KR20200037548A - 차량 충전 로봇 - Google Patents

차량 충전 로봇 Download PDF

Info

Publication number
KR20200037548A
KR20200037548A KR1020180116897A KR20180116897A KR20200037548A KR 20200037548 A KR20200037548 A KR 20200037548A KR 1020180116897 A KR1020180116897 A KR 1020180116897A KR 20180116897 A KR20180116897 A KR 20180116897A KR 20200037548 A KR20200037548 A KR 20200037548A
Authority
KR
South Korea
Prior art keywords
charging
vehicle
robot
vehicle charging
information
Prior art date
Application number
KR1020180116897A
Other languages
English (en)
Inventor
이재섭
이경식
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020180116897A priority Critical patent/KR20200037548A/ko
Priority to US16/513,762 priority patent/US11312257B2/en
Publication of KR20200037548A publication Critical patent/KR20200037548A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/57Charging stations without connection to power networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • Y02T90/121
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Navigation (AREA)

Abstract

일 실시예에 따른 차량 충전 로봇의 제어 방법은 지도 정보 내의 목표 위치를 획득하는 단계; 제1 영상 정보 및 관성 측정 장치(IMU)의 센싱 정보에 기초하여 지도 정보 내 현재 위치의 후보 영역을 추정하는 단계; 제2 영상 정보에 기초하여 후보 영역 내 현재 위치를 추정하는 단계; 및 목표 위치, 및 현재 위치에 기초하여, 차량 충전 로봇을 제어하는 단계를 포함한다.

Description

차량 충전 로봇{Vehicle charging robot}
아래 실시예들은 차량 충전 로봇에 관한 것으로, 예를 들어 GPS신호를 수신할 수 없는 환경에서도 자율 주행이 가능한 차량 충전 로봇에 관한 것이다.
일반적으로 전기 자동차는 1회 충전으로 주행할 수 있는 거리가 연료에 의해 주행하는 자동차에 비해 상대적으로 짧다. 따라서, 충전작업의 편의성은 전기 자동차 분야에서 중요한 문제로 대두된다. 기존의 충전소에 구비된 충전 장치는 특정 위치에 고정되어 있기 때문에, 충전을 원하는 사용자는 해당 위치로 전기 자동차를 이동시켜야 한다. 만약 충전 장치가 다른 사용자에 의하여 점유된 경우, 사용자는 다른 충전 장치를 찾아 이동하거나, 해당 충전 장치가 사용 가능해질 때까지 대기를 해야 한다.
일 측에 따른 차량 충전 로봇의 제어 방법은 지도 정보를 획득하는 단계; 상기 지도 정보 내의 목표 위치를 획득하는 단계; 영상 센서로부터 수신한 제1 영상 정보 및 관성 측정 장치(IMU)의 센싱 정보에 기초하여 상기 지도 정보 내 현재 위치의 후보 영역을 추정하는 단계; 상기 영상 센서로부터 수신한 제2 영상 정보에 기초하여 상기 후보 영역 내 상기 현재 위치를 추정하는 단계; 및 상기 목표 위치, 및 상기 현재 위치에 기초하여, 상기 차량 충전 로봇을 제어하는 단계를 포함한다.
상기 차량 충전 로봇의 제어 방법은 미리 정해진 주기로 상기 현재 위치에 기초하여 상기 관성 측정 장치의 누적 오차를 리셋하는 단계를 더 포함할 수 있다.
상기 제1 영상 정보는 상기 차량 충전 로봇을 중심으로 제1 거리 이내에 위치하는 객체의 정보를 포함하고, 상기 제2 영상 정보는 상기 차량 충전 로봇을 중심으로 제2 거리 이내에 위치하는 객체의 정보를 포함하며, 상기 제1 거리는 상기 제2 거리보다 길 수 있다.
상기 후보 영역을 추정하는 단계는 상기 제1 영상 정보에 기초하여 제1 로컬 지도를 생성하는 단계; 상기 제1 로컬 지도와 상기 지도 정보를 비교하여 하나 이상의 현재 위치의 후보 영역을 생성하는 단계; 상기 하나 이상의 후보 영역 중, 상기 관성 측정 장치의 센싱 정보에 부합하는 후보 영역을 상기 현재 위치의 후보 영역으로 추정하는 단계를 포함할 수 있다.
상기 차량 충전 로봇의 제어 방법은 상기 지도 정보 내의 초기 위치를 획득하는 단계를 더 포함하고, 상기 후보 영역을 추정하는 단계는 상기 초기 위치에 더 기초하여, 상기 후보 영역을 추정하는 단계를 포함할 수 있다.
상기 현재 위치를 추정하는 단계는 상기 제2 영상 정보에 기초하여 제2 로컬 지도를 생성하는 단계; 및 상기 제2 로컬 지도 및 상기 지도 정보를 비교하여 상기 후보 영역에 포함되는 상기 현재 위치를 추정하는 단계를 포함할 수 있다.
상기 차량 충전 로봇의 제어 방법은 상기 목표 위치에 도달한 뒤에 대상 차량을 충전하는 단계를 더 포함할 수 있다.
상기 대상 차량을 충전하는 단계는 상기 대상 차량의 충전 인입구의 위치를 인식하는 단계; 유선충전이 가능한지 판단하는 단계; 유선충전이 가능할 경우, 로봇 팔을 이용해 충전용 케이블을 상기 대상 차량의 충전 인입구에 인입하여, 전원을 상기 대상 차량에 공급하는 단계; 유선충전이 불가능할 경우, 무선 충전 장치에 포함된 1차측 코일을 충전용 상기 대상 차량에 포함된 2차측 코일의 중심 축에 일치시켜, 전원을 상기 대상 차량에 공급하는 단계를 포함할 수 있다.
상기 차량 충전 로봇의 제어 방법은 상기 지도 정보, 및 상기 목표 위치 정보를 V2X(Vehicle to Everything) 통신을 통해 획득하는 단계를 더 포함할 수 있다.
상기 차량 충전 로봇의 제어 방법은 대상 차량의 충전 요금을 정산하는 단계를 더 포함할 수 있다.
상기 차량 충전 로봇의 제어 방법은 대상 차량 충전을 완료한 후, 초기 위치로 이동하는 단계를 더 포함할 수 있다.
일 측에 따른 차량 충전 로봇은 제1 영상 정보 및 제2 영상 정보를 생성하는 영상 센서; 가속도를 측정하는 관성 측정 장치; 통신 모듈; 및 프로세서를 포함한다. 상기 통신 모듈은 지도 정보, 및 목표 위치를 획득할 수 있다. 상기 프로세서는 상기 영상 센서로부터 수신한 상기 제1 영상 정보 및 상기 관성 측정 장치의 센싱 정보에 기초하여 상기 지도 정보 내 현재 위치의 후보 영역을 추정하고, 상기 영상 센서로부터 수신한 상기 제2 영상 정보에 기초하여 상기 후보 영역 내 상기 현재 위치를 추정하며, 상기 목표 위치 및 상기 현재 위치에 기초하여 상기 차량 충전 로봇을 제어할 수 있다.
상기 차량 충전 로봇은 레이더 센서; 및 온도 감지 센서 중 적어도 하나를 더 포함하고, 상기 레이더 센서 및 상기 온도 감지 센서 중 적어도 하나를 이용하여 장애물의 위치를 파악할 수 있다.
상기 차량 충전 로봇은 유선 충전용 유선 충전 장치를 더 포함하고, 상기 유선 충전 장치는 대상 차량에 전원을 공급하는 충전용 케이블; 상기 충전용 케이블과 구조적으로 결합되어 있으며, 상기 충전용 케이블을 상기 대상 차량의 충전 인입구에 인입시키는 로봇 팔; 상기 충전용 케이블을 상기 대상 차량의 충전 인입구의 위치에 맞추도록 상기 로봇 팔을 제어하는 모터부; 및 상기 충전용 케이블을 상기 대상 차량의 충전 인입구에 일정한 진입 각도를 유지하면서 인입시키도록 제어하는 제어 케이블을 포함할 수 있다.
도 1은 일 실시예에 따른 차량 충전 로봇의 동작을 도시한 도면.
도 2는 일 실시예에 따른 차량 충전 로봇을 도시한 도면.
도 3은 일 실시예에 따른 차량 충전 로봇의 제어 방법의 동작 흐름도.
도 4는 일 실시예에 따른 영상 센서만 이용하여 현재 위치를 추정하는 방법을 도시한 도면.
도 5는 일 실시예에 따른 관성 측정 장치를 사용하여 후보 영역을 추정하는 방법을 도시한 도면.
도 6은 시간의 흐름에 따른 관성 측정 장치의 오차를 도시한 그래프.
도 7은 일 실시예에 따른 관성 측정 장치의 누적 오차 리셋 방법을 도시한 도면.
도 8은 일 실시예에 따른 유선 충전 장치를 도시한 도면.
도 9a는 일 실시예에 따른 로봇 팔의 동작 방법을 도시한 도면.
도 9b는 일 실시예에 따른 제어 케이블의 동작 방법을 도시한 도면.
도 9c는 일 실시예에 따른 공압 실린더의 동작 방법을 도시한 도면.
도 9d는 일 실시예에 따른 충전용 케이블의 구조를 도시한 도면.
본 명세서에서 개시되어 있는 특정한 구조적 또는 기능적 설명들은 단지 기술적 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 실시예들은 다양한 다른 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.
제1 또는 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 이해되어야 한다. 예를 들어 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 표현들, 예를 들어 "~간의에"와 "바로~간의에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 일 실시예에 따른 차량 충전 로봇의 동작을 도시한 도면이다.
일 실시예에 따른 차량 충전 로봇(110)은 자율 주행이 가능한 전기 자동차 충전 장치를 의미할 수 있다. 예를 들어, 차량 충전 로봇(110)은 자율 주행이 가능한 무인 차량일 수 있다. 다만, 차량 충전 로봇(110)의 실시예는 상술한 예시에 제한되지 않고, 설계 의도에 따라 다양하게 변형될 수 있다.
일 실시예에 따른 대상 차량(130)은 전기 에너지 공급을 필요로 하는 전기 자동차일 수 있다. 전기 자동차는 자동차의 구동 에너지를 전기 에너지로부터 얻는 자동차로 전기 모터 및 배터리를 포함할 수 있다. 전기 자동차는 전기 에너지만으로 구동력을 얻는 전기 전용 차량 및 하이브리드 차량을 포함할 수 있다. 하이브리드 차량은 전기 에너지를 이용하여 구동할 수도 있고, 석유 및 수소 등의 에너지를 함께 사용할 수 있는 차량일 수 있다. 대상 차량(130)은 주차장 등 미리 정해진 주차공간 내에 주차되어 있을 수 있다. 일 실시예에 따른 주차장은 실내 주차장과 실외 주차장을 모두 포함하며, 주차장은 명시적으로 주차장으로 명명된 장소 뿐만 주차가 가능한 공간이 있는 장소를 의미할 수 있다.
도 1을 참고하면, 일 실시예에 따른 차량 충전 로봇(110)은 지도 정보와 센서 정보에 기초하여, 대상 차량(130)이 위치한 지점까지 자율 주행을 통해 이동할 수 있다. 대상 차량(130)이 위치한 지점을 목표 위치라 할 수 있다. 대상 차량(130)이 위치한 목표 위치에 도달한 차량 충전 로봇(110)은 대상 차량(130)에 전기 에너지를 공급할 수 있다.
차량 충전 로봇(110)은 어떠한 공간에서든지 동작할 수 있다. 예를 들어, 실내 주차장 등 GPS 신호를 수신할 수 없는 상황 또는 다양한 요인으로 인하여 GPS 신호를 이용할 수 없는 환경에서도 동작할 수 있기 때문에, GPS 기반의 자율 주행 로봇에 비해 활용 영역이 넓을 수 있다.
차량 충전 로봇(110)은 주차장 등 전기 자동차충전이 필요한 공간에 배치될 수 있다. 차량 충전 로봇(110)의 충방전 성능과 주차장에 수용 가능한 전기 자동차의 수 등을 고려하여 적절한 수의 차량 충전 로봇이 주차장에 배치될 수 있다.
차량 충전 로봇(110)을 이용하여 대상 차량(130)에 전기 에너지를 공급하는 경우에는, 전기 자동차보다 적은 수의 차량 충전 로봇(110)으로 충전할 수 있기 때문에 비용이 절감될 수 있다.
차량 충전 로봇(110)은 사용자의 요청이 있기 전까지 충전 스테이션에서 충전될 수 있다. 충전 스테이션의 위치는 차량 충전 로봇(110)의 자율 주행 시 초기 위치일 수 있다. 충전 스테이션에서 주차장에 관한 지도 정보를 미리 획득할 수 있다.
차량 충전 로봇(110)은 사용자로부터 대상 차량의 충전 요구를 입력 받을 수 있다. 예를 들어, 사용자는 스마트 디바이스에 설치된 어플리케이션을 이용하여 대상 차량의 충전 요구를 입력할 수 있다. 차량 충전 로봇(110)은 대상 차량이 주차된 위치에 해당하는 목표 위치를 획득하고, 자율 주행을 통해 목표 위치까지 이동할 수 있다. 목표 위치에 도달한 차량 충전 로봇은, 대상 차량을 충전하고, 대상 차량의 충전 요금을 정산할 수 있다. 예를 들어, 차량 충전 로봇은 사용자 단말로 충전 요금을 통보할 수 있다. 대상 차량 충전을 완료한 후, 차량 충전 로봇(110)은 초기 위치로 복귀하거나, 다음 차량의 충전을 위하여 다음 목표 위치로 이동할 수 있다.
도 2는 일 실시예에 따른 차량 충전 로봇을 도시한 도면이다.
도 2를 참조하면, 일 실시예에 따른 차량 충전 로봇은 센서(210), 통신 모듈(220), 프로세서(230)를 포함한다. 차량 충전 로봇은 유/무선 충전 장치(240), 메모리(250), 배터리(260), 및 블루투스 모듈(270)을 더 포함할 수 있다.
센서(210)는 영상 센서와 관성 측정 장치(IMU: Inertial Measurement Unit)를 포함한다. 센서(210)는 레이더(Rader) 센서, 라이다(Lidar) 센서, 및/또는 온도 감지 센서를 더 포함할 수 있다. 온도 감지 센서는 열적외선(Thermal IR) 센서를 포함할 수 있다.
영상 센서는, 일 예로, 카메라일 수 있다. 영상센서는 자율주행이 가능한 차량 충전 로봇에 구비되어, 차량 주변의 공간(예를 들어, 상기 차량이 주행하는 주행로, 표지판 등)에 대응하는 영상 정보를 획득할 수 있다.
관성 측정 장치(IMU)는 가속도를 측정하는 장치로, 가속도 센서, 자이로 센서, 및/또는 지자계 센서를 포함할 수 있다. 관성 측정 장치는 가속도계, 각속도계, 지자기계 및 고도계 등을 이용하여 보행자 및 이동물체의 움직임 상황을 인식할 수 있다.
레이더 센서는 전파를 이용하여 주변 차량이나 장애물을 인식할 수 있다. 온도 감지 센서는 온도 감지 센서는 물체의 열을 감지하여 주변 차량이나 장애물을 인식할 수 있다. 라이다 센서는 빛을 이용하여 주변 차량이나 장애물을 인식할 수 있다.
통신 모듈(220)은, 일 예로, V2X(Vehicle to Everything) 통신 모듈일 수 있다. V2X 통신 기술은 차량이 유/무선망을 통해 다른 차량 및 도로 등 인프라가 구축된 사물과 정보를 교환하는 기술을 의미할 수 있다. V2X 통신은 V2V, V2I, V2N을 포함할 수 있다.
V2V는 차량 간에 무선으로 정보를 주고받는 기술일 수 있다. 예를 들어, V2V 통신을 통해 차량 충전 로봇과 대상 차량 간에 목표 위치를 주고받을 수 있다.
V2I는 차량과 도로 인프라 간에 무선으로 정보를 주고받는 기술을 말한다. 예를 들어, V2I 통신을 통해 차량 충전 로봇내에 설치된 통신 모듈(220)과 정보를 서로 교환할 수 있는 일종의 기지국을 설치하여, 차량 충전 로봇으로부터 주행 정보를 수집하고, 이를 중앙 서버에서 분석하여 분석한 결과를 차량 충전 로봇에게 제공할 수 있다.
V2N은 차량과 모바일 기기간에 무선으로 정보를 주고받는 기술일 수 있다. 예를 들어, V2N은 차량 내의 네비게이션 시스템과 같은 기기들과 스마트폰, 태블릿 등의 각종 모바일 기기를 연결하는 기술로 모바일 기기를 지닌 개인이 서로 정보를 교환하여 차량과 보행자가 가까워지면 양쪽 모두에게 경고음을 발생하여 사고를 방지할 수 있다.
메모리(250)는 차량 충전 로봇의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 메모리(250)는 차량 충전 로봇에서 구동되는 다수의 응용 프로그램, 차량 충전 로봇의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는 무선 통신을 통해 외부 서버로부터 다운로드 될 수도 있고, 출고 당시부터 차량 충전 로봇 상에 존재할 수 있다. 응용 프로그램은, 메모리(250)에 저장되고, 차량 충전 로봇 상에 설치되어, 프로세서(230)에 의하여 차량 충전 로봇의 동작(또는 기능)을 수행하도록 구동될 수 있다.
프로세서(230)는 응용 프로그램과 관련된 동작 외에도, 통상적으로 차량충전 로봇의 전반적인 동작을 제어한다. 프로세서(230)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보, 또는 영상 등을 처리하거나, 메모리(250)에 저장된 응용 프로그램을 구동함으로써, 사용자에게 적절한 정보 또는 기능을 제공 또는 처리할 수 있다.
유/무선 충전 장치(240)는 배터리(260)에 저장된 전력을 대상 차량에 전원을 공급할 수 있다. 예를 들어, 유/무선 충전 장치(240)는 대상 차량의 유선 충전을 위한 구조의 로봇 팔을 포함할 수 있다. 유/무선 충전 장치(240)의 자세한 구조는 후술하겠다.
블루투스 모듈(270)은 대상 차량과의 근거리 통신을 수행할 수 있다. 예를 들어, 블루투스 모듈(270)을 통하여 대상 차량의 정보를 수신하거나, 대상 차량의 충전 인입구를 오픈하는 요청을 전송할 수 있다. 설명의 편의 상 블루투스 모듈(270)을 예로 들었으나, 블루투스 이외에도 다양한 근거리 통신기술이 적용될 수 있다.
차량 충전 로봇(200)은 목표 위치로 이동하고, 대상 차량 충전을 완료한 후, 초기 위치 혹은 다음 목표 위치로 이동하는데 필요한 이동 수단을 더 포함할 수 있다.
일 실시예에 따르면, 차량 충전 로봇(200)은 GPS 신호를 수신할 수 없는 환경에서도 자율 주행을 통해 대상 차량에 전원을 공급할 수 있다. 아래에서, 차량 충전 로봇(200)의 제어 방법을 구체적으로 설명하기로 한다.
도 3은 일 실시예에 따른 차량 충전 로봇의 제어 방법의 동작 흐름도이다.
일 실시예에 따르면, 영상 센서와 관성 측정 장치(IMU)를 상보적으로 사용하여 차량 충전 로봇의 현재 위치를 추정할 수 있다. 관성 측정 장치(IMU)를 이용한 위치 추정 기법의 경우, 위치 추정의 이터레이션이 증가함에 따라 (예를 들어, 시간의 흐름에 따라, 혹은 이동거리가 증가함에 따라) 오차가 누적될 수 있다. 따라서, 관성 측정 장치(IMU)의 누적 오차가 작을 때에는, 차량 충전 로봇은 관성 측정 장치(IMU)로부터 획득한 정보를 이용하여 영상 센서로부터 획득한 정보를 보완할 수 있다. 한편, 관성 측정 장치(IMU)의 누적 오차가 클 때에는, 차량 충전 로봇은 영상 센서로부터 획득한 정보에 기초하여 관성 측정 장치(IMU)의 누적 오차를 리셋(reset)할 수 있다. 차량 충전 로봇은 위치 추정의 이터레이션을 지시하는 정보(예를 들어, 위치 추정 횟수, 시간, 또는 이동거리 등)에 기초하여, 관성 측정 장치(IMU)의 누적 오차를 리셋할 시점을 결정할 수 있다. 차량 충전 로봇은 관성 측정 장치(IMU)의 누적 오차를 주기적으로 리셋할 수 있다. 관성 측정 장치(IMU)의 누적 오차를 리셋하는 동작에 관한 보다 상세한 사항은 도 6 및 도 7을 참조하여 후술한다.
영상 센서와 관성 측정 장치(IMU)를 상보적으로 사용하는 방식은 다양하게 변형될 수 있다. 예를 들어, 영상 센서로부터 획득한 정보의 신뢰도보다 관성 측정 장치(IMU)로부터 획득한 정보의 신뢰도가 높은 경우에는, 영상 센서로부터 획득한 정보를 광성 측정 장치(IMU)로부터 획득한 정보로 영상 센서로부터 획득한 정보를 보정하여 현재 위치를 추정할 수 있다. 반대로, 관성 측정 장치(IMU)의 오차가 누적되어 영상 센서로부터 획득한 정보의 신뢰도보다 떨어지는 경우에는, 영상 센서로부터 획득한 정보를 통해 차량 충전 로봇의 현재 위치를 추정하고, 관성 측정 장치(IMU)를 리셋 할 수 있다.
일 실시예에 따르면, 영상 센서로부터 영상 정보를 획득할 수 있다. 영상 정보는 영상 센서가 촬영한 영상에 포함되어 있는 정보로, 차량 충전 로봇을 중심으로 제1 거리 이내에 위치한 객체들의 정보를 포함하는 제1 영상 정보와 차량 충전 로봇을 중심으로 제2 거리 이내에 위치한 객체들의 정보를 포함하는 제2 영상 정보를 포함할 수 있다. 제1 거리는 제2 거리보다 클 수 있다. 제1 영상 정보와 제2 영상 정보는 서로 다른 영상 센서 혹은 서로 다른 설정의 영상 센서로부터 각각 획득될 수 있다. 경우에 따라 단일 영상 센서로부터 획득된 단일 영상 정보로부터 제1 영상 정보 및 제2 영상 정보가 추출될 수도 있다.
일 실시예에 따르면, 영상 센서를 통해 촬영한 영상에서 미리 정해진 검색 반경 내부만 영상 정보로 사용할 수 있다. 예를 들어, 통상적으로 자율 주행 차량용 카메라는 물체의 경우 100m, 보행자는 40m 정도까지 감지할 수 있다. 40m를 검색 반경으로 하는 경우, 촬영한 영상 중, 40m 내부에 있는 정보를 영상 정보로 획득할 수 있다.
일 실시예에 따른 영상 센서는 복수개의 영상 정보를 이용하여 현재 위치를 보다 정밀하게 추정할 수 있다. 예를 들어 영상 센서는 영상 인식 반경이 상대적으로 넓은 영상 정보를 통해 대략적인 현재 위치 영역을 추출하고, 상대적으로 좁은 영상 정보를 통해 정밀한 현재 위치를 추출할 수 있다.
전술한 것과 같이, 일 실시예에 따른 영상 정보는 검색 반경에 따라 제1 영상 정보와 제2 영상 정보로 구분할 수 있다. 제1 영상 정보의 검색 반경이 제2 영상 정보의 검색 반경보다 넓을 수 있다. 예를 들어, 제1 영상 정보의 검색 반경은 20m, 제2 영상 정보의 검색 반경은 4m일 수 있다. 검색 반경 20m와 4m는 예시에 불과하고, 이에 한정되지 않을 수 있다. 주차장의 넓이, 카메라의 성능 등을 고려하여 검색 반경을 결정할 수 있다.
또는, 제1 영상 정보는 제1 카메라를 통해 획득한 영상 정보, 제2 영상 정보는 제2 카메라를 통해 획득한 영상 정보일 수 있다. 제1 카메라, 제2 카메라 두 대의 카메라를 사용하는 경우, 제2 영상 정보의 화각이 제1 영상 정보의 화각보다 넓을 수 있다. 더 넓은 화각을 가진 영상 정보를 이용하는 경우, 더 많은 양의 정보를 취득할 수 있다.
일 실시예에 따른 프로세서는 영상 정보에 기초하여 로컬 지도를 생성할 수 있다. 로컬 지도는 영상 정보에 기초하여 생성된 지도로, 영상 정보 범위 내에서 추출된 특징들을 포함하는 지도일 수 있다. 제1 영상 정보에 기초하여 생성된 로컬 지도는 제1 로컬 지도, 제2 영상 정보에 기초하여 생성된 로컬 지도는 제2 로컬 지도일 수 있다. 차량 충전 로봇은 주차장 전 영역에 해당하는 지도 정보를 미리 다운 받아 획득할 수 있다. 로컬 지도는 차량 충전 로봇이 동작함에 따라 생성되는 특정 범위의 정보를 포함하는 지도로, 미리 획득한 지도 정보와 비교를 통해 현재 위치에 대한 정보를 추출할 수 있다.
도 3을 참조하면, 일 실시예에 따른 차량 충전 로봇의 현재 위치 추정 방법은 제1 영상 정보를 획득하는 단계(310), 제1 영상 정보에 기초하여 제1 로컬 지도를 생성하는 단계(320), 제1 로컬 지도와 미리 획득한 지도 정보(예를 들어, 동적 정밀 지도)를 비교하여 하나 이상의 현재 위치의 후보 영역을 생성하는 단계(330), 관성 측정 장치의 센싱 정보를 획득하는 단계(340), 하나 이상의 현재 위치의 후보 영역 중, 관성 측정 장치의 센싱 정보에 부합하는 현재 위치의 후보 영역을 추정하는 단계(350), 제2 영상 정보를 획득하는 단계(360), 제2 영상 정보에 기초하여 제2 로컬 지도를 생성하는 단계(370), 제2 로컬 지도 및 미리 획득한 지도 정보를 비교하여 후보 영역에 포함되는 현재 위치를 추정하는 단계(380), 및 현재 위치에 기초하여 관성 측정 장치의 누적 오차를 리셋하는 단계(390)를 포함할 수 있다.
도 4는 일 실시예에 따른 영상 센서만 이용하여 현재 위치를 추정하는 방법을 도시한 도면이다.
도 4를 참조하면, 차량 충전 로봇은 영상 센서를 이용하여 제1 영상 정보(450),와 제2 영상 정보(440)를 획득할 수 있다. 차량 충전 로봇은 주차장 등 유사한 지형 지물이 반복되는 지역에서 동작할 수 있다. 예를 들어, 차량 충전 로봇은 주차 공간, 주행로, 보도 블록 등이 일정한 간격으로 반복되는 구조를 갖는 주차장에서 동작할 수 있다.
일반적인 경우, 영상 정보의 검색 반경이 좁을수록 현재 위치 추정 오차가 줄어들 수 있다. 예를 들어, 영상 정보의 검색 반경이 20m인 경우의 오차는 1m, 검색 반경이 10m인 경우의 오차는 25cm, 검색 반경이 4m인 경우의 오차는 4cm로, 오차율이 각각 5%, 2.5%, 1%로 줄어들 수 있다.
차량 충전 로봇은 영상 센서를 통해 생성된 로컬 지도와 미리 획득한 지도 정보와 비교를 통해 현재 위치에 대한 정보를 추출할 수 있다.
실시예들에 따르면, 차량 충전 로봇이 동작하는 환경 (예를 들어, 주차장 등 유사한 지형 지물이 반복되는 환경 등) 에서, 로컬 지도와 지도 정보를 매핑하는 과정에서 하나 이상의 현재 위치의 후보 영역이 검출될 수 있다. 예를 들어, 제1 영상 정보(450)에 기초하여 생성된 제1 로컬 지도와 미리 획득한 지도 정보와 비교하는 경우 위치(420), 위치(410), 위치(430)이 현재 위치의 후보 영역이 될 수 있다.
차량 충전 로봇은 하나 또는 그 이상의 후보 영역들 중 어느 하나의 후보 영역을 선택하는데 관성 측정 장치를 이용할 수 있다.
도 5는 일 실시예에 따른 관성 측정 장치를 사용하여 후보 영역을 추정하는 방법을 도시한 도면이다.
도 5를 참조하면, 차량 충전 로봇은 지도 정보를 획득할 수 있고, 지도 정보 내의 초기 위치(510)를 획득할 수 있다.
일 실시예에 따른 차량 충전 로봇은 제1 영상 정보(550)를 획득하고, 제1 영상 정보(550)에 기초하여 제1 로컬 지도를 생성할 수 있다. 생성된 제1 로컬 지도와 미리 획득한 지도 정보를 비교할 수 있다. 도 5를 참조하면, 주차 공간, 주행로, 보도 블록 등이 일정한 간격으로 반복되는 구조를 갖는 주차장에서 차량 동작 로봇이 동작하기 때문에, 하나 이상의 현재 위치의 후보 영역이 생성될 수 있다.
일 실시예에 따른 관성 측정 장치(IMU)는 가속도계, 각속도계, 지자기계 및/또는 고도계를 이용하여 보행자 및 이동물체의 움직임 상황을 인식할 수 있다. 관성 측정 장치를 이용하면, 초기 위치(510)를 알고 있기 때문에 차량 충전 로봇의 움직임에 따라서 관성 측정 장치에 기초한 현재 위치(530)를 추정할 수 있다. 초기 위치에 기초하여, 관성 측정 장치에 기초한 현재 위치(530)를 추정할 수 있고, 이에 기초하여 후보 영역을 추정할 수 있다.
제1 영상 정보(550)에 기초하여 생성된 하나 이상의 현재 위치의 후보 영역 중, 관성 측정 장치에 기초한 현재 위치(530)가 포함된 영역을 현재 위치의 후보 영역으로 추정할 수 있다. '현재 위치'가 아닌 '현재 위치의 후보 영역'인 이유는, 제1 영상 정보(550)에 기초하는 경우 현재 위치 추정 오차가 제2 영상 정보(540)에 기초하는 경우에 비해 크기 때문이다.
하나 이상의 현재 위치의 후보 영역 중, 관성 측정 장치의 센싱 정보에 부합하는 하나의 현재 위치의 후보 영역을 추정하였다면, 제2 영상 정보(540)를 이용하여 후보 영역 내에서 현재 위치를 추정할 수 있다. 예를 들어, 차량 충전 로봇은 제2 영상 정보(540)에 기초하여 제2 로컬 지도를 생성할 수 있다. 차량 충전 로봇은 제2 로컬 지도와 미리 획득한 지도 정보를 비교하고, 제2 로컬 지도와 지도 정보를 매핑하여 후보 영역 내 차량 충전 로봇의 현재 위치를 추정할 수 있다.
차량 충전 로봇은 일차적으로 제1 영상 정보를 통해 현재 위치에 대한 여러 개의 후보 영역을 생성하고, 관성 측정 장치의 센싱 정보를 통해 현재 위치에 대한 여러 개의 후보 영역 중 하나의 후보 영역으로 특정한 후, 제2 영상 정보를 통해 정확한 현재 위치를 추정할 수 있다. 하지만, 관성 측정 장치의 경우 시간이 흐름에 따라 오차가 누적되는 문제가 있을 수 있다. 오차가 누적되는 경우, 관성 측정 장치에 기초한 위치 정보가 부정확할 수 있고, 잘못된 후보 영역을 추정할 수 있다. 도 6을 통해 관성 측정 장치의 오차에 대하여 구체적으로 서술하기로 한다.
도 6은 시간의 흐름에 따른 관성 측정 장치의 오차를 도시한 그래프이다.
도 6를 참조하면, 관성 측정 장치의 오차가 시간이 흐름에 따라 누적되어 특정 시간 이후에는 위치에 대한 정보를 실질적으로 줄 수 없음을 볼 수 있다. 그래프를 참조하면, 관성 측정 장치가 동작한지 10초 이내의 경우에는 실제 위치와 관성 측정 장치가 추정한 위치의 차이가 10cm이내일 수 있다. 하지만 시간이 흐름에 따라 오차가 누적되어, 관성 측정 장치가 동작한지 30초가 경과한 경우에는 실제 위치와 관성 측정 장치가 추정한 위치의 차이가 1m이상일 수 있다. 미리 정해진 특정 시간이 경과하면, 관성 측정 장치에 기초한 위치 정보가 부정확할 수 있기 때문에, 미리 정해진 주기로 관성 측정 장치의 누적 오차를 리셋할 필요가 있다. 관성 측정 장치의 누적 오차는 영상 센서에 기초하여 추정된 현재 위치에 기초하여 리셋할 수 있다. 구체적인 방법은 도 7을 참조하여 서술하기로 한다.
도 7은 일 실시예에 따른 관성 측정 장치의 누적 오차 리셋 방법을 도시한 도면이다.
도 7을 참조하면, 차량 충전 로봇이 동작한지 일정 시간이 경과한 상태에서, 도 5에서 살펴본 방법에 의하여 추정한 현재 위치(710)와 관성 측정 장치에 기초하여 추정된 현재 위치(720)가 상이할 수 있다. 도 6에서 살펴보았듯이, 관성 측정 장치는 일정 시간이 지나면 오차가 누적되기 때문에, 관성 측정 장치에 기초하여 추정된 현재 위치(720)가 부정확할 수 있다. 추정된 현재 위치(710)는 제2 영상 정보(740)에 기초하여 추정된 현재 위치이고, 제2 영상 정보(740)는 좁은 검색 반경을 가지는 영상 정보로, 현재 위치 추정에 대한 정확도가 상대적으로 높을 수 있다. 일정 시간이 경과한 경우, 관성 측정 장치의 누적 오차가 제2 영상 정보에 기초한 현재 위치 추정에 관한 오차보다 커질 수 있다. 예를 들어, 검색 반경이 4m인 영상 정보의 경우, 오차는 4cm로 관성 측정 장치에 기초하여 추정된 위치의 오차에 비해 훨씬 적을 수 있다. 미리 정해진 특정 시간이 경과하면, 관성 측정 장치에 기초한 위치 정보가 영상 정보에 기초한 위치 정보에 비해 부정확할 수 있기 때문에, 미리 정해진 주기로 관성 측정 장치의 누적 오차를 리셋할 필요가 있다.
일 실시예에 따른 차량 충전 로봇은 지도 정보와, 지도 정보 내의 목표 위치(730)를 V2X 통신을 통해 획득하고, 제1 영상 정보(750)에 기초하여 하나 이상의 현재 위치의 후보 영역을 생성하고, 하나 이상의 현재 위치의 후보 영역 중 관성 측정 장치의 센싱 정보에 부합하는 현재 위치의 후보 영역을 추정하며, 제2 영상 정보(740)에 기초하여 후보 영역에 포함되는 현재 위치(710)를 추정하고, 관성 측정 장치의 누적 오차를 리셋하는 과정을 반복하여 목표 위치(730)까지 자율 주행 방법으로 이동할 수 있다.
일 실시예에 따른 차량 충전 로봇은 대상 차량의 사용자의 입력에 따라 목표 위치에 도달한 뒤에, 대상 차량을 충전할 수 있다.
일 실시예에 따른 대상 차량을 충전 방법은 대상 차량의 충전 인입구의 위치를 인식하는 단계, 유선충전이 가능한지 판단하는 단계, 유선충전이 가능할 경우, 로봇 팔을 이용해 충전용 케이블을 대상 차량의 충전 인입구에 인입하여, 전원을 대상 차량에 공급하는 단계, 유선충전이 불가능할 경우, 무선 충전 장치에 포함된 1차측 코일을 충전용 대상 차량에 포함된 2차측 코일의 중심 축에 일치시켜, 전원을 대상 차량에 공급하는 단계를 포함할 수 있다.
충전용 케이블은 전기차량에 전원을 제공하는 수단으로, 전원 공급원과 연결되어 있으며, 끝단은 전기차량의 충전 인입구와 결합하기 위한 연결 단자를 구비할 수 있다.
충전 인입구는 전원 충전을 위해 충전용 케이블과 결합하는 부위에 해당할 수 있다.
차량 충전 로봇의 영상 센서를 이용하여 대상 차량에서 충전 인입구가 위치한 주변 영역을 스캐닝할 수 있다. 차량 충전 로봇의 프로세서는 충전 인입구의 일측에 형성된 형상 및 색상(예를 들어, QR코드 등)을 검출하여, 충전 인입구의 위치를 인식할 수 있다. 또한, 대상 차량의 종류 및 정차 위치에 대한 정보를 기초로 하여, 대상 차량의 충전 인입구의 위치를 인식할 수 있다. 대상 차량의 종류는 사용자로부터 입력 받거나, 메모리에 저장해 놓을 수 있다.
충전 인입구의 위치 인식에 따라, 유선 충전 가부를 판단할 수 있다. 예를 들어, 충전 인입구와 주변 차량과의 간격, 충전 시간 등을 고려하여 유선 충전 가부를 판단할 수 있다. 유선 충전의 경우 무선 충전의 경우보다 충전 효율이 좋기 때문에, 유선 충전이 가능할 경우, 유선 충전을 통해 대상 차량에 전원을 공급할 수 있다.
유선 충전의 경우, 로봇 팔을 이용해 충전용 케이블을 대상 차량의 충전 인입구에 인입하여, 전원을 대상 차량에 공급할 수 있다. 충전용 케이블의 충전 인입구로의 인입에 따라, 상기 충전용 케이블을 통해 전원을 대상 차량에 공급할 수 있다. 충전용 케이블을 통해 공급되는 전원은 대상 차량의 충전용 배터리에 충전될 수 있다.
일 실시예에 따른 차량 충전 로봇은 사람의 개입 없이, 차량 충전 로봇 자체적으로 충전용 케이블을 대상 차량의 충전 인입구에 정확하게 결합할 수 있어야 한다. 예를 들어, 충전 인입구의 위치 인식에 따라 유선 충전 장치를 x, y, z축 방향으로 자유롭게 제어할 수 있으면, 충전용 케이블을 대상 차량의 충전 인입구에 정확하게 결합할 수 있다.
도 8은 일 실시예에 따른 유선 충전 장치를 도시한 도면이다.
도 8을 참조하면, 유선 충전 장치는 충전 케이블(810), 로봇 팔(820), 모터부(830), 제어 케이블(840)을 포함한다. 또한, 유선 충전 장치는 공압 소스(850), 공압 실린더(860), 공압 케이블(870), 소형 카메라(880)를 더 포함할 수 있다.
일 실시예에 따른 로봇 팔(820)은 충전용 케이블(810)과 구조적으로 결합되어 있으며, 평행 사변형 구조를 유지면서 충전용 케이블(810)을 대상 차량의 충전 인입구에 인입시킬 수 있다. 예를 들어, 로봇 팔(820)에 충전용 케이블(810)이 체결수단에 의해 결합되어 있으며, 충전 인입구와 연결되는 충전용 케이블(810)의 연결 단자가 로봇 팔(820)의 끝단에 위치해 있을 수 있다.
일 실시예에 따른 모터부(830)는 충전용 케이블(810)을 대상 차량의 충전 인입구의 위치에 맞추도록 로봇 팔을 제어할 수 있다. 예를 들어, 모터부(830)는 로봇 팔(830)의 관절 제어를 통해 로봇 팔을 움직일 수 있다. 로봇 팔(830)은 크게 두 개의 관절을 가질 수 있다. 유선 충전 장치의 하단, 즉 모터부(830)에 가까운 제1 관절(822)과, 유선 충전 장치의 상단, 즉 충전용 케이블(810)에 가까운 제2 관절(821)이 있을 수 있다. 일반적으로, 제1 관절(822)을 제어하기 위한 제1 모터부와 제2 관절을 제어하기 위한 제2 모터부가 따로 필요할 수 있다. 제2 관절(821)을 제어하기 위한 제2 모터부가 제2 관절(821) 위치에 부착되는 경우 로봇 팔의 무게 증가로 인하여 동작에 한계가 있을 수 있다.
일 실시예에 따른 모터부(830)는 제1 관절(822)을 제어하기 위한 제1 모터부와 제2 관절(821)을 제어하기 위한 제2 모터부를 포함하는 구조로, 로봇 팔의 동작에 무리가 없도록 제1 관절 위치에 부착될 수 있다. 예를 들어, 제1 모터부와 제2 모터부의 축을 일치시켜, 로봇 팔(820)을 경량화할 수 있다.
이 때, 제1 모터부는 제1 관절(822)과 제2 관절(821) 사이의 구동 링크를 구동하고, 제2 모터부는 제1 관절(822)과 제3 관절(823) 사이의 구동 링크를 구동할 수 있다. 로봇 팔(820)은 네 개의 구동 링크들과 네 개의 관절들을 이용하여 평행 사변형을 유지하도록 연결되어 있으며, 이로 인하여 제2 모터부의 구동을 통하여 제2 관절(821)을 제어하는 효과를 가져올 수 있다. 로봇 팔(820)의 움직임과 관련된 보다 상세한 사항은 도 9a를 통하여 후술한다.
일 실시예에 따른 제어 케이블(840)은 충전용 케이블(810)을 대상 차량의 충전 인입구에 일정한 진입 각도를 유지하면서 인입시키도록 제어할 수 있다.
일 실시예에 따른 공압 소스(850), 공압 실린더(860), 공압 케이블(870)을 이용하여 충전 인입구 위치에 맞춰진 충전용 케이블(810)을 삽입할 수 있다.
일 실시예에 따른 소형 카메라(880)는 차량 충전 로봇의 영상 센서를 보조하여 대상 차량에서 충전 인입구가 위치한 주변 영역을 스캐닝하여 보다 세밀하게 충전용 케이블(810)을 삽입할 수 있다.
도 9a는 일 실시예에 따른 로봇 팔의 동작 방법을 도시한 도면이다.
도 9a를 참조하면, 로봇 팔은 제1 구동 링크(911)와 제2 구동 링크(912)를 포함할 수 있다. 구동 링크 제어를 통해 로봇 팔을 상하 좌우로 제어할 수 있다. 예를 들어, 기본 상태의 로봇 팔(910)의 제1 구동 링크(911)를 회전시키고, 제2 구동 링크(912)를 고정시키면, 로봇 팔을 좌우로 제어할 수 있다(920). 기본 상태의 로봇 팔(910)의 제1 구동 링크(911)를 고정시키고, 제2 구동 링크(912)를 회전시키면, 로봇 팔을 상하로 제어할 수 있다(930). 차량 충전 로봇은 제1 구동 링크(911)와 제2 구동 링크(912)를 제어함으로써, 충전용 케이블이 대상 차량의 충전 인입구에 인입되도록 할 수 있다.
도 9b는 일 실시예에 따른 제어 케이블의 동작 방법을 도시한 도면이다.
도 9b를 참조하면, 제어 케이블은 제1 제어 케이블(941)과 제2 제어 케이블(942)을 포함할 수 있다. 충전 케이블이 지면과 최대한 평행한 각도를 유지해야 충전 인입구와 결합할 수 있다. 제어 케이블을 이용하여 충전용 케이블을 대상 차량의 충전 인입구에 일정한 진입 각도를 유지하면서 인입시키도록 제어할 수 있다. 구체적으로, 제어 케이블을 이용하여 로봇 팔의 엔드 이펙터(943)의 자세를 일정하게 유지할 수 있다. 엔드 이펙터(943)는 충전 케이블이 결합된 말단 장치일 수 있다. 예를 들어, 로봇 팔이 위로 올라가는 경우, 제2 제어 케이블(942)이 엔드 이펙터(943)를 아래로 당겨 엔드 이펙터(943)가 올라가는 것을 방지하여, 자세를 일정하게 유지할 수 있다. 로봇 팔이 아래로 내려가는 경우, 제1 제어 케이블(941)이 엔드 이펙터(943)를 위로 당겨 엔드 이펙터(943)가 내려가는 것을 방지하여, 자세를 일정하게 유지할 수 있다.
도 9c는 일 실시예에 따른 공압 실린더의 동작 방법을 도시한 도면이다.
도 9c를 참조하면, 공압 실린더(951)는 공압 케이블(952)을 통해 공압 소스와 연결될 수 있다. 공압 소스를 하단에 설치하여 로봇 팔의 무게를 줄일 수 있다. 공압 실린더(951)는 충전 인입구 위치에 맞춰진 충전용 케이블을 직선 방향으로 제어하여 충전 인입구와 결합할 수 있도록 한다. 일 실시예에 따른 공압 실린더(951)는 자체적으로 공기 쿠션이 있어 충격을 흡수할 수 있다.
도 9d는 일 실시예에 따른 충전용 케이블의 구조를 도시한 도면이다.
도 9d를 참조하면, 충전용 케이블(960)은 충전 플러그(961)를 포함하고, 충전용 케이블(960)은 공압 실린더와 연결될 수 있다. 충전 플러그(961)는 탄성 소재로 구성되어 탄성을 갖는 연결 부위(962, 963)에 의해 반 고정된 형태를 가질 수 있다. 연결 부위(962, 963)는 각각은 양 단의 접촉부재 및 접촉부재 사이의 연결부재를 포함한다. 이 때, 연결부재의 길이는 접촉부재의 길이보다 짧을 수 있다.
충전 플러그(961)가 공압 실린더에 반 고정된 형태를 갖을 수 있기 때문에, 충전 플러그(961)가 충전 인입구에 보다 쉽게 결합하도록 할 수 있다. 예를 들어, 연결 부위(962, 963)은 고무일 수 있고, 충전 플러그(961)가 완벽하게 충전 인입구에 위치하지 않더라도, 충전 플러그(961)가 대략적으로 충전 인입구 근처에 위치한다면 충전 인입구에 결합될 수 있다.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (20)

  1. 차량 충전 로봇의 제어 방법에 있어서,
    지도 정보를 획득하는 단계;
    상기 지도 정보 내의 목표 위치를 획득하는 단계;
    영상 센서로부터 수신한 제1 영상 정보 및 관성 측정 장치(IMU)의 센싱 정보에 기초하여 상기 지도 정보 내 현재 위치의 후보 영역을 추정하는 단계;
    상기 영상 센서로부터 수신한 제2 영상 정보에 기초하여 상기 후보 영역 내 상기 현재 위치를 추정하는 단계; 및
    상기 목표 위치, 및 상기 현재 위치에 기초하여, 상기 차량 충전 로봇을 제어하는 단계
    를 포함하는 차량 충전 로봇의 제어 방법.
  2. 제1항에 있어서,
    미리 정해진 주기로 상기 현재 위치에 기초하여 상기 관성 측정 장치의 누적 오차를 리셋하는 단계를 더 포함하는 차량 충전 로봇의 제어 방법
  3. 제1항에 있어서,
    상기 제1 영상 정보는 상기 차량 충전 로봇을 중심으로 제1 거리 이내에 위치하는 객체의 정보를 포함하고, 상기 제2 영상 정보는 상기 차량 충전 로봇을 중심으로 제2 거리 이내에 위치하는 객체의 정보를 포함하며, 상기 제1 거리는 상기 제2 거리보다 긴, 차량 충전 로봇의 제어 방법.
  4. 제 1항에 있어서,
    상기 후보 영역을 추정하는 단계는
    상기 제1 영상 정보에 기초하여 제1 로컬 지도를 생성하는 단계;
    상기 제1 로컬 지도와 상기 지도 정보를 비교하여 하나 이상의 현재 위치의 후보 영역을 생성하는 단계;
    상기 하나 이상의 후보 영역 중, 상기 관성 측정 장치의 센싱 정보에 부합하는 후보 영역을 상기 현재 위치의 후보 영역으로 추정하는 단계
    를 포함하는 차량 충전 로봇의 제어 방법.
  5. 제1항에 있어서,
    상기 지도 정보 내의 초기 위치를 획득하는 단계를 더 포함하고,
    상기 후보 영역을 추정하는 단계는
    상기 초기 위치에 더 기초하여, 상기 후보 영역을 추정하는 단계
    를 포함하는 차량 충전 로봇의 제어 방법.
  6. 제 1항에 있어서,
    상기 현재 위치를 추정하는 단계는
    상기 제2 영상 정보에 기초하여 제2 로컬 지도를 생성하는 단계; 및
    상기 제2 로컬 지도 및 상기 지도 정보를 비교하여 상기 후보 영역에 포함되는 상기 현재 위치를 추정하는 단계
    를 포함하는 차량 충전 로봇의 제어 방법.
  7. 제 1항에 있어서,
    상기 목표 위치에 도달한 뒤에 대상 차량을 충전하는 단계
    를 더 포함하는 차량 충전 로봇의 제어 방법.
  8. 제 7항에 있어서,
    상기 대상 차량을 충전하는 단계는
    상기 대상 차량의 충전 인입구의 위치를 인식하는 단계;
    유선충전이 가능한지 판단하는 단계;
    유선충전이 가능할 경우, 로봇 팔을 이용해 충전용 케이블을 상기 대상 차량의 충전 인입구에 인입하여, 전원을 상기 대상 차량에 공급하는 단계;
    유선충전이 불가능할 경우, 무선 충전 장치에 포함된 1차측 코일을 충전용 상기 대상 차량에 포함된 2차측 코일의 중심 축에 일치시켜, 전원을 상기 대상 차량에 공급하는 단계
    를 포함하는 차량 충전 로봇의 제어 방법.
  9. 제 1항에 있어서,
    상기 지도 정보, 및 상기 목표 위치 정보를 V2X(Vehicle to Everything) 통신을 통해 획득하는 단계
    를 더 포함하는 차량 충전 로봇의 제어 방법.
  10. 제 1항에 있어서,
    대상 차량의 충전 요금을 정산하는 단계
    를 더 포함하는 차량 충전 로봇의 제어 방법.
  11. 제 1항에 있어서,
    대상 차량 충전을 완료한 후, 초기 위치로 이동하는 단계
    를 더 포함하는 차량 충전 로봇의 제어 방법.
  12. 하드웨어와 결합되어 제1항 내지 제10 중 어느 하나의 항의 방법을 실행시키기 위하여 매체에 저장된 컴퓨터 프로그램.
  13. 차량 충전 로봇에 있어서,
    제1 영상 정보 및 제2 영상 정보를 생성하는 영상 센서;
    가속도를 측정하는 관성 측정 장치;
    통신 모듈; 및
    프로세서를 포함하고,
    상기 통신 모듈은 지도 정보, 및 목표 위치를 획득하고,
    상기 프로세서는 상기 영상 센서로부터 수신한 상기 제1 영상 정보 및 상기 관성 측정 장치의 센싱 정보에 기초하여 상기 지도 정보 내 현재 위치의 후보 영역을 추정하고, 상기 영상 센서로부터 수신한 상기 제2 영상 정보에 기초하여 상기 후보 영역 내 상기 현재 위치를 추정하며, 상기 목표 위치 및 상기 현재 위치에 기초하여 상기 차량 충전 로봇을 제어하는 차량 충전 로봇.
  14. 제 13항에 있어서,
    상기 프로세서는
    미리 정해진 주기로 상기 현재 위치에 기초하여 상기 관성 측정 장치의 누적 오차를 리셋하는 차량 충전 로봇.
  15. 제 13항에 있어서,
    상기 프로세서는
    상기 제1 영상 정보에 기초하여 제1 로컬 지도를 생성하고, 상기 제1 로컬 지도와 상기 지도 정보를 비교하여 하나 이상의 현재 위치의 후보 영역을 생성하며, 상기 하나 이상의 후보 영역 중, 상기 관성 측정 장치의 센싱 정보에 부합하는 후보 영역을 상기 현재 위치의 후보 영역으로 추정하는 차량 충전 로봇.
  16. 제 13항에 있어서,
    상기 프로세서는
    상기 지도 정보 내의 초기 위치를 획득하고, 상기 초기 위치에 더 기초하여 상기 후보 영역을 추정하는 차량 충전 로봇.
  17. 제 13항에 있어서,
    상기 프로세서는
    상기 제2 영상 정보 및 상기 후보 영역에 기초하여 제2 로컬 지도를 생성하고, 상기 제2 로컬 지도 및 상기 지도 정보를 비교하여 상기 후보 영역에 포함되는 상기 현재 위치를 추정하는 차량 충전 로봇.
  18. 제 13항에 있어서,
    레이더 센서; 및
    온도 감지 센서 중 적어도 하나를 더 포함하고,
    상기 레이더 센서 및 상기 온도 감지 센서 중 적어도 하나를 이용하여 장애물의 위치를 파악하는 차량 충전 로봇.
  19. 제 13항에 있어서,
    유선 충전 장치를 더 포함하고,
    상기 유선 충전 장치는
    대상 차량에 전원을 공급하는 충전용 케이블;
    상기 충전용 케이블과 구조적으로 결합되어 있으며, 상기 충전용 케이블을 상기 대상 차량의 충전 인입구에 인입시키는 로봇 팔;
    상기 충전용 케이블을 상기 대상 차량의 충전 인입구의 위치에 맞추도록 상기 로봇 팔을 제어하는 모터부; 및
    상기 충전용 케이블을 상기 대상 차량의 충전 인입구에 일정한 진입 각도를 유지하면서 인입시키도록 제어하는 제어 케이블을 포함하는 차량 충전 로봇.
  20. 제 13항에 있어서,
    상기 차량 충전 로봇을 상기 목표 위치로 이동시키고, 대상 차량 충전을 완료한 후, 초기 위치로 이동시키는데 필요한 이동 수단을 더 포함하는 차량 충전 로봇.

KR1020180116897A 2018-10-01 2018-10-01 차량 충전 로봇 KR20200037548A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180116897A KR20200037548A (ko) 2018-10-01 2018-10-01 차량 충전 로봇
US16/513,762 US11312257B2 (en) 2018-10-01 2019-07-17 Robot with vehicle charging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180116897A KR20200037548A (ko) 2018-10-01 2018-10-01 차량 충전 로봇

Publications (1)

Publication Number Publication Date
KR20200037548A true KR20200037548A (ko) 2020-04-09

Family

ID=69947175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180116897A KR20200037548A (ko) 2018-10-01 2018-10-01 차량 충전 로봇

Country Status (2)

Country Link
US (1) US11312257B2 (ko)
KR (1) KR20200037548A (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220092716A (ko) 2020-12-24 2022-07-04 한국전자기술연구원 영상분석을 이용한 전기차용 충전단자 도킹 장치 및 방법
FR3121642A1 (fr) 2021-04-12 2022-10-14 Mob-Energy Dispositif autonome pour la recharge de moyens de stockage d’energie electrique d’un vehicule
KR20230051868A (ko) * 2021-10-12 2023-04-19 한국전자기술연구원 전기차 충전용 커넥터 및 전기차 충전 시스템
WO2023195813A1 (ko) * 2022-04-08 2023-10-12 주식회사 인피니트코리아 수소연료전지를 이용한 이동식 충전기를 구비한 전기차 충전시스템
FR3138785A1 (fr) 2022-08-09 2024-02-16 Mob-Energy Dispositif de couplage pour la recharge de moyens de stockage d’energie electrique d’un vehicule

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130419B2 (en) * 2019-09-03 2021-09-28 Yu-Shun Lin Electric vehicle charging system
US11999247B2 (en) 2020-07-01 2024-06-04 Toyota Motor North America, Inc. Providing transport to transport energy transfer
US11180048B1 (en) * 2020-07-01 2021-11-23 Toyota Motor North America, Inc. Transport-based exchange of electrical charge and services
CN114724267B (zh) * 2020-12-21 2024-03-12 深圳Tcl数字技术有限公司 一种体温检测方法、存储介质及机器人
CN112911499A (zh) * 2021-01-14 2021-06-04 北京三快在线科技有限公司 一种补给方法、装置、存储介质及电子设备
WO2022210194A1 (ja) * 2021-04-01 2022-10-06 愛知製鋼株式会社 システム
US20220383543A1 (en) * 2021-05-26 2022-12-01 Abb Schweiz Ag Multi-Stage Autonomous Localization Architecture for Charging Electric Vehicles
US11783371B2 (en) * 2021-09-13 2023-10-10 Iotecha Corp. Methods, devices, and systems for home based electric vehicle (EV) charging
US11858368B1 (en) 2023-03-20 2024-01-02 Re-Volt Ev Llc Mobile vehicle charging station with integrated entertainment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264839A (ja) 1997-03-25 1998-10-06 Nissan Motor Co Ltd 自動駐車装置
KR20120102461A (ko) 2011-03-08 2012-09-18 주식회사 리버트론 전기 차량에 충전용 케이블을 연결하는 방법 및 시스템
SE538470C2 (sv) * 2014-02-21 2016-07-12 Celective Source Ab Förfarande för att upprätta en temporär anslutning
US9592742B1 (en) 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
JP6390540B2 (ja) 2015-07-17 2018-09-19 トヨタ自動車株式会社 自律移動体及び自律移動体の位置推定方法
KR101935279B1 (ko) 2016-02-19 2019-01-04 국방과학연구소 자율주행차량에 대한 위치추정장치 및 그 제어방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220092716A (ko) 2020-12-24 2022-07-04 한국전자기술연구원 영상분석을 이용한 전기차용 충전단자 도킹 장치 및 방법
FR3121642A1 (fr) 2021-04-12 2022-10-14 Mob-Energy Dispositif autonome pour la recharge de moyens de stockage d’energie electrique d’un vehicule
WO2022218993A1 (fr) 2021-04-12 2022-10-20 Mob-Energy Dispositif autonome pour la recharge de moyens de stockage d'energie electrique d'un vehicule
KR20230051868A (ko) * 2021-10-12 2023-04-19 한국전자기술연구원 전기차 충전용 커넥터 및 전기차 충전 시스템
WO2023195813A1 (ko) * 2022-04-08 2023-10-12 주식회사 인피니트코리아 수소연료전지를 이용한 이동식 충전기를 구비한 전기차 충전시스템
FR3138785A1 (fr) 2022-08-09 2024-02-16 Mob-Energy Dispositif de couplage pour la recharge de moyens de stockage d’energie electrique d’un vehicule
EP4324687A1 (fr) 2022-08-09 2024-02-21 Mob-Energy Dispositif de couplage pour la recharge de moyens de stockage d'energie electrique d'un vehicule

Also Published As

Publication number Publication date
US20200101855A1 (en) 2020-04-02
US11312257B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
KR20200037548A (ko) 차량 충전 로봇
JP6898394B2 (ja) 車両の自動運転制御補助方法、車両の自動運転制御補助装置、機器、コンピュータ読み取り可能な記憶媒体及び車路連携システム
TWI827649B (zh) 用於vslam比例估計的設備、系統和方法
CN112639883B (zh) 一种相对位姿标定方法及相关装置
JP2019182411A (ja) オブジェクトの二次元境界枠を自動運転車両の三次元位置に転換するための方法[method for transforming 2d bounding boxes of objects into 3d positions for autonomous driving vehicles (advs)]
KR102096875B1 (ko) 자율 주행 기술을 응용한 3차원 실내 정밀 지도 자동 생성 로봇 및 로봇의 제어 방법
US10369993B2 (en) Method and device for monitoring a setpoint trajectory to be traveled by a vehicle for being collision free
CN111033561A (zh) 用于利用语义信息来导航机器人设备的系统和方法
CN108073167A (zh) 一种基于深度相机与激光雷达的定位与导航方法
US20050221840A1 (en) Mobile device and mobile device system therefor
US11537131B2 (en) Control device, control method, and mobile body
KR20160015987A (ko) 실내 인프라 지도 및 센서를 이용한 위치 인식 기반 원격 자율주행 시스템 및 그 방법
US11822334B2 (en) Information processing apparatus, information processing method, and program for control of a moving body capable of autonomous movement
CN111837136A (zh) 基于本地感测的自主导航以及相关联的系统和方法
US20230138084A1 (en) Sensor optimization
KR102014340B1 (ko) 전기차 충전 로봇, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램
EP4102327A1 (en) Position recognition method and position recognition system for vehicle
CN114448114A (zh) 基于移动机器人的智能无线供电系统
KR102112162B1 (ko) 자율 주행 기술을 응용한 3차원 실내 정밀 지도 자동 생성 로봇 및 로봇의 제어 방법
CN114564027A (zh) 足式机器人的路径规划方法、电子设备及可读存储介质
CN114167404A (zh) 目标跟踪方法及装置
KR102163462B1 (ko) 경로 탐사 로봇 및 그를 이용한 매핑 방법
CN112836551B (zh) 一种确定定位误差的方法及装置
Teskeredzic et al. Low cost UGV platform for autonomous 2D navigation and map-building based on a single sensory input
KR101650128B1 (ko) 이동 로봇의 지도 생성 장치 및 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right