KR20200035621A - Multi-layered metal coated super-abrasive particles and wire saw using the same - Google Patents

Multi-layered metal coated super-abrasive particles and wire saw using the same Download PDF

Info

Publication number
KR20200035621A
KR20200035621A KR1020180114906A KR20180114906A KR20200035621A KR 20200035621 A KR20200035621 A KR 20200035621A KR 1020180114906 A KR1020180114906 A KR 1020180114906A KR 20180114906 A KR20180114906 A KR 20180114906A KR 20200035621 A KR20200035621 A KR 20200035621A
Authority
KR
South Korea
Prior art keywords
layer
particles
composite particles
weight
phosphorus
Prior art date
Application number
KR1020180114906A
Other languages
Korean (ko)
Inventor
김상호
최재영
최성웅
최윤호
조형근
Original Assignee
주식회사 씨앤씨머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨앤씨머티리얼즈 filed Critical 주식회사 씨앤씨머티리얼즈
Priority to KR1020180114906A priority Critical patent/KR20200035621A/en
Publication of KR20200035621A publication Critical patent/KR20200035621A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

The present invention relates to ultra-hard particles which can be used in a wire saw and, more specifically, to composite particles which have ferromagnetic properties while showing excellent corrosion resistance, so that electrodeposition is performed well in various electrolytes used in an electrodeposition process when manufacturing the wire saw, and are capable of improving the cutting performance of the wire saw due to excellent adhesion after electrodeposition. The composite particles according to the invention comprises ultra-hard particles and a thin film formed on surfaces of the ultra-hard particles, wherein the thin film comprises a first layer formed on the surfaces of the ultra-hard particles and consisting of a metal having ferromagnetic properties, and a second layer formed on the first layer and consisting of a metal having better corrosion resistance than the first layer.

Description

다층 구조의 금속 피복 초경질 입자 및 이를 이용한 와이어 쏘우{Multi-layered metal coated super-abrasive particles and wire saw using the same}Multi-layered metal coated super-abrasive particles and wire saw using the same}

본 발명은 금속 또는 금속 화합물이 표면에 코팅된 초경질 입자 및 그 제조 방법에 관한 것이다. 또한, 본 발명에 따라 만들어진 금속 또는 금속 화합물이 표면에 코팅된 초경질 입자를 포함하는 와이어 쏘우(wire saw)에 관한 것이다.The present invention relates to a superhard particle coated with a metal or a metal compound on the surface and a method for manufacturing the same. It also relates to a wire saw comprising ultrahard particles coated on a surface of a metal or metal compound made according to the present invention.

IT산업에 있어서 웨이퍼는 매우 다양하게 적용되고 있다. 반도체용 실리콘 웨이퍼, 태양광용 실리콘 웨이퍼, LED용 사파이어 웨이퍼 등이 그 대표적인 예인데, 이러한 웨이퍼는 실리콘 또는 사파이어 단결정 잉곳으로부터 슬라이싱을 통해 얇은 두께의 원판으로 만들어지게 된다.  In the IT industry, wafers are applied in a wide variety. Silicon wafers for semiconductors, silicon wafers for photovoltaics, sapphire wafers for LEDs, and the like are typical examples. These wafers are made of thin-walled discs by slicing from silicon or sapphire single crystal ingots.

이렇게 성장하고 있는 IT산업에서도 원가 경쟁력 확보를 위해 고가의 웨이퍼의 소요량을 줄이고자 웨이퍼는 점차 대면적화, 박형화하는 경향이다. 특히 반도체 산업에서는 생산성 향상을 위해 잉곳의 크기는 점차 대면적화되고 있고, 태양광 산업에서는 원가 경쟁력을 위해 보다 더 얇은 웨이퍼의 사용과 공정 중 웨이퍼의 손실을 최소화하려는 시도가 지속되고 있으며, 이러한 요구 조건을 만족하기 위해서는 잉곳의 슬라이싱을 위한 절삭 공구의 성능 향상 요구가 커지고 있다.In this growing IT industry, wafers tend to become larger and thinner in order to reduce the demand for expensive wafers to secure cost competitiveness. Particularly in the semiconductor industry, the size of ingots is gradually increasing to increase productivity, and in the solar industry, attempts are being made to use thinner wafers and minimize wafer loss during processing in order to achieve cost competitiveness. In order to satisfy the demand for improving the performance of the cutting tool for slicing the ingot is increasing.

슬라이싱 공정에 사용되는 공구에는 대표적으로 와이어 쏘우가 있으며, 이를 통해 슬라이싱 공정 시 소재 손실을 최소화할 수 있고 공정 속도도 높아 공구 업체의 신제품 개발이 와이어 쏘우에 집중되고 있다. The tool used in the slicing process typically has a wire saw, which minimizes material loss during the slicing process and has a high process speed, making tool makers' new product development focused on the wire saw.

이러한 와이어 쏘우를 이용한 슬라이싱 공정은, 종래에는 주로 와이어 주변에 초경질 입자를 포함하는 슬러리를 뿌려서 진행하는 슬러리 방식으로 진행되었으나, 점차 얇고 정밀한 슬라이싱에 대한 요구로 와이어에 직접 다이아몬드 또는 cBN(cubic boron nitride)과 같은 초경질 입자를 부착시킨 후 웨이퍼를 슬라이싱하는 공정으로 발전이 이루어지고 있다. 이러한 초경질 입자가 부착된 와이어 쏘우를 이용하는 슬라이싱 방식은 공정속도의 증가, 가공의 정밀도 향상, 공정 중 손실되는 소재의 양 감소에 따른 수율 증가로 인해 그 적용 속도가 매우 빠르게 증가하고 있다.The slicing process using such a wire saw has been conventionally performed in a slurry method in which a slurry containing ultrahard particles is sprinkled around the wire, but gradually requires diamond or cBN (cubic boron nitride) directly on the wire as a demand for thin and precise slicing. Power generation is being developed as a process of slicing the wafer after attaching ultra-hard particles such as). The slicing method using the wire saw to which the ultra-hard particles are attached is rapidly increasing its application speed due to an increase in process speed, an improvement in processing precision, and an increase in yield due to a decrease in the amount of material lost during the process.

초경질 입자가 부착된 와이어 쏘우의 구조는, 철강 와이어에 초경질 입자(다이아몬드, cBN 등)가 부착된 구조로 되어 있으며, 이러한 초경질 입자는 통상 전착공정(전기화학 도금법)으로 부착된다. 이 방법은 금속 도금액에 초경질 입자를 분산시킨 후 여기에 와이어를 담그고 전기도금을 진행하면, 도금액 내의 금속 이온이 와이어에 석출되면서 동시에 초경질 입자도 함께 와이어에 부착되도록 하는 것이다. 이렇게 금속 석출과 함께 초경질 입자가 와이어에 부착되기 위해서는 초경질 입자에 전기가 흘러야 하는데, 현재 사용되는 초경질 입자들은 모두 그 자체로는 전기전도성이 없다. 따라서, 이러한 전착공정에 사용되는 초경질 입자는 전착공정 중 도전성을 부여하고 부착 후 와이어에서의 양호한 부착력을 위해 니켈, 코발트와 같은 금속층을 표면에 형성한 후 와이어 쏘우 제조 공정에 적용된다.The structure of the wire saw to which the ultra-hard particles are attached has a structure in which super-hard particles (diamond, cBN, etc.) are attached to the steel wire, and these ultra-hard particles are usually attached by an electrodeposition process (electrochemical plating method). This method is to disperse the ultra-hard particles in the metal plating solution and then immerse the wire therein and proceed with electroplating, so that metal ions in the plating solution are deposited on the wire and at the same time, the ultra-hard particles are also attached to the wire. In order for the metal to precipitate and the ultrahard particles to be attached to the wire, electricity must flow through the ultrahard particles, but all of the ultrahard particles currently used do not have electrical conductivity in themselves. Therefore, the ultra-hard particles used in the electrodeposition process are applied to the wire saw manufacturing process after forming a metal layer such as nickel and cobalt on the surface for imparting conductivity during the electrodeposition process and for good adhesion in the wire after attachment.

이러한 금속 복합 초경질 입자는 주로 무전해도금 공정을 이용하여 금속층을 형성하여 만들어진다. 실제 현장에서 금속층은 전착공정에 사용되는 전해액 내에서 견딜 수 있을 정도의 내식성과 가격 등을 고려해서 니켈 금속층이 가장 많이 적용된다. 그런데 형성되는 니켈 금속층에는 대부분 인이 포함되는데 이유는 안정된 환원제로 사용되는 차아인산나트륨의 영향이 크다.These metal composite ultra-hard particles are mainly formed by forming a metal layer using an electroless plating process. In the actual field, the nickel metal layer is most often applied to the metal layer in consideration of corrosion resistance and price that can withstand the electrolyte used in the electrodeposition process. However, most of the formed nickel metal layer contains phosphorus, which is largely due to the effect of sodium hypophosphite used as a stable reducing agent.

미국등록특허 제8,858,693호에서는 입자를 니켈 무전해도금 하기 위한 조성 및 방법에 대해 개시하고 있는데, 특히 실시예에 개시된 환원제는 모두 차아인산나트륨이어서 니켈 금속층에 인이 필연적으로 높은 함량으로 포함될 수 밖에 없다. U.S. Patent No. 8,858,693 discloses a composition and method for electroless nickel plating of particles, in particular, the reducing agents disclosed in the examples are all sodium hypophosphite, so the nickel metal layer must inevitably contain phosphorus in a high content. .

또한, 대한민국 등록특허 제0545107호에도 무전해니켈도금법에 의한 니켈-다이아몬드 복합분말 제조방법을 개시하고 있는데, 이 방법도 환원제로 차아인산나트륨을 사용하기 때문에 인이 다량 포함될 수 밖에 없다.In addition, Korean Patent Registration No. 0545107 discloses a method of manufacturing a nickel-diamond composite powder by an electroless nickel plating method, which also requires a large amount of phosphorus because sodium hypophosphite is used as a reducing agent.

이렇게 인이 포함된 니켈 코팅층을 형성하는 이유는 공정상 차아인산나트륨을 사용하는 것이 공정 제어에 용이한 점도 있지만, 인이 없는 경우에 비해서 내식성이 향상되고 초경질 입자와의 밀착력이 우수하기 때문이다. 하지만, 인이 많이 포함되면 강자성 특성이 없어지는 특징이 있다.The reason for forming the nickel coating layer containing phosphorus is that it is easy to control the process using sodium hypophosphite in the process, but the corrosion resistance is improved and the adhesion with the ultra-hard particles is excellent compared to the case without phosphorus. . However, when a large amount of phosphorus is included, there is a characteristic that the ferromagnetic properties disappear.

한편, 최근에는 제조 공정에 따라 강자성을 가지는 금속층을 초경질 입자 표면에 형성하여 전기적 특성뿐만 아니라 강자성 특성을 이용하여 와이어에의 부착을 용이하게 하고자 하는 시도가 많이 이루어지고 있다. 그런데 이러한 강자성을 가지는 금속층은 기존의 강자성이 없는 금속층에 비해 내식성이 열세인 문제가 있다. 따라서, 와이어 쏘우 제조공정 중 초경질 입자를 와이어에 부착시키는 전착공정에서 기존의 강자성이 없는 금속층이 표면에 형성된 초경질 입자를 사용하기 위해 사용되는 강산의 전해액에서는 강자성을 가지는 금속층이 견디지 못하게 된다. 이에 따라 분말의 강자성 특성을 이용하기 위해서는 와이어 쏘우 제조공정의 전착공정에 사용할 새로운 전해액을 개발해야 하는 문제가 있다.Meanwhile, in recent years, many attempts have been made to facilitate adhesion to a wire using ferromagnetic properties as well as electrical properties by forming a ferromagnetic metal layer on a superhard particle surface according to a manufacturing process. However, the metal layer having such a ferromagnetic property has a problem in that corrosion resistance is inferior to that of a conventional metal layer having no ferromagnetic property. Accordingly, in the electrodeposition process of attaching the ultrahard particles to the wire during the wire saw manufacturing process, the metal layer having ferromagnetic properties cannot be tolerated in the electrolytic solution of the strong acid used to use the superhard particles formed on the surface of the existing non-ferromagnetic metal layer. Accordingly, in order to use the ferromagnetic properties of the powder, there is a problem in that a new electrolyte solution to be used in the electrodeposition process of the wire saw manufacturing process has to be developed.

미국등록특허 제8,858,693호U.S. Patent No. 8,858,693 대한민국등록특허 제0545107호Korea Registered Patent No. 0545107

본 발명이 해결하고자 하는 과제는, 와이어 쏘우에 사용될 수 있는 초경질 입자로, 강자성 특성을 가지면서 동시에 우수한 내식성을 나타내어 와이어 쏘우 제작 시 전착 공정에서 사용되는 다양한 전해액에서도 전착이 양호하게 이루어지며, 전착 후 부착력이 우수하여 와이어 쏘우의 절삭 성능을 개선할 수 있는 복합 입자와 이러한 복합 입자가 부착된 와이어 쏘우를 제공하는 것이다. The problem to be solved by the present invention is an ultra-hard particle that can be used in a wire saw, has ferromagnetic properties, and at the same time exhibits excellent corrosion resistance, so that electrodeposition is well performed in various electrolytes used in the electrodeposition process during wire saw production, and electrodeposition It is to provide composite particles capable of improving the cutting performance of a wire saw because of excellent adhesion, and wire saws to which these composite particles are attached.

상기 과제를 해결하기 위한 본 발명의 일 측면은, 초경질 입자와 이 초경질 입자의 표면에 형성되는 피막을 포함하는 복합 입자로, 상기 피막은, 상기 초경질 입자 표면에 형성되며, 강자성을 가지는 금속으로 이루어진 제 1 층, 및 상기 제 1 층 위에 형성되며 상기 제 1 층보다 내식성이 우수한 금속으로 이루어진 제 2 층을 포함하는, 복합 입자를 제공하는 것이다.One aspect of the present invention for solving the above problems is a composite particle comprising a superhard particle and a film formed on the surface of the superhard particle, wherein the film is formed on the superhard particle surface and has ferromagnetic properties. It is to provide a composite particle comprising a first layer made of a metal and a second layer formed of a metal formed on the first layer and having better corrosion resistance than the first layer.

상기 과제를 해결하기 위한 본 발명의 다른 측면은, 상기한 복합 입자가 전착공정을 통해 와이어에 부착된 와이어 쏘우를 제공하는 것이다.Another aspect of the present invention for solving the above problems is to provide a wire saw in which the above-mentioned composite particles are attached to a wire through an electrodeposition process.

본 발명에 따라 내식성이 우수할 뿐만 아니라 강자성 특성도 우수한 니켈 피막층을 포함하는 복합 입자를 제작함으로써 다양한 조건의 와이어 쏘우 제조공정에 제한 없이 사용할 수 있다.According to the present invention, the composite particles including the nickel film layer having excellent corrosion resistance as well as excellent ferromagnetic properties can be manufactured and used without limitation in a wire saw manufacturing process under various conditions.

본 발명에 따른 복합 입자를 사용할 경우, 강자성 특성을 이용한 와이어 쏘우 제조 공정에서도 종래 와이어 쏘우 제조공정의 전착공정에 사용하던 전해액을 그대로 사용할 수 있어, 새로운 전해액을 개발해야 할 필요성이 없을 뿐 아니라, 다양한 전해액 조건에 적용될 수 있어 새로운 전해액을 사용한 전착 공정의 적용에도 유용하게 사용될 수 있다.When using the composite particles according to the present invention, in the wire saw manufacturing process using ferromagnetic properties, the electrolyte used in the electrodeposition process of the conventional wire saw manufacturing process can be used as it is, and there is no need to develop a new electrolyte, as well as various Since it can be applied to electrolytic solution conditions, it can also be usefully applied to the electrodeposition process using a new electrolytic solution.

본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 본 명세서에서 언급되지 않은 또 다른 효과는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned herein will be clearly understood by those skilled in the art from the following description.

도 1 은 본 발명에 따라 초경질 입자 표면에 제 1 층과 제 2 층의 다층 구조 피막이 형성된 복합 입자에 대한 모식도이다.
도 2 는 본 발명에 따라 초경질 입자 표면에 경계층, 제 1 층 및 제 2 층이 차례로 형성된 복합 입자에 대한 모식도이다.
도 3 은 실시예 3에 따라 만들어진 복합 입자에 대해 내식성 테스트 후 SEM을 통해 표면을 관찰한 사진이다.
도 4 는 비교예 3에 따라 만들어진 복합 입자에 대해 내식성 테스트 후 SEM 을 통해 표면을 관찰한 사진이다.
1 is a schematic diagram of a composite particle in which a multilayer structure film of a first layer and a second layer is formed on the surface of an ultrahard particle according to the present invention.
2 is a schematic view of a composite particle in which a boundary layer, a first layer, and a second layer are sequentially formed on the surface of an ultrahard particle according to the present invention.
FIG. 3 is a photograph of the composite particles made according to Example 3, which was observed for surface through SEM after corrosion resistance test.
4 is a photograph of the composite particles made according to Comparative Example 3, which was observed through a SEM after corrosion resistance test.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, with reference to the accompanying drawings for the embodiment of the present invention will be described the configuration and operation. In the following description of the present invention, when it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. Also, when a part is said to 'include' a certain component, this means that other components may be further included rather than excluding other components, unless otherwise stated.

본 발명에 따른 복합 입자는, 초경질 입자와 이 초경질 입자의 표면에 형성되는 피막을 포함하는 복합입자로서, 상기 초경질 입자 표면에 형성되며, 강자성을 가지는 금속으로 이루어진 제 1 층, 및 상기 제 1 층 위에 형성되며 상기 제 1 층보다 내식성이 우수한 금속으로 이루어진 제 2 층을 포함하는 것을 특징으로 한다.The composite particle according to the present invention is a composite particle comprising a superhard particle and a coating formed on the surface of the superhard particle, the first layer formed of a metal having ferromagnetic properties, and formed on the superhard particle surface, and It is characterized in that it comprises a second layer made of a metal formed on the first layer and having better corrosion resistance than the first layer.

이러한 복합 입자를 통해, 와이어 쏘우의 제작공정 중 전착공정에서 표면에 내식성이 우수한 금속으로 이루어진 제 2 층에 의해 강산의 전해액에서도 사용이 가능하면서 동시에 강자성을 지닌 제 1 층에 의해 자기적 특성을 활용할 수 있다.Through these composite particles, in the electrodeposition process during the manufacturing process of the wire saw, it can be used in the electrolytic solution of strong acid by the second layer made of metal having excellent corrosion resistance on the surface, and at the same time, it utilizes magnetic properties by the first layer with ferromagnetic properties. You can.

여기서, 상기 초경질 입자는, 바람직하게, 다이아몬드, 입방정 질화붕소, 탄화규소, 탄화붕소, 알루미나, 질화규소, 탄화텅스텐, 지르코니아 또는 이들의 조합으로 이루어진 군에서 선택되는 입자를 포함하는, 복합 입자일 수 있다. 또한, 상기 바람직한 예로서 언급되지 않은 경우라도, 와이어 쏘우에 적용되는 절삭 또는 연마에 사용될 수 있는 일정 이상의 경도를 갖는 입자라면 제한 없이 적용될 수 있다.Here, the ultra-hard particles may be composite particles, preferably comprising particles selected from the group consisting of diamond, cubic boron nitride, silicon carbide, boron carbide, alumina, silicon nitride, tungsten carbide, zirconia, or combinations thereof. have. In addition, even if it is not mentioned as a preferred example, particles having a certain hardness or higher that can be used for cutting or polishing applied to a wire saw can be applied without limitation.

또한, 복합 입자는 상기 초경질 입자 표면과 상기 제 1 층 사이에 상기 제 1 층보다 상기 초경질 입자에 대해 밀착력이 우수한 금속으로 이루어진 경계층을 포함할 수 있다. 특히 니켈 금속층의 경우 인을 포함하면 내부응력이 감소되어 밀착력이 증가하는 것으로 알려져 있는데, 6 중량% 이상의 인 함량 범위에서 안정적인 내부 응력을 나타내기 때문에 니켈과 인을 포함하는 금속층이 경계층에 형성되는 것이 바람직하고, 인이 10 중량% 이상인 경우에는 내부 응력이 0 에 가까워지기 때문에 니켈과 인을 포함하되 인의 함량은 10 중량% 이상인 것이 더 바람직하다. 인의 함량이 13 중량%을 초과하면 환원제로 사용되는 차아인산나트륨의 양을 과량으로 사용해야 하고 이는 비용의 증가로 나타나게 된다. 따라서, 경계층은 밀착력이 높은 니켈과 인을 동시에 포함하는 금속층이면서, 인의 함량은 6 ~ 13 중량%인 것이 바람직하다. In addition, the composite particles may include a boundary layer made of a metal having better adhesion to the ultrahard particles than the first layer between the superhard particle surface and the first layer. In particular, in the case of the nickel metal layer, it is known that when phosphorus is included, the internal stress is reduced to increase the adhesion, and since the metal layer containing nickel and phosphorus is formed in the boundary layer because it exhibits stable internal stress in the phosphorus content range of 6% by weight or more. Preferably, when the phosphorus is 10% by weight or more, since the internal stress approaches 0, it is more preferable to include nickel and phosphorus, but the content of phosphorus is 10% by weight or more. When the phosphorus content exceeds 13% by weight, the amount of sodium hypophosphite used as a reducing agent should be used in excess, which results in an increase in cost. Therefore, the boundary layer is a metal layer simultaneously containing nickel and phosphorus having high adhesion, and the content of phosphorus is preferably 6 to 13% by weight.

본 발명에서, 상기 제 1 층은 니켈을 포함하고 인은 5 중량% 이하인 금속으로 이루어진 복합 입자인 것이 바람직하다. 상기 제 1 층이 니켈 금속층인 경우 인의 함량이 높아질수록 강자성 특성이 사라지는 특징이 있다. 일반적으로 산업계에서는 인의 함량이 5 중량% 이하를 저인 니켈, 6 ~ 9 중량%를 중인 니켈, 10 ~ 13 중량%를 고인 니켈이라고 하여 구분하고 있는데, 구분에 따라 자기적 특성, 전기전도도, 기계적 특성 등에 많은 차이를 보이게 된다. 특히 자기적 특성에서 포화자화값은 인이 없는 순수 니켈의 경우 가장 높고 이후 인의 첨가량이 증가할수록 낮아지게 되는데, 중인 니켈부터는 강자성 특성이 급격히 떨어지게 되어 본 발명에서 의도하는 강자성 특성이 우수한 복합 입자를 제조하기 어렵다. 따라서, 제 1 층은 인의 함량이 5 중량% 이하인 순수 니켈 또는 저인 니켈층으로 형성하는 것이 바람직하다.In the present invention, it is preferable that the first layer is a composite particle composed of a metal containing nickel and phosphorus not more than 5% by weight. When the first layer is a nickel metal layer, the ferromagnetic properties disappear as the phosphorus content increases. In general, in the industry, phosphorus content is divided into 5% by weight or less, low nickel, 6 to 9% by weight nickel, and 10 to 13% by weight nickel, which is classified as magnetic properties, electrical conductivity, and mechanical properties. You will see a lot of differences on your back. In particular, in the magnetic properties, the saturation magnetization value is the highest in the case of pure nickel without phosphorus, and then, as the amount of phosphorus added increases, the ferromagnetic properties rapidly drop from the nickel in use to produce composite particles excellent in ferromagnetic properties intended in the present invention. It is difficult to do. Therefore, the first layer is preferably formed of a pure nickel or a low nickel layer having a phosphorus content of 5% by weight or less.

본 발명에서, 제 2 층은 니켈을 포함하고 인은 6 ~ 13 중량%를 포함하는 금속으로 이루어진 복합 입자인 것이 바람직하다. 제 2 층은 와이어 쏘우의 제조공정 중 전착공정에서 사용되는 다양한 전해액에서 보호막 역할을 하게 되는데, 인의 함량이 높을수록 내식성은 높아지게 된다. 따라서 제 2 층으로 형성되는 니켈 금속층은 중인 니켈 이상의 인을 포함하는 경우가 바람직하다. 따라서 제 2 층의 니켈 금속층에서 인의 함량은 6 중량% 이상이면서, 비용 증가를 고려하여 13 중량% 이하인 것이 바람직하다.In the present invention, it is preferable that the second layer is a composite particle composed of a metal containing nickel and phosphorus containing 6 to 13% by weight. The second layer acts as a protective film in various electrolytes used in the electrodeposition process during the manufacturing process of the wire saw, and the higher the phosphorus content, the higher the corrosion resistance. Therefore, it is preferable that the nickel metal layer formed of the second layer contains phosphorus or more of phosphorus. Therefore, the content of phosphorus in the nickel metal layer of the second layer is preferably 6% by weight or more and 13% by weight or less in consideration of cost increase.

또한, 제 2 층은 니켈과 붕소를 포함하는 금속으로 이루어진 복합 입자일 수 있는데, 붕소가 포함되면 강자성을 가지는 순수 니켈 또는 저인 니켈 등에 비해 내식성이 우수하기 때문이다.In addition, the second layer may be composite particles made of a metal containing nickel and boron, because when boron is included, it has superior corrosion resistance compared to pure nickel having low ferromagnetic properties or low phosphorus nickel.

본 발명에서 제공되는 복합 입자의 포화자화값은 3 emu/g 이상인 것이 바람직하다. 일부 와이어 쏘우 제조 라인에서는 3 emu/g 미만이면 전착공정에서 자기적 특성을 활용하기 어렵기 때문이다.The saturation magnetization value of the composite particles provided in the present invention is preferably 3 emu / g or more. This is because, in some wire saw manufacturing lines, if it is less than 3 emu / g, it is difficult to utilize magnetic properties in the electrodeposition process.

또한, 본 발명에서, 강자성 특성을 나타내는 제 1 층의 중량은 상기 복합입자 전체 중량의 5 ~ 20%인 것이 바람직하다. 5% 미만이면 복합 입자에 충분한 강자성 특성을 부여하기 어렵고, 20%를 초과하면 제 2 층까지 피복 후에 전체 금속층 함량이 너무 많아지게 되어 복합 입자의 절삭성이 떨어지는 문제가 있기 때문이다.In addition, in the present invention, the weight of the first layer exhibiting ferromagnetic properties is preferably 5 to 20% of the total weight of the composite particles. If it is less than 5%, it is difficult to impart sufficient ferromagnetic properties to the composite particles, and if it exceeds 20%, the total metal layer content becomes too large after coating to the second layer, and thus the machinability of the composite particles is poor.

또한, 본 발명에서, 제 2 층의 중량은 상기 복합입자 전체 중량의 20 ~ 50%인 복합 입자가 바람직하다. 20% 미만이면 복합입자에 충분한 내식성을 부여하기 어렵고, 50%를 초과하면 제 1 층까지 포함된 전체 금속층 함량이 너무 많아지게 되어 복합 입자의 절삭성이 떨어지는 문제가 있기 때문이다.In addition, in the present invention, the weight of the second layer is preferably 20-50% of the total weight of the composite particles. If it is less than 20%, it is difficult to provide sufficient corrosion resistance to the composite particles, and if it exceeds 50%, the total metal layer content included in the first layer becomes too large, resulting in poor machinability.

또한, 본 발명에 따른 복합 입자에서 경계층의 중량은 상기 복합입자 전체 중량의 3 ~ 10%인 것이 바람직하다. 경계층이 3% 미만이면 충분한 밀착력 강화효과를 볼 수 없고, 10%를 초과하면 강자성과 내식성을 부여하는 제 1 층 및 제 2 층을 많이 추가할 수 없기 때문이다.In addition, the weight of the boundary layer in the composite particles according to the present invention is preferably 3 to 10% of the total weight of the composite particles. This is because if the boundary layer is less than 3%, a sufficient adhesion strengthening effect cannot be seen, and if it exceeds 10%, many first and second layers that impart ferromagnetic and corrosion resistance cannot be added.

본 발명에서, 피막의 중량은 상기 복합 입자 전체 중량의 30 ~ 70%인 복합입자인 것이 바람직하다. 피막이 30% 미만이면 충분한 강자성 특성과 내식성을 동시에 얻기 어렵고, 70%를 초과하면 복합 입자의 절삭성이 떨어지는 문제가 있기 때문이다.In the present invention, it is preferable that the weight of the coating is 30 to 70% of the total weight of the composite particles. If the film is less than 30%, it is difficult to obtain sufficient ferromagnetic properties and corrosion resistance at the same time, and if it exceeds 70%, there is a problem that the machinability of the composite particles is poor.

또한, 본 발명을 통해 상술한 다양한 강자성 특성과 내식성이 우수한 복합 입자가 전착공정을 통해 와이어에 부착되어 만들어지는, 와이어 쏘우를 제공할 수 있다.In addition, through the present invention, it is possible to provide a wire saw that is formed by attaching the composite particles having various ferromagnetic properties and corrosion resistance described above to the wire through an electrodeposition process.

본 발명의 바람직한 실시형태에 따른 초경질 입자와 이 초경질 입자의 표면에 형성되는 피막을 포함하는 복합 입자를 도면을 참조하여 설명한다.A composite particle comprising a superhard particle according to a preferred embodiment of the present invention and a coating formed on the surface of the superhard particle will be described with reference to the drawings.

도 1 은 본 발명에 따른 초경질 입자와 이 초경질 입자의 표면에 형성되는 피막을 도식화한 그림이다. 초경질 입자(10)는 다이아몬드, 입방정 질화붕소, 탄화규소, 탄화붕소, 알루미나, 질화규소, 탄화텅스텐, 지르코니아 또는 이들의 조합으로 이루어진 군에서 선택되는 입자를 포함한다. 도 1 에서는 이러한 초경질 입자(10)의 표면에 다층구조의 전기전도성이 있는 금속 피막을 형성함에 있어, 제 1 층(11)은 초경질 입자(10) 바로 상면에 형성되며, 강자성을 가지는 금속으로 이루어지고, 이러한 제 1 층 위에는 다시 내식성이 우수한 금속으로 이루어진 제 2 층(12)을 형성함으로써 다양한 전해액에서도 견딜 수 있는 복합 입자를 나타내고 있다. 도 2 는 강자성을 나타내는 제 1 층과 초경질 입자 사이에 밀착력을 높이기 위한 경계층(13)이 있는 복합 입자를 나타낸다. 경계층은 밀착력이 높은 니켈과 인을 동시에 포함하는 금속층이면서, 인의 함량은 6 ~ 13 중량%인 것이 바람직하다.1 is a diagram illustrating a superhard particle according to the present invention and a film formed on the surface of the superhard particle. The ultra-hard particles 10 include particles selected from the group consisting of diamond, cubic boron nitride, silicon carbide, boron carbide, alumina, silicon nitride, tungsten carbide, zirconia or combinations thereof. In FIG. 1, in forming a metal film having a multi-layered electrical conductivity on the surface of the ultra-hard particles 10, the first layer 11 is formed on the top surface of the ultra-hard particles 10, and has a ferromagnetic metal It is made of, and by showing the second layer 12 made of a metal having excellent corrosion resistance again on the first layer, it shows composite particles that can withstand various electrolytes. FIG. 2 shows composite particles with a boundary layer 13 for increasing adhesion between the first layer exhibiting ferromagnetic properties and the ultrahard particles. The boundary layer is a metal layer simultaneously containing nickel and phosphorus having high adhesion, and the content of phosphorus is preferably 6 to 13% by weight.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명을 예시한 것으로서 본 발명은 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. The following examples illustrate the invention, and the invention is not limited thereto.

(실시예 1)(Example 1)

초경질 입자로서 다이아몬드 입자를 준비하였다. 준비한 다이아몬드 입자의 입도는 D50 기준으로 4 내지 10 ㎛ 이었다. 준비된 다이아몬드 입자 10g을 탈지제(ACE CLEAN A-110, 오쿠노사)를 용해시킨 이온교환수에서 60℃에서 30분간 교반 유지하여 표면의 이물질을 제거하였다. 세정 후 염화제일주석(SnCl2)이 1 중량% 포함된 60℃ 수용액에서 예민화 처리를 하고 이를 다시 염화팔라듐(PdCl2)이 0.1 중량% 포함된 60℃ 수용액에서 30분간 교반하여 활성화 처리를 하였다.Diamond particles were prepared as ultrahard particles. The particle size of the prepared diamond particles was 4 to 10 μm based on D 50 . 10 g of the prepared diamond particles were kept stirred at 60 ° C. for 30 minutes in ion-exchanged water in which a degreasing agent (ACE CLEAN A-110, Okuno Corporation) was dissolved to remove foreign substances on the surface. After washing, the sensitization treatment was performed in a 60 ° C aqueous solution containing 1% by weight of stannous chloride (SnCl 2 ), followed by stirring for 30 minutes in a 60 ° C aqueous solution containing 0.1% by weight of palladium chloride (PdCl 2 ) for activation. .

황산니켈(NiSO4·6H2O) 12g과 롯셀염(C4H4KNaO6·4H2O) 18g을 증류수에 녹여 만든 황산니켈 수용액에 상기 활성화 처리된 다이아몬드를 투입하여 교반하면서 하이드라진 수화물(N2H4·H2O) 20g과 수산화나트륨(NaOH) 10g이 혼합된 증류수를 서서히 투입하여 강자성을 가지는 제 1 층을 형성하고 필터링 후 증류수를 이용하여 세정하여 제 1 층이 피복된 다이아몬드 입자를 제작하였다. 이후 황산니켈(NiSO4·6H2O) 50g과 롯셀염(C4H4KNaO6·4H2O) 63g을 증류수에 녹여 만든 황산니켈 수용액에 상기 제 1 층이 피복된 다이아몬드 입자를 투입하여 교반하면서 차아인산나트륨(NaH2PO2) 800g과 암모니아수(NH4OH, 25%) 80g을 증류수에 녹여 만든 환원용액을 서서히 투입하여 니켈과 인이 포함된 금속으로 이루어진 제 2 층을 형성하고, 필터링 후 증류수를 이용하여 세정하여 최종 복합 입자를 제조하였다.Hydrazine hydrate (N 2) was added to the aqueous solution of nickel sulfate prepared by dissolving 12 g of nickel sulfate (NiSO4 · 6H 2 O) and 18 g of roxel salt (C 4 H 4 KNaO 6 · 4H 2 O) in distilled water while stirring. H 4 · H 2 O) 20 g and sodium hydroxide (NaOH) 10 g mixed distilled water was slowly added to form a first layer having ferromagnetism, filtered and washed with distilled water to produce diamond particles coated with the first layer. Did. Subsequently, 50 g of nickel sulfate (NiSO4 · 6H 2 O) and 63 g of Roxel salt (C 4 H 4 KNaO 6 · 4H 2 O) were dissolved in distilled water, followed by stirring by adding diamond particles coated with the first layer to a nickel sulfate aqueous solution. Sodium hypophosphite (NaH 2 PO 2 ) 800 g and 80 g of ammonia (NH 4 OH, 25%) dissolved in distilled water are slowly added to form a second layer composed of a metal containing nickel and phosphorus, followed by filtering. The final composite particles were prepared by washing with distilled water.

(실시예 2)(Example 2)

상기 실시예 1과 같은 방법으로 복합 입자를 제조하되, 제 1 층 형성 시 황산니켈을 8g으로 감소시키고 다른 시약도 이에 비례하여 감소시켜 최종 복합 입자에서 차지하는 제 1 층의 중량을 낮추었다.Composite particles were prepared in the same manner as in Example 1, but when the first layer was formed, nickel sulfate was reduced to 8 g, and other reagents were proportionally reduced to reduce the weight of the first layer in the final composite particles.

(실시예 3)(Example 3)

상기 실시예 1과 같은 방법으로 복합 입자를 제조하되, 제 2 층 형성 시 황산니켈을 20g으로 감소시키고 다른 시약도 이에 비례하여 감소시켜 최종 복합 입자에서 차지하는 제 2 층의 중량을 낮추었다.Composite particles were prepared in the same manner as in Example 1, but when the second layer was formed, nickel sulfate was reduced to 20 g and other reagents were proportionally reduced to reduce the weight of the second layer in the final composite particles.

(실시예 4)(Example 4)

상기 실시예 1과 같은 방법으로 복합 입자를 제조하되, 제 1 층 형성 시 황산니켈을 8g으로 감소시키면서 다른 시약도 이에 비례하여 감소시키고, 제 2 층 형성 시 황산니켈을 20g으로 감소시키면서 다른 시약도 이에 비례하여 감소시켜 최종 복합 입자에서 차지하는 피막의 중량을 낮추었다.Composite particles were prepared in the same manner as in Example 1, while reducing the nickel sulfate to 8 g when forming the first layer and other reagents proportionally reducing it, and reducing the nickel sulfate to 20 g when forming the second layer, and other reagents. In proportion to this, the weight of the coating occupied by the final composite particles was reduced.

(실시예 5)(Example 5)

상기 실시예 1과 같은 방법으로 복합 입자를 제조하되, 제 1 층 형성 전에 황산니켈 4g과 롯셀염 6g을 증류수에 녹여 만든 황산니켈 수용액에 예민화 처리 및 활성화 처리된 다이아몬드 입자를 넣고 교반하면서 차아인산나트륨 80g과 암모니아수(25%) 8g을 증류수에 녹여 만든 환원용액을 서서히 투입하여 경계층을 형성하였다. 이후 제 1 층과 제 2 층의 형성은 실시예 1과 동일하게 실시하였다. Composite particles were prepared in the same manner as in Example 1, but the hyposensitized and activated diamond particles were added to the aqueous solution of nickel sulfate prepared by dissolving 4 g of nickel sulfate and 6 g of Roxel salt in distilled water before forming the first layer, and hypochlorous acid was stirred. A reducing layer made by dissolving 80 g of sodium and 8 g of ammonia water (25%) in distilled water was slowly added to form a boundary layer. Thereafter, formation of the first layer and the second layer was performed in the same manner as in Example 1.

(실시예 6)(Example 6)

상기 실시예 5와 동일하게 다이아몬드 입자 표면에 경계층, 제 1 층, 제 2 층을 차례로 형성하되 각 층에 사용되는 황산니켈은 경계층에서 4g, 제 1 층에서 12g, 제 2 층에서 20g이 사용되었고 다른 시약도 이에 비례하여 사용되었다. In the same manner as in Example 5, a boundary layer, a first layer, and a second layer were sequentially formed on the diamond particle surface, but nickel sulfate used for each layer was 4 g in the boundary layer, 12 g in the first layer, and 20 g in the second layer. Other reagents were used proportionally.

(실시예 7)(Example 7)

상기 실시예 5와 동일하게 다이아몬드 입자 표면에 경계층, 제 1 층, 제 2 층을 차례로 형성하되 제 1 층 형성 단계에서 환원 용액으로 차아인산나트륨 200g 과 암모니아(25%) 20g 그리고 수산화나트륨 5g 을 증류수에 녹여 사용함으로써 반응 pH를 높여 제 1 층에서 저인함량의 니켈 금속층이 형성되도록 하였다.In the same manner as in Example 5, a boundary layer, a first layer, and a second layer were sequentially formed on the surface of the diamond particles, but 200 g of sodium hypophosphite, 20 g of ammonia (25%), and 20 g of sodium hydroxide were distilled as a reducing solution in the first layer formation step. By dissolving in, the reaction pH was increased to form a nickel metal layer having a low phosphorus content in the first layer.

(실시예 8)(Example 8)

상기 실시예 6과 동일하게 다이아몬드 입자 표면에 경계층, 제 1 층, 제 2 층을 차례로 형성하되 제 2 층 형성 단계에서 환원 용액으로 디메틸아민 붕소(Dimethylamine Borane, DMAB) 30g 과 시트르산 5g 을 증류수에 녹여 사용하였다.In the same manner as in Example 6, a boundary layer, a first layer, and a second layer were sequentially formed on the diamond particle surface, but 30 g of dimethylamine borane (DMAB) and 5 g of citric acid were dissolved in distilled water as a reducing solution in the second layer formation step. Used.

(비교예 1)(Comparative Example 1)

상기 실시예 1 과 동일하게 다이아몬드 입자의 예민화 처리와 활성화 처리가 이루어지고, 이후 황산니켈 66g과 롯셀염 100g을 증류수에 녹여 만든 황산니켈 수용액에 처리된 다이아몬드 입자를 넣어 교반하면서 차아인산나트륨 1,200g과 암모니아수(25%) 50g을 증류수에 녹여 만든 환원용액을 서서히 투입하여 단일층으로 구성되고 니켈과 인을 포함하는 표면 피막을 형성하였다.In the same manner as in Example 1, the sensitization treatment and activation treatment of the diamond particles were performed, and then 66 g of nickel sulfate and 100 g of Roxel salt were dissolved in distilled water, and the treated diamond particles were added to the aqueous solution of nickel sulfate, while stirring, 1,200 g of sodium hypophosphite. A reducing solution made by dissolving 50 g of ammonia water (25%) in distilled water was slowly added to form a surface layer composed of a single layer and containing nickel and phosphorus.

(비교예 2)(Comparative Example 2)

상기 실시예 1 과 동일하게 다이아몬드 입자의 예민화 처리와 활성화 처리가 이루어지고, 이후 황산니켈 37g과 롯셀염 60g을 증류수에 녹여 만든 황산니켈 수용액에 처리된 다이아몬드 입자를 넣어 교반하면서 차아인산나트륨 650g과 암모니아수(25%) 35g을 증류수에 녹여 만든 환원용액을 서서히 투입하여 단일층으로 구성되고 니켈과 인을 포함하는 표면 피막을 형성하였다.In the same manner as in Example 1, sensitization and activation treatment of the diamond particles was performed, and then, after stirring the nickel particles, the treated diamond particles were added to the aqueous solution of nickel sulfate prepared by dissolving 37 g of nickel sulfate and 60 g of Roxel salt in distilled water. A reducing solution made by dissolving 35 g of ammonia water (25%) in distilled water was gradually added to form a surface layer composed of a single layer and containing nickel and phosphorus.

(비교예 3)(Comparative Example 3)

상기 실시예 1 과 동일하게 다이아몬드 입자의 예민화 처리와 활성화 처리가 이루어지고, 이후 황산니켈 68g과 롯셀염 100g을 증류수에 녹여 만든 황산니켈 수용액에 처리된 다이아몬드 입자를 넣어 교반하면서 하이드라진 수화물 120g과 수산화나트륨 50g이 혼합된 증류수를 서서히 투입하여 강자성을 가지는 표면 피막을 형성하였다.In the same manner as in Example 1, the sensitization treatment and activation treatment of the diamond particles were performed, and then 68 g of nickel sulfate and 100 g of Roxel salt were dissolved in distilled water, and the treated diamond particles were added to the aqueous solution of nickel sulfate, followed by hydrazine hydrate 120 g and hydroxide. Distilled water mixed with 50 g of sodium was slowly added to form a surface film having ferromagnetic properties.

상기와 같이 만들어진 표면 피막이 형성된 다이아몬드 입자를 대상으로 각각 강자성 특성 평가와 내식성 평가를 진행하였다. The ferromagnetic property evaluation and the corrosion resistance evaluation were performed for the diamond particles on which the surface coating made as described above was formed, respectively.

강자성 특성은 포화자화값을 측정하여 평가하였다. 분말의 포화자화값을 평가하기 위해서 피막이 형성된 다이아몬드 입자를 프레스하여 펠릿(pallet)화하고 이렇게 만들어진 샘플을 상온에서 진동 시료 자력계(Vibrating-Sample Magnetometer, VSM)를 이용하여 자기이력곡선을 그리고 이를 기준으로 포화자화값을 결정하였다.The ferromagnetic properties were evaluated by measuring the saturation magnetization value. In order to evaluate the saturation magnetization value of the powder, diamond particles with a film are pressed and pelletized, and the sample thus made is drawn using a vibrating-sample magnetometer (VSM) at room temperature to draw a magnetic hysteresis curve. The saturation magnetization value was determined.

내식성 평가는 황산이 포함된 pH 2.0의 전해액에서 10 시간 방치 후 주사전자현미경(Scanning Electron Microscope, SEM)을 통해 입자의 표면을 관찰하여 피막층의 탈락이 발생했는지, 기타 반응 화합물이 발생하지 않았는지에 따라 양호, 불량으로 판단하였다.Corrosion resistance evaluation is performed after leaving for 10 hours in an electrolyte solution containing sulfuric acid at pH 2.0, and observing the surface of the particles through a scanning electron microscope (SEM), depending on whether the coating layer has fallen off or other reaction compounds have not occurred. It was judged as good or bad.

아래 표 1 은 각 실시예 및 비교예에 대한 평가 결과를 정리한 것이다. 결과에서 볼 수 있듯이 실시예 1 ~ 실시예 8 에서는 모두 우수한 강자성 특성을 나타내면서 동시에 내식성 또한 우수한 것으로 나타났다. 도 3 은 실시예 3에 따른 금속 피막이 형성된 복합 입자의 내식성 테스트 종료 후 SEM 분석 결과를 나타내는 것으로 강산의 전해액에서 장시간 유지했어도 피막의 변화가 없는 것을 보여준다.Table 1 below summarizes the evaluation results for each Example and Comparative Example. As can be seen from the results, in Examples 1 to 8, both exhibited excellent ferromagnetic properties and at the same time, excellent corrosion resistance. FIG. 3 shows the results of SEM analysis after the corrosion resistance test of the composite particles on which the metal film was formed according to Example 3 was completed, and shows that there is no change in the film even when the electrolyte solution of a strong acid is maintained for a long time.

반면, 비교예 1 ~ 비교예 3 에서와 같이 내식성을 위한 단일 피막 또는 자성을 위한 단일 피막만 초경질 입자의 표면에 형성된 경우 강자성 특성이 미미하거나 또는 내식성이 불량하여 다양한 전해액의 전착 공정에서 적용할 수 있는 분말을 얻을 수 없었다. 도 4 는 비교예 3 에 따른 복합 입자를 내식성 테스트 후 SEM을 통해 관찰한 결과이다. 표면의 탈락이 심하게 이루어졌고 판상의 니켈 수화물이 형성된 것을 볼 수 있다.On the other hand, as in Comparative Examples 1 to 3, when only a single coating for corrosion resistance or a single coating for magnetism was formed on the surface of the ultrahard particles, the ferromagnetic properties were insignificant or the corrosion resistance was poor, so it could be applied in the electrodeposition process of various electrolytes. It was not possible to obtain a powder. 4 is a result of observing the composite particles according to Comparative Example 3 through corrosion resistance test through SEM. It can be seen that the surface was severely detached and plate-shaped nickel hydrate was formed.

경계층Boundary layer 제 1 층1st layer 제 2 층2nd layer 포화자화
(emu/g)
Saturation magnetization
(emu / g)
내식성Corrosion resistance
피막층
중량%
Film layer
weight%
P 함량
(중량%)
P content
(weight%)
피막층
중량%
Film layer
weight%
P 함량
(중량%)
P content
(weight%)
피막층
중량%
Film layer
weight%
P(B) 함량(중량%) P (B) content (% by weight)
실시예1Example 1 -- -- 1111 00 4747 10.5 (P)10.5 (P) 66 양호Good 실시예2Example 2 -- -- 7.77.7 00 48.348.3 11 (P)11 (P) 44 양호Good 실시예3Example 3 -- -- 15.515.5 00 25.825.8 11 (P)11 (P) 10.510.5 양호Good 실시예4Example 4 -- -- 1111 00 27.227.2 11 (P)11 (P) 6.56.5 양호Good 실시예5Example 5 3.63.6 88 10.810.8 00 4545 11 (P)11 (P) 55 양호Good 실시예6Example 6 4.94.9 1111 14.714.7 00 24.624.6 11 (P)11 (P) 9.59.5 양호Good 실시예7Example 7 3.63.6 1111 1010 1.11.1 4545 11 (P)11 (P) 66 양호Good 실시예8Example 8 4.94.9 1111 14.714.7 00 24.624.6 0.5 (B)0.5 (B) 99 양호Good 비교예1Comparative Example 1 -- -- -- -- 59.259.2 13 (P)13 (P) 1 이하1 or less 양호Good 비교예2Comparative Example 2 -- -- -- -- 4545 13 (P)13 (P) 1 이하1 or less 양호Good 비교예3Comparative Example 3 -- -- 5959 00 -- -- 2828 불량Bad

본 명세서에서는 본 발명이 일부 실시예들과 관련하여 설명되었지만, 본 발명이 속하는 기술분야의 당업자가 이해할 수 있는 본 발명의 정신 및 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.Although the present invention has been described herein with reference to some embodiments, it should be understood that various modifications and changes can be made without departing from the spirit and scope of the present invention, which can be understood by those skilled in the art to which the present invention pertains. something to do. In addition, such modifications and variations should be considered within the scope of the claims appended hereto.

Claims (13)

초경질 입자와 이 초경질 입자의 표면에 형성되는 피막을 포함하는 복합 입자로,
상기 피막은,
상기 초경질 입자 표면에 형성되며, 강자성을 가지는 금속으로 이루어진 제 1 층; 및
상기 제 1 층 위에 형성되며, 상기 제 1 층보다 내식성이 우수한 금속으로 이루어진 제 2 층을 포함하는, 복합 입자.
A composite particle comprising ultra-hard particles and a coating formed on the surface of the super-hard particles,
The coating,
A first layer formed on the surface of the ultra-hard particles and made of a ferromagnetic metal; And
A composite particle comprising a second layer formed on the first layer and made of a metal having better corrosion resistance than the first layer.
제 1 항에 있어서,
상기 초경질 입자는 다이아몬드, 입방정 질화붕소, 탄화규소, 탄화붕소, 알루미나, 질화규소, 탄화텅스텐, 지르코니아 또는 이들의 조합으로 이루어진 군에서 선택되는 입자를 포함하는, 복합 입자.
According to claim 1,
The ultra-hard particles include particles selected from the group consisting of diamond, cubic boron nitride, silicon carbide, boron carbide, alumina, silicon nitride, tungsten carbide, zirconia, or combinations thereof.
제 1 항에 있어서,
상기 초경질 입자 표면과 상기 제 1 층 사이에, 상기 제 1 층보다 상기 초경질 입자에 대해 밀착력이 우수한 금속으로 이루어진 경계층을 포함하는, 복합 입자.
According to claim 1,
A composite particle comprising a boundary layer made of a metal having better adhesion to the ultrahard particles than the first layer, between the superhard particle surface and the first layer.
제 1 항에 있어서,
상기 제 1 층은 니켈과 인을 포함하되 인은 5 중량% 이하인 금속으로 이루어진, 복합 입자.
According to claim 1,
The first layer comprises nickel and phosphorus, but phosphorus is composed of a metal of 5% by weight or less, composite particles.
제 1 항에 있어서,
상기 제 2 층은 니켈과 인을 포함하되 인은 6 ~ 13 중량%를 포함하는 금속으로 이루어진, 복합 입자.
According to claim 1,
The second layer is composed of a metal containing nickel and phosphorus, but phosphorus is 6 to 13% by weight, composite particles.
제 1 항에 있어서,
상기 제 2 층은 니켈과 붕소를 포함하는 금속으로 이루어진, 복합 입자.
According to claim 1,
The second layer is composed of a metal containing nickel and boron, composite particles.
제 1 항에 있어서,
상기 복합입자의 포화자화값은 3 emu/g 이상인, 복합 입자.
According to claim 1,
The saturation magnetization value of the composite particles is 3 emu / g or more, composite particles.
제 3 항에 있어서,
상기 경계층은 니켈과 인을 포함하되 인은 6 ~ 13 중량%를 포함하는 금속으로 이루어진, 복합 입자.
The method of claim 3,
The boundary layer is composed of a metal containing nickel and phosphorus, but phosphorus is 6 to 13% by weight, composite particles.
제 1 항에 있어서,
상기 제 1 층의 중량은 상기 복합 입자 전체 중량의 5 ~ 20%인, 복합 입자.
According to claim 1,
The weight of the first layer is 5 to 20% of the total weight of the composite particles, composite particles.
제 1 항에 있어서,
상기 제 2 층의 중량은 상기 복합 입자 전체 중량의 20 ~ 50%인, 복합 입자.
According to claim 1,
The weight of the second layer is 20 to 50% of the total weight of the composite particles, composite particles.
제 3 항에 있어서,
상기 경계층의 중량은 상기 복합 입자 전체 중량의 3 ~ 10%인, 복합 입자.
The method of claim 3,
The weight of the boundary layer is 3 to 10% of the total weight of the composite particles, composite particles.
제 1 항에 있어서,
상기 피막의 중량은 상기 복합 입자 전체 중량의 30 ~ 70%인, 복합 입자.
According to claim 1,
The weight of the coating is 30 to 70% of the total weight of the composite particles, composite particles.
제 1 항 내지 제 12 항 중 어느 하나의 청구항에 기재된 복합 입자가 전착공정을 통해 와이어에 부착된, 와이어 쏘우.
A wire saw in which the composite particles according to any one of claims 1 to 12 are attached to a wire through an electrodeposition process.
KR1020180114906A 2018-09-27 2018-09-27 Multi-layered metal coated super-abrasive particles and wire saw using the same KR20200035621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180114906A KR20200035621A (en) 2018-09-27 2018-09-27 Multi-layered metal coated super-abrasive particles and wire saw using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180114906A KR20200035621A (en) 2018-09-27 2018-09-27 Multi-layered metal coated super-abrasive particles and wire saw using the same

Publications (1)

Publication Number Publication Date
KR20200035621A true KR20200035621A (en) 2020-04-06

Family

ID=70282178

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180114906A KR20200035621A (en) 2018-09-27 2018-09-27 Multi-layered metal coated super-abrasive particles and wire saw using the same

Country Status (1)

Country Link
KR (1) KR20200035621A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545107B1 (en) 2003-10-08 2006-01-24 한국지질자원연구원 Synthesis of nickel-diamond composite powders by electroless plating method
US8858693B2 (en) 2011-01-11 2014-10-14 Omg Electronic Chemicals, Llc Electroless plating bath composition and method of plating particulate matter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545107B1 (en) 2003-10-08 2006-01-24 한국지질자원연구원 Synthesis of nickel-diamond composite powders by electroless plating method
US8858693B2 (en) 2011-01-11 2014-10-14 Omg Electronic Chemicals, Llc Electroless plating bath composition and method of plating particulate matter

Similar Documents

Publication Publication Date Title
CN108559979B (en) Chemical nickel plating solution and preparation method thereof
KR101734454B1 (en) Nickel plating liquid, and method for manufacturing wire coated with solid microparticles
TW201111106A (en) Diamond wire saw, process for manufacturing diamond wire saw
KR102150161B1 (en) Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same
KR100755378B1 (en) Gold plating solution
JP2007152485A (en) Manufacturing method of saw wire
KR20010050575A (en) Metal article coated with multilayer surface finish for porosity reduction
CN103266341A (en) Preparation method for producing diamond cutting line through steel wire magnetization
CN102703887A (en) Nickel-copper alloy liquid for chemical plating and electroplating and method for preparing nickel-copper alloy noncrystalline-based composite coating
CN102700014A (en) Diamond micro-powder plated titanium, nickel-phosphorous and nickel composite diamond wire saw as well as preparation method thereof
US8858693B2 (en) Electroless plating bath composition and method of plating particulate matter
US8545992B2 (en) Aluminum article
WO2002004714A1 (en) Electrolytic copper-plated r-t-b magnet and plating method thereof
TW201249602A (en) Electrodeposition liquid for fixed-abrasive saw wire
JP6422948B2 (en) Grinding sawing wire and its manufacturing method and use
KR101917834B1 (en) DiamondNi CompositeStructured Particle with Multilayered Metallic Alloy and Method for Producing the Particle Thereof
TW201139757A (en) Glossy nickel plating material, electronic component comprising glossy nickel plating material, and process for production of glossy nickel plating material
CN1681008A (en) Monocrystalline silicon substrate coated with metal-plated layer and perpendicular magnetic recording medium
WO2013039097A1 (en) Wire coated with solid microparticles, and method for producing wire coated with solid microparticles
EP1857572A2 (en) Nickel cobalt phosphorus electroplating compositions and its use in surface treatment of a workspace
KR101165219B1 (en) Reducing ni-zr alloy electroless plating bath and plating products
KR20200035621A (en) Multi-layered metal coated super-abrasive particles and wire saw using the same
CN111286768B (en) Nickel-cobalt-manganese-lanthanum alloy plating solution and preparation method and application thereof
US10648096B2 (en) Electrolyte, method of forming a copper layer and method of forming a chip
Hu et al. Preparation of spherical WC–W2C composite powder via noble metal-free catalytic electroless nickel plating for selective laser melting

Legal Events

Date Code Title Description
E601 Decision to refuse application