어서,
상기 친수성 무기물 기판은 실리콘(Si) 기판, 실리카(SiO2) 기판 또는 백금(Pt) 기판인 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 1,
The hydrophilic inorganic substrate is a silicon (Si) substrate, a silica (SiO 2 ) substrate or a platinum (Pt) substrate, characterized in that the surface modification method using a rare earth metal oxide solution mixed with a binder.
상기 수산화물 수용액은 농도가 0.01~1M인 NaOH 또는 KOH 수용액이인 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
The hydroxide aqueous solution is characterized in that the NaOH or KOH aqueous solution having a concentration of 0.01 ~ 1M, surface modification method using a rare earth metal oxide solution mixed with a binder.
제1항에 있어서,
상기 a)단계 및 b) 단계는 100 ~ 140℃의 온도에서 수행되는 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 1,
The step a) and step b) is characterized in that is performed at a temperature of 100 ~ 140 ℃, surface modification method using a rare earth metal oxide solution mixed with a binder.
제1항에 있어서,
상기 코팅은 스핀코팅 방법에 의하여 수행되는 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 1,
The coating is characterized by being performed by a spin coating method, a surface modification method using a rare earth metal oxide solution mixed with a binder.
제9항에 있어서,
상기 스핀 코팅은 1000 rpm으로 60초 동안 이루어 지는 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
The method of claim 9,
The spin coating is characterized in that made for 60 seconds at 1000 rpm, surface modification method using a rare earth metal oxide solution mixed with a binder.
제9항에 있어서,
상기 스핀 코팅은 3 ~ 12회 수행되는 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
The method of claim 9,
The spin coating is performed 3 to 12 times, characterized in that the surface modification method using a rare earth metal oxide solution mixed with a binder.
제1항에 있어서,
상기 d) 단계 이후, 80℃에서 24시간 동안 소결하는 단계를 더 포함하는 것을 특징으로 하는, 바인더를 혼합한 희토류 금속 산화물 용액을 이용한 표면 개질 방법.
According to claim 1,
After the step d), characterized in that it further comprises the step of sintering for 24 hours at 80 ℃, surface modification method using a rare earth metal oxide solution mixed with a binder.
KR1020180124699A 2018-10-18 2018-10-18 Method for modifying surfaces using rare earth metal oxide solution mixed with binder KR102174483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180124699A KR102174483B1 (en) 2018-10-18 2018-10-18 Method for modifying surfaces using rare earth metal oxide solution mixed with binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180124699A KR102174483B1 (en) 2018-10-18 2018-10-18 Method for modifying surfaces using rare earth metal oxide solution mixed with binder

Publications (2)

Publication Number Publication Date
KR20200043834A true KR20200043834A (en) 2020-04-28
KR102174483B1 KR102174483B1 (en) 2020-11-04

Family

ID=70456211

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180124699A KR102174483B1 (en) 2018-10-18 2018-10-18 Method for modifying surfaces using rare earth metal oxide solution mixed with binder

Country Status (1)

Country Link
KR (1) KR102174483B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220162258A (en) 2021-06-01 2022-12-08 한국전력공사 Fittings for installing magnetic insulator, magnetic insulators comprising thereof and their manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081942A (en) * 2002-04-15 2003-10-22 주식회사 엘지화학 Mehtod for preparing single craystalline cerium oxide powders
KR101617396B1 (en) 2014-08-01 2016-05-13 연세대학교 산학협력단 Superhydrophobic coating material and method for manufacturing the same
JP2018519969A (en) * 2015-07-20 2018-07-26 セブ ソシエテ アノニム Fluorocarbon resin, cooking utensil with rare earth oxide coating, and method for producing said utensil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081942A (en) * 2002-04-15 2003-10-22 주식회사 엘지화학 Mehtod for preparing single craystalline cerium oxide powders
KR101617396B1 (en) 2014-08-01 2016-05-13 연세대학교 산학협력단 Superhydrophobic coating material and method for manufacturing the same
JP2018519969A (en) * 2015-07-20 2018-07-26 セブ ソシエテ アノニム Fluorocarbon resin, cooking utensil with rare earth oxide coating, and method for producing said utensil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220162258A (en) 2021-06-01 2022-12-08 한국전력공사 Fittings for installing magnetic insulator, magnetic insulators comprising thereof and their manufacturing method

Also Published As

Publication number Publication date
KR102174483B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
KR100791049B1 (en) Manufacturing method of organic~inorganic hybrid sol solutions composed of polymeric resins with inorganic nanoparticles modified by organosilanes, and the materials
CN108440907A (en) A kind of preparation method of composite material with high dielectric property
EP2938753B1 (en) A coating composition, a preparation method therefore, and use thereof
KR20130039028A (en) Paint composition using porous aerogel
CN103304149B (en) A kind of method and coated substance of constructing hydrophobic coating at glass surface
CN109535652A (en) The method for preparing hybrid material based on silicon/titanium complex sol modified epoxy
KR102174483B1 (en) Method for modifying surfaces using rare earth metal oxide solution mixed with binder
CN104151998A (en) Anti-scrubbing composite antibacterial metal paint and preparation method thereof
CN115851025A (en) Environment-tolerant intumescent epoxy fire-retardant coating and preparation method and application thereof
JP5546341B2 (en) Colored transparent film, heat-absorbing transparent film and method for producing the same
CN102758200B (en) Preparing method for sol-gel silica film
TW200932847A (en) Coating liquid for forming silica-based coating film, method of preparing the same and silica-based insulation film obtained from the coating liquid
CN102643602B (en) Polyimide-epoxy type electrical insulating paint and preparation method thereof
CN114085644A (en) High-temperature-resistant sealant and preparation method and application thereof
Thompson et al. Oxo-metal-polyimide nanocomposites. 2. Enhancement of thermal, mechanical, and chemical properties in soluble hexafluoroisopropylidine-based polyimides via the in situ formation of oxo-lanthanide (III)-polyimide nanocomposites
KR101615550B1 (en) Organic-inorganic hybrid protective coating composition having heat resistance and separation property, and products thereof
JPWO2007040257A1 (en) Article formed with organic-inorganic composite film and method for producing the same
KR102409631B1 (en) Copper powder based conductive paste for improved heat resistance and its preparation method
KR101767590B1 (en) Coating Composition and Manufacturing method of Organic-Inorganic Hybrid Solution for Plastic Substrate
KR101397696B1 (en) Adhesive composition for polarizing plate
CN105694597B (en) Add the electrically conductive ink and preparation method of conductive black
JP4929835B2 (en) Method for producing surface-coated hexaboride particles
JPS61192771A (en) Ceramic coating agent mainly composed of silicon carbide
CN113284646A (en) Flexible transparent conductive film and preparation method thereof
CN106674541B (en) The preparation method of electrostatic spraying polyether ketone ketone powder based on the processing of hot oxygen

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant