KR20200040981A - Transformed methanotrophs for producing putrescine and uses thereof - Google Patents

Transformed methanotrophs for producing putrescine and uses thereof Download PDF

Info

Publication number
KR20200040981A
KR20200040981A KR1020180120754A KR20180120754A KR20200040981A KR 20200040981 A KR20200040981 A KR 20200040981A KR 1020180120754 A KR1020180120754 A KR 1020180120754A KR 20180120754 A KR20180120754 A KR 20180120754A KR 20200040981 A KR20200040981 A KR 20200040981A
Authority
KR
South Korea
Prior art keywords
putrescine
transformed
bacteria
methane
activity
Prior art date
Application number
KR1020180120754A
Other languages
Korean (ko)
Other versions
KR102120994B1 (en
Inventor
이은열
탄 뉴엔 린
오소현
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020180120754A priority Critical patent/KR102120994B1/en
Publication of KR20200040981A publication Critical patent/KR20200040981A/en
Application granted granted Critical
Publication of KR102120994B1 publication Critical patent/KR102120994B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02001Purine-nucleoside phosphorylase (2.4.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01016Spermidine synthase (2.5.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to transformed methanotrophs for producing putrescine, in which the activity of spermidine synthase is weakened or inactivated compared to its endogenous activity, and the activities of constitutive ornithine decarboxylase and putrescine transporters are enhanced compared to their endogenous activities; a production method of putrescine using the transformed methanotrophs; and a composition for putrescine production comprising the transformed methanotrophs. The transformed methanotrophs of the present invention exhibit high tolerance to putrescine due to adaptive evolution, and thus are not inhibited in growth by endogenously produced putrescine. Moreover, the transformed methanotrophs can produce putrescine in high yield from C1 carbon sources via enhanced putrescine production pathways, and thus may be usefully used in an eco-friendly and economical high-throughput production of putrescine.

Description

퓨트레신 생산용 형질전환 메탄자화균 및 이의 용도 {Transformed methanotrophs for producing putrescine and uses thereof}Transformed methanotrophs for producing putrescine and uses thereof}

본 발명은 스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비하여 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비하여 강화된, 퓨트레신 생산용 형질전환 메탄자화균; 상기 형질전환 메탄자화균을 사용한 퓨트레신의 제조방법; 및 상기 형질전환 메탄자화균을 포함하는 퓨트레신 생산용 조성물에 관한 것이다.In the present invention, the activity of spermidine synthase is weakened or inactivated compared to the intrinsic activity, and the activity of ornithine decarboxylase constitutive and putrescine transporter is intrinsic. A transformed methane magnetizing bacterium for putrescine production enhanced compared to activity; Method for producing putrescine using the transformed methane magnetization bacteria; And it relates to a composition for producing putrescine comprising the transformed methane magnetization.

메탄가스는 천연가스와 셰일가스의 주성분이며, 온실효과를 일으키는 원인 물질로 알려져 있다. 석유로 대표되는 액체 탄화수소와는 달리, 메탄은 그 자체로는 기체이기 때문에 고부가 가치의 다른 물질로의 전환이 어렵고, 연료로서의 사용 또한 어렵다고 평가된다. Methane gas is the main component of natural gas and shale gas, and is known to cause greenhouse effect. Unlike liquid hydrocarbons represented by petroleum, methane is a gas in itself, making it difficult to convert to other substances of high value and difficult to use as fuel.

한편, 메탄자화균(Methanotrophic bacteria)은 이러한 메탄을 유일한 에너지원으로 생육할 수 있는 미생물로, 1906년에 Sohngen에 의해 처음으로 분리되었다. 메탄자화균은 메탄 모노옥시게나아제(monooxygenases, MMO)라는 효소를 갖고 있어 상온, 상압 하에서 용이하게 메탄을 메탄올로 전환할 수 있다. 메탄자화균에서 메탄으로부터 탄소화합물의 생합성은 리불로오스 일인산 회로(ribulose monophosphatecycle; RuMP cycle)와 세린 회로(serine cycle)에 의해 진행되고, 일반적으로 type I의 메탄자화균은 리불로오스 일인산 회로를, type II의 메탄자화균은 세린 회로를 이용하여 바이오매스를 합성한다고 알려져 있다(J Microbiol Biotechnol. Hwang IY et al., 2014 Dec 28; 24(12):1597-605). 메탄자화균이 갖는 이러한 생리학적 특성을 이용하여, 메탄을 고부가가치 유기화합물로 전환시키는 것과 동시에, 유해한 메탄가스를 절감하고 에너지원으로 활용하려는 노력이 계속되어 왔다.Meanwhile, methanotrophic bacteria are microorganisms that can grow methane as the only energy source, and were first isolated by Sohngen in 1906. Methane magnetization bacteria have enzymes called methane monooxygenases (MMO), which can easily convert methane to methanol under normal temperature and pressure. In methane magnetization bacteria, biosynthesis of carbon compounds from methane is carried out by a ribulose monophosphate cycle (RuMP cycle) and a serine cycle, and generally type I methane magnetization bacteria are ribulose monophosphate The circuit, type II methane magnetization bacteria are known to synthesize biomass using the serine circuit (J Microbiol Biotechnol. Hwang IY et al., 2014 Dec 28; 24 (12): 1597-605). Efforts have been made to utilize physiological properties of methane magnetizing bacteria to convert methane to high value-added organic compounds, while at the same time reducing harmful methane gas and utilizing it as an energy source.

퓨트레신(putrescine, 1,4- 디아미노부탄)은 다양한 산업 분야에서 중요한 플랫폼 화학 물질로, 연간 약 10,000톤의 수요가 있다(Scott et al., 2007). 퓨트레신은 의약 분야에서 피부 미용과 정자 형성, 및 신경 보호 등에 도움을 주는 것으로 알려져 있으며, 종양생성과 조직 비대에 영향을 나타낼 수 있는 것으로 알려져 있다. 또한, 퓨트레신은 식물을 배양할 때 농약의 대체품으로 활용될 수 있으며, 추위, 오염 그리고 염분에 대한 저항성을 높여주며 시듦을 막아주는 작용을 하는 것으로 알려져 있다. 한편, 퓨트레신은 아디프산과 반응하여 폴리아민 나일론-4,6을 합성하는 중요한 원료물질로, 주로 프로필렌으로부터 아크릴로니트릴 및 숙시노니트릴을 거치는 화학 합성법으로 생산된다. 그러나 이러한 화학 합성법의 경우 에너지 소모가 많고, 환경 친화적이지 못하며, 더 나아가 석유자원의 고갈이라는 문제점을 내포하고 있다. Putrescine (putrescine, 1,4-diaminobutane) is an important platform chemical in various industries, with a demand of about 10,000 tonnes per year (Scott et al., 2007). Putrescine is known to help in skin care, sperm formation, and nerve protection in the pharmaceutical field, and is known to have an effect on tumor formation and tissue hypertrophy. In addition, putrescine can be used as a substitute for pesticides when cultivating plants, and is known to increase the resistance to cold, contamination and salt, and to prevent wilting. Meanwhile, putrescine is an important raw material for synthesizing polyamine nylon-4,6 by reacting with adipic acid, and is mainly produced by chemical synthesis from propylene through acrylonitrile and succinonitrile. However, such a chemical synthesis method has a high energy consumption, is not environmentally friendly, and furthermore has a problem of exhaustion of petroleum resources.

이러한 배경 하에, 본 발명자들은 퓨트레신을 생산하기 위한 방법으로, 보다 환경 친화적이고, 에너지 소비를 절감할 수 있는 바이오매스를 활용한 방법에 대해 예의 연구 노력한 결과, 메탄을 탄소원으로 이용 가능한 형질전환 메탄자화균을 통해 보다 친환경적이고 경제적이며, 높은 수율로 퓨트레신을 생산할 수 있는 방법을 확인하여 본 발명을 완성하였다.Against this background, the present inventors conducted a thorough research on a method for producing putrescine, using a biomass that is more environmentally friendly and can reduce energy consumption, and as a result, transformed methane that can use methane as a carbon source. The present invention was completed by confirming a method capable of producing putrescine in a more eco-friendly, economical and high yield through magnetizing bacteria.

본 발명의 하나의 목적은 스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비하여 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비하여 강화된, 퓨트레신 생산용 형질전환 메탄자화균을 제공하는 것이다.One object of the present invention is that the activity of spermidine synthase is weakened or inactivated compared to the intrinsic activity, ornithine decarboxylase constitutive and putrescine transporter. It is to provide a transformed methane magnetizing bacterium for putrescine production, whose activity is enhanced compared to intrinsic activity.

본 발명의 다른 하나의 목적은 상기 형질전환 메탄자화균을 사용한 퓨트레신의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing putrescine using the transformed methane magnetizing bacteria.

본 발명의 또 다른 하나의 목적은 상기 형질전환 메탄자화균을 포함하는 퓨트레신 생산용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for the production of putrescine containing the transformed methane magnetizing bacteria.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.Specifically, it is as follows. Meanwhile, each description and embodiment disclosed in the present invention can be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in the present invention fall within the scope of the present invention. In addition, the scope of the present invention is not limited by the specific descriptions described below.

상기 목적을 달성하기 위한 본 발명의 하나의 양태는 스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비하여 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비하여 강화된, 퓨트레신 생산용 형질전환 메탄자화균을 제공한다.One aspect of the present invention for achieving the above object is the activity of the spermidine synthase (spermidine synthase) is weakened or inactivated compared to the intrinsic activity, ornithine decarboxylase constitutive and putre It provides a transformed methane magnetizing bacterium for putrescine production, wherein the activity of the putrescine transporter is enhanced compared to the intrinsic activity.

또한, 본 발명의 다른 하나의 양태는 상기 형질전환 메탄자화균에 있어서, 추가로 젖산탈수소효소(lactate dehydrogenase) 및 아세트산인산화효소(acetate kinase) 활성이 내재적 활성에 비해 약화 또는 불활성화된, 형질전환 메탄자화균을 제공한다.In addition, another aspect of the present invention, in the transformed methane magnetizing bacteria, lactate dehydrogenase (lactate dehydrogenase) and acetic acid phosphatase (acetate kinase) activity is weakened or inactivated compared to the intrinsic activity, transformation Provide methane magnetization bacteria.

본 발명의 발명자들은 퓨트레신을 생산하기 위한 보다 환경 친화적이고 경제적인 방법으로, 메탄 등 바이오매스를 활용한 방법에 대해 예의 연구 노력한 결과, 놀랍게도 본 발명의 형질전환 메탄자화균을 이용할 경우 고수율로 퓨트레신의 생산이 가능함을 확인하였다. 메탄을 탄소원으로 사용하는 메탄자화균을 통한 고수율의 퓨트레신의 생산은 지금까지 전혀 알려지지 않았고, 본 발명을 통해 최초로 개발되었다는 점에서 그 의의가 매우 크다고 할 수 있다.The inventors of the present invention, as a more environmentally friendly and economical method for producing putrescine, as a result of earnestly researching methods using biomass such as methane, surprisingly, when using the transformed methane magnetizing bacteria of the present invention with high yield It was confirmed that the production of putrescine is possible. The production of high yield futresine through methane magnetization bacteria using methane as a carbon source is unknown at all, and it can be said that the significance is very large in that it was first developed through the present invention.

본 발명에서 용어 “퓨트레신”은 C4H12N2의 화학식을 갖는 분자량 88의 무색의 결정을 갖는 화합물로, 오르니틴(ornithine)의 탈카르복시 혹은 아그마틴(agmatine)의 가수분해에 의해 생성되는 물질을 의미한다. 구체적으로, 퓨트레신은 in vivo에서 오르니틴으로부터 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive, speC) 또는 유도성 오르니틴 탈카르복실화효소(inducible ornithine decarboxylase, speF)에 의해, 또는 아르기닌(arginine)으로부터 아르기닌 탈탄산효소(arginine decarboxylase) 및 아그마티네이스(agmatinase)에 의해 합성될 수 있다. 퓨트레신은 부패물 중에도 있지만 생체에 정상적인 성분으로 널리 분포하며, 폴리아민의 일종으로 리보솜에 포함된다. 한편 퓨트레신은 생체 내에서 세포의 생장 촉진, RNA합성 촉진 작용을 하는 것으로 알려져 있다. In the present invention, the term "Futresin" is a compound having a colorless crystal having a molecular weight of 88 having a chemical formula of C 4 H 12 N 2 , by decarboxylation of ornithine or hydrolysis of agmatine. It means the material that is produced. Specifically, putrescine is ornithine decarboxylase constitutive ( speC ) or inducible ornithine decarboxylase ( speF ) from ornithine in vivo , or arginine ) Can be synthesized by arginine decarboxylase and agmatinase. Although putrescine is present in decay, it is widely distributed as a normal component in living organisms and is included in ribosomes as a type of polyamine. Meanwhile, putrescine is known to promote cell growth and RNA synthesis in vivo.

본 발명에서 용어 “메탄자화균(methanotroph)”은 메탄을 주 탄소원 또는 에너지원으로 사용하는 세균을 의미한다. 상기 메탄자화균은 본 발명에서 형질전환의 대상이 되는 숙주 균주를 의미할 수 있으며, 또한 본 발명의 목적상 메탄을 탄소원으로 사용하여 피루브산을 출발물질로 오르니틴과 아르기닌을 거쳐 최종적으로 퓨트레신을 생산할 수 있는 균주라면 제한없이 포함될 수 있다. 또한, 메탄, 메탄올, 메틸아민 등 C1 화합물을 에너지원으로 사용하는 메틸자화균(methylotroph) 중에서 메탄을 함께 사용할 수 있는 균주 또한 본 발명의 메탄자화균에 포함될 수 있음은 당업자에게 자명하다. The term “methanotroph” in the present invention means a bacterium that uses methane as a main carbon source or energy source. The methane magnetization bacteria may mean a host strain that is the target of transformation in the present invention, and also for the purposes of the present invention, methane is used as a carbon source, and pyruvate is used as a starting material, and finally, putrescine is passed through ornithine and arginine. Any strain that can be produced can be included without limitation. In addition, it is apparent to those skilled in the art that a strain capable of using methane among methylotrophs using a C1 compound such as methane, methanol, and methylamine as an energy source may also be included in the methane magnetization bacteria of the present invention.

상기 메탄자화균은 메탄 등 C1 화합물을 에너지원으로 사용할 수 있는 것인한 특별히 이에 제한되지 않으나, 메틸로모나스 속(Methylomonas), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로븀 속(Methylacidimicrobium) 또는 메틸로마이크로븀(Methylomicrobium) 속 균주일 수 있으며, 구체적으로 메틸로마이크로븀 알칼리필룸(Methylomicrobium alcaliphilum) 20Z일 수 있다. 이러한 메탄자화균을 이용한 바이오 전환공정의 경우, 비교적 저렴한 메탄을 탄소원으로 사용할 수 있어 경제적으로 유리하며, 대기 중의 메탄을 사용 가능하다는 점에서 온실가스의 방출 예방 등 환경적인 면에서도 장점이 있다. 또한, 기존에 포도당(glucose)을 이용한 공정 대비 산소의 손실이 없어 최종 생산 물질의 수율 또한 높다. The methane magnetization bacterium is not particularly limited due to that can be a C1 compounds such as methane as an energy source, methyl Pseudomonas genus (Methylomonas), methyl bakteo in (Methylobacter), methyl Rhodococcus genus (Methylococcus), methyl Ross The genus Ferra ( Methylosphaera ), Methylocaldum , Methyloglobus , Methylosarcina , Methyloprofundus , Methylothermusmus ), Methylohalobius ( Methylohalobius ), Methylogaea ( Methylogaea ), Methylomarinum ( Methylomarinum ), Methylovulum ( Methylovulum ), Methylomarinovum ( Methylomarinovum ), Methyllorum in (Methylorubrum), methyl Paracoccus genus (Methyloparacoccus), methyl Sinners in (Methylosinus), methyl seutiseu in (Methylocystis), cellar in (Methylocella), kaepsa in (Methylocapsa) methyl methyl upon by a methyl hydroperoxide rule It may be a strain of the genus La (Methylofurula), Methylacidiphilum , Methylacidimicrobium , or Methylomicrobium , specifically Methylomicrobium alcaliphilum . It may be 20Z. The bio-conversion process using methane magnetization bacteria is economically advantageous because it can use relatively inexpensive methane as a carbon source, and also has an advantage in environmental aspects such as prevention of greenhouse gas emission in that it can use methane in the atmosphere. In addition, there is no loss of oxygen compared to the process using glucose, and the yield of the final production material is also high.

본 발명에서 용어 “형질전환 메탄자화균”은 상기 메탄자화균의 유전자를 제거하거나 또는 도입하여 형질을 전환시킨 균주를 의미한다. 구체적으로, 본 발명의 형질전환 메탄자화균은 상기 메탄자화균에서 스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비해 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비해 강화된 메탄자화균을 의미할 수 있으나, 이에 제한되지 않는다. 본 발명에 있어서, 상기 형질전환 메탄자화균은 상기 형질전환 메탄자화균은 야생형에 비해 퓨트레신 생산능이 현저히 향상된 것일 수 있다. In the present invention, the term "transformation methane magnetizing bacteria" refers to a strain that has been transformed by removing or introducing a gene of the methane magnetizing bacteria. Specifically, in the transformed methane magnetizing bacteria of the present invention, the activity of spermidine synthase in the methane magnetizing bacteria is weakened or inactivated compared to the intrinsic activity, and ornithine decarboxylase constitutive ) And putrescine transporter (putrescine transporter) activity may mean enhanced methane magnetization compared to the intrinsic activity, but is not limited thereto. In the present invention, the transformed methane magnetizing bacteria may have a significantly improved putrescine production capacity compared to the wild type.

또한, 본 발명에 있어서, 상기 형질전환 메탄자화균은 적응 진화에 의해 퓨트레신 내성이 향상된 것일 수 있다. In addition, in the present invention, the transformed methane magnetization bacteria may have improved putrescine resistance by adaptive evolution.

본 발명에서 용어 “적응 진화”는 생물체가 특정 환경에 적응할 수 있는 진화적 변화를 수반하는 진화의 일종을 의미하는 것으로, 본 발명의 목적상 퓨트레신에 대한 내성이 낮은 M. alcaliphilum 20Z 균주를 퓨트레신 디하이드로클로라이드(putrescine dihydrochloride)에 노출시켜 퓨트레신에 대한 내성을 증가시키는 것일 수 있으나, 이에 특별히 제한되지 않는다.In the present invention, the term “adaptive evolution” refers to a type of evolution that involves evolutionary changes in which an organism can adapt to a specific environment, and for the purpose of the present invention, the strain M. alcaliphilum 20Z having low resistance to putrescine is low. It may be to increase the resistance to putrescine by exposure to putrescine dihydrochloride, but is not particularly limited thereto.

본 발명의 일 실시예에서는, M. alcaliphilum 20Z의 퓨트레신에 대한 내성을 증가시키기 위해, 100 mM의 퓨트레신 디하이드로클로라이드에 노출시켜 30℃에서 230 rpm으로 교반하며 배양하기를 반복한 결과, 퓨트레신에 대한 높은 내성을 갖는 균주가 수득되었으며, 상기 균주는 퓨트레신에 72시간의 노출 후에도 정상적으로 성장이 가능함을 확인하였다(도 3).In one embodiment of the present invention, in order to increase resistance to putrescine of M. alcaliphilum 20Z, exposure to 100 mM putrescine dihydrochloride was repeated while culturing while stirring at 30 ° C and 230 rpm. , A strain having high resistance to putrescine was obtained, and the strain was confirmed to be able to grow normally even after 72 hours of exposure to putrescine (FIG. 3).

본 발명에서 용어 “스페르미딘 합성효소(spermidine synthase)”는 퓨트레신으로부터 스페르미딘과 메틸티오아데노신을 생성하는 반응을 촉매하는 효소를 의미한다. 상기 스페르미딘 합성효소를 코딩하는 유전자(speE)는 서열번호 1의 염기서열로 구성된 것일 수 있으며, 서열번호 1의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 스페르미딘 합성효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다. In the present invention, the term “spermidine synthase” refers to an enzyme that catalyzes the reaction of producing spermidine and methylthioadenosine from putrescine. The gene encoding spermidine synthetase ( speE ) may be composed of the nucleotide sequence of SEQ ID NO: 1, and 70% or more of the sequence of SEQ ID NO: 1, specifically 80% or more, more specifically 90% or more , More specifically 95% or more, most specifically 99% or more as a nucleotide sequence exhibiting homology, if substantially capable of expressing a protein having a spermidine synthase activity, may be included without limitation.

본 발명의 일 실시예에서는, 퓨트레신을 스페르미딘으로의 전환을 촉매하는 스페르미딘 합성효소의 유전자(speE)를 결실시킨 형질전환 M. alcaliphilum 20Z 균주에서 퓨트레신이 축적될 수 있는지 여부를 확인하였으며, 그 결과 상기 유전자가 결실된 WT ΔspeE 균주는 96시간 배양 후 0.35mg/l의 퓨트레신을 축적할 수 있음을 확인하였다(도 5).In one embodiment of the present invention, whether or not putrescine can accumulate in the transformed M. alcaliphilum 20Z strain that deleted the gene of spermidine synthase ( speE ) that catalyzes the conversion of putrescine to spermidine As a result, as a result, it was confirmed that the WT ΔspeE strain in which the gene was deleted can accumulate 0.35 mg / l putrescine after 96 hours of culture (FIG. 5).

본 발명에서 용어 “오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive)”는 L-오르니틴의 카르복실기를 제거하여 퓨트레신을 생성하는 반응을 촉매하는 효소를 의미한다. 상기 오르니틴 탈카르복실화효소를 코딩하는 유전자(speC)는 서열번호 2의 염기서열로 구성된 것일 수 있으며, 서열번호 2의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 오르니틴 탈카르복실화효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.In the present invention, the term "ornithine decarboxylase constitutive" refers to an enzyme that catalyzes a reaction to produce putrescine by removing the carboxyl group of L-ornithine. The gene ( speC ) encoding the ornithine decarboxylase may be composed of the nucleotide sequence of SEQ ID NO: 2, 70% or more with the sequence of SEQ ID NO: 2, specifically 80% or more, and more specifically 90 % Or more, more specifically 95% or more, and most specifically 99% or more, as a base sequence showing homology, which may substantially express ornithine decarboxylase protein, and may be included without limitation.

본 발명에서 용어 “퓨트레신 운반체(putrescine transporter)”는 퓨트레신의 흡수 및 배출을 촉매하는 단백질로, 상기 퓨트레신 운반체를 코딩하는 유전자(potE)는 서열번호 3의 염기서열로 구성된 것일 수 있으며, 서열번호 3의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 퓨트레신 운반체 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.In the present invention, the term "putrescine transporter (putrescine transporter)" is a protein that catalyzes the absorption and release of putrescine, and the gene encoding the putrescine transporter ( potE ) may be composed of the nucleotide sequence of SEQ ID NO: 3 And a sequence of 70% or more, specifically 80% or more, more specifically 90% or more, more specifically 95% or more, and most specifically 99% or more of the sequence of SEQ ID NO: 3 If it is possible to express a protein having substantially putrescine transporter activity, it can be included without limitation.

본 발명의 일 실시예에서는, M. alcaliphilum 20Z에서 퓨트레신의 생산을 보다 증가시키고자, tac 프로모터의 조절 아래 오르니틴 탈카르복실화효소 유전자(speC) 및 퓨트레신 운반체 유전자(potE)를 삽입한 pAWP89-speCE 플라스미드로 M. alcaliphilum 20Z를 형질전환시키고, 메탄올 또는 메탄을 포함하는 NMS 배지에서 배양하였다. 그 결과, 형질전환된 메탄자화균 WT speCE는 96시간 배양 후 2.27mg/l의 퓨트레신을 축적할 수 있음을 확인하였다. 나아가, 상기 스페르미딘 합성효소 활성이 불활성화된 WT ΔspeE 균주에 추가로 pAWP89-speCE가 도입된 균주(WT ΔspeE speCE)의 경우, 96시간 배양 후 2.72 mg/L의 퓨트레신을 생산하는 것을 확인하였다(도 5).In one embodiment of the present invention, to further increase the production of putrescine in M. alcaliphilum 20Z, the ornithine decarboxylase gene ( speC ) and the putrescine transporter gene ( potE ) are inserted under the control of the tac promoter. M. alcaliphilum 20Z was transformed with one pAWP89-speCE plasmid and cultured in NMS medium containing methanol or methane. As a result, it was confirmed that the transformed methanogenic WT speCE can accumulate 2.27 mg / l putrescine after 96 hours of culture. Furthermore, in the case of the strain (WT ΔspeE speCE) in which pAWP89-speCE was additionally introduced into the WT ΔspeE strain in which the spermidine synthase activity was inactivated, it was confirmed that 2.72 mg / L of putrescine was produced after 96-hour culture. (Fig. 5).

본 발명에서 용어 “젖산탈수소효소(lactate dehydrogenase)”는 피루브산을 젖산(Lactate)로 전환시키는 반응을 촉매하는 효소로, 상기 젖산탈수소효소를 코딩하는 유전자(ldh)는 서열번호 4의 염기서열로 구성된 것일 수 있으며, 서열번호 4의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 젖산탈수소효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.In the present invention, the term “lactate dehydrogenase” is an enzyme that catalyzes the reaction of converting pyruvic acid to lactic acid, and the gene encoding the lactic acid dehydrogenase ( ldh ) consists of the nucleotide sequence of SEQ ID NO: 4 It may be, and the sequence of SEQ ID NO: 4 and 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, and most specifically, a base showing at least 99% homology When it is possible to express a protein having substantially lactic acid dehydrogenase activity as a sequence, it can be included without limitation.

본 발명에서 용어 “아세트산인산화효소(acetate kinase)”는 피루브산으로부터 생성된 아세틸-CoA(Acetyl-CoA)를 아세트산염(Acetate)로 전환시키는 반응을 촉매하는 효소로, 상기 아세트산인산화효소를 코딩하는 유전자(ack)는 서열번호 5의 염기서열로 구성된 것일 수 있으며, 서열번호 5의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 아세트산인산화효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.The term “acetate kinase” in the present invention is an enzyme that catalyzes the reaction of converting acetyl-CoA (Acetyl-CoA) produced from pyruvic acid to acetate, a gene encoding the acetic acid phosphatase ( ack ) may be composed of the nucleotide sequence of SEQ ID NO: 5, the sequence of SEQ ID NO: 5 and 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, Most specifically, as a base sequence showing at least 99% homology, a protein having substantially acetic acid phosphatase activity can be included without limitation.

본 발명의 일 실시예에서는, WT ΔspeE 균주에 대해 ldh 및 ack 유전자를 결실시킨 WT Δldh Δack ΔspeE 및 여기에 추가로 pAWP89-speCE를 도입한 WT Δldh Δack ΔspeE speCE 균주를 제작하고 퓨트레신의 생산량을 평가한 결과, WT Δldh Δack ΔspeE 균주는 약 0.88mg/L, WT Δldh Δack ΔspeE speCE 균주의 경우 가장 높은 3.75mg/L의 퓨트레신을 생산함을 확인하였다.In one embodiment of the present invention, a WT Δldh Δack ΔspeE having ldh and ack genes deleted for the WT ΔspeE strain and a WT Δldh Δack ΔspeE speCE strain introduced with pAWP89-speCE added thereto are prepared, and the yield of putrescine is evaluated. As a result, it was confirmed that the WT Δldh Δack ΔspeE strain produced about 0.88 mg / L and the highest 3.75 mg / L putrescine in the case of the WT Δldh Δack ΔspeE speCE strain.

전술한 각각의 효소 또는 단백질은 본 발명에서 사용되는 각각의 활성을 나타내는한, 각 효소 또는 단백질을 구성하는 아미노산 서열의 하나 이상의 위치에서의 하나 이상의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할수 있는데, 상기 각 효소 또는 단백질의 활성을 나타내는 한, 상기 각 효소 또는 단백질의 아미노산 서열에 대하여, 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 보다 더 구체적으로는 99% 이상의 상동성을 가지는 것으로, 실질적으로 각 효소 또는 단백질과 동일하거나 상응하는 활성을 가지는 아미노산 서열의 경우도 본 발명의 범주에 포함됨은 당업자에게 자명하다.Each of the enzymes or proteins described above is an amino acid in which one or more amino acids at one or more positions of the amino acid sequence constituting each enzyme or protein are substituted, deleted, inserted, added, or reversed, as long as each activity used in the present invention is exhibited. It may contain a sequence, as long as the activity of each enzyme or protein, 80% or more, specifically 90% or more, more specifically 95% or more, more specifically, with respect to the amino acid sequence of each enzyme or protein It is obvious to those skilled in the art that amino acids having substantially the same or corresponding activity as each enzyme or protein are included in the scope of the present invention.

본 발명에서 용어 “약화 또는 불활성화”는 효소 또는 단백질의 활성이 야생형 또는 그 내재적 활성에 비해 감소 또는 전혀 발현이 되지 않거나, 발현이 되더라도 그 활성이 없거나 감소된 것을 의미한다. 상기 효소 또는 단백질의 활성 약화 또는 불활성화는 당업계에 알려진 임의의 방법에 의해 수행될 수 있다. 구체적으로, 해당 효소를 코딩하는 폴리뉴클레오티드의 일부 또는 전체의 결실, 상기 뉴클레오티드의 발현이 감소하도록 발현 조절 서열의 변형, 상기 단백질의 활성이 약화되도록 염색체상의 상기 뉴클레오티드 서열의 변형, 또는 이들의 조합으로부터 선택된 방법에 수행될 수 있으나, 특별히 이에 제한되지는 않는다. 상기 단백질을 코딩하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은 세균 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. In the present invention, the term "weakened or inactivated" means that the activity of the enzyme or protein is reduced or not expressed at all, compared to the wild type or its intrinsic activity, or even when expressed, the activity is absent or reduced. The weakening or inactivation of the enzyme or protein may be performed by any method known in the art. Specifically, deletion of a part or all of the polynucleotide encoding the enzyme, modification of the expression control sequence to decrease the expression of the nucleotide, modification of the nucleotide sequence on the chromosome to weaken the activity of the protein, or combinations thereof It may be performed in a selected method, but is not particularly limited thereto. The method of deleting part or all of the polynucleotide encoding the protein is performed by replacing a polynucleotide encoding an intrinsic target protein in a chromosome with a polynucleotide or a marker gene in which some nucleic acid sequences are deleted through a vector for chromosomal insertion in bacteria. Can be.

본 발명에서 용어 “강화”는 효소 또는 단백질의 활성이 야생형 또는 그 내재적 활성에 비해 증가되는 것을 의미한다. 상기 효소 또는 단백질의 활성 강화는 당업계에 알려진 임의의 방법에 의해 수행될 수 있다.The term "enhancing" in the present invention means that the activity of the enzyme or protein is increased compared to the wild type or its intrinsic activity. Enhancing the activity of the enzyme or protein can be performed by any method known in the art.

상기 목적을 달성하기 위한 본 발명의 다른 하나의 양태는 스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비하여 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비하여 강화된, 퓨트레신 생산용 형질전환 메탄자화균을 배양하는 단계를 포함하는, 퓨트레신의 제조방법을 제공하는 것이다. 상기 스페르미딘 합성효소, 오르니틴 탈카르복실화효소, 퓨트레신 운반체, 약화 또는 불활성화, 강화, 퓨트레신, 형질전환 메탄자화균은 전술한 바와 같다.Another aspect of the present invention for achieving the above object is the activity of the spermidine synthase (spermidine synthase) is weakened or inactivated compared to the intrinsic activity, ornithine decarboxylase constitutive and It is to provide a method for producing putrescine, comprising culturing a transformed methane magnetizing bacterium for putrescine production, wherein the activity of a putrescine transporter is enhanced compared to an intrinsic activity. The spermidine synthetase, ornithine decarboxylase, putrescine transporter, weakened or inactivated, enhanced, putrescine, transformed methane magnetizing bacteria are as described above.

본 발명에서 용어 “배양”은 목적하는 세포 또는 조직 등을 인공적으로 조절한 환경 조건에서 생육하는 것을 의미한다. 상기 환경 조건은 대표적으로 영양소, 온도, 삼투압, pH, 기체 조성, 빛 등이 있으나, 직접적인 영향을 주는 것은 배지이며, 배지는 크게 액체배지와 고체배지로 나뉠 수 있다. 본 발명의 형질전환 메탄자화균의 배양은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. In the present invention, the term "cultivation" refers to growing under environmental conditions artificially controlled cells or tissues of interest. The environmental conditions typically include nutrients, temperature, osmotic pressure, pH, gas composition, light, etc., but it is the medium that directly affects the medium, and the medium can be largely divided into a liquid medium and a solid medium. Cultivation of the transformed methane magnetizing bacteria of the present invention can be performed using methods well known in the art.

구체적으로, 상기 배양은 상기 형질전환 메탄자화균으로부터 퓨트레신을 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다. 배양에 사용되는 배지는 메탄자화균의 배양에 사용되는 것으로 알려진 NMS(nitrate mineral salts) 배지를 사용할 수 있고, 메탄자화균에 따라 상기 배지에 포함된 성분 또는 이의 함량을 적절히 조절한 배지를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다. 본 발명에서 형질전환 메탄자화균의 배양 온도는 15℃ 내지 45℃, 구체적으로 20℃ 내지 40℃, 보다 구체적으로 25℃ 내지 35℃일 수 있으며, 메탄과 균주의 원활한 접촉을 위해, 150rpm 내지 300rpm, 구체적으로 180rpm 내지 270rpm, 보다 구체적으로 200rpm 내지 250rpm으로 교반할 수 있으나, 이에 제한되지 않는다.Specifically, the culture is not particularly limited as long as it can produce putrescine from the transformed methanogenic bacteria, but is continuously cultured in a batch process or in a fed batch or repeated fed batch process. can do. As the medium used for culture, NMS (nitrate mineral salts) medium known to be used for cultivation of methane magnetization bacteria may be used, and a medium in which the components contained in the medium or the contents thereof are properly adjusted according to the methane magnetization bacteria may be used. However, this is not particularly limited. In the present invention, the culture temperature of the transformed methane magnetization bacteria may be 15 ° C to 45 ° C, specifically 20 ° C to 40 ° C, more specifically 25 ° C to 35 ° C, for smooth contact between methane and the strain, 150rpm to 300rpm , Specifically, may be stirred at 180 rpm to 270 rpm, more specifically 200 rpm to 250 rpm, but is not limited thereto.

본 발명에 있어서, 상기 퓨트레신의 제조방법은 상기 형질전환 메탄자화균을 C1 탄소원을 포함하는 배양액에 배양하는 것일 수 있다. 또한, 본 발명에 있어서 상기 퓨트레신의 제조방법은 상기 배양액에 NH4Cl을 추가로 첨가하여 퓨트레신의 생산량을 증가시킨 것일 수 있다. 구체적으로, 형질전환 메탄자화균(ΔldhΔackΔspeE1ΔspeE2)을 NMS 배지에 NO3 2-와 추가로 NH4Cl를 첨가하고 배양할 경우 퓨트레신의 생산량이 현저히 증가됨을 확인하였다(표 2).In the present invention, the method for preparing the putrescine may be culturing the transformed methane magnetizing bacteria in a culture medium containing a C1 carbon source. In addition, in the present invention, the method for preparing putrescine may be to increase the production amount of putrescine by adding NH 4 Cl to the culture medium. Specifically, when the transformed methane magnetizing bacteria (ΔldhΔackΔspeE1ΔspeE2) was added and cultured with NO 3 2- and additional NH 4 Cl in NMS medium, it was confirmed that the production of putrescine was significantly increased (Table 2).

본 발명에 있어서, 상기 제조방법은 배양액으로부터 퓨트레신을 회수하는 단계를 추가로 포함할 수 있다. 상기 퓨트레신을 회수하는 단계는 배양 방법에 따라 당업계에 공지된 적합한 방법에 의해 수행될 수 있다. 구체적으로, 공지된 퓨트레신 회수 방법은 특별히 이에 제한되지 않으나, 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 HPLC, 이온교환, 친화성, 소수성 및 크기배제) 등의 방법이 사용될 수 있다.In the present invention, the manufacturing method may further include the step of recovering putrescine from the culture medium. The step of recovering the putrescine may be performed by a suitable method known in the art according to the culture method. Specifically, the known methods for recovering putrescine are not particularly limited, but centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (for example, ammonium sulfate precipitation), chromatography Methods such as HPLC, ion exchange, affinity, hydrophobicity and size exclusion can be used.

상기 목적을 달성하기 위한 본 발명의 또 다른 하나의 양태는 스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비하여 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비하여 강화된, 퓨트레신 생산용 형질전환 메탄자화균을 포함하는 퓨트레신 생산용 조성물을 제공한다.Another aspect of the present invention for achieving the above object is the activity of the spermidine synthase (spermidine synthase) is weakened or inactivated compared to the intrinsic activity, ornithine decarboxylase constitutive (ornithine decarboxylase constitutive) and Provided is a composition for the production of putrescine comprising a transformed methanogen for producing putrescine, wherein the activity of the putrescine transporter is enhanced compared to the intrinsic activity.

상기 스페르미딘 합성효소, 오르니틴 탈카르복실화효소, 퓨트레신 운반체, 약화 또는 불활성화, 강화, 퓨트레신, 형질전환 메탄자화균은 전술한 바와 같다.The spermidine synthetase, ornithine decarboxylase, putrescine transporter, attenuated or inactivated, enhanced, putrescine, transformed methane magnetizing bacteria are as described above.

본 발명의 형질전환 메탄자화균은 적응 진화에 의해 퓨트레신에 대한 높은 내성을 나타내어 스스로 생산하는 퓨트레신에 의해 성장이 저해되지 않고, 퓨트레신 생산 경로의 강화로 C1 탄소원으로부터 퓨트레신을 높은 수율로 생산할 수 있는바, 친환경적이고 경제적인 퓨트레신 대량 생산에 유용하게 사용될 수 있다.The transformed methane magnetizing bacterium of the present invention shows high resistance to putrescine by adaptive evolution, so growth is not inhibited by putrescine produced by itself, and putrescine is removed from the C1 carbon source by strengthening the putrescine production pathway. Since it can be produced with high yield, it can be used for mass production of eco-friendly and economical putrescine.

도 1은 M. alcaliphilum 20Z에서 퓨트레신을 생산하기 위한 대사공학 경로를 나타낸 것이다.
도 2는 M. alcaliphilum 20Z 균주의 퓨트레신 내성을 나타낸 것으로, 대수증식기(exponential growth phase)(OD600 0.4)에서 30℃의 NMS 배지에서 성장시키고, 다양한 농도의 퓨트레신 디하이드로클로라이드(putrescine dihydrochloride)에 노출시켜 흡광도를 측정하고, 균주의 성장 정도를 평가하였다.
도 3은 적응 진화에 따른 M. alcaliphilum 20Z 균주의 퓨트레신 내성 증가를 나타낸 것이다. 비어있는 동그라미는 NMS 배지에서 M. alcaliphilum 20Z 균주 (대조군)를 나타내고, 채워진 동그라미는 퓨트레신 디하이드로클로라이드 100mM에 노출된 M. alcaliphilum 20Z 균주를 나타낸다.
도 4는 야생형 및 형질전환 M. alcaliphilum 20Z 균주의 NMS 배지에서의 성장 커브를 나타낸 것이다.
도 5는 야생형 및 형질전환 M. alcaliphilum 20Z 균주에서 퓨트레신의 생산 정도를 비교하여 나타낸 것이다.
1 shows the metabolic engineering pathway for the production of putrescine in M. alcaliphilum 20Z.
Figure 2 shows the putresin resistance of the M. alcaliphilum 20Z strain, grown in NMS medium at 30 ° C in an exponential growth phase (OD 600 0.4), and various concentrations of putrescine dihydrochloride (putrescine) dihydrochloride) to measure absorbance and evaluate the strain growth.
Figure 3 shows the increase in putrescine resistance of the M. alcaliphilum 20Z strain according to adaptive evolution. Empty circles represent the M. alcaliphilum 20Z strain (control) in NMS medium, and filled circles represent the M. alcaliphilum 20Z strain exposed to 100 mM putrescine dihydrochloride.
Figure 4 shows the growth curve in the NMS medium of the wild-type and transformed M. alcaliphilum 20Z strain.
Figure 5 shows a comparison of the production level of putrescine in the wild-type and transformed M. alcaliphilum 20Z strains.

이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

실험예 1: 재료 및 방법Experimental Example 1: Materials and Methods

본 발명에서 사용한 균주(M. alcaliphilum 20Z, 20Z speE 및 20Z speCE 외) 및 플라스미드(pCM433-speE1 및 pAWP89-speCE 외)는 아래 표 1에 나타내었다. 퓨트레신은 세포에 독성을 나타내는 물질로, 본 발명에서는 적응 진화를 통해 퓨트레신에 적응성(내성)을 높인 균주와 M. alcaliphilum 20Z의 코돈 선호도에 최적화한 speC, speE, potE 유전자를 사용하였다.The strains ( M. alcaliphilum 20Z, 20Z speE and 20Z speCE, etc.) and plasmids (pCM433-speE1 and pAWP89-speCE, etc.) used in the present invention are shown in Table 1 below. Putrescine is a substance exhibiting toxicity to cells. In the present invention, the speC , speE , and potE genes optimized for the codon preference of M. alcaliphilum 20Z and the strain having increased adaptability (tolerance) to putrescine through adaptive evolution were used.

[표 1][Table 1]

Figure pat00001
Figure pat00001

메틸로마이크로븀 알칼리필룸(Methylomicrobium alcaliphilum) 20Z 균주는 1.0 g/L MgSO4.7H2O, 0.02 g/L CaCl2.6H2O, 1.0 g/L KNO3, 15 g/L NaCl, 2 ml/L trace element solution (Na2-EDTA 0.5 g/l, FeSO4.7H2O 1 g/l, F2-EDTA 0.75 g/l, ZnSO4.7H2O 0.8 g/l, MnCl2.4H2O 0.005 g/l, H3BO3 0.03 g/l, CoCl2를 포함하는 6H2O 0.05 g/l, Cu-EDTA 0.4 g/l, CuCl2.2H2O 0.6 g/l, NiCl2.6H2O 0.002 g/l, Na2MoO4.2H2O 0.05 g/l), 인산 완충액 (KH2PO4 54.4 g/l, Na2HPO4.12H2O 143.4 g/l) 2 ml/L, NaHCO3의 1 M 용액 4.5 ml/L 를 포함하는 NMS(nitrate mineral salts medium) 배지에서 배양하였고, Na2CO3의 1 M 용액 0.5 ml/L 를 사용 전에 필터로 멸균하고 첨가하였다(Ojala et al., 2011). 액체 배양물은 30℃에서 30 % 메탄 또는 0.2 %의 메탄올의 대기 중에 스크류 캡으로 밀봉된 500 ml 배플 플라스크(baffled flask)에서 성장시켰다. Methylomicrobium alcaliphilum 20Z strain is 1.0 g / L MgSO 4 .7H 2 O, 0.02 g / L CaCl 2 .6H 2 O, 1.0 g / L KNO 3 , 15 g / L NaCl, 2 ml / L trace element solution (Na 2 -EDTA 0.5 g / l, FeSO 4 .7H 2 O 1 g / l, F2-EDTA 0.75 g / l, ZnSO 4 .7H 2 O 0.8 g / l, MnCl 2 .4H 2 O 0.005 g / l, H 3 BO 3 0.03 g / l, 6H 2 O with CoCl 2 0.05 g / l, Cu-EDTA 0.4 g / l, CuCl 2 .2H 2 O 0.6 g / l, NiCl 2 . 6H 2 O 0.002 g / l, Na 2 MoO 4 .2H 2 O 0.05 g / l), phosphate buffer (KH 2 PO 4 54.4 g / l, Na 2 HPO 4 .12H 2 O 143.4 g / l) 2 ml / L, cultured in NMS (nitrate mineral salts medium) medium containing 4.5 ml / L of a 1 M solution of NaHCO 3 , 0.5 ml / L of a 1 M solution of Na 2 CO 3 was sterilized by a filter before use (Ojala et al., 2011). The liquid culture was grown in a 500 ml baffle flask sealed with a screw cap in an atmosphere of 30% methane or 0.2% methanol at 30 ° C.

구체적으로, 아래 표 2에서 알 수 있듯이, 상기 과정에서 NMS 배지에 NO3 2-와 추가로 NH4Cl를 첨가하고 배양한 결과 M. alcaliphilum 20Z 유래의 형질전환 메탄자화균(ΔldhΔackΔspeE1ΔspeE2)에서의 퓨트레신의 생산량이 보다 더 증가함을 확인하였다.Specifically, as can be seen in Table 2 below, in the process, NO 3 2- and additional NH 4 Cl were added to the NMS medium and cultured, and the result was cultured from M. alcaliphilum 20Z-derived transformed methane magnetizing bacteria (ΔldhΔackΔspeE1ΔspeE2). It was confirmed that the production of tressin increased more.

[표 2][Table 2]

Figure pat00002
Figure pat00002

실험예 2: 플라스미드 제작Experimental Example 2: Plasmid production

본 발명에 사용된 모든 플라스미드는 Gibson Assembly(NEB, England)를 사용하여 제작하였다. Primer 3 소프트웨어를 사용하여 설계되고, Macrogen (Seoul, South Korea)으로 제조된 본 발명의 프라이머는 아래 표 3에 나열하였다. Gibson Assembly를 위한 상동성 서열은 소문자, 리보솜 결합 부위는 굵은 글씨로 나타내었다.All plasmids used in the present invention were produced using Gibson Assembly (NEB, England). Primers of the invention designed using Primer 3 software and made with Macrogen (Seoul, South Korea) are listed in Table 3 below. The homology sequence for Gibson Assembly is shown in lower case, and the ribosome binding site is shown in bold.

[표 3][Table 3]

Figure pat00003
Figure pat00003

E. coli K12 균주 W3110 및 M. alcaliphilum 20Z의 게놈 DNA는 Wizard® Genomic DNA Purification Kit(Promega, USA)를 사용하여 분리하였다. PCR은 Lamp Pfu polymerase (BioFACT, Korea)를 사용하여 수행하였다. 플라스미드는 Genome compiler 소프트웨어를 사용하여 제조하였다. 플라스미드 pAWP89-speCE는 상기 표 3에 나타낸 프라이머로 E. coli K12 균주 W3110의 게놈 DNA로부터 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive, speC) 및 퓨트레신 운반체(putrescine transporter, potE)를 증폭시키고, Gibson assembly method에 의해 결합하여 제조하였다. sacB 대항 선택(counter selection) 플라스미드 pCM433-speE1는 목적 유전자의 상류 및 하류의 2개의 인접한 상동성 영역의 증폭 및 결합에 의해 표지되지 않은 대립 유전자의 교환을 통해 스페르미딘 합성효소(spermidine synthase, speE)를 제거하도록 설계되었다.Genomic DNA of E. coli K12 strains W3110 and M. alcaliphilum 20Z were isolated using a Wizard® Genomic DNA Purification Kit (Promega, USA). PCR was performed using Lamp Pfu polymerase (BioFACT, Korea). Plasmids were prepared using Genome compiler software. Plasmid pAWP89-speCE amplifies ornithine decarboxylase constitutive (speC) and putrescine transporter (potE) from genomic DNA of E. coli K12 strain W3110 with the primers shown in Table 3 above. , Gibson assembly method. The sacB counter selection plasmid pCM433-speE1 is a spermidine synthase ( speE) through exchange of unlabeled alleles by amplification and binding of two adjacent homologous regions upstream and downstream of the target gene. ).

실험예 3: 메틸로마이크로븀 알칼리필룸 20Z(Experimental Example 3: Methylrobium Alkali Pilum 20Z ( M. alcaliphilumM. alcaliphilum 20Z) 균주의 형질전환 20Z) strain transformation

M. alcaliphilum 20Z 컴피턴트 세포(competent cell)는 다음과 같이 제작되었다: M. alcaliphilum 20Z의 배양액을 0.6 내지 0.8의 OD600으로 성장시키고, 세포를 수득하여 5000g, 4℃에서 10분 동안 원심분리하여 차가운 멸균수로 2회 세척하였다. 생성된 세포 펠릿을 차가운 멸균수에 재현탁시킨 후, 50㎕의 세포 현탁액을 전기천공에 사용하였다. 상기 컴피턴트 세포를 500ng의 DNA 플라스미드와 부드럽게 혼합한 후, 혼합물을 차가운 1mm 큐벳(Bio-Rad)로 옮겼다. 전기천공은 1.3kV, 25㎌ 및 200Ω(Yan X. 외, 2016)으로 설정된 Gene Pulser Xcell™ 전기천공 시스템(Bio-Rad)을 사용하여 수행하였다. 전기천공 후, 실온의 NMS 배지 1ml를 가하여 재현탁시킨 후, 0.2% 메탄올을 포함하는 250ml 혈청 병에서 20ml 배지로 옮겼다. 상기 세포를 30℃에서 24시간 동안 배양한 후, 세포를 수득하여 선택성 고체 배지(selective plate)에 도말하였다. M. alcaliphilum 20Z competent cells were prepared as follows: The culture of M. alcaliphilum 20Z was grown to an OD 600 of 0.6 to 0.8, and the cells were obtained and centrifuged at 5000 g, 4 ° C. for 10 minutes. Washed twice with cold sterile water. After the resulting cell pellet was resuspended in cold sterile water, 50 μl of the cell suspension was used for electroporation. After gently mixing the competent cells with 500 ng of DNA plasmid, the mixture was transferred to a cold 1 mm cuvette (Bio-Rad). Electroporation was performed using a Gene Pulser Xcell ™ electroporation system (Bio-Rad) set at 1.3 kV, 25 kV and 200 Ω (Yan X. et al., 2016). After electroporation, 1 ml of room temperature NMS medium was added and resuspended, and then transferred to 20 ml medium in a 250 ml serum bottle containing 0.2% methanol. After incubating the cells at 30 ° C. for 24 hours, cells were obtained and plated on a selective plate.

실험예 4: 분석 방법Experimental Example 4: Analysis method

1cm 경로 길이의 1.5ml 큐벳을 사용하여 Beckman 분광 광도계로 600nm에서 광학 밀도를 측정하여 세포 성장을 관찰하였다. 퓨트레신 농도는 360nm에서 UV 분광 광도 검출기와 함께 Symmetry C18 컬럼(5 μm, Waters corporation, Massachusetts, USA)을 사용하여 고성능 액체 크로마토그래피(HPLC, Jasco Corporation, Japan)로 분석하였다. 퓨트레신은 기존에 기술된 방법(2007, Yildirim et al, 2007)을 사용하여 o-phthaldialdehyde(OPA, Sigma, St. Louis, MO)에 의해 유도체화되었다. OPA 시약은 다음과 같이 제조하였다: 0.2g의 OPA를 9.0ml의 메탄올에 용해시키고, 0.4M(pH 9.0)의 붕산염 완충액 1.0ml 및 최종적으로 160ml의 2-머캅토에탄올을 첨가하였다. 50㎕의 시료 및 450㎕의 물을 400㎕의 메탄올에 첨가한 후, 그 혼합물을 100㎕의 OPA 시약을 사용하여 유도체화하였다. 생성된 혼합물을 PVDF 주사기 필터 0.2μm(Whatman, Maidstone, UK)를 통해 즉시 여과하고, HPLC에 주입하였다. 이동상 A의 조성은 pH 7.2, 0.1M 아세트산 나트륨에서 55 % 메탄올이고, 이동상 B는 메탄올이었다. 컬럼 온도는 25℃로 유지하였다. 분리를 위해, 0.8ml/분의 이동상을 다음의 구배(gradient)로 사용하였다: 1-6분, 100 % A; 6-10분, 용매 B의 0%에서 30%까지의 선형 구배 변화; 10-15분, 용매 B의 30%에서 50% 로의 선형 변화; 15-19분, 용매 B의 50%에서 100%까지의 선형 구배 변화; 19-23분, 용매B를 100%로 유지; 23-25분, 용매 B의 100%에서 30%까지의 선형 구배 변화; 25-28 분, 용매 B의 30%에서 0%로 선형 구배 변화. 표준 퓨트레신을 물에서 제조하고, 전술한 바와 같이 처리하였다. Cell growth was observed by measuring optical density at 600 nm with a Beckman spectrophotometer using a 1.5 ml cuvette with a 1 cm path length. The putrescine concentration was analyzed by high performance liquid chromatography (HPLC, Jasco Corporation, Japan) using a Symmetry C18 column (5 μm, Waters corporation, Massachusetts, USA) with a UV spectrophotometer detector at 360 nm. Putrescine was derivatized with o-phthaldialdehyde (OPA, Sigma, St. Louis, MO) using previously described methods (2007, Yildirim et al, 2007). The OPA reagent was prepared as follows: 0.2 g of OPA was dissolved in 9.0 ml of methanol, and 0.4 ml (pH 9.0) of borate buffer 1.0 ml and finally 160 ml of 2-mercaptoethanol were added. After adding 50 μl of sample and 450 μl of water to 400 μl of methanol, the mixture was derivatized using 100 μl of OPA reagent. The resulting mixture was immediately filtered through 0.2 μm PVDF syringe filter (Whatman, Maidstone, UK) and injected into HPLC. The composition of mobile phase A was pH 7.2, 55% methanol in 0.1M sodium acetate, and mobile phase B was methanol. The column temperature was maintained at 25 ° C. For separation, a mobile phase of 0.8 ml / min was used in the following gradient: 1-6 min, 100% A; 6-10 min, linear gradient change from 0% to 30% of solvent B; 10-15 min, linear change from 30% to 50% of solvent B; 15-19 min, linear gradient change from 50% to 100% of solvent B; 19-23 min, solvent B maintained at 100%; 23-25 min, linear gradient change from 100% to 30% of solvent B; 25-28 min, linear gradient change from 30% to 0% of solvent B. Standard putrescine was prepared in water and treated as described above.

실시예 1: 적응 진화에 의한Example 1: Adaptive evolution 메틸로마이크로븀 알칼리필룸 20Z(Methylrobium Alkali Pilum 20Z ( M. alcaliphilumM. alcaliphilum 20Z)의 퓨트레신 내성 증가  20Z) increased putrescine resistance

1-1: 1-1: M. alcaliphilumM. alcaliphilum 20Z의 퓨트레신 내성 확인 Confirm 20Z putrescine tolerance

M. alcaliphilum 20Z을 지수상으로 배양하고, 각각 다른 농도(20, 50, 100, 200 및 400mM)의 퓨트레신 디하이드로 클로라이드(putrescine dihydrochloride)에 노출시켰다. 그 결과, 특히 50mM 이상의 퓨트레신 농도에서 퓨트레신은 M. alcaliphilum 20Z의 성장 속도를 현저하게 감소시켰다. 구체적으로, 광학 밀도(OD600)는 처음 12시간 동안 천천히 증가하였으나, 노출 12시간 후 급감하였고, 첨가된 퓨트레신 디하이드로 클로라이드는 세포 용해를 일으키는 것을 확인하였다(도 2). 즉, 이는 M. alcaliphilum 20Z의 낮은 퓨트레신 내성이 M. alcaliphilum 20Z의 대사를 이용한 퓨트레신 생산을 저해하는 주요 원인이 될 수 있음을 의미한다. M. alcaliphilum 20Z was incubated exponentially and exposed to putrescine dihydrochloride at different concentrations (20, 50, 100, 200 and 400 mM), respectively. As a result, putrescine, especially at putrescine concentrations above 50 mM,M. alcaliphilum 20ZThe growth rate of was significantly reduced. Specifically, optical density (OD600) Slowly increased during the first 12 hours, but rapidly decreased after 12 hours of exposure, and it was confirmed that the added putrescine dihydro chloride caused cell lysis (FIG. 2). In other words, thisM. alcaliphilum 20ZLow putrescine toleranceM. alcaliphilum 20ZIt means that it can be a major cause of inhibiting the production of putrescine using metabolism.

1-2: 적응 진화에 의한 1-2: by adaptive evolution M. alcaliphilumM. alcaliphilum 20Z의 퓨트레신 내성 증가 Increased putrescine tolerance of 20Z

상기 실시예 1-1에서 확인한 바와 같이, 퓨트레신의 농도가 증가함에 따라 M. alcaliphilum 20Z의 성장 속도가 현저히 저하되는바, M. alcaliphilum 20Z의 퓨트레신에 대한 내성을 증가시키기 위해 40일 동안 적응 진화(adaptive evolution)를 수행하였다. 구체적으로, M. alcaliphilum 20Z를 NMS 배지에서 OD600 0.2까지 성장시키고, 100 mM의 퓨트레신 디하이드로클로라이드에 노출시켜 30℃에서 230 rpm으로 교반하며 5일 동안 배양 하였다. 이후 셀을 신선한 NMS로 옮겨 주기를 복구하고 반복하였고, 그 결과 5주기 이후 100 mM의 퓨트레신 농도에서도 높은 내성을 갖는 균주가 수득되었다(도 3). 즉, 이로부터 상기 퓨트레신 내성 균주는 퓨트레신에 72시간의 노출 후 성장률이 조금 감소하나 정상적으로 성장 가능하며, 따라서 메탄자화균 M. alcaliphilum 20Z의 대사를 이용한 퓨트레신 생산에 사용될 수 있음을 확인하였다.As confirmed in Example 1-1, as the concentration of putrescine increases, the growth rate of M. alcaliphilum 20Z decreases remarkably, for 40 days to increase the resistance of M. alcaliphilum 20Z to putrescine. Adaptive evolution was performed. Specifically, M. alcaliphilum 20Z was grown in NMS medium to OD 600 0.2, exposed to 100 mM putrescine dihydrochloride, stirred at 30 ° C. at 230 rpm and incubated for 5 days. The cells were then transferred to fresh NMS to restore and repeat the cycle. As a result, after 5 cycles, a strain having high resistance even at a concentration of 100 mM putrescine was obtained (FIG. 3). That is, from this, the putrescine-resistant strain has a slightly decreased growth rate after 72 hours of exposure to putrescine, but can grow normally, and thus can be used for the production of putrescine using the metabolism of the methanogenic M. alcaliphilum 20Z Was confirmed.

실시예 2: 퓨트레신 생산을 위한 형질전환 메탄자화균 제조 및 퓨트레신 생산 증가 확인Example 2: Preparation of transformed methane magnetization for production of putrescine and confirmation of increase in putrescine production

퓨트레신에 대한 낮은 내성 및 퓨트레신 이용 경로(putrescine utilization pathway)의 활성화 등으로 인해 야생형 균주 M. alcaliphilum 20Z에서는 퓨트레신의 축적을 확인할 수 없었는바(도 5), 먼저 스페르미딘 합성효소 유전자(speE)를 결실시킨 형질전환 M. alcaliphilum 20Z 균주에서 퓨트레신이 축적될 수 있는지 여부를 확인하였다. 구체적으로, 벡터 pCM433-speE1은 스페르미딘 합성효소 유전자(speE, 282개의 아미노산)의 상류 및 하류의 2개의 인접한 상동성 영역으로 구성되었고, 표지되지 않은 대립 유전자의 교환을 통해 상기 유전자를 녹아웃시켰다. 그 결과, 스페르미딘 합성효소 활성이 불활성화된 WT ΔspeE 균주는 96시간 배양 후 0.35mg/l의 퓨트레신을 축적할 수 있음을 확인하였다(도 5).Due to low resistance to putrescine and activation of the putrescine utilization pathway, the accumulation of putrescine could not be confirmed in wild-type strain M. alcaliphilum 20Z (FIG. 5). First, spermidine synthase It was confirmed whether putrescine could accumulate in the transformed M. alcaliphilum 20Z strain that deleted the gene ( speE ). Specifically, the vector pCM433-speE1 was composed of two adjacent homologous regions upstream and downstream of the spermidine synthase gene ( speE , 282 amino acids), and knocked out the gene through the exchange of unlabeled alleles. . As a result, it was confirmed that the WT Δ speE strain in which the spermidine synthase activity was inactivated was able to accumulate 0.35 mg / l of putrescine after 96 hours of culture (FIG. 5).

M. alcaliphilum 20Z에서 퓨트레신의 생산을 증가시키고자, tac 프로모터의 조절하에 오르니틴 탈카르복실화효소 유전자 (ornithine decarboxylase constitutive, speC) 및 추가로 퓨트레신 운반체 유전자 (putrescine transporter, potE)의 과발현에 따른 퓨트레신 생산 여부를 확인하였다. 구체적으로, 상기 두 유전자를 증폭시키고 pAWP89 벡터에 삽입하여 pAWP89-speCE 플라스미드를 제조하였다. 이후 M. alcaliphilum 20Z를 pAWP89-speCE 플라스미드로 형질전환하고, 0.2%의 메탄올 또는 대기 중 30%의 메탄을 포함하는 NMS 배지에서 배양하였다. 그 결과, 오르니틴 탈카르복실화효소 및 퓨트레신 운반체 활성이 강화된 WT speCE 균주는 96시간 배양 후 2.27mg/l의 퓨트레신을 축적할 수 있음을 확인하였다(도 5). 나아가, 상기 스페르미딘 합성효소 활성이 불활성화된 WT ΔspeE 균주에 추가로 pAWP89-speCE가 도입된 균주(WT ΔspeE speCE)의 경우, 96시간 배양 후 2.72 mg/L의 퓨트레신을 생산하는 것을 확인하였다.To increase the production of putrescine in M. alcaliphilum 20Z, overexpression of the ornithine decarboxylase constitutive ( speC ) and additionally putrescine transporter ( potE ) under the control of the tac promoter It was confirmed whether or not putrescine production. Specifically, the two genes were amplified and inserted into the pAWP89 vector to prepare a pAWP89-speCE plasmid. Then, M. alcaliphilum 20Z was transformed with pAWP89-speCE plasmid, and cultured in NMS medium containing 0.2% methanol or 30% methane in the atmosphere. As a result, it was confirmed that the WT speCE strain having enhanced ornithine decarboxylase and putrescine transporter activity can accumulate 2.27 mg / l putrescine after 96 hours of culture (FIG. 5). Furthermore, in the case of a strain (WT Δ speE speCE) in which pAWP89-speCE was additionally introduced to the WT Δ speE strain in which the spermidine synthase activity was inactivated, 2.72 mg / L of putrescine was produced after incubation for 96 hours. Was confirmed.

또한, 퓨트레신의 생산량을 보다 증가시키고자, 젖산탈수소효소를 코딩하는 유전자(ldh) 및 아세트산인산화효소를 코딩하는 유전자(ack)를 추가로 결실시켜 주요 우회산물인 젖산과 아세트산의 생성을 저지하고, 피루빈산(pyruvate)으로부터 TCA 회로로의 흐름을 감소시켰다. 구체적으로, 상기 WT ΔspeE 균주에 대해 전술한 방법과 동일하게 ldhack 유전자를 결실시킨 WT Δldh Δack ΔspeE 및 여기에 추가로 pAWP89-speCE를 도입한 WT Δldh Δack ΔspeE speCE 균주를 제작하고, 퓨트레신의 생산량을 평가한 결과, WT Δldh Δack ΔspeE 균주는 약 0.88mg/L, WT Δldh Δack ΔspeE speCE 균주의 경우 가장 높은 3.75mg/L의 퓨트레신을 생산함을 확인하였다.In addition, in order to further increase the production of putrescine, the gene encoding the lactic acid dehydrogenase ( ldh ) and the gene encoding the acetic acid phosphatase ( ack ) are further deleted to prevent the production of major bypass products, lactic acid and acetic acid, , Reducing the flow from pyruvate to the TCA circuit. Specifically, in the same manner as described above for the WT Δ speE strain, the WT Δ ldh Δ ack Δ speE deleted with the ldh and ack genes and the WT Δ ldh Δ ack Δ speE speCE strain in which pAWP89-speCE was additionally introduced therein As a result of evaluating the production amount of putrescine, WT Δ ldh Δ ack Δ speE strain produces about 0.88 mg / L, and WT Δ ldh Δ ack Δ speE speCE strain produces the highest 3.75 mg / L putrescine. Was confirmed.

즉, 퓨트레신에 대한 내성을 갖도록 적응 진화의 과정을 거친 본 발명의 메탄자화균은 스스로 생산하는 퓨트레신에 의해 성장이 저해되지 않으며, 스페르미딘 합성효소 활성이 약화 또는 불활성, 오르니틴 탈카르복실화효소 및 퓨트레신 운반체 활성이 강화되고, 추가로 젖산탈수소 효소 및 아세트산인산화효소 활성이 약화 또는 불활성화되어 퓨트레신을 대량으로 생산하는데 유용하게 사용될 수 있다. 또한, 이러한 형질전환 메탄자화균을 이용한 퓨트레신의 생산 방법은 기존의 화학 합성법에 비해 보다 친환경적이고 경제적으로 퓨트레신을 생산할 수 있는데 의의가 있다.That is, the methane magnetizing bacteria of the present invention, which have undergone the process of adaptive evolution to have resistance to putrescine, are not inhibited by growth of putrescine produced by themselves, and the spermidine synthase activity is weakened or inactive, ornithine The decarboxylase and putrescine transporter activities are enhanced, and the lactic acid dehydrogenase and acetic acid phosphatase activities are weakened or inactivated, and thus can be usefully used to produce putrescine in large quantities. In addition, the method for producing putrescine using the transformed methane magnetization bacteria is meaningful in that it can produce putrescine more environmentally and economically than the conventional chemical synthesis method.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be implemented in other specific forms without changing its technical spirit or essential characteristics. In this regard, the embodiments described above should be understood as illustrative in all respects and not restrictive. The scope of the present invention should be construed as including all changes or modifications derived from the meaning and scope of the following claims rather than the above detailed description and equivalent concepts thereof.

<110> University-Industry Cooperation Group of Kyung Hee University <120> Transformed methanotrophs for producing putrescine and uses thereof <130> KPA180340-KR <160> 15 <170> KopatentIn 2.0 <210> 1 <211> 849 <212> DNA <213> Methylomicrobium alcaliphilum 20Z <400> 1 atgaatccga ccgaatggtt taccgaacaa gccccgggcg ccggctcggc cttttcgttg 60 aaaatcaaac gcaaattgca tgaagaacaa tcggattttc aatttttgga aatctatgaa 120 accgaagatt ttggcaattt gatggtcatc gatggctgca ccatggtctc gacccgcgat 180 aatttttttt atcatgaaat gatgtcgcat ccggtcttgt ttacccatcc gaatccgaaa 240 cgcgtctgga tcatcggcgg cggcgattgc ggcaccttga aagaagtctt gaaacatccg 300 ggcgtcgaac aagtcgtcca aatcgatatc gatgaacgcg tcacccgctt ggccgaaatc 360 tattttccgg aattgtgcga atcgaatggc gatccgcgcg ccgaattgaa atttatcgat 420 ggcatcaaat gggtcaaaga tgccgccccg ggctcggtcg atatcatcat cgtcgattcg 480 accgatccgg tcggcccggc cgaaggcttg tttggcgaag ccttttatcg cgattgcttg 540 aattgcttgt cggaaaatgg catggtcatc caacaatcgg aatcggcctt gtatcatttg 600 aatttgatgc aagccatgcg caatgccatg tcggccgccg gctttgatca tttgcaaacc 660 ttgttttttc cgcaatgcat ctatccgtcg ggctggtggt cggccaccat cgccggcaaa 720 aaatcgttgg gctcgtttcg ccaagaagat tcggccaata aaccgtttac caccgaatat 780 tataatgtcg atatccatcg cgccgccttg gcccaaccgg aatttgtcaa acgcgccttt 840 ggcggctaa 849 <210> 2 <211> 2136 <212> DNA <213> Escherichia coli K-12 W3110 <400> 2 atgaaatcga tgaatatcgc cgcctcgtcg gaattggtct cgcgcttgtc gtcgcatcgc 60 cgcgtcgtcg ccttgggcga taccgatttt accgatgtcg ccgccgtcgt catcaccgcc 120 gccgattcgc gctcgggcat cttggccttg ttgaaacgca ccggctttca tttgccggtc 180 tttttgtatt cggaacatgc cgtcgaattg ccggccggcg tcaccgccgt catcaatggc 240 aatgaacaac aatggttgga attggaatcg gccgcctgcc aatatgaaga aaatttgttg 300 ccgccgtttt atgatacctt gacccaatat gtcgaaatgg gcaattcgac ctttgcctgc 360 ccgggccatc aacatggcgc cttttttaaa aaacatccgg ccggccgcca tttttatgat 420 ttttttggcg aaaatgtctt tcgcgccgat atgtgcaatg ccgatgtcaa attgggcgat 480 ttgttgatcc atgaaggctc ggccaaagat gcccaaaaat ttgccgccaa agtctttcat 540 gccgataaaa cctattttgt cttgaatggc acctcggccg ccaataaagt cgtcaccaat 600 gccttgttga cccgcggcga tttggtcttg tttgatcgca ataatcataa atcgaatcat 660 catggcgcct tgatccaagc cggcgccacc ccggtctatt tggaagcctc gcgcaatccg 720 tttggcttta tcggcggcat cgatgcccat tgctttaatg aagaatattt gcgccaacaa 780 atccgcgatg tcgccccgga aaaagccgat ttgccgcgcc cgtatcgctt ggccatcatc 840 caattgggca cctatgatgg caccgtctat aatgcccgcc aagtcatcga taccgtcggc 900 catttgtgcg attatatctt gtttgattcg gcctgggtcg gctatgaaca atttatcccg 960 atgatggccg attcgtcgcc gttgttgttg gaattgaatg aaaatgatcc gggcatcttt 1020 gtcacccaat cggtccataa acaacaagcc ggcttttcgc aaacctcgca aatccataaa 1080 aaagataatc atatccgcgg ccaagcccgc ttttgcccgc ataaacgctt gaataatgcc 1140 tttatgttgc atgcctcgac ctcgccgttt tatccgttgt ttgccgcctt ggatgtcaat 1200 gccaaaatcc atgaaggcga atcgggccgc cgcttgtggg ccgaatgcgt cgaaatcggc 1260 atcgaagccc gcaaagccat cttggcccgc tgcaaattgt ttcgcccgtt tatcccgccg 1320 gtcgtcgatg gcaaattgtg gcaagattat ccgacctcgg tcttggcctc ggatcgccgc 1380 tttttttcgt ttgaaccggg cgccaaatgg catggctttg aaggctatgc cgccgatcaa 1440 tattttgtcg atccgtgcaa attgttgttg accaccccgg gcatcgatgc cgaaaccggc 1500 gaatattcgg attttggcgt cccggccacc atcttggccc attatttgcg cgaaaatggc 1560 atcgtcccgg aaaaatgcga tttgaattcg atcttgtttt tgttgacccc ggccgaatcg 1620 catgaaaaat tggcccaatt ggtcgccatg ttggcccaat ttgaacaaca tatcgaagat 1680 gattcgccgt tggtcgaagt cttgccgtcg gtctataata aatatccggt ccgctatcgc 1740 gattatacct tgcgccaatt gtgccaagaa atgcatgatt tgtatgtctc gtttgatgtc 1800 aaagatttgc aaaaagccat gtttcgccaa caatcgtttc cgtcggtcgt catgaatccg 1860 caagatgccc attcggccta tatccgcggc gatgtcgaat tggtccgcat ccgcgatgcc 1920 gaaggccgca tcgccgccga aggcgccttg ccgtatccgc cgggcgtctt gtgcgtcgtc 1980 ccgggcgaag tctggggcgg cgccgtccaa cgctattttt tggccttgga agaaggcgtc 2040 aatttgttgc cgggcttttc gccggaattg caaggcgtct attcggaaac cgatgccgat 2100 ggcgtcaaac gcttgtatgg ctatgtcttg aaataa 2136 <210> 3 <211> 1320 <212> DNA <213> Escherichia coli K-12 W3110 <400> 3 atgtcgcaag ccaaatcgaa taaaatgggc gtcgtccaat tgaccatctt gaccatggtc 60 aatatgatgg gctcgggcat catcatgttg ccgaccaaat tggccgaagt cggcaccatc 120 tcgatcatct cgtggttggt caccgccgtc ggctcgatgg ccttggcctg ggcctttgcc 180 aaatgcggca tgttttcgcg caaatcgggc ggcatgggcg gctatgccga atatgccttt 240 ggcaaatcgg gcaattttat ggccaattat acctatggcg tctcgttgtt gatcgccaat 300 gtcgccatcg ccatctcggc cgtcggctat ggcaccgaat tgttgggcgc ctcgttgtcg 360 ccggtccaaa tcggcttggc caccatcggc gtcttgtgga tctgcaccgt cgccaatttt 420 ggcggcgccc gcatcaccgg ccaaatctcg tcgatcaccg tctggggcgt catcatcccg 480 gtcgtcggct tgtgcatcat cggctggttt tggttttcgc cgaccttgta tgtcgattcg 540 tggaatccgc atcatgcccc gtttttttcg gccgtcggct cgtcgatcgc catgaccttg 600 tgggcctttt tgggcttgga atcggcctgc gccaataccg atgtcgtcga aaatccggaa 660 cgcaatgtcc cgatcgccgt cttgggcggc accttgggcg ccgccgtcat ctatatcgtc 720 tcgaccaatg tcatcgccgg catcgtcccg aatatggaat tggccaattc gaccgccccg 780 tttggcttgg cctttgccca aatgtttacc ccggaagtcg gcaaagtcat catggccttg 840 atggtcatgt cgtgctgcgg ctcgttgttg ggctggcaat ttaccatcgc ccaagtcttt 900 aaatcgtcgt cggatgaagg ctattttccg aaaatctttt cgcgcgtcac caaagtcgat 960 gccccggtcc aaggcatgtt gaccatcgtc atcatccaat cgggcttggc cttgatgacc 1020 atctcgccgt cgttgaattc gcaatttaat gtcttggtca atttggccgt cgtcaccaat 1080 atcatcccgt atatcttgtc gatggccgcc ttggtcatca tccaaaaagt cgccaatgtc 1140 ccgccgtcga aagccaaagt cgccaatttt gtcgcctttg tcggcgccat gtattcgttt 1200 tatgccttgt attcgtcggg cgaagaagcc atgttgtatg gctcgatcgt cacctttttg 1260 ggctggacct tgtatggctt ggtctcgccg cgctttgaat tgaaaaataa acatggctaa 1320 1320 <210> 4 <211> 924 <212> DNA <213> Methylomicrobium alcaliphilum 20Z <400> 4 atgaaaatag ccataatcgg agccggccat gtcggttctt cgttagccta cgcattggtg 60 ttgaagggct tgggtaatca tttgttgtta gtcaatcgcg atgcgaccaa agctttgggc 120 aatgccttgg atttacagca taccctggct ttttgcgaac ggccgatgca aatcgagggc 180 ggctcgcttg aagaggcggt gggctgcgat atcgtcgcga tcaccgcttc ggagccgatg 240 acaaaaggta tgacttctcg tatggaatta ggacaagcca atgtcgagtt gttcaagtcg 300 ttgattccaa tgctggccga aaataatcct gaagctgttt ttattatcat cacgaacccg 360 gtcgatgtga tgacttgttg ggctacgcgg gtttcggagt tgcccccttc aagaatcgtc 420 ggcatcggca cgctcgtcga ttcggcacgt ttcagaaccc tattatccaa ggccgaacag 480 attcatcccg atgatttaag agcctatatt cttggcgaac acggaccgaa tcagtttccg 540 gtatttagcc atgcttcggc cggcggcgaa ccgataaccg atagtccaag gcatagagag 600 atttttgaag aggtcaacaa ggccggtttc gaggtttatc gattgaaagg ctataccaat 660 ttcgcgattg cttcagccgc ttgcgaagtc attagaacca tcgttcacga cgaacaccga 720 acgatgccgc tcagtacttg cttcgatgat tggcagggaa tcaaagacaa ttgcttcagc 780 attccggtcg tactgggtcg ttccggtatt atccgatatt tacagcccga cctgaacagt 840 ctggagcgcg aagctctggt gcatacggcc aaaattgttc gagctaatat cgatagttta 900 ttgtttggag taggtgaaag gtga 924 <210> 5 <211> 1206 <212> DNA <213> Methylomicrobium alcaliphilum 20Z <400> 5 atgacaatac caaacggcaa cattctcgtg atcaacagcg gcagttcctc aatcaagtat 60 cgattgattg ctctgccgca agagcaggta ctggcagacg gcttgctgga acgcatcgga 120 gaacaggaaa gcaggatcat tcatagagcc gacgattcgg gtcgtttaaa tgaaatcaag 180 cagtcggtca tcgctgccga tcatcaccaa gccttcaagg cagtcttcga gattttgggc 240 gaaaattgct cggtcgatgc aataggccac cgcgtcgtgc atggcggcga tcggttctcc 300 ggccctgcct tggtcgatga cgatacgata gcgtcgatgc gcgcactctg ccgaatagcg 360 ccgctgcata atccggttaa cttgcttggc atcgagagtt gcttggctca tttcccgggc 420 gtaccacagg tggcggtatt cgatacggca tttcaccaaa cgatgccgcc ccacgcctat 480 cgttatgcga ttccggaaac ttggtatagc gattacggca tacgccgatt cggttttcac 540 ggcacctctc atcattatgt ggcgagacgg gccgccgaat ttatcggtaa acctttcgat 600 cgcagccatc tgattacttt gcatttgggc aatggcgcga gcgcaacagc gattgcaaac 660 ggccgctccg tcgatacgtc gatggggttt acgccgctgg aaggtttggt aatgggcacg 720 cgtagcggcg atttggaccc ggcaataccg ctatttgtcg aacaaaccga aaataccgac 780 acggacgcaa tcgaccgggc attgaaccgc gaatccggat taaaaggctt atgtggtacc 840 aacgacttaa gaaccgtgct cgaacaaaca aatgcaggcg atgaacgagc ccgcttggct 900 ctcgatctgt attgctatcg aatcaagaaa tatatcggcg cttactacgc ggtactcggc 960 gaagtcgacg ctctggtttt taccggcggc gtcggcgaaa acgcggccga agtgcgccgt 1020 ttagcctgcg aaggcctgtc gcgtctcggc atcgccattg atgaagcggc caatagcgac 1080 gtgaccggag ctatcgccga aatcgggctt gccgaaagtc gaacccgtat tctagtcatt 1140 aaaactgacg aagaattgca aattgcccgg gaagccatgg ctgtgcttga taaagatcac 1200 gcatga 1206 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pAWP89-ptac-For <400> 6 tagttgtcgg gaagatgcgt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pAWP89-ptac-Rev <400> 7 agctgtttcc tgtgtgaata 20 <210> 8 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_speC <400> 8 cacacaggaa acagctatga aatcaatgaa tattgcc 37 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_speC <400> 9 gtgaatacct ttacttcaac acataaccgt 30 <210> 10 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_potE <400> 10 tgttgaagta aaggtattca cacaggaaac agctatgagt caggctaaat cga 53 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_potE <400> 11 gcatcttccc gacaactatt aaccgtgttt atttttcagt 40 <210> 12 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_speE F1 <400> 12 tggtctgaca gttaccagcc ggaaatgatg aagtcca 37 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_speE F1 <400> 13 gggatttctt gcgcattagt tatcgaggag 30 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_speE F2 <400> 14 taatgcgcaa gaaatccctg cagtgttga 29 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_speE F2 <400> 15 ccgacaacct gcacatttcg tttaaggtct gtgcga 36 <110> University-Industry Cooperation Group of Kyung Hee University <120> Transformed methanotrophs for producing putrescine and uses          thereof <130> KPA180340-KR <160> 15 <170> KopatentIn 2.0 <210> 1 <211> 849 <212> DNA <213> Methylomicrobium alcaliphilum 20Z <400> 1 atgaatccga ccgaatggtt taccgaacaa gccccgggcg ccggctcggc cttttcgttg 60 aaaatcaaac gcaaattgca tgaagaacaa tcggattttc aatttttgga aatctatgaa 120 accgaagatt ttggcaattt gatggtcatc gatggctgca ccatggtctc gacccgcgat 180 aatttttttt atcatgaaat gatgtcgcat ccggtcttgt ttacccatcc gaatccgaaa 240 cgcgtctgga tcatcggcgg cggcgattgc ggcaccttga aagaagtctt gaaacatccg 300 ggcgtcgaac aagtcgtcca aatcgatatc gatgaacgcg tcacccgctt ggccgaaatc 360 tattttccgg aattgtgcga atcgaatggc gatccgcgcg ccgaattgaa atttatcgat 420 ggcatcaaat gggtcaaaga tgccgccccg ggctcggtcg atatcatcat cgtcgattcg 480 accgatccgg tcggcccggc cgaaggcttg tttggcgaag ccttttatcg cgattgcttg 540 aattgcttgt cggaaaatgg catggtcatc caacaatcgg aatcggcctt gtatcatttg 600 aatttgatgc aagccatgcg caatgccatg tcggccgccg gctttgatca tttgcaaacc 660 ttgttttttc cgcaatgcat ctatccgtcg ggctggtggt cggccaccat cgccggcaaa 720 aaatcgttgg gctcgtttcg ccaagaagat tcggccaata aaccgtttac caccgaatat 780 tataatgtcg atatccatcg cgccgccttg gcccaaccgg aatttgtcaa acgcgccttt 840 ggcggctaa 849 <210> 2 <211> 2136 <212> DNA <213> Escherichia coli K-12 W3110 <400> 2 atgaaatcga tgaatatcgc cgcctcgtcg gaattggtct cgcgcttgtc gtcgcatcgc 60 cgcgtcgtcg ccttgggcga taccgatttt accgatgtcg ccgccgtcgt catcaccgcc 120 gccgattcgc gctcgggcat cttggccttg ttgaaacgca ccggctttca tttgccggtc 180 tttttgtatt cggaacatgc cgtcgaattg ccggccggcg tcaccgccgt catcaatggc 240 aatgaacaac aatggttgga attggaatcg gccgcctgcc aatatgaaga aaatttgttg 300 ccgccgtttt atgatacctt gacccaatat gtcgaaatgg gcaattcgac ctttgcctgc 360 ccgggccatc aacatggcgc cttttttaaa aaacatccgg ccggccgcca tttttatgat 420 ttttttggcg aaaatgtctt tcgcgccgat atgtgcaatg ccgatgtcaa attgggcgat 480 ttgttgatcc atgaaggctc ggccaaagat gcccaaaaat ttgccgccaa agtctttcat 540 gccgataaaa cctattttgt cttgaatggc acctcggccg ccaataaagt cgtcaccaat 600 gccttgttga cccgcggcga tttggtcttg tttgatcgca ataatcataa atcgaatcat 660 catggcgcct tgatccaagc cggcgccacc ccggtctatt tggaagcctc gcgcaatccg 720 tttggcttta tcggcggcat cgatgcccat tgctttaatg aagaatattt gcgccaacaa 780 atccgcgatg tcgccccgga aaaagccgat ttgccgcgcc cgtatcgctt ggccatcatc 840 caattgggca cctatgatgg caccgtctat aatgcccgcc aagtcatcga taccgtcggc 900 catttgtgcg attatatctt gtttgattcg gcctgggtcg gctatgaaca atttatcccg 960 atgatggccg attcgtcgcc gttgttgttg gaattgaatg aaaatgatcc gggcatcttt 1020 gtcacccaat cggtccataa acaacaagcc ggcttttcgc aaacctcgca aatccataaa 1080 aaagataatc atatccgcgg ccaagcccgc ttttgcccgc ataaacgctt gaataatgcc 1140 tttatgttgc atgcctcgac ctcgccgttt tatccgttgt ttgccgcctt ggatgtcaat 1200 gccaaaatcc atgaaggcga atcgggccgc cgcttgtggg ccgaatgcgt cgaaatcggc 1260 atcgaagccc gcaaagccat cttggcccgc tgcaaattgt ttcgcccgtt tatcccgccg 1320 gtcgtcgatg gcaaattgtg gcaagattat ccgacctcgg tcttggcctc ggatcgccgc 1380 tttttttcgt ttgaaccggg cgccaaatgg catggctttg aaggctatgc cgccgatcaa 1440 tattttgtcg atccgtgcaa attgttgttg accaccccgg gcatcgatgc cgaaaccggc 1500 gaatattcgg attttggcgt cccggccacc atcttggccc attatttgcg cgaaaatggc 1560 atcgtcccgg aaaaatgcga tttgaattcg atcttgtttt tgttgacccc ggccgaatcg 1620 catgaaaaat tggcccaatt ggtcgccatg ttggcccaat ttgaacaaca tatcgaagat 1680 gattcgccgt tggtcgaagt cttgccgtcg gtctataata aatatccggt ccgctatcgc 1740 gattatacct tgcgccaatt gtgccaagaa atgcatgatt tgtatgtctc gtttgatgtc 1800 aaagatttgc aaaaagccat gtttcgccaa caatcgtttc cgtcggtcgt catgaatccg 1860 caagatgccc attcggccta tatccgcggc gatgtcgaat tggtccgcat ccgcgatgcc 1920 gaaggccgca tcgccgccga aggcgccttg ccgtatccgc cgggcgtctt gtgcgtcgtc 1980 ccgggcgaag tctggggcgg cgccgtccaa cgctattttt tggccttgga agaaggcgtc 2040 aatttgttgc cgggcttttc gccggaattg caaggcgtct attcggaaac cgatgccgat 2100 ggcgtcaaac gcttgtatgg ctatgtcttg aaataa 2136 <210> 3 <211> 1320 <212> DNA <213> Escherichia coli K-12 W3110 <400> 3 atgtcgcaag ccaaatcgaa taaaatgggc gtcgtccaat tgaccatctt gaccatggtc 60 aatatgatgg gctcgggcat catcatgttg ccgaccaaat tggccgaagt cggcaccatc 120 tcgatcatct cgtggttggt caccgccgtc ggctcgatgg ccttggcctg ggcctttgcc 180 aaatgcggca tgttttcgcg caaatcgggc ggcatgggcg gctatgccga atatgccttt 240 ggcaaatcgg gcaattttat ggccaattat acctatggcg tctcgttgtt gatcgccaat 300 gtcgccatcg ccatctcggc cgtcggctat ggcaccgaat tgttgggcgc ctcgttgtcg 360 ccggtccaaa tcggcttggc caccatcggc gtcttgtgga tctgcaccgt cgccaatttt 420 ggcggcgccc gcatcaccgg ccaaatctcg tcgatcaccg tctggggcgt catcatcccg 480 gtcgtcggct tgtgcatcat cggctggttt tggttttcgc cgaccttgta tgtcgattcg 540 tggaatccgc atcatgcccc gtttttttcg gccgtcggct cgtcgatcgc catgaccttg 600 tgggcctttt tgggcttgga atcggcctgc gccaataccg atgtcgtcga aaatccggaa 660 cgcaatgtcc cgatcgccgt cttgggcggc accttgggcg ccgccgtcat ctatatcgtc 720 tcgaccaatg tcatcgccgg catcgtcccg aatatggaat tggccaattc gaccgccccg 780 tttggcttgg cctttgccca aatgtttacc ccggaagtcg gcaaagtcat catggccttg 840 atggtcatgt cgtgctgcgg ctcgttgttg ggctggcaat ttaccatcgc ccaagtcttt 900 aaatcgtcgt cggatgaagg ctattttccg aaaatctttt cgcgcgtcac caaagtcgat 960 gccccggtcc aaggcatgtt gaccatcgtc atcatccaat cgggcttggc cttgatgacc 1020 atctcgccgt cgttgaattc gcaatttaat gtcttggtca atttggccgt cgtcaccaat 1080 atcatcccgt atatcttgtc gatggccgcc ttggtcatca tccaaaaagt cgccaatgtc 1140 ccgccgtcga aagccaaagt cgccaatttt gtcgcctttg tcggcgccat gtattcgttt 1200 tatgccttgt attcgtcggg cgaagaagcc atgttgtatg gctcgatcgt cacctttttg 1260 ggctggacct tgtatggctt ggtctcgccg cgctttgaat tgaaaaataa acatggctaa 1320                                                                         1320 <210> 4 <211> 924 <212> DNA <213> Methylomicrobium alcaliphilum 20Z <400> 4 atgaaaatag ccataatcgg agccggccat gtcggttctt cgttagccta cgcattggtg 60 ttgaagggct tgggtaatca tttgttgtta gtcaatcgcg atgcgaccaa agctttgggc 120 aatgccttgg atttacagca taccctggct ttttgcgaac ggccgatgca aatcgagggc 180 ggctcgcttg aagaggcggt gggctgcgat atcgtcgcga tcaccgcttc ggagccgatg 240 acaaaaggta tgacttctcg tatggaatta ggacaagcca atgtcgagtt gttcaagtcg 300 ttgattccaa tgctggccga aaataatcct gaagctgttt ttattatcat cacgaacccg 360 gtcgatgtga tgacttgttg ggctacgcgg gtttcggagt tgcccccttc aagaatcgtc 420 ggcatcggca cgctcgtcga ttcggcacgt ttcagaaccc tattatccaa ggccgaacag 480 attcatcccg atgatttaag agcctatatt cttggcgaac acggaccgaa tcagtttccg 540 gtatttagcc atgcttcggc cggcggcgaa ccgataaccg atagtccaag gcatagagag 600 atttttgaag aggtcaacaa ggccggtttc gaggtttatc gattgaaagg ctataccaat 660 ttcgcgattg cttcagccgc ttgcgaagtc attagaacca tcgttcacga cgaacaccga 720 acgatgccgc tcagtacttg cttcgatgat tggcagggaa tcaaagacaa ttgcttcagc 780 attccggtcg tactgggtcg ttccggtatt atccgatatt tacagcccga cctgaacagt 840 ctggagcgcg aagctctggt gcatacggcc aaaattgttc gagctaatat cgatagttta 900 ttgtttggag taggtgaaag gtga 924 <210> 5 <211> 1206 <212> DNA <213> Methylomicrobium alcaliphilum 20Z <400> 5 atgacaatac caaacggcaa cattctcgtg atcaacagcg gcagttcctc aatcaagtat 60 cgattgattg ctctgccgca agagcaggta ctggcagacg gcttgctgga acgcatcgga 120 gaacaggaaa gcaggatcat tcatagagcc gacgattcgg gtcgtttaaa tgaaatcaag 180 cagtcggtca tcgctgccga tcatcaccaa gccttcaagg cagtcttcga gattttgggc 240 gaaaattgct cggtcgatgc aataggccac cgcgtcgtgc atggcggcga tcggttctcc 300 ggccctgcct tggtcgatga cgatacgata gcgtcgatgc gcgcactctg ccgaatagcg 360 ccgctgcata atccggttaa cttgcttggc atcgagagtt gcttggctca tttcccgggc 420 gtaccacagg tggcggtatt cgatacggca tttcaccaaa cgatgccgcc ccacgcctat 480 cgttatgcga ttccggaaac ttggtatagc gattacggca tacgccgatt cggttttcac 540 ggcacctctc atcattatgt ggcgagacgg gccgccgaat ttatcggtaa acctttcgat 600 cgcagccatc tgattacttt gcatttgggc aatggcgcga gcgcaacagc gattgcaaac 660 ggccgctccg tcgatacgtc gatggggttt acgccgctgg aaggtttggt aatgggcacg 720 cgtagcggcg atttggaccc ggcaataccg ctatttgtcg aacaaaccga aaataccgac 780 acggacgcaa tcgaccgggc attgaaccgc gaatccggat taaaaggctt atgtggtacc 840 aacgacttaa gaaccgtgct cgaacaaaca aatgcaggcg atgaacgagc ccgcttggct 900 ctcgatctgt attgctatcg aatcaagaaa tatatcggcg cttactacgc ggtactcggc 960 gaagtcgacg ctctggtttt taccggcggc gtcggcgaaa acgcggccga agtgcgccgt 1020 ttagcctgcg aaggcctgtc gcgtctcggc atcgccattg atgaagcggc caatagcgac 1080 gtgaccggag ctatcgccga aatcgggctt gccgaaagtc gaacccgtat tctagtcatt 1140 aaaactgacg aagaattgca aattgcccgg gaagccatgg ctgtgcttga taaagatcac 1200 gcatga 1206 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pAWP89-ptac-For <400> 6 tagttgtcgg gaagatgcgt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pAWP89-ptac-Rev <400> 7 agctgtttcc tgtgtgaata 20 <210> 8 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_speC <400> 8 cacacaggaa acagctatga aatcaatgaa tattgcc 37 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_speC <400> 9 gtgaatacct ttacttcaac acataaccgt 30 <210> 10 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_potE <400> 10 tgttgaagta aaggtattca cacaggaaac agctatgagt caggctaaat cga 53 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_potE <400> 11 gcatcttccc gacaactatt aaccgtgttt atttttcagt 40 <210> 12 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_speE F1 <400> 12 tggtctgaca gttaccagcc ggaaatgatg aagtcca 37 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_speE F1 <400> 13 gggatttctt gcgcattagt tatcgaggag 30 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> FWD_primer_speE F2 <400> 14 taatgcgcaa gaaatccctg cagtgttga 29 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> REV_primer_speE F2 <400> 15 ccgacaacct gcacatttcg tttaaggtct gtgcga 36

Claims (15)

스페르미딘 합성효소(spermidine synthase)의 활성이 내재적 활성에 비하여 약화 또는 불활성화되고, 오르니틴 탈카르복실화효소(ornithine decarboxylase constitutive) 및 퓨트레신 운반체(putrescine transporter)의 활성이 내재적 활성에 비하여 강화된, 퓨트레신 생산용 형질전환 메탄자화균.
The activity of spermidine synthase is weakened or inactivated compared to the intrinsic activity, and the activity of ornithine decarboxylase constitutive and putrescine transporter is compared to the intrinsic activity Enhanced, transformed methane magnetizing bacteria for putrescine production.
제1항에 있어서, 추가로 젖산탈수소효소(lactate dehydrogenase) 및 아세트산인산화효소(acetate kinase) 활성이 내재적 활성에 비해 약화 또는 불활성화된 것인, 형질전환 메탄자화균.
According to claim 1, wherein the lactic acid dehydrogenase (lactate dehydrogenase) and acetic acid phosphatase (acetate kinase) activity is weakened or inactivated compared to the intrinsic activity, the transformed methanogenic bacteria.
제1항에 있어서, 상기 스페르미딘 합성효소를 코딩하는 유전자(speE)는 서열번호 1의 염기서열로 이루어진 것인, 형질전환 메탄자화균.
According to claim 1, The gene encoding the spermidine synthetase ( speE ) is composed of the nucleotide sequence of SEQ ID NO: 1, transformed methane magnetizing bacteria.
제1항에 있어서, 상기 오르니틴 탈카르복실화효소를 코딩하는 유전자(speC)는 서열번호 2의 염기서열로 이루어진 것인, 형질전환 메탄자화균.
According to claim 1, wherein the gene encoding the ornithine decarboxylase ( speC ) is composed of the nucleotide sequence of SEQ ID NO: 2, the transformed methane magnetizing bacteria.
제1항에 있어서, 상기 퓨트레신 운반체를 코딩하는 유전자(potE)는 서열번호 3의 염기서열로 이루어진 것인, 형질전환 메탄자화균.
According to claim 1, The gene encoding the putrescine transporter ( potE ) is composed of the nucleotide sequence of SEQ ID NO: 3, the transformed methanogenic bacteria.
제2항에 있어서, 상기 젖산탈수소효소를 코딩하는 유전자(ldh)는 서열번호 4의 염기서열로 이루어진 것인, 형질전환 메탄자화균.
The method of claim 2, wherein the gene encoding the lactic acid dehydrogenase ( ldh ) is composed of the nucleotide sequence of SEQ ID NO: 4, the transformed methanogenic bacteria.
제2항에 있어서, 상기 아세트산인산화효소를 코딩하는 유전자(ack)는 서열번호 5의 염기서열로 이루어진 것인, 형질전환 메탄자화균.
According to claim 2, wherein the gene encoding the acetic acid phosphatase ( ack ) is composed of the nucleotide sequence of SEQ ID NO: 5, the transformed methanogenic bacteria.
제1항에 있어서, 상기 메탄자화균은 메틸로모나스 속(Methylomonas), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로븀 속(Methylacidimicrobium) 또는 메틸로마이크로븀(Methylomicrobium) 속 균주인, 형질전환 메탄자화균.
The method of claim 1 wherein the methane magnetization bacteria methyl Pseudomonas genus (Methylomonas), methyl bakteo in (Methylobacter), methyl Rhodococcus genus (Methylococcus), methyl Los Blow in (Methylosphaera), in methyl local bushes (Methylocaldum) in , Methyloglobus , Methylosarcina , Methyloprofundus , Methylothermusmus , Methylohalobius , Methylohalobius The genus Logea ( Methylogaea ), Methylomarinum , Methylovulum , Methylomarinovum , Methylorubrum , Methyloparacoccus , Methylosinus , Methylocystis , Methylocella , Methylocapsa , Methylofurula, Methylacidiphilum , Methyl acid microphone Transgenic methane magnetizing bacteria, which are strains of the genus Lobium ( Methylacidimicrobium ) or Methylomicrobium .
제1항에 있어서, 상기 메탄자화균은 메틸로마이크로븀 알칼리필룸(Methylomicrobium alcaliphilum) 20Z인, 형질전환 메탄자화균.
According to claim 1, wherein the methane magnetization bacteria are methylomicrobium alkalphilum ( Methylomicrobium alcaliphilum ) 20Z, transformed methane magnetization bacteria.
제1항에 있어서, 상기 형질전환 메탄자화균은 야생형에 비해 퓨트레신 생산능이 향상된 것인, 형질전환 메탄자화균.
The method of claim 1, wherein the transformed methane magnetization bacteria, the enhanced ability to produce putrescine compared to the wild type, transformed methane magnetization bacteria.
제1항에 있어서, 상기 형질전환 메탄자화균은 적응 진화(adaptive evolution)에 의해 퓨트레신 내성이 향상된 것인, 형질전환 메탄자화균.
According to claim 1, wherein the transformed methane magnetization bacteria, the adaptive evolution (adaptive evolution) will improve the putrescine resistance, the transformed methane magnetization bacteria.
C1 탄소원을 포함하는 배양액에 제1항 내지 제11항 중 어느 한 항의 형질전환 메탄자화균을 배양하는 단계를 포함하는, 퓨트레신의 제조방법.
A method for producing putrescine, comprising culturing the transformed methane magnetizing bacteria of any one of claims 1 to 11 in a culture medium containing a C1 carbon source.
제12항에 있어서, 상기 배양액으로부터 퓨트레신을 회수하는 단계를 추가로 포함하는, 퓨트레신의 제조방법.
The method of claim 12, further comprising recovering putrescine from the culture medium.
제12항에 있어서, 상기 배양액에 NH4Cl을 추가로 첨가하여 퓨트레신의 생산량을 증가시킨 것인, 퓨트레신의 제조방법.
The method of claim 12, wherein NH 4 Cl is additionally added to the culture medium to increase the amount of putrescine produced.
제1항 내지 제11항 중 어느 한 항의 형질전환 메탄자화균을 포함하는, 퓨트레신 생산용 조성물.
A composition for the production of putrescine, comprising the transformed methane magnetizing bacteria of any one of claims 1 to 11.
KR1020180120754A 2018-10-10 2018-10-10 Transformed methanotrophs for producing putrescine and uses thereof KR102120994B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180120754A KR102120994B1 (en) 2018-10-10 2018-10-10 Transformed methanotrophs for producing putrescine and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180120754A KR102120994B1 (en) 2018-10-10 2018-10-10 Transformed methanotrophs for producing putrescine and uses thereof

Publications (2)

Publication Number Publication Date
KR20200040981A true KR20200040981A (en) 2020-04-21
KR102120994B1 KR102120994B1 (en) 2020-06-10

Family

ID=70456389

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180120754A KR102120994B1 (en) 2018-10-10 2018-10-10 Transformed methanotrophs for producing putrescine and uses thereof

Country Status (1)

Country Link
KR (1) KR102120994B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052189A (en) * 2020-10-20 2022-04-27 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188432B1 (en) * 2008-04-10 2012-10-08 한국과학기술원 Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188432B1 (en) * 2008-04-10 2012-10-08 한국과학기술원 Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052189A (en) * 2020-10-20 2022-04-27 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs

Also Published As

Publication number Publication date
KR102120994B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
Haque et al. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives
ES2554805T3 (en) Zymomonas xylitol synthesis mutant that uses xylose for ethanol production
CN106916857B (en) A method of producing L-glufosinate-ammonium
ES2709217T3 (en) Enzymes and methods for the synthesis of styrene
Imanaka Molecular bases of thermophily in hyperthermophiles
CN106957850B (en) Genetically engineered bacterium for producing phospholipase D and construction method and application thereof
CN109072262A (en) For producing the improved biological method of aromatic yl acid ester
CN105112436B (en) A kind of full biological synthesis method of adipic acid
CN114381415B (en) Gene recombination strain for high-yield PHA and construction method thereof
BR112020002790A2 (en) camp receptor protein variant, polynucleotide, vector, escherichia microorganism, method for producing an l-amino acid, and, use of a receptor protein variant
KR101954530B1 (en) Recombinant microorganism for producing succinic acid from methane and uses thereof
RU2579689C1 (en) Production of cysteine or its derivative with application of new o-phosphoserinesulphhydrilase
KR102120994B1 (en) Transformed methanotrophs for producing putrescine and uses thereof
US9783581B2 (en) Method for producing plastic raw material from blue-green algae
CN104673814B (en) A kind of L threonine aldolases for coming from enterobacter cloacae and its application
US10480003B2 (en) Constructs and systems and methods for engineering a CO2 fixing photorespiratory by-pass pathway
JP5988212B2 (en) Method for producing triacylglycerol highly productive algae
JP5946080B2 (en) Method for producing plastic raw materials and related substances in cyanobacteria
CN114854659B (en) Ergothioneine production process and application thereof
Xu et al. Metabolic engineering of Escherichia coli for agmatine production
JP6778870B2 (en) Cyanobacteria mutant strain and succinic acid and D-lactic acid production method using it
RU2756113C1 (en) Recombinant plasmid dna pmf230-gsmt/dmt encoding chimeric betaine biosynthesis enzyme and recombinant strain of pseudomonas denitrificans/pmf230-gsmt/dmt - betaine producer
BR112016000541B1 (en) METHOD FOR PRODUCTION OF METHACRYL-COA AND CONVERSION OF METHACRYL-COA INTO METHACRYL ACID OR METHACRYLATE ESTER
KR102120995B1 (en) Transformed methanotrophs for producing 4-Hydroxybutyric acid and uses thereof
KR20210045640A (en) Method for producing gamma-butyric acid using methanotrophic bacteria

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant