KR20200026275A - 유체 공급 라인 및 동작 해석 시스템 - Google Patents

유체 공급 라인 및 동작 해석 시스템 Download PDF

Info

Publication number
KR20200026275A
KR20200026275A KR1020207003145A KR20207003145A KR20200026275A KR 20200026275 A KR20200026275 A KR 20200026275A KR 1020207003145 A KR1020207003145 A KR 1020207003145A KR 20207003145 A KR20207003145 A KR 20207003145A KR 20200026275 A KR20200026275 A KR 20200026275A
Authority
KR
South Korea
Prior art keywords
fluid
flow rate
control device
supply line
valve
Prior art date
Application number
KR1020207003145A
Other languages
English (en)
Other versions
KR102285972B1 (ko
Inventor
류타로 단노
겐지 아이카와
아키히로 하라다
유야 스즈키
다카히로 마츠다
가츠노리 고메하나
마사히코 오치이시
츠토무 시노하라
Original Assignee
가부시키가이샤 후지킨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 후지킨 filed Critical 가부시키가이샤 후지킨
Publication of KR20200026275A publication Critical patent/KR20200026275A/ko
Application granted granted Critical
Publication of KR102285972B1 publication Critical patent/KR102285972B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0033Electrical or magnetic means using a permanent magnet, e.g. in combination with a reed relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/003Housing formed from a plurality of the same valve elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1225Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston with a plurality of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/005Electrical or magnetic means for measuring fluid parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Flow Control (AREA)

Abstract

[과제] 복수의 유체 제어 기기에 의해 구성되는 유체 공급 라인 전체를 정밀하게 감시한다. 또한, 유체 제어 기기마다의 동작의 불균일을 억제하여 유체 공급 라인의 정밀도를 향상시킨다. [해결수단] 유체가 밖으로 새지 않게 연통하는 복수의 유체 제어 기기(F1, V11~V14)로 이루어지는 유체 공급 라인(L1)은, 유체 공급 라인(L1) 밖의 기구와, 유체 공급 라인(L1) 상의 유량 제어 기기(F1)를 접속하는 제1 접속 수단과, 유체 공급 라인(L1)에 있어서 제1 접속 수단으로부터 분기하여, 다른 유체 제어 기기(F1, V11~V14)에 접속하는 제2 접속 수단을 가진다.

Description

유체 공급 라인 및 동작 해석 시스템
본 발명은, 복수의 유체 제어 기기를 갖는 유체 공급 라인 전체를 정밀하게 감시하는 기술에 관한 것이다.
반도체 제조 프로세스에 이용되는 프로세스 유체를 공급하는 유체 공급 라인에는, 자동 밸브 등의 유체 제어 기기가 이용된다.
최근, ALD(Atomic Layer Deposition) 등, 반도체 제조 프로세스가 고도화되고, 종래 이상으로 프로세스 유체를 미세하게 제어 가능한 유체 공급 라인이 요구되고 있다. 그리고, 고도화된 반도체 제조 프로세스의 요구를 만족시키기 위해, 예를 들어 밸브의 상태를 보다 정밀하게 감시 가능한 유체 제어 기기가 제안되어 있다.
이로부터, 특허문헌 1에서는, 제1 유로 및 제2 유로가 형성된 몸체와, 제1 유로와 제2 유로의 사이를 연통 또는 차단하는 밸브체를 구비한 밸브로서, 몸체는 밸브체 측에 위치하는 제1면과, 제1면의 반대측에 위치하는 제2면을 갖는 베이스부와, 제2면과 단차부를 형성하는 제3면을 갖는 제1 연결부와, 제1면과 단차부를 형성하는 제4면을 갖는 제2 연결부를 가지며, 제1 유로는 제1-1 유로와 제1-2 유로를 가지며, 제1-1 유로의 제1-1 포트는 제3면에 개구되고, 제1-2 유로의 제1-3 포트는 제1-1 유로의 제1-2 포트에 연통되고, 또한 밸브체로 향하여 개구되며, 제1-2 유로의 제1-4 포트는 제4면에 개구되고, 제1-3 포트를 개재하여 제1 유로와 상기 제2 유로가 연통 가능하며, 제1 연결부는 다른 밸브의 몸체에서의 제2 연결부에 상당하는 부분에 대해 연결되고, 제1-1 유로와 다른 밸브의 몸체에서의 제1-2 유로에 상당하는 유로가 연통하는 밸브가 제안되어 있다.
특허문헌 1: 일본공개특허 2016-223533호 공보
그러나, 복수의 유체 제어 기기에 의해 구성되는 유체 공급 라인에서는, 각 유체 제어 기기는 다른 유체 제어 기기의 개폐 동작이나 유량 변화 등에 의한 영향을 받는다. 그 때문에, 각 유체 제어 기기를 단독으로 제어하거나 감시하거나 하는 것만으로는 최근의 고도화된 반도체 제조 프로세스의 요구를 만족시킬 수 없다.
또한, 유체 제어 기기의 고기능화에 의해 전기 배선이나 에어 튜브가 복잡화되면, 복잡화된 전기 배선이 잡음이나 지시 신호의 전송 속도의 지연을 야기하는 것 외에, 에어 튜브의 내용적의 증가가 유체 제어 기기의 개폐 속도를 저하시키거나, 각 유체 제어 기기의 개폐 속도에 오차를 발생시키거나 하게 된다.
그래서, 본 발명은, 복수의 유체 제어 기기에 의해 구성되는 유체 공급 라인 전체를 정밀하게 감시하는 것을 목적의 하나로 한다. 또한, 본 발명의 다른 목적의 하나는 유체 제어 기기마다의 동작의 불균일을 억제하여 유체 공급 라인의 정밀도를 향상시키는 것에 있다.
상기 목적을 달성하기 위해, 본 발명의 하나의 관점에 관한 유체 공급 라인은, 유체가 밖으로 새지 않게 연통하는 복수의 유체 제어 기기로 이루어지는 유체 공급 라인으로서, 상기 유체 공급 라인 밖의 기구와, 상기 유체 공급 라인 상의 소정의 유체 제어 기기를 접속하는 제1 접속 수단과, 상기 유체 공급 라인에 있어서 상기 제1 접속 수단으로부터 분기하여, 다른 유체 제어 기기에 접속하는 제2 접속 수단을 가진다.
또한, 상기 제1 접속 수단 및 상기 제2 접속 수단이, 상기 유체 공급 라인 밖의 기구로부터 상기 유체 제어 기기의 구동에 이용하는 구동 유체를 공급하는 구동압 공급로인 것으로 해도 된다.
또한, 상기 제1 접속 수단 및 상기 제2 접속 수단이, 상기 유체 공급 라인 밖의 기구와 상기 유체 제어 기기를 통신 가능하게 하는 전기 배선인 것으로 해도 된다.
또한, 상기 유체 공급 라인은 복수 병설되어 가스 유닛을 구성하고 있고, 상기 제1 접속 수단은, 상기 가스 유닛 근방에 있어서 복수의 상기 유체 공급 라인마다 분기하여, 상기 복수의 유체 공급 라인 상의 소정의 유체 제어 기기마다 접속하는 것으로 해도 된다.
또한, 상기 소정의 유체 제어 기기는, 유량 레인지 가변형 유량 제어 장치로서, 상기 유량 레인지 가변형 유량 제어 장치는, 유량 제어 장치의 유량 검출부로의 유체 통로로서 적어도 소유량용과 대유량용의 유체 통로를 마련하고, 상기 소유량용 유체 통로를 통해 소유량 영역의 유체를 유량 검출부로 유통시킴과 아울러, 구동압의 공급 유무에 따라 유량 제어부의 검출 레벨을 소유량 영역의 검출에 적합한 검출 레벨로 전환하고, 또한, 상기 대유량용 유체 통로를 통해 대유량 영역의 유체를 상기 유량 검출부로 유통시킴과 아울러, 구동압의 공급 유무에 따라 유량 제어부의 검출 레벨을 대유량 영역의 유량의 검출에 적합한 검출 레벨로 전환함으로써, 대유량 영역과 소유량 영역의 유체를 각각 전환하여 유량 제어하는 것으로 해도 된다.
또한, 상기 유량 레인지 가변형 유량 제어 장치에 공급된 구동압이, 상기 유량 레인지 가변형 유량 제어 장치를 통해 다른 유체 제어 기기에 공급되는 것으로 해도 된다.
또한, 상기 소정의 유체 제어 기기는, 차압(差壓)식 유량 제어 장치로서, 상기 차압식 유량 제어 장치는, 밸브 구동부를 구비한 컨트롤 밸브부와, 상기 컨트롤 밸브의 하류측에 설치된 오리피스와, 상기 오리피스의 상류측의 유체 압력의 검출기와, 상기 오리피스의 하류측의 유체 압력의 검출기와, 상기 오리피스의 상류측의 유체 온도의 검출기와, 상기 각 검출기로부터의 검출 압력 및 검출 온도를 이용하여 유체 유량을 연산함과 아울러, 연산 유량과 설정 유량의 차를 연산하는 유량 비교 회로를 구비한 제어 연산 회로를 갖는 것으로 해도 된다.
또한, 상기 복수의 유체 제어 기기에는, 상기 유체 제어 기기의 동작 정보를 취득하는 동작 정보 취득 기구가 장착되어 있는 것으로 해도 된다.
또한, 상기 유체 공급 라인은, 라인 밖의 정보 처리 장치와 통신 가능하게 구성되어 있고, 상기 소정의 유체 제어 기기는, 동일한 라인을 구성하는 다른 유체 제어 장치의 동작 정보를 집약하여, 집약된 동작 정보를 상기 정보 처리 장치에 대해 송신하는 송신 수단을 갖는 것으로 해도 된다.
또한, 본 발명의 다른 관점에 관한 동작 분석 시스템은, 상기 유체 공급 라인을 갖는 동작 분석 시스템으로서, 상기 정보 처리 장치는, 상기 집약된 동작 정보에 기초하여, 라인 전체의 동작으로부터 각 유체 제어 기기의 동작 또는 상태를 해석한다.
본 발명에 의하면, 복수의 유체 제어 기기에 의해 구성되는 유체 공급 라인 전체를 정밀하게 감시할 수 있다. 유체 제어 기기마다의 동작의 불균일을 억제하여 유체 공급 라인의 제어 정밀도를 향상시킬 수 있다.
도 1은, 본 발명의 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛을 나타낸 외관 사시도이다.
도 2는, 본 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛을 나타낸 평면도이다.
도 3은, 본 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛을 나타낸 측면도이다.
도 4는, 본 실시형태에 관한 유체 공급 라인을 구성하는 밸브에 대해, 자기 센서를 구비시킨 경우의 내부 구조를 나타내는 단면도로서, (a) 전체도, (b) 부분 확대도이다.
도 5는, 본 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛에 있어서, 케이블의 배선 구조를 나타낸 모식도이다.
도 6은, 본 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛에 있어서, 구동압 공급로의 접속 구조를 나타낸 모식도이다.
도 7은, 본 실시형태의 변형예에 관한 유체 공급 라인에 의해 구성된 가스 유닛에 있어서, 구동압 공급로의 접속 구조를 나타낸 모식도이다.
도 8은, 본 실시형태에 관한 유체 공급 라인을 구성하는 유량 제어 장치의 내부 구성을 모식적으로 나타낸 구성도이다.
도 9는, 본 발명의 다른 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛을 나타낸 외관 사시도이다.
도 10은, 본 발명의 다른 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛에 있어서, 케이블의 배선 구조를 나타낸 모식도이다.
도 11은, 본 발명의 다른 실시형태에 관한 유체 공급 라인에 의해 구성된 가스 유닛에 있어서, 구동압 공급로의 접속 구조를 나타낸 모식도이다.
도 12는, 본 실시형태에 관한 유체 공급 라인에 적합하게 이용되는 밸브의 내부 구조를 나타낸 모식도이다.
이하, 본 발명의 실시형태에 관한 유체 공급 라인 및 동작 해석 시스템에 대해 설명한다.
도 1~도 3에 도시된 바와 같이, 가스 유닛(1)은, 본 실시형태에 관한 3개의 유체 공급 라인(L1, L2, L3)을 구비하고 있다.
여기서, 「유체 공급 라인(L1, L2, L3)」이란, 가스 유닛의 구성단위 중 하나로서, 프로세스 유체가 유통하는 경로와, 이 경로 상에 배치된 일군의 유체 제어 기기에 의해 구성되고, 프로세스 유체를 제어하여, 독립적으로 피처리체를 처리하는 것이 가능한 최소의 구성단위이다. 가스 유닛은 통상 이러한 유체 공급 라인을 복수 병설시켜 구성되어 있다. 또한, 이하의 설명에서 언급하는 「라인 밖」이란, 이 유체 공급 라인을 구성하지 않는 부분 또는 기구로서, 라인 밖의 기구에는, 유체 공급 라인의 구동에 필요한 전력을 공급하는 전력 공급원이나 구동압을 공급하는 구동압 공급원, 유체 공급 라인과 통신 가능하게 구성된 장치 등이 포함된다.
유체 공급 라인(L1, L2, L3)은 각각, 복수의 유체 제어 기기를 유체가 밖으로 새지 않게(유체밀(流體密)하게) 연통시킨 것이고, 유체 제어 기기는, 밸브(V11~V14, V21~V24, V31~V34)나 유량 제어 장치(F1~F3)에 의해 구성된다. 또, 이하의 설명에서는, 밸브(V11~V14, V21~V24, V31~V34)를 밸브(V), 유량 제어 장치(F1~F3)를 유량 제어 장치(F)라고 합쳐 부르는 경우가 있다.
유량 제어 장치(F)는, 각 유체 공급 라인(L1, L2, L3)에 있어서 유체의 유량을 제어하는 장치이다.
이 유량 제어 장치(F)는 예를 들어, 유량 레인지 가변형 유량 제어 장치에 의해 구성할 수 있다. 유량 레인지 가변형 유량 제어 장치는, 전환 밸브의 조작에 의해 자동으로 유량 제어 영역을 전환 선택할 수 있는 장치이다.
이 유량 레인지 가변형 유량 제어 장치는, 유량 제어 장치의 유량 검출부로의 유체 통로로서 예를 들어, 소유량용과 대유량용의 유체 통로를 가지고 있다. 소유량용 유체 통로를 통해 소유량 영역의 유체를 유량 검출부로 유통시킴과 아울러, 유량 제어부의 검출 레벨을 소유량 영역의 검출에 적합한 검출 레벨로 전환하고, 대유량용 유체 통로를 통해 대유량 영역의 유체를 상기 유량 검출부로 유통시킴과 아울러, 유량 제어부의 검출 레벨을 대유량 영역의 유량의 검출에 적합한 검출 레벨로 전환함으로써, 대유량 영역과 소유량 영역의 유체를 각각 전환하여 유량 제어한다.
또, 유량 레인지 가변형 유량 제어 장치로서 구성된 유량 제어 장치(F)에 있어서, 유량 제어 영역의 전환 선택의 제어는, 유량 제어 장치(F)의 구동부에의 구동압의 공급 유무에 따라 실행되는 것으로 해도 된다.
또한, 유량 제어 장치(F)에 공급된 구동압은, 일단 공급된 유량 제어 장치(F)를 통해, 유량 제어 장치(F)에 접속하는 밸브(V) 등의 다른 유체 제어 기기에 공급할 수 있다.
또한, 이러한 유량 레인지 가변형 유량 제어 장치에 있어서, 오리피스 상류측 압력(P1) 및/또는 오리피스 하류측 압력(P2)을 이용하여, 오리피스를 유통하는 유체의 유량을 Qc=KP1(K는 비례 상수) 또는 Qc=KP2 m(P1-P2)n(K는 비례 상수, m과 n은 상수)으로서 연산하도록 한 압력식 유량 제어 장치에 있어서, 이 압력식 유량 제어 장치의 컨트롤 밸브의 하류측과 유체 공급용 관로 사이의 유체 통로를 적어도 2개 이상의 병렬형상의 유체 통로로 함과 아울러, 각 병렬형상의 유체 통로로 유체 유량 특성이 다른 오리피스를 각각 개재시키도록 할 수도 있다. 이 경우, 소유량 영역의 유체의 유량 제어에는 한쪽의 오리피스로 소유량 영역의 유체를 유통시키고, 또한 대유량 영역의 유체의 유량 제어에는 적어도 다른 쪽의 오리피스로 대유량 영역의 유체를 유통시킨다.
또한, 유량의 레인지를 3단계로 할 수도 있다. 이 경우, 오리피스를 대유량용 오리피스와 중유량용 오리피스와 소유량용 오리피스의 3종류로 함과 아울러, 한쪽의 유체 통로에 제1 전환용 밸브와 제2 전환용 밸브와 대유량 오리피스를 직렬형상으로 개재시키고, 또한 다른 쪽의 유체 통로에 소유량 오리피스와 중유량 오리피스를 개재시키며, 또한, 두 전환 밸브 사이를 연통하는 통로와, 소유량 오리피스와 중유량 오리피스 사이를 연통하는 통로를 연통시킨다.
이 유량 레인지 가변형 유량 제어 장치에 의하면, 유량 제어 범위를 확대시키면서, 높은 제어 정밀도를 유지할 수 있다.
또한, 다른 예에서는, 유량 제어 장치(F)를 차압 제어식 유량 제어 장치에 의해 구성할 수 있다. 차압 제어식 유량 제어 장치는, 베르누이의 정리로부터 도출한 유량 연산식을 기초로서 이용하고, 이에 각종 보정을 가함으로써 유체 유량을 연산하여 제어하는 장치이다.
이 차압식 유량 제어 장치는, 밸브 구동부를 구비한 컨트롤 밸브부와, 컨트롤 밸브의 하류측에 설치된 오리피스와, 오리피스의 상류측의 유체 압력(P1)의 검출기와, 오리피스의 하류측의 유체 압력(P2)의 검출기와, 오리피스의 상류측의 유체 온도(T)의 검출기를 가지고 있다. 그리고, 내장하는 제어 연산 회로에 의해, 각 검출기로부터의 검출 압력 및 검출 온도를 이용하여 유체 유량(Q)을 Q=C1·P1/√T·((P2/P1)m-(P2/P1)n)1/2(단 C1은 비례 상수, m 및 n은 상수)에 의해 연산함과 아울러, 연산 유량과 설정 유량의 차를 연산한다.
차압식 유량 제어 장치에 의하면, 인라인의 형태로 또한 장착 자세에 제약을 받지 않고 사용할 수 있으며, 게다가 압력의 변동에 대해서도 제어 유량이 거의 영향을 받지 않고, 고정밀도의 유량 계측 또는 유량 제어를 실시간으로 행할 수 있다.
이러한 유량 제어 장치(F)는, 유량 제어 장치(F)의 동작 정보를 취득하는 동작 정보 취득 기구나, 동일한 라인을 형성하는 밸브(V)의 동작 정보를 집약하여 밸브(V)를 감시함과 아울러, 각 밸브(V)를 제어 가능한 정보 처리 모듈을 구비하고 있다.
또, 유량 제어 장치(F)에 의해 실행 가능한 처리 등에 대해서는 나중에 상세히 설명하지만, 동작 정보 취득 기구는 예를 들어, 유량 제어 장치(F)에 내장되는 각종 센서나 유량 제어를 행하는 연산 장치, 이들 센서나 연산 장치 등의 정보의 처리를 실행하는 정보 처리 모듈 등에 의해 구성할 수 있다. 또한, 동일한 유체 공급 라인(L1, L2, L3)을 구성하는 밸브(V)에 대해, 유량 제어 장치(F)를 개재하여 라인 밖의 기구로부터 구동압을 공급시키거나, 통신 가능하게 시킴으로써, 각 밸브(V)의 동작 정보를 유량 제어 장치(F)에 집약시킬 수 있다. 그 결과, 각 밸브(V)의 동작 정보와 유량 제어 장치(F)의 동작 정보를 합하여 라인 전체의 동작 정보가 구성된다.
밸브(V)는, 다이어프램 밸브 등, 유체 제어 장치의 가스 라인에서 사용되는 밸브이다.
이 밸브(V)에는, 밸브(V)의 동작 정보를 취득하는 동작 정보 취득 기구로서, 소정의 개소에 압력 센서, 온도 센서, 리미트 스위치, 혹은 자기 센서 등이 장착되어 있고, 또한, 이들 압력 센서, 온도 센서, 리미트 스위치, 혹은 자기 센서 등에 의해 검출된 데이터를 처리하는 정보 처리 모듈이 내장되어 있다.
또, 동작 정보 취득 기구의 장착 위치는 제한되지 않고, 그 기능을 감안하여 구동압 공급로 상이나 전기 배선 상 등의 밸브(V) 밖에 장착되는 경우가 있다.
여기서, 압력 센서는 예를 들어, 소정의 공간 내의 압력 변화를 검출하는 감압 소자나, 감압 소자에 의해 검출된 압력의 검출값을 전기 신호로 변환하는 변환 소자 등에 의해 구성되고, 밀폐된 내부 공간의 압력 변화를 검출한다.
또한, 온도 센서는 예를 들어, 유체의 온도를 측정하는 센서로서, 유로의 근방에 설치하여 해당 개소의 온도를 측정함으로써, 해당 설치 개소의 온도를, 유로 내를 유통하는 유체의 온도라고 간주할 수 있다.
또한, 리미트 스위치는 예를 들어, 피스톤의 근방에 고정되고, 피스톤의 상하동에 따라 스위치가 전환된다. 이에 의해, 밸브(V)의 개폐 횟수나 개폐 빈도, 개폐 속도 등을 검지할 수 있다.
또한, 자기 센서는, 소정의 위치에 장착된 자석과의 사이의 거리 변화를 센싱함으로써, 밸브(V)의 개폐 상태뿐만 아니라, 개방도를 계측할 수 있다.
보다 구체적으로는, 도 4의 예에 도시된 바와 같이, 자기 센서(S)는, 다이어프램(51)의 주연(周緣)을 누르는 누름 어댑터(52)의 내측으로서, 스템(53)에 대향하는 면에 장착되어 있다. 또한, 밸브(V)의 개폐 동작에 따라 슬라이딩하는 스템(53)의 누름 어댑터(52) 근방에는, 자석(M)이 장착되어 있다.
여기서, 자기 센서(S)는 평면 코일, 발진 회로, 및 적산 회로를 가지고 있고, 대향하는 위치에 있는 자석(M)과의 거리 변화에 따라 발진 주파수가 변화한다. 그리고, 이 주파수를 적산 회로에서 변환하여 적산값을 구함으로써, 밸브(V)의 개폐 상태뿐만 아니라, 개방시의 개방도를 계측할 수 있다.
밸브(V) 내의 정보 취득 기구에 의해 취득된 정보는, 동일한 유체 공급 라인(L1, L2, L3)을 구성하는 유량 제어 장치(F)에 집약시킨 후, 유량 제어 장치(F)의 동작 정보와 합하여 라인 밖에 설치된 소정의 정보 처리 장치에 송신할 수 있다.
가스 유닛(1)은, 구동압을 공급하는 구동압 공급원, 전력을 공급하는 전력 공급원, 통신을 행하는 통신 장치 등에 의해 구성되는 라인 밖의 기구와 접속되어 있다.
여기서, 가스 유닛(1)을 구성하는 유체 제어 기기는, 라인 밖의 기구와 소정의 유체 제어 기기를 직접 접속하는 제1 접속 수단과, 이 제1 접속 수단으로부터 분기하여, 혹은 이 제1 접속 수단이 접속하는 유체 제어 기기를 개재하여, 라인 밖의 기구와 다른 유체 제어 기기를 접속하는 제2 접속 수단에 의해 접속되어 있다. 구체적으로는, 유체 공급 라인(L1)이면, 나중에 상세히 설명하는 도 5에서, 라인 밖으로부터의 전력 공급 및 라인 밖과의 통신에서는, 메인 케이블(10)과 연장 케이블(11)이 제1 접속 수단을 구성하고, 서브 케이블(111, 112, 113, 114)이 제2 접속 수단을 구성한다. 또한, 나중에 상세히 설명하는 도 6에서, 라인 밖으로부터의 구동압의 공급에서는, 메인 튜브(20), 연장 튜브(21), 및 서브 튜브(214)가 제1 접속 수단을 구성하고, 연장 튜브(211, 212, 213), 서브 튜브(215, 216, 217, 218)가 제2 접속 수단을 구성한다.
전력의 공급 및 라인 밖과의 통신은, 도 5에 도시된 바와 같이, 라인 밖의 기구와 가스 유닛(1)을 접속하는 메인 케이블(10)에 의해 가능하게 되어 있다.
메인 케이블(10)은, 가스 유닛(1) 근방에 설치된 분기 커넥터(C1)에 의해 연장 케이블(11)과 분기 케이블(101)로 분기되고, 분기 케이블(101)은 분기 커넥터(C2)에 의해 연장 케이블(12)과 분기 케이블(102)로 분기되며, 분기 케이블(102)은 분기 커넥터(C3)를 개재하여 연장 케이블(13)에 접속한다.
또, 여기서 분기 커넥터(C1)가 설치되는 위치를 「가스 유닛(1) 근방」으로 하는 것은, 분기 케이블(101, 102)이나 연장 케이블(11, 12, 13)의 길이를 최대한 짧게 하기 위해서이다. 따라서, 분기 커넥터(C1)가 설치되는 위치로서의 「가스 유닛(1) 근방」이 의미하는 곳은 적어도 라인 밖의 기구와, 연장 케이블(11, 12, 13)을 개재하여 메인 케이블(10)이 접속하는 유량 제어 장치(F1, F2, F3)를 연결하는 경로 중, 유량 제어 장치(F1, F2, F3) 쪽으로 치우친 위치를 의미한다. 더욱 적합하게는, 각 유량 제어 장치(F1, F2, F3)에 접속하는 연장 케이블(11, 12, 13)이나 분기 케이블(101, 102)을, 각 기기 등을 접속하는 데에 필요 최소한의 길이로 하였을 때에 분기 커넥터(C1)가 설치되는 위치이다.
각 유체 공급 라인(L1, L2, L3)에 대해 보면, 유체 공급 라인(L1)에서는, 연장 케이블(11)은 유량 제어 장치(F1)에 접속되어 있다. 연장 케이블(11)이 접속되어 있는 유량 제어 장치(F1)로부터는, 서브 케이블(111, 112)이 도출되고, 서브 케이블(111)은 밸브(V11)에 접속하며, 서브 케이블(112)은 밸브(V12)에 접속한다.
또한, 서브 케이블(112)이 접속되어 있는 밸브(V12)로부터는 서브 케이블(113)이 도출되고, 서브 케이블(113)은 밸브(V13)에 접속한다. 또한, 서브 케이블(113)이 접속되어 있는 밸브(V13)로부터는 서브 케이블(114)이 도출되고, 서브 케이블(114)은 밸브(V14)에 접속한다.
유체 공급 라인(L2)도 유체 공급 라인(L1)과 마찬가지의 구성에 의해 라인 밖의 기구와 접속한다.
즉, 연장 케이블(12)은 유량 제어 장치(F2)에 접속되어 있다. 연장 케이블(12)이 접속되어 있는 유량 제어 장치(F2)로부터는, 서브 케이블(121, 122)이 도출되고, 서브 케이블(121)은 밸브(V21)에 접속하며, 서브 케이블(122)은 밸브(V22)에 접속한다.
또한, 서브 케이블(122)이 접속되어 있는 밸브(V22)로부터는 서브 케이블(123)이 도출되고, 서브 케이블(123)은 밸브(V23)에 접속한다. 또한, 서브 케이블(123)이 접속되어 있는 밸브(V23)로부터는 서브 케이블(124)이 도출되고, 서브 케이블(124)은 밸브(V24)에 접속한다.
유체 공급 라인(L3)도 유체 공급 라인(L1)과 마찬가지의 구성에 의해 라인 밖의 기구와 접속한다.
즉, 연장 케이블(13)은 유량 제어 장치(F3)에 접속되어 있다. 연장 케이블(13)이 접속되어 있는 유량 제어 장치(F3)로부터는, 서브 케이블(131, 132)이 도출되고, 서브 케이블(131)은 밸브(V31)에 접속하며, 서브 케이블(132)은 밸브(V32)에 접속한다.
또한, 서브 케이블(132)이 접속되어 있는 밸브(V32)로부터는 서브 케이블(133)이 도출되고, 서브 케이블(133)은 밸브(V33)에 접속한다. 또한, 서브 케이블(133)이 접속되어 있는 밸브(V33)로부터는 서브 케이블(134)이 도출되고, 서브 케이블(134)은 밸브(V34)에 접속한다.
여기서, 유체 공급 라인(L1)에 대해, 연장 케이블(11)은 유량 제어 장치(F1)에 접속하고, 유량 제어 장치(F1)로부터는 서브 케이블(111, 112)이 도출되어 있지만, 유량 제어 장치(F1) 내에서 연장 케이블(11)과 서브 케이블(111, 112)은 접속되어 있다. 접속은, 유량 제어 장치(F1) 내에 설치된 정보 처리 모듈을 개재한 것으로 할 수도 있고, 연장 케이블(11)을 분기시키는 것으로 할 수도 있다.
또한, 밸브(V12, V13)에서도, 서브 케이블(112)은 서브 케이블(113)과 접속하고, 서브 케이블(113)은 서브 케이블(114)과 접속하고 있다. 이 서브 케이블(112, 113, 114)의 접속에 대해서도, 밸브(V12, V13) 내에 설치된 정보 처리 모듈을 개재한 것으로 할 수도 있고, 서브 케이블(112, 113)을 분기시키는 것으로 할 수도 있다.
어떤 접속에 대해서도, 라인 밖의 기구와 밸브(V11, V12, V13, V14)가 유량 제어 장치(F1)를 개재하여 통신 가능하게 접속됨과 아울러, 전력이 공급되도록 되어 있으면 된다.
또, 다른 유체 공급 라인(L2, L3)에서의 접속에 대해서도 마찬가지로서, 밸브(V21, V22, V23, V24)는, 메인 케이블(10), 연장 케이블(12), 및 서브 케이블(121, 122, 123, 124)에 의해, 유량 제어 장치(F2)를 개재하여 라인 밖의 기구와 접속되어 있다. 또한, 밸브(V31, V32, V33, V34)는, 메인 케이블(10), 연장 케이블(13), 및 서브 케이블(131, 132, 133, 134)에 의해, 유량 제어 장치(F3)를 개재하여 라인 밖의 기구와 접속되어 있다.
구동압은, 도 6에 도시된 바와 같이, 라인 밖의 기구로부터 가스 유닛(1)으로 메인 튜브(20)에 의해 공급된다.
메인 튜브(20)는, 가스 유닛(1) 근방에 설치된 분기 조인트(J1)에 의해, 유체 공급 라인(L1, L2, L3)마다 구동압을 공급하기 위한 연장 튜브(21, 22, 23)로 분기된다.
각 유체 공급 라인(L1, L2, L3)에 대해 보면, 유체 공급 라인(L1)에서는, 연장 튜브(21)는 조인트(J11)에 의해 연장 튜브(211)와 서브 튜브(214)로 분기된다. 서브 튜브(214)는 유량 제어 장치(F1)에 접속되어 있고, 이에 의해 유량 제어 장치(F1)에 구동압이 공급된다.
연장 튜브(211)는, 조인트(J111)에 의해 연장 튜브(212)와 서브 튜브(215)로 다시 분기된다. 서브 튜브(215)는 밸브(V11)에 접속되어 있고, 이에 의해 밸브(V11)에 구동압이 공급된다.
마찬가지로 연장 튜브(212)는, 조인트(J112)에 의해 연장 튜브(213)와 서브 튜브(216)로 다시 분기된다. 서브 튜브(216)는 밸브(V12)에 접속되어 있고, 이에 의해 밸브(V12)에 구동압이 공급된다.
또한, 연장 튜브(213)는, 조인트(J113)에 의해 서브 튜브(217)와 서브 튜브(218)로 다시 분기된다. 서브 튜브(217)는 밸브(V13)에 접속되어 있고, 이에 의해 밸브(V13)에 구동압이 공급된다. 또한, 서브 튜브(218)는 밸브(V14)에 접속되어 있고, 이에 의해 밸브(V14)에 구동압이 공급된다.
유체 공급 라인(L2)에도 유체 공급 라인(L1)과 마찬가지의 구성에 의해 구동압이 공급된다.
즉, 연장 튜브(22)는 조인트(J12)에 의해 연장 튜브(221)와 서브 튜브(224)로 분기된다. 서브 튜브(224)는 유량 제어 장치(F2)에 접속되어 있고, 이에 의해 유량 제어 장치(F2)에 구동압이 공급된다.
연장 튜브(221)는, 조인트(J121)에 의해 연장 튜브(222)와 서브 튜브(225)로 다시 분기된다. 서브 튜브(225)는 밸브(V21)에 접속되어 있고, 이에 의해 밸브(V21)에 구동압이 공급된다.
마찬가지로 연장 튜브(222)는, 조인트(J122)에 의해 연장 튜브(223)와 서브 튜브(226)로 다시 분기된다. 서브 튜브(226)는 밸브(V22)에 접속되어 있고, 이에 의해 밸브(V22)에 구동압이 공급된다.
또한, 연장 튜브(223)는, 조인트(J123)에 의해 서브 튜브(227)와 서브 튜브(228)로 다시 분기된다. 서브 튜브(227)는 밸브(V23)에 접속되어 있고, 이에 의해 밸브(V23)에 구동압이 공급된다. 또한, 서브 튜브(228)는 밸브(V24)에 접속되어 있고, 이에 의해 밸브(V24)에 구동압이 공급된다.
유체 공급 라인(L3)에도 유체 공급 라인(L1)과 마찬가지의 구성에 의해 구동압이 공급된다.
즉, 연장 튜브(23)는 조인트(J13)에 의해 연장 튜브(231)와 서브 튜브(234)로 분기된다. 서브 튜브(234)는 유량 제어 장치(F3)에 접속되어 있고, 이에 의해 유량 제어 장치(F3)에 구동압이 공급된다.
연장 튜브(231)는, 조인트(J131)에 의해 연장 튜브(232)와 서브 튜브(235)로 다시 분기된다. 서브 튜브(235)는 밸브(V31)에 접속되어 있고, 이에 의해 밸브(V31)에 구동압이 공급된다.
마찬가지로 연장 튜브(232)는, 조인트(J132)에 의해 연장 튜브(233)와 서브 튜브(236)로 다시 분기된다. 서브 튜브(236)는 밸브(V32)에 접속되어 있고, 이에 의해 밸브(V32)에 구동압이 공급된다.
또한, 연장 튜브(233)는, 조인트(J133)에 의해 서브 튜브(237)와 서브 튜브(238)로 다시 분기된다. 서브 튜브(237)는 밸브(V33)에 접속되어 있고, 이에 의해 밸브(V33)에 구동압이 공급된다. 또한, 서브 튜브(238)는 밸브(V34)에 접속되어 있고, 이에 의해 밸브(V34)에 구동압이 공급된다.
여기서, 유체 공급 라인(L1)에 대해, 유량 제어 장치(F1)와 밸브(V11, V12, V13, V14)는 모두 조인트(J11, J111, J112, J113), 연장 튜브(211, 212, 213), 및 서브 튜브(214, 215, 216, 217, 218)를 개재하여 연장 튜브(21)나 그 앞의 메인 튜브(20)와 접속되어 있지만, 이에 한정하지 않고, 도 7에 도시된 바와 같이, 연장 튜브(21)와 유량 제어 장치(F1)를 접속한 후, 유량 제어 장치(F1)로부터 구동압을 각 밸브(V11, V12, V13, V14)에 공급할 수도 있다. 이 경우, 유량 제어 장치(F1) 내에, 메인 튜브(20)로부터 공급된 구동압을 각 밸브(V11, V12, V13, V14)에 분배하기 위한 기구를 설치해도 되고, 유량 제어 장치(F1) 내에 끌어넣은 메인 튜브를 유량 제어 장치(F1) 내에서 분기시키도록 해도 된다.
또, 유체 공급 라인(L2, L3)에 대해서도 이와 마찬가지로 할 수 있다.
이러한 유체 공급 라인(L1, L2, L3)의 구성에 의하면, 전력 공급이나 통신을 행하기 위한 케이블이 심플한 것이 되고, 잡음을 저감할 수 있음과 아울러, 지시 신호의 전송 속도의 지연을 억제할 수 있다. 또한, 구동압을 공급하는 튜브의 내용적을 작게 할 수 있기 때문에, 밸브(V)나 유량 제어 장치(F) 등의 각 유체 제어 기기의 개폐 속도를 유지함과 아울러, 각 유체 제어 기기의 개폐 속도에 오차를 발생시키지 않도록 할 수 있다. 그 결과, 유체 제어 기기마다의 동작의 불균일을 억제하여 유체 공급 라인(L1, L2, L3)의 제어 정밀도를 향상시킬 수 있다.
또한, 이러한 유체 공급 라인(L1, L2, L3)에 있어서, 유량 제어 장치(F)는 예를 들어, 도 8에 도시된 바와 같이 구성할 수 있다. 또, 도 8은, 유체 공급 라인(L1)을 구성하는 유량 제어 장치(F1)의 구조를 나타내고 있지만, 다른 유체 공급 라인(L2, L3) 각각을 구성하는 유량 제어 장치(F2, F3)에 대해서도 마찬가지이다.
이 예에서는, 유체 공급 라인(L1)에 있어서, 유량 제어 장치(F1)를 마스터, 복수의 밸브(V11, V12, V13, V14)를 슬레이브로 한 데이지 체인이 형성된다. 그리고 이 경우, 데이지 체인의 상태를 이용함으로써, 개개의 밸브(V)나 유량 제어 장치(F)뿐만 아니라, 라인 전체를 하나의 장치로 간주하여 동작을 해석하는 시스템을 구축할 수 있다.
우선, 유량 제어 장치(F1) 내의 구성에 대해 언급하면, 센서는, 유량 제어 장치(F1)의 동작 정보를 취득하는 동작 정보 취득 기구를 구성하는 것으로, 상술한 바와 같이 압력 센서, 온도 센서, 혹은 자기 센서 등을 단독 또는 복수 조합하여 구성된다. 또한, 연산 장치는, 유량 제어 장치(F1)의 유량 제어를 행하는 장치이다. 또한, 밸브(FV)는, 구동압 공급원(G)으로부터 구동압의 공급을 받음과 아울러, 이 구동압을 밸브(V11, V12, V13, V14)로 공급한다.
정보 처리 모듈은, 센서나 연산 장치와 접속되어 유량 제어 장치(F1)의 동작 정보를 수집하고, 이 수집한 동작 정보에 대해 소정의 정보 처리를 실행한다. 또한, 정보 처리 모듈은, 유체 공급 라인(L1)을 구성하는 밸브(V11, V12, V13, V14)와 통신 가능하게 접속되어 있고, 각 밸브(V11, V12, V13, V14)의 동작 정보를 집약할 수 있음과 아울러, 소정의 지시 신호를 능동적으로 발하여 각 밸브(V11, V12, V13, V14)를 제어할 수도 있다.
유량 제어 장치(F1)를 이와 같이 구성한 경우에는, 동일한 라인을 구성하는 각 밸브(V11, V12, V13, V14)를 개별적으로 식별하여 이상의 유무를 진단하거나, 라인 전체에서 본 각 밸브(V11, V12, V13, V14)의 동작을 해석하거나 할 수 있다.
구체적으로, 유량 제어 장치(F1)에 의한 각 밸브(V11, V12, V13, V14)의 진단은 예를 들어, 유량 제어 장치(F1)나 각 밸브(V)의 상류 및 하류에 압력 측정 수단을 마련하고, 각 밸브(V)의 개폐를 적절히 제어하여, 소정 위치에서의 압력을 측정한다. 이 압력의 측정값으로부터, 소정의 밸브(V)를 닫고 있으면 검출되지 않아야 할 압력을 검출하거나, 소정의 밸브(V)를 열고 있으면 검출되어야 할 압력을 검출할 수 없거나 함으로써, 밸브(V)의 이상을 진단할 수 있다. 또한, 밸브(V)의 개폐 상태의 전환에 따른 소정 위치에서의 압력 강하 특성을, 정상적인 상태에서의 압력 강하 특성과 대비함으로써, 시트 누설 등의 밸브(V)의 결함을 진단할 수도 있다. 또, 각 압력 측정 수단에 의한 측정값은 유량 제어 장치(F)의 정보 처리 모듈에 집약되도록 하면 된다.
또, 유량 제어 장치(F)에 이상의 유무를 진단시키거나, 동작을 해석시키거나 할 뿐만 아니라, 유량 제어 장치(F)에 집약된 각 유체 공급 라인(L1, L2, L3)의 동작 정보를, 메인 케이블(10)을 개재하여 외부의 정보 처리 장치에 대해 송신하고, 이 정보 처리 장치에서 이상의 유무를 진단시키거나, 동작을 해석시키거나 할 수도 있다. 이와 같이 구성해도, 가스 유닛(1)으로부터 취득한 동작 정보에 기초하여 각 유체 공급 라인(L1, L2, L3)의 동작을 해석할 수 있다. 또, 외부의 정보 처리 장치는, 라인 밖의 기구의 일부를 구성하는 것이어도 되고, 라인 밖의 기구와 통신 가능하게 접속된 장치이어도 된다. 또한, 이러한 외부의 정보 처리 장치는 이른바 서버 컴퓨터 등에 의해 구성할 수 있다.
이에 의해, 다수의 유체 제어 기기가 조밀하게 집적된 가스 유닛(1)에 있어서, 밸브(V)를 라인으로부터 분리하거나 하지 않고, 개별적으로 식별하여 그 동작 상태를 진단할 수 있다. 또한, 유체 공급 라인(L1, L2, L3)마다 각 밸브(V)가 유량 제어 장치(F)를 개재하여 라인 밖의 기구와 접속되어 있기 때문에, 복수의 밸브(V)를 배하(配下)에 구비하는 유량 제어 장치(F)나, 유량 제어 장치(F)와 통신 가능하게 구성된 정보 처리 장치는, 복수의 밸브(V) 전체의 동작에 입각하면서 각 밸브(V)의 동작 상태를 감시할 수 있다. 그 결과, 밸브(V)나 유량 제어 장치(F)마다 동작 정보를 해석할 뿐만 아니라, 라인 전체를 정밀하게 감시하는 것이 가능하다.
또, 라인 전체의 동작의 해석이 유체 공급 라인(L1, L2, L3)의 정밀한 감시에 도움이 되는 것은 예를 들어, 유체 공급 라인(L1)을 구성하는 복수의 밸브(V11, V12, V13, V14)에 대해, 일부의 밸브(V13, V14)에 대해 개폐 동작이 실행되고, 남는 밸브(V11, V12)에 대해서는 개폐 동작이 실행되지 않는 경우에서도, 밸브(V11, V12)는 밸브(V13, V14)에 의한 개폐 동작의 영향을 받기 때문이다.
그리고, 유체 공급 라인(L1) 전체의 동작 정보에 기초하면, 밸브(V11, V12, V13, V14)와 접속하는 유량 제어 장치(F1)는 어떤 시간대에 있어서, 밸브(V11, V12)가 개폐 동작을 실행하지 않는 반면, 밸브(V13, V14)가 개폐 동작을 실행하고 있음을 파악할 수 있고, 밸브(V11, V12)의 단독 동작으로는 파악할 수 없는, 밸브(V11, V12)의 상태를 정밀하게 해석할 수 있다.
또한, 이러한 라인 전체의 동작 정보의 해석 결과는 예를 들어, 데이터 마이닝을 행하여 유체 공급 라인(L1, L2, L3)의 이상 유무의 판별이나 이상의 예기 등에 이용할 수 있다. 구체적으로는, 라인 전체에서의 밸브(V)나 유량 제어 장치(F)의 동작시간, 소정의 밸브(V)가 실제로 개폐 동작을 행한 횟수와 다른 밸브(V)의 개폐 동작의 영향을 받은 시간 등을 파악할 수 있기 때문에, 라인 전체에서의 동작시간에 기초하여 유지보수나 부품 교환의 시기를 판정하거나, 동일 라인 상의 밸브(V)마다의 개폐 속도를 비교하여 이상을 검지하거나 할 수 있다.
또, 상술한 유체 공급 라인(L1, L2, L3)은, 도 9~도 11에 도시된 가스 유닛(2)을 구성할 수도 있다.
가스 유닛(1)과 달리, 가스 유닛(2)을 구성하는 유체 공급 라인(L1, L2, L3)은 각각 별개로 라인 밖의 기구와 접속되어 있다.
즉, 가스 유닛(2)과 전력의 공급 및 라인 밖과의 통신은, 도 10에 도시된 바와 같이, 라인 밖의 기구와 유체 공급 라인(L1)을 접속하는 메인 케이블(10a), 라인 밖의 기구와 유체 공급 라인(L2)을 접속하는 메인 케이블(10b), 라인 밖의 기구와 유체 공급 라인(L3)을 접속하는 메인 케이블(10c)에 의해 가능하게 되어 있다.
또, 각 유체 공급 라인(L1, L2, L3)에 있어서, 유량 제어 장치(F)로부터 밸브(V)에의 접속은 가스 유닛(1)과 마찬가지이다.
또한, 구동압은 도 11에 도시된 바와 같이, 라인 밖의 기구로부터 가스 유닛(2)으로, 각 유체 공급 라인(L1, L2, L3)마다 메인 튜브(20a, 20b, 20c)에 의해 공급된다.
또, 각 유체 공급 라인(L1, L2, L3)에 있어서, 조인트(J11, J12, J13)로부터 유량 제어 장치(F)나 밸브(V)에의 접속은 가스 유닛(1)과 마찬가지이다.
또, 상술한 본 실시형태에 관한 유체 공급 라인(L1, L2, L3)에 있어서 적합하게 이용되는 밸브(V)를 도 12에 나타낸다.
밸브(V)는, 밸브 본체(3)와 밸브 본체(3)에 연결된 구동압 제어 장치(4)를 구비한다.
밸브 본체(3)는, 예를 들어 다이어프램 밸브 등, 유체 제어 장치의 가스 라인에서 사용되는 밸브로서, 적어도 외부로부터 공급되는 구동압을 내부에 도입하기 위한 구동압 도입구(3a)를 구비하고 있다.
구동압 제어 장치(4)는, 밸브 본체(3)의 구동압 도입구(3a)에 연결되어 있고, 라인 밖의 구동압 공급원(G)으로부터 공급되는 구동압을 밸브 본체(3)에 공급한다.
구동압 제어 장치(4)에는, 라인 밖의 구동압 공급원(G)으로부터 밸브 본체(3)에 구동압을 도입하는 도입로로서, 구동압 도입로(431, 432, 433)를 구비하고 있다. 구동압 도입로(431)는 라인 밖의 구동압 공급원(G)에 접속되어 있다. 구동압 도입로(432)는, 자동 밸브(411) 및 자동 밸브(412)를 개재하여, 구동압 도입로(431)와 구동압 도입로(433)를 연결하고 있다. 구동압 도입로(433)는, 밸브 본체(3)의 구동압 도입구(3a)에 연결되어 있다.
또한, 구동압 제어 장치(4)에는, 구동압 도입로(431)를 개폐하는 N.C.(Normal Close: 상시 폐쇄)의 자동 밸브(411)와, 자동 밸브(411)와 연동하여 구동압 도입로(433)를 개폐함과 아울러, 구동압 도입로(433)로부터 구동압을 장치 밖(A)으로 배기하는 배기 통로(44)를 개폐하는 N.O.(Normal Open: 상시 개방)의 자동 밸브(412)가 설치되어 있다.
자동 밸브(411, 412)는 각각, 밸브 구동부(421, 422)에 의해 개폐된다. 밸브 구동부(421, 422)는, 전원 공급원(E) 및 지시 신호 발신원(Q)으로부터 배선(45)을 개재하여 전원의 공급과 함께 동작을 지시하는 지시 신호를 받고, 지시 신호에 기초한 동작을 실행한다.
또, 자동 밸브(411, 412)는 모두, 통상적인 전자(電磁) 밸브나 에어 작동형 전자 밸브, 혹은 전기 밸브 등, 각종 밸브에 의해 구성할 수 있다.
이 구동압 제어 장치(4)는, 자동 밸브(411, 412), 밸브 구동부(421, 422), 구동압 도입로(431, 432, 433) 등이 중공의 캡형상의 케이싱(40)으로 덮여 있고, 밸브 본체(3)에 케이싱(40)을 씌우도록 하여, 밸브 본체(3)와 일체화되어 있다.
또, 밸브 본체(3)와 케이싱(40)은 적절히 나사 고정이나 접착제에 의한 접착 등의 수단에 의해 일체화시킬 수 있다.
이러한 구성으로 이루어지는 구동압 제어 장치(4)에서는, 자동 밸브(411, 412)의 개폐 상태에 관계없이, 라인 밖의 구동압 공급원(G)으로부터 공급되는 구동압이 항상 구동압 도입로(431)를 개재하여 자동 밸브(411)의 곳까지 공급되고 있다.
구동압 제어 장치(4)의 개폐 동작에 대해 설명하면, 우선 자동 밸브(411)가 밸브 구동부(421)에 의해 개방되면, 자동 밸브(411)까지 공급되어 있던 구동압은 구동압 도입로(432)를 개재하여 자동 밸브(412)로 도출된다. 또한, 자동 밸브(412)는 자동 밸브(411)와 연동되어 있고, 자동 밸브(411)의 개방에 따라 폐쇄하여 배기 통로(44)가 닫혀, 구동압 도입로(433)를 개재하여 밸브 본체(3)로 구동압이 공급된다.
한편, 자동 밸브(411)가 밸브 구동부(421)에 의해 폐쇄되면, 구동압 공급원(G)으로부터 공급되는 구동압은 자동 밸브(411)에 의해 차단된다. 또한, 자동 밸브(411)에 연동하는 자동 밸브(412)는 개방되고, 배기 통로(44)가 열려 밸브 본체(3) 내의 구동압이 배기된다.
이러한 밸브(V)에 의하면, 구동압 제어 장치(4)와 밸브 본체(3)가 일체적으로 연결되어 있기 때문에, 밸브(V)에 접속하는 배선을 심플하게 할 수 있다.
또한, 항상 밸브 본체(3)와 일체적으로 연결된 구동압 제어 장치(4)의 자동 밸브(411)의 곳까지 구동압이 공급되어 있고, 밸브 본체(3)의 구동압 도입구(3a)에 가까운 곳에서 구동압이 일정 압력으로 높아진 상태가 유지된다. 그 결과, 밸브 본체(3)는 개폐시 구동압의 압력 변화를 받기 어렵고, 개폐 속도를 일정하게 유지할 수 있으며, 나아가서는 재료 가스의 제어의 정밀도를 향상시킬 수 있다.
또, 상술한 밸브(V)는, 밸브 본체(3)에 구동압 제어 장치(4)를 연결시킨 구조로 하였지만, 이에 한정하지 않고, 밸브 본체(3) 내에 구동압 제어 장치(4)를 내장시키기 위한 공간을 확보하고, 이 공간에 구동압 제어 장치(4)를 내장시킬 수도 있다.
또, 상술한 본 실시형태에 대해, 가스 유닛(1, 2)은 모두 3개의 유체 공급 라인(L1, L2, L3)에 의해 구성되는 것으로 하였지만, 본 발명의 적용이 라인의 수에 의해 제한되는 일은 없다.
또한, 본 발명의 실시형태는 상술한 실시형태에 한정되는 일은 없고, 당업자라면, 본 발명의 범위를 벗어나지 않는 범위에 있어서, 구성, 수단, 혹은 기능의 변경이나 추가 등이 여러 가지 가능하다.
1, 2 가스 유닛
10, 10a, 10b, 10c 메인 케이블
101, 102 분기 케이블
11, 12, 13 연장 케이블
111, 112, 113, 114 서브 케이블
121, 122, 123, 124 서브 케이블
131, 132, 133, 134 서브 케이블
20, 20a, 20b, 20c 메인 튜브
21, 22, 23 연장 튜브
211, 212, 213 연장 튜브
214, 215, 216, 217, 218 서브 튜브
221, 222, 223 연장 튜브
224, 225, 226, 227, 228 서브 튜브
231, 232, 233 연장 튜브
234, 235, 236, 327, 238 서브 튜브
L1, L2, L3 유체 공급 라인
C1, C2, C3 분기 커넥터
F(F1, F2, F3) 유량 제어 장치
J1 분기 조인트
J11, J111, J112, J113 조인트
J12, J121, J122, J123 조인트
J13, J131, J132, J133 조인트
V(V11~V14, V21~24, V31~34) 밸브

Claims (10)

  1. 유체가 밖으로 새지 않게 연통하는 복수의 유체 제어 기기로 이루어지는 유체 공급 라인으로서,
    상기 유체 공급 라인 밖의 기구와, 상기 유체 공급 라인 상의 소정의 유체 제어 기기를 접속하는 제1 접속 수단과,
    상기 유체 공급 라인에 있어서 상기 제1 접속 수단으로부터 분기하여, 다른 유체 제어 기기에 접속하는 제2 접속 수단을 갖는, 유체 공급 라인.
  2. 청구항 1에 있어서,
    상기 제1 접속 수단 및 상기 제2 접속 수단이, 상기 유체 공급 라인 밖의 기구로부터 상기 유체 제어 기기의 구동에 이용하는 구동 유체를 공급하는 구동압 공급로인, 유체 공급 라인.
  3. 청구항 1에 있어서,
    상기 제1 접속 수단 및 상기 제2 접속 수단이, 상기 유체 공급 라인 밖의 기구와 상기 유체 제어 기기를 통신 가능하게 하는 전기 배선인, 유체 공급 라인.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 유체 공급 라인은 복수 병설되어 가스 유닛을 구성하고 있고,
    상기 제1 접속 수단은, 상기 가스 유닛 근방에 있어서 복수의 상기 유체 공급 라인마다 분기하여, 상기 복수의 유체 공급 라인 상의 소정의 유체 제어 기기마다 접속하는, 유체 공급 라인.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 소정의 유체 제어 기기는, 유량 레인지 가변형 유량 제어 장치로서,
    상기 유량 레인지 가변형 유량 제어 장치는,
    유량 제어 장치의 유량 검출부로의 유체 통로로서 적어도 소유량용과 대유량용의 유체 통로를 마련하고,
    상기 소유량용 유체 통로를 통해 소유량 영역의 유체를 유량 검출부로 유통시킴과 아울러, 구동압의 공급 유무에 따라 유량 제어부의 검출 레벨을 소유량 영역의 검출에 적합한 검출 레벨로 전환하고, 또한, 상기 대유량용 유체 통로를 통해 대유량 영역의 유체를 상기 유량 검출부로 유통시킴과 아울러, 구동압의 공급 유무에 따라 유량 제어부의 검출 레벨을 대유량 영역의 유량의 검출에 적합한 검출 레벨로 전환함으로써, 대유량 영역과 소유량 영역의 유체를 각각 전환하여 유량 제어하는, 유체 공급 라인.
  6. 청구항 5에 있어서,
    상기 유량 레인지 가변형 유량 제어 장치에 공급된 구동압이, 상기 유량 레인지 가변형 유량 제어 장치를 통해 다른 유체 제어 기기에 공급되는, 유체 공급 라인.
  7. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 소정의 유체 제어 기기는, 차압식 유량 제어 장치로서,
    상기 차압식 유량 제어 장치는,
    밸브 구동부를 구비한 컨트롤 밸브부와,
    상기 컨트롤 밸브의 하류측에 설치된 오리피스와,
    상기 오리피스의 상류측의 유체 압력의 검출기와,
    상기 오리피스의 하류측의 유체 압력의 검출기와,
    상기 오리피스의 상류측의 유체 온도의 검출기와,
    상기 각 검출기로부터의 검출 압력 및 검출 온도를 이용하여 유체 유량을 연산함과 아울러, 연산 유량과 설정 유량의 차를 연산하는 유량 비교 회로를 구비한 제어 연산 회로를 갖는, 유체 공급 라인.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    상기 복수의 유체 제어 기기에는, 상기 유체 제어 기기의 동작 정보를 취득하는 동작 정보 취득 기구가 장착되어 있는, 유체 공급 라인.
  9. 청구항 8에 있어서,
    상기 유체 공급 라인은, 라인 밖의 정보 처리 장치와 통신 가능하게 구성되어 있고,
    상기 소정의 유체 제어 기기는, 동일한 라인을 구성하는 다른 유체 제어 장치의 동작 정보를 집약하여, 집약된 동작 정보를 상기 정보 처리 장치에 대해 송신하는 송신 수단을 갖는, 유체 공급 라인.
  10. 상기 청구항 9에 기재된 유체 공급 라인을 갖는 동작 해석 시스템으로서,
    상기 정보 처리 장치는, 상기 집약된 동작 정보에 기초하여, 라인 전체의 동작으로부터 각 유체 제어 기기의 동작 또는 상태를 해석하는, 동작 해석 시스템.
KR1020207003145A 2017-09-30 2018-08-28 유체 공급 라인 및 동작 해석 시스템 KR102285972B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017192268 2017-09-30
JPJP-P-2017-192268 2017-09-30
PCT/JP2018/031753 WO2019065047A1 (ja) 2017-09-30 2018-08-28 流体供給ライン及び動作解析システム

Publications (2)

Publication Number Publication Date
KR20200026275A true KR20200026275A (ko) 2020-03-10
KR102285972B1 KR102285972B1 (ko) 2021-08-04

Family

ID=65903231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207003145A KR102285972B1 (ko) 2017-09-30 2018-08-28 유체 공급 라인 및 동작 해석 시스템

Country Status (7)

Country Link
US (1) US20200285256A1 (ko)
JP (1) JPWO2019065047A1 (ko)
KR (1) KR102285972B1 (ko)
CN (1) CN111033430A (ko)
SG (1) SG11202001538SA (ko)
TW (1) TWI676759B (ko)
WO (1) WO2019065047A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171018A1 (ja) * 2019-02-19 2020-08-27 株式会社フジキン バルブ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020093857A (ko) * 2000-03-27 2002-12-16 파커-한니핀 코포레이션 반도체 제조용 처리기체의 유량제어시스템 및 방법
JP2008286812A (ja) * 2008-09-05 2008-11-27 Tadahiro Omi 差圧式流量計
JP2012033188A (ja) * 2011-10-03 2012-02-16 Tohoku Univ 流量レンジ可変型流量制御装置
JP2016223533A (ja) 2015-05-29 2016-12-28 株式会社フジキン バルブおよび流体制御装置
WO2017033757A1 (ja) * 2015-08-26 2017-03-02 株式会社フジキン 分流システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054712B4 (de) * 2010-12-16 2023-06-07 Zf Cv Systems Hannover Gmbh Druckluftversorgungsanlage und pneumatisches System
US9721685B2 (en) * 2012-04-17 2017-08-01 Bwxt Mpower, Inc. Valve assembly with isolation valve vessel
US10121686B2 (en) * 2015-01-30 2018-11-06 Hitachi High-Technologies Corporation Vacuum processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020093857A (ko) * 2000-03-27 2002-12-16 파커-한니핀 코포레이션 반도체 제조용 처리기체의 유량제어시스템 및 방법
JP2008286812A (ja) * 2008-09-05 2008-11-27 Tadahiro Omi 差圧式流量計
JP2012033188A (ja) * 2011-10-03 2012-02-16 Tohoku Univ 流量レンジ可変型流量制御装置
JP2016223533A (ja) 2015-05-29 2016-12-28 株式会社フジキン バルブおよび流体制御装置
WO2017033757A1 (ja) * 2015-08-26 2017-03-02 株式会社フジキン 分流システム

Also Published As

Publication number Publication date
US20200285256A1 (en) 2020-09-10
TWI676759B (zh) 2019-11-11
WO2019065047A1 (ja) 2019-04-04
JPWO2019065047A1 (ja) 2020-11-05
TW201915375A (zh) 2019-04-16
SG11202001538SA (en) 2020-03-30
CN111033430A (zh) 2020-04-17
KR102285972B1 (ko) 2021-08-04

Similar Documents

Publication Publication Date Title
JP7216422B2 (ja) 流体供給ライン
US20230258281A1 (en) Valve, Abnormality Diagnosis Method of Valve
CN103502902B (zh) 带有流量监测器的压力式流量控制装置、使用该装置的流体供给系统的异常检测方法及监测流量异常时的处置方法
CN104048705B (zh) 采用主元件连接平台的过程变量测量
US10895484B2 (en) Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method
KR102305808B1 (ko) 유체 공급 라인의 이상 진단 방법
KR102285972B1 (ko) 유체 공급 라인 및 동작 해석 시스템
KR20150145699A (ko) 중계기
US20230092572A1 (en) Valve arrangement and method
CN1973136A (zh) 在流体装置中进行故障定位和诊断的方法
Hindman et al. Monitoring the condition of a valve and linear actuator in hydraulic systems
TR2021020519A1 (tr) Hassas debi̇ ölçümü sağlayan bi̇r hizli bağlanti grubu
CN115978053A (zh) 一种比例流量阀可靠性试验用液压系统及其试验方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant