KR20200019089A - 초 저 방출 솔리드 스테이트 릴레이 - Google Patents

초 저 방출 솔리드 스테이트 릴레이 Download PDF

Info

Publication number
KR20200019089A
KR20200019089A KR1020190096711A KR20190096711A KR20200019089A KR 20200019089 A KR20200019089 A KR 20200019089A KR 1020190096711 A KR1020190096711 A KR 1020190096711A KR 20190096711 A KR20190096711 A KR 20190096711A KR 20200019089 A KR20200019089 A KR 20200019089A
Authority
KR
South Korea
Prior art keywords
solid state
switching devices
semiconductor switching
state relay
power
Prior art date
Application number
KR1020190096711A
Other languages
English (en)
Inventor
서지오 오로즈코
Original Assignee
센사타 테크놀로지스, 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센사타 테크놀로지스, 인크 filed Critical 센사타 테크놀로지스, 인크
Publication of KR20200019089A publication Critical patent/KR20200019089A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/79Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar semiconductor switches with more than two PN-junctions, or more than three electrodes, or more than one electrode connected to the same conductivity region
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/13Modifications for switching at zero crossing
    • H03K17/136Modifications for switching at zero crossing in thyristor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/13Modifications for switching at zero crossing
    • H03K17/133Modifications for switching at zero crossing in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/68Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors specially adapted for switching ac currents or voltages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/725Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region for ac voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/785Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/42Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • H03K17/76Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

하나의 실시예에 따르면, 초 저 방출을 갖는 솔리드 스테이트 릴레이가 개시된다. 솔리드 스테이트 릴레이는 제어 신호를 수신하기 위한 하나 이상의 입력들, 수신된 제어 신호를 프로세싱하기 위한 입력 회로를 포함한다. 출력 회로는 제어 신호에 응답하여, 전력이 전력 소스로부터 전기적 부하로 전달될 수 있도록 솔리드 스테이트 릴레이를 폐쇄한다. 입력 회로는 AC 소스 신호가 네거티브 값으로부터 포지티브 값으로, 또는 포지티브 값으로부터 네거티브 값으로 교차할 때까지 솔리드 스테이트 릴레이가 턴 온 하지 않도록 구성된 제로 크로싱 기능부를 포함할 수 있다. 제로 크로싱 기능부는 제로 크로싱 기능부를 갖는 광결합기들을 포함할 수 있다. 입력 회로는 초기 스타트 업 후의 부분 동안에 방출들을 감소시키기 위한 저 방출 드라이버 부분을 더 포함할 수 있다.

Description

초 저 방출 솔리드 스테이트 릴레이{ULTRA LOW EMISSION SOLID STATE RELAY}
본 개시내용은 전자 회로들에 관한 것이다. 더 상세하게는, 이 개시내용은 초 저 방출(ultra low emission)을 갖는 솔리드 스테이트 릴레이(solid state relay)들에 관한 것이다.
전기적 신호들을 온(on) 및 오프(off)로 스위칭하기 위한 다양한 공지된 방법들이 있다. 디바이스가 전기를 소스(source)로부터 부하(load)로 접속하거나 접속해제하도록 수동으로 동작되는, 광 스위치(light switch)와 같은 기계적 스위치가 있다. 스위치를 기계적으로 동작시키기 위하여 전자석(electromagnet)들, 코일(coil)들, 스프링(spring)들, 또는 기계적 콘택(mechanical contact)들을 이용하는 것들과 같은, 전기적으로 동작된 스위치들인 릴레이들이 있다.
솔리드 스테이트 릴레이는 스위칭 기능들을 수행하기 위하여 솔리드 스테이트 반도체들의 전기적 및 광학적 성질들에 의존하는, 이동부들을 갖지 않는 전자 스위칭 디바이스이다. 전형적인 솔리드 스테이트 릴레이는 작은 제어 전압이 그 제어 단자들에 인가될 때에 온 및 오프로 스위칭한다. 솔리드 스테이트 릴레이는 부하에 제공된 교류(alternating current)(AC) 또는 직류(direct current)(DC)를 제어하기 위하여 이용될 수 있다. 또한, 솔리드 스테이트 릴레이들은 전자기적 스위치들 또는 릴레이들보다 더 큰 성능 및/또는 신뢰성을 제공한다. 많은 경우들에는, 실리콘 제어된 정류기(silicon controlled rectifier)들, TRIAC들, 게이트 턴-오프 사이리스터(gate turn-off thyristor)들, 전력 트랜지스터(power transistor)들 등과 같은 집적 회로 기반 스위치들이 솔리드 스테이트 릴레이 내에서의 출력 스위치들로서 이용될 수 있다. 많은 경우들에는, 이 IC-기반 스위치들은 외부 제어 회로로부터 제어될 수 있고, 여기서, 제어 신호는 광결합기(optocoupler), 트랜스포머(transformer), 또는 다른 이러한 광학 디바이스의 이용에 의해 스위치 회로로부터 격리될 수 있다. 이 격리는 전도된 전기적 방출들이 저-전압 DC 제어 회로부로 도입되는 것을 감소시키기 위하여 이용될 수 있다. 그러나, 반도체-기반 디바이스들의 속성(예컨대, 턴-온 전압들, 문턱 전압들 등)로 인해, 솔리드 스테이트 스위치들은 AC 공급 라인 상에서 순시적 교란(transient disturbanc)들을 야기시킬 수 있다. 순시적 교란들은 AC 공급 라인(예컨대, 전도된 방출들) 상으로 도입될 수 있는 무선 주파수(radio frequency)(RF) 교란들을 야기시킬 수 있다. 결국, 이것들은 동일한 AC 공급 라인을 이용하는 다른 장비의 동작을 방해할 수 있다.
전도된 방출들의 효과를 최소화하기 위하여, 누군가는 외부 필터들을 설치할 수 있다. 그러나, 외부 필터들을 설치하는 것은 솔리드 스테이트 릴레이가 장비 내로 설치되는 그 장비의 크기 및/또는 비용을 증가시킬 수 있다.
하나의 실시예에 따르면, 초 저 방출을 갖는 솔리드 스테이트 릴레이가 개시된다. 솔리드 스테이트 릴레이는 제어 신호를 수신하기 위한 하나 이상의 입력들, 수신된 제어 신호를 프로세싱하기 위한 입력 회로를 포함한다. 출력 회로는 제어 신호에 응답하여, 전력이 전력 소스(power source)로부터 전기적 부하로 전달될 수 있도록 솔리드 스테이트 릴레이를 폐쇄한다. 입력 회로는 AC 소스 신호가 네거티브(negative) 값으로부터 포지티브(positive) 값으로, 또는 포지티브 값으로부터 네거티브 값으로 교차할 때까지, 솔리드 스테이트 릴레이가 턴 온(turn on)하지 않도록 구성된 제로 크로싱(zero-crossing) 기능부를 포함할 수 있다. 제로 크로싱 기능부는 제로 크로싱 기능부를 갖는 광결합기들을 포함할 수 있다. 입력 회로는 초기 스타트-업(start-up) 후의 부분 동안에 방출들을 감소시키기 위한 저 방출 드라이버 부분을 더 포함할 수 있다.
또 다른 실시예에서는, 교류 소스로부터 부하로의 전력 전달을 제어하기 위한 시스템이 개시된다. 시스템은 제어 회로에 전기적으로 결합된 복수의 입력들을 포함하는 솔리드 스테이트 스위치를 포함한다. 실시예에서, 제어 회로는 솔리드 스테이트 스위치를 폐쇄할 것을 트리거하기 위한 커맨드(command)를 제공한다. 시스템은, 전력 소스와 부하 사이에서 전기적으로 결합되고, 복수의 입력들에 결합된 복수의 출력들을 또한 포함한다. 솔리드 스테이트 스위치를 폐쇄할 것을 트리거하기 위한 커맨드는 전력 소스로부터 부하로의 전력 전달로 귀결된다. 이 실시예에서, 솔리드 스테이트 스위치는 솔리드 스테이트 스위치를 폐쇄할 것을 트리거하기 위한 커맨드를 수신한 후의 제1 제로 크로싱 후에 폐쇄하도록 구성된다.
발명의 상기한 그리고 다른 목적들, 특징들 및 장점들은, 유사한 참조 번호들이 발명의 예시적인 실시예들의 유사한 부분들을 일반적으로 표현하는 동반 도면들에서 예시된 바와 같이, 발명의 예시적인 실시예들의 다음의 더 상세한 설명들로부터 분명할 것이다.
개시된 기술이 속하는 본 기술분야에서의 통상의 기술자들이 발명을 어떻게 제조하고 이용하는지를 더 용이하게 이해하도록, 다음의 도면들에 대해 참조가 행해질 수 있다.
도 1은 솔리드 스테이트 스위치의 출력 스위칭 디바이스들로부터 제어 라인을 격리시키기 위하여 광결합기들을 이용하는 솔리드 스테이트 스위치의 예시적인 회로도를 도시하고;
도 2는 출력 스위칭 디바이스들을 제어하기 위한 전력 트랜지스터들을 포함하는 예시적인 솔리드 스테이트 스위치의 회로도를 도시하고;
도 3은 출력 스위칭 디바이스들을 제어하기 위한 전력 트랜지스터들을 포함하는 예시적인 솔리드 스테이트 스위치의 회로도를 도시하고;
도 4는 개시내용의 양태들에 따라, 제로 크로싱 감지 특징들을 포함하는 예시적인 솔리드 스테이트 스위치의 회로도를 도시하고;
도 5a 및 도 5b는 개시내용의 양태들에 따라, 제로 크로싱 감지 특징들의 동작을 예시하는 솔리드 스테이트 스위치의 턴 온의 타이밍을 예시하는 그래프들을 도시하고;
도 6은 개시내용의 양태들에 따라, 제로 크로싱 감지 특징들의 동작을 예시하는 솔리드 스테이트 스위치의 턴 온의 타이밍을 예시하는 그래프를 도시한다.
본 개시내용은 전도성 방출(conductive emission)들 및 제로 크로싱 감지(zero-crossing sensing)를 감소시키는 솔리드 스테이트 릴레이를 설명한다.
도 1은 산업에서 이용되는 현재의 제품들을 반영하는 구성을 가지는 솔리드 스테이트 스위치(예컨대, 솔리드 스테이트 릴레이(100), 솔리드 스테이트 콘택터(solid state contactor) 등)의 예시적인 블록도를 도시한다. 솔리드 스테이트 릴레이(100)는 하나 이상의 입력 단자들(111)을 통해 솔리드 스테이트 릴레이(100)에 전기적으로 접속될 수 있는 제어 회로(105)에 의해 제어될 수 있다. 제어 회로(105)는 출력 스위치 회로(117)로 하여금, 출력 단자들(140, 150)을 통해 전력 소스(170)로부터 부하(160)로 제공되어야 할 원하는 출력(예컨대, 원하는 전압, 원하는 전류 등)을 인에이블하게 하기 위한 솔리드 스테이트 릴레이(100)의 동작을 제어하기 위하여 이용될 수 있다.
예시적인 예에서, 솔리드 스테이트 릴레이(100)는 입력 회로(110) 및 출력 스위치 회로(117)를 포함할 수 있다. 입력 회로(110)는 광학적으로 격리된 트리거 신호를 출력 회로(117)에 제공하기 위하여 이용될 수 있는 하나 이상의 디바이스들(예컨대, 광결합기(112), 광결합기(114), 저항기(116) 등)을 포함하는 광격리기(optoisolator) 및/또는 광결합기 회로를 포함할 수 있다. 일부 경우에는, 입력 회로(110)가 각각 실리콘 제어된 정류기(silicon controlled rectifier)(SCR)들 SCR(120) 및 SCR(130)과 같은, 제1 반도체 스위치의 게이트(123) 및 제2 반도체 스위치의 게이트(133)에 게이팅 신호(gating signal)를 제공하도록 구성될 수 있다. 일부 경우에는, 게이트 턴-오프 사이리스터(gate turn-off thyristor)(GTO)들, 교류용 트라이오드(triode for alternating current)(TRIAC)들, 절연된 게이트 쌍극성 트랜지스터(insulated gate bipolar transistor)(IGBT)들, 및/또는 이와 유사한 것과 같은 상이한 반도체 스위치들이 이용될 수 있다. 입력 회로(110)는 광결합기(112) 및 광결합기(114)와 직렬인 저항기(116)를 포함할 수 있다. 저항기(116)는 SCR들(120 및 130)로의 돌입 게이트 전류(inrush gate current)를 제한하기 위하여 이용될 수 있다. 전형적인 용법에서, 광결합기들(112 및 114)은 동시에, 양자 모두 온 또는 양자 모두 오프 중의 어느 하나로 활성화된다. 이것은 이들이 제한된 브레이크다운 전압(breakdown voltage)을 가지기 때문이다. 예를 들어, 480 볼트 교류의 경우에, SCR들(120 및 130)은 1200 피크 전압(peak voltage)(Vpk)의 브레이크다운 전압들을 가지는 반면, 광결합기들(112 및 114)은 각각 600 Vpk만을 가진다. 솔리드 스테이트 릴레이(100)는 솔리드 스테이트 릴레이의 2개 이상의 입력 단자들(111)을 통해 제어 회로(105)에 전기적으로 결합될 수 있다. 일부 경우에는, 제어 회로(105)가 솔리드 스테이트 스위치로 하여금, 선택적으로 개방하고 폐쇄하게 하기 위한 하나 이상의 제어 신호들을 생성하기 위하여 이용될 수 있다.
도 1을 계속 참조하면, 출력 스위치 회로(117)의 반도체 스위치들(예컨대, SCR(120) 및 SCR(130))은 저항기(124) 및/또는 저항기(134), 광결합기(112) 및 광결합기(114)의 출력 TRIAC들(예컨대, TRIAC(113) 및 TRIAC(115)), 및 관련된 SCR(120 또는 130)의 게이트를 통해 흐르는 전류에 의해 전도 상태로 트리거될 수 있다. 알 수 있는 바와 같이, SCR(120) 및 SCR(130)은 백-투-백(back-to-back) 구성으로 구성되고, 제어 회로(105)로부터 수신된 하나 이상의 제어 신호를 통해 광결합기(112)의 TRIAC(113) 및 광결합기(115)의 TRIAC(115)을 인에이블함으로써 전도 상태로 트리거될 수 있다. 인에이블될 때, 광결합기들(112, 114)의 각각의 순방향 전압 강하(forward voltage drop)는 저 전류 레벨들에서 약 1.0 볼트(volt)이어서, 연관된 SCR(120) 또는 SCR(130)이 활성화되기 전에, 약 2 볼트 레벨이 존재하는 것으로 귀결된다. 또한, SCR(120) 및 SCR(130)의 각각은 R124 및 R134 양단의 전압 강하와 병렬로, 턴 온 되어야 할 특정한 SCR의 게이트-대-캐소드(gate-to-cathode) 문턱 전압과 함께, 게이트와 캐소드 사이의 역방향 전압 특성을 가진다. 따라서, SCR(120) 및 SCR(130)의 각각이 인에이블되기 전에, 솔리드 스테이트 스위치의 출력 단자들(140 및 150)에서의 전압은 3.75 볼트 근처의 범위(예컨대, 약 3.5 볼트로부터 약 4.0 볼트까지 등) 내에 있을 수 있다. 그러나, 스위치 회로(107)의 SCR(120) 및 SCR(130)이 활성화될 때, 출력 단자들(140, 150)에서의 전압은 0.9 볼트 근처로 강하할 수 있다. 다시 말해서, SCR(120) 및 SCR(130)이 제어 회로(105)에 의해 제공된 제어 신호에 응답하여 인에이블("온으로 스위칭")될 때, 출력 단자들(140, 150)에서의 전압 레벨은 약 3.0 볼트의 스텝 변화를 경험할 수 있다. 이 스텝 변화는 또한, 부하 전압 및 이에 따라, 부하 전류에서의 스텝 증가로 귀결된다.
전압 및/또는 전류에서의 이러한 순시적 변화들은 전기적 교란이 전력 라인들(180) 상에서 행해지는 것으로 귀결될 수 있다. 전압 및/또는 전류 신호에 대한 이러한 순시적 변화들은 또한, 전도된 방출들이 주파수들의 범위(예컨대, 약 150 KHz 내지 약 500 KHz, 30 MHz까지 등) 상에서 전력 라인들로 도입되는 것으로 귀결될 수 있다. 많은 경우에는, 하나 이상의 산업 또는 정부 표준들이 이러한 상황을 포괄할 수 있다. 예를 들어, 이러한 산업 및/또는 정부 표준들은 상이한 전력 레벨들에서의 허용가능한 전도된 방출 레벨들 및/또는 특정된 디바이스들 또는 애플리케이션들에 기초한 허용가능한 전도된 방출 레벨들을 적어도 정의하기 위하여, 참조로 그 전체적으로 본원에 포함되는 CISPR 14-1로서 또한 알려진 유럽 표준 EN 55014-1, 연방 통신 위원회(Federal Communication Commission)(FCC) 표준 FCC 파트 15B 등을 포함할 수 있다. 이 표준들은 동일한 전력 라인들(180)을 공유하고 있을 수 있는 다른 디바이스들 상에서의 전도된 방출들에 의해 야기된 임의의 해로운 효과를 최소화하기 위한 허용가능한 범위 내에 있도록 이러한 전도된 방출들을 제한하기 위하여 관할권(jurisdiction)에서 도입될 수 있다. 현재의 애플리케이션들에서, 솔리드 스테이트 스위치들의 사용자는 임의의 도입된 전도된 방출들을 허용가능한 레벨들 내에 있도록 감소시키기 위하여 고가의 필터들을 설치하도록 강제될 수 있다. 예를 들어, 표준 CISPR 14-1은 주 전력 접속 및 부하 전력 접속에서의 전도된 방출들의 허용가능한 양을 제한하는 것과 같이, 주파수들의 범위 내에서의 전도된 방출들에 대한 수용가능한 제한들을 정의하기 위한 것과 같은, 전자기적 호환성에 관한 하나 이상의 섹션(section)들을 포함할 수 있다. 주 전력 라인들 상으로 다시 전도될 수 있는(예컨대, 인입) 전도된 방출들의 허용가능한 양을 제한함으로써, 동일한 전력 라인을 공유하는 다른 디바이스들은 전도된 방출들의 양으로 인한 더 적은 성능 열화를 경험할 수 있고 그리고/또는 더 긴 수명을 경험할 수 있다. 예시적인 예에서, 가정 기기는 모터의 동작을 제어(예컨대, 모터를 턴 온 및/또는 턴 오프)하기 위하여 이용된 솔리드 스테이트 릴레이를 포함할 수 있다. 많은 경우에는, 산업 또는 정부 표준 중의 하나 이상이 전력 라인(예컨대, 주 전력 라인, 부하 전력 라인 등)으로 도입될 수 있는 전도된 방출들의 수용가능한 제한들을 정의하는 섹션을 포함할 수 있다. 일부 경우에는, AC 전력 소스가 단상 AC 전압 또는 3상 AC 전압을 제공할 수 있는 전력 소스를 포함할 수 있다. 전력 소스로부터 제공될 수 있는 AC 전압은 50 Hz 또는 60 Hz의 어느 하나에서 약 110 볼트 AC로부터 약 600 볼트 AC까지의 범위일 수 있다.
또한, 전도된 방출들의 양(예컨대, 평균 레벨 및/또는 준-피크(quasi-peak) 레벨)은 하나 이상의 전력 범위들(예컨대, 약 150 KHz 내지 약 500 KHz 사이, 약 500 KHz 내지 약 5 MHz 사이, 약 5 MHz 내지 약 30 MHz 사이) 내에서 허용가능할 수 있고(예컨대, 약 56 dBμV로부터 약 66 dBμV까지 등), 여기서, 허용가능한 전도된 방출들의 양은 부하의 전력 레벨(예컨대, 약 700 와트(watt)를 초과하지 않는 정격 모터 전력(rated motor power), 700 와트를 초과하고 1 킬로와트를 초과하지 않는 정격 모터 전력, 1 kW보다 더 큰 정격 모터 전력 등), 방출들이 (예컨대, 주 단자들, 부하 단자들 등에서) 측정될 수 있는 위치에 의해, 및/또는 장비의 유형(예컨대, 진공 청소기들, 가정 기기들 및 유사한 장비, 도구들, 클래스 A 그룹 2 장비로서 분류된 장비, 클래스 B 그룹 2 장비로서 분류된 장비, 및/또는 등)에 의해 변동될 수 있다. 이 방출 레벨들을 충족시키기 위하여, 제조자 및/또는 사용자는 설치된 디바이스에 의해 생성된 전도된 방출들의 양을 최소화하기 위하여 고가의 필터들 또는 다른 장비를 설치할 수 있다. 일부 경우에는, 사용자에 의해 설치된 필터들이 원하는 컴포넌트들을 설치하기 위하여 필요한 요구된 공간을 증가시킬 수 있고, 따라서, 이 증가된 공간 요건들을 충족시키는 것과 연관된 공간 요건들 및 비용들을 추가로 증가시킬 수 있다. 예를 들어, 사용자는 요구된 필터를 설치할 수 있도록 필요한 것보다 더 큰 인클로저(enclosure)를 구입할 필요가 있을 수 있다. 많은 경우에는, 전압 및/또는 전류에서의 작은 스텝 변화조차도 적용가능한 표준들에서 기재된 허용가능한 제한들을 충족시킬 수 있거나 초과할 수 있는 전도된 방출들을 도입할 수 있다.
전형적인 애플리케이션들에서, 솔리드 스테이트 릴레이(100)와 같은 솔리드 스테이트 스위치들은 특히, 출력 회로와 관련하여, 잡음(예컨대, 전도된 방출들)을 더욱 저 전력 제어 회로로 도입하지 않도록 하기 위하여 전기적으로 격리될 수 있다. 예를 들어, 솔리드 스테이트 스위치는 약 3 VDC 내지 약 32 VDC, 약 18 VAC로부터 약 36 VAC까지, 및/또는 약 90 VAC로부터 약 280 VAC까지의 범위에서의 제어 신호를 수신하도록 구성될 수 있다. 많은 경우에는, 솔리드 스테이트 스위치에 의해 인출된 입력 전류가 예를 들어, 약 2 mA 내지 약 4 mA의 범위 내에서 최소화될 수 있다. 이러한 경우들에는, 입력 스위치 회로(110)가 출력 스위치 회로(107)의 SCR들(120, 130)의 게이트에서 턴-온 전압(turn-on voltage)을 제공하기 위하여, 광학적으로-결합된 저-전력 트랜지스터 또는 다른 이러한 저 전력 반도체 스위칭 디바이스를 포함할 수 있다.
그러나, 위에서 논의된 바와 같이, 많은 관할권들(예컨대, 유럽, 미국, 캐나다 등)은 설치된 전기적 디바이스가 접속된 전력 시스템에 대해 가질 수 있는 효과를 최소화하기 위한 표준들을 제정하였을 수 있다. 예를 들어, 하나 이상의 표준들은 공유된 전력 라인들에 의해 급전된 장비가 방출들을 다시 공급 라인 및/또는 부하 라인들 상으로 투과하지 않는 것을 요구할 수 있다. 위에서 논의된 바와 같이, 광결합기들 또는 다른 저 레벨 스위칭 디바이스들의 반도체 문턱 전압들은 SCR의 문턱 전압과 조합될 때, 전압 레벨(예컨대, 약 5 볼트 등)이 솔리드 스테이트 스위치의 출력 단자들에서 존재하게 할 수 있다. 일단 출력 스위치 회로(107)의 디바이스들이 트리거되면, 솔리드 스테이트 릴레이의 출력 단자들(140, 150)에서의 전압 레벨이 약 1 볼트로 떨어질 수 있다. 전압에서의 이러한 거의 순간적인 강하는, 작지만, 규제된 주파수 범위(들) 내에서 공급 라인 및/또는 부하 라인들 상에서 전도된 방출들을 생성하기에 충분히 클 수 있는, 공급 라인 상의 전류에서의 대응하는 순시적 스텝 업(step up)을 야기시킬 수 있다. 전압 및/또는 전류들에서의 이러한 스텝 응답들은 광범위한 주파수들 상에서의 신호들로 구성된다. 예를 들어, 스텝 증가는 약 150 kHz로부터 약 500 kHz까지의 범위 내에서의 하나 이상의 전도된 방출들 성분(component)들을 포함할 수 있다. 이러한 순시적 스텝 증가들은 약 30 MHz까지의 범위 내에서와 같은 더 높은 주파수들에서의 방출 성분들을 또한 포함할 수 있다.
이 스텝 응답은 전력 FET 디바이스들의 특성들로 인해, 저 전력 스위칭 디바이스들(예컨대, 광결합기들(112 및 114)의 TRIAC들(113 및 115))을 전력 금속-산화물-반도체 전계-효과 트랜지스터(metal-oxide-semiconductor field-effect transistor)(MOSFET)들과 같은 고 전력 전계 효과 트랜지스터(FET)들로 대체함으로써 거의 제거될 수 있거나 적어도 최소화될 수 있다. 예를 들어, 전력 MOSFET이 활성일 때, 디바이스의 특성들은 MOSFET으로 하여금, 저항기와 유사하게 작동하게 한다. 다시 말해서, MOSFET 디바이스를 위한 동작 모드는 거의 안정적인 등가 저항(예컨대, R.sub.DS(ON))에 대응하는 근접 정전류로 귀결될 수 있다. MOSFET의 또 다른 장점은 이 디바이스들이 훨씬 더 높은 출력 정격(예컨대, 약 10 A, 약 50 A 등)을 가지면서, 턴 온하기 위한 매우 작은 전류(예컨대, 약 1 mA 미만)를 요구한다는 것이다. MOSFET들은 n-채널 또는 p-채널일 수 있다. n-채널 MOSFETS에 대한 것과 같은 일부 경우에는, 게이트가 소스 바이어싱(biasing)에 대하여 포지티브 바이어싱될 수 있다. 신호가 전력 MOSFET에 인가될 경우에, MOSFET의 직렬 저항 특성은 전류의 방향에 관계 없이 동일할 수 있다. 도 2 및 도 3의 예시적인 예에서, MOSFET 디바이스들은 직렬 반대 배열(series opposition arrangement)로 도시되고, 여기서, MOSFET 디바이스들의 양자는 동일한 유형(예컨대, 양자 모두 n-채널, 양자 모두 p-채널 등)이다.
도 2 및 도 3은 이 개시내용의 양태들에 따라 실리콘 제어된 정류기(SCR)들의 스위칭을 제어하기 위한, 활성일 때에 회로 상에서 저항 효과를 가지는 복수의 반도체 디바이스들(예컨대, 직렬 반대 구성인 전력 MOSFET들)을 포함할 수 있는 예시적인 솔리드 스테이트 스위치들(예컨대, 솔리드 스테이트 릴레이들(200 및 300), 솔리드 스테이트 콘택터들 등)의 블록도를 도시한다. 도 2의 예시적인 예에서, 솔리드 스테이트 릴레이(200)는 도 1에서 예시된 솔리드 스테이트 릴레이의 그것과 유사하고, 차이는 광결합기들(112, 114)이 전력 MOSFET(212) 및 전력 MOSFET(214)으로 대체되었다는 것이다. 일부 경우에는, 전력 MOSFET(212) 및 전력 MOSFET(214)이 직렬 반대 구성으로 되도록 구성된다. 또한, 일부 경우에는, 추가의 차이는 게이트와 역병렬(antiparallel)로, 각각의 SCR(220 및 230)의 캐소드에 추가되었던 다이오드들(227 및 228)의 이용일 수 있다.
솔리드 스테이트 릴레이(200)는 하나 이상의 입력 단자들(211)을 통해 솔리드 스테이트 릴레이(200)에 전기적으로 접속될 수 있는 제어 회로(205)에 의해 제어될 수 있다. 제어 회로(205)는 스위치 회로(207)로 하여금, 출력 단자들(240, 250)을 통해 전력 소스(270)로부터 부하(260)로 제공되어야 할 원하는 출력(예컨대, 원하는 전압, 원하는 전류 등)을 인에이블하게 하기 위한 솔리드 스테이트 릴레이(200)의 동작을 제어하기 위하여 이용될 수 있다.
예시적인 예에서, 솔리드 스테이트 릴레이(200)는 제어 신호를 SCR(220) 및 SCR(230)의 게이트들(223, 233)에 제공하기 위하여 이용될 수 있는 전력 MOSFET 회로(210)(예컨대, MOSFET(212), MOSFET(214), 다이오드(217), 다이오드(218) 등)를 포함할 수 있다. 일부 경우에는, (순시적 전압 억제 다이오드 또는 TVS로서 또한 알려진) 하나 이상의 순시적 전압 억제기들(예컨대, TVS(292) 및 TVS(294))은 임의로, 전력 MOSFET들(212 및 214)과 병렬로 접속될 수 있고, 여기서, TVS(292) 및 TVS(294)는 MOSFET들(212 및 214)의 전력 정격들이 최소화될 수 있도록 크기가 결정될 수 있다. 예를 들어, TVS는 순시적 에너지를 흡수하기 위하여 이용될 수 있고, 매우 큰 피크 전류들을 취급하기 위하여 크기가 결정될 수 있다. TVS 디바이스들을 적절하게 크기를 결정하고 설치함으로써, 솔리드 스테이트 릴레이(220)에서 설치된 전력 MOSFET들(220 및 230)을 위한 전력 정격 요건은 감소될 수 있다. 예를 들어, 설치된 TVS는 솔리드 스테이트 릴레이의 전력 MOSFET들 및/또는 다른 컴포넌트들을 위한 과전압 보호를 제공할 수 있다. 일부 경우에는, 480 V 애플리케이션에 대한 솔리드 스테이트 릴레이스(220)에서의 이용을 위한 MOSFET은 전압 정격의 대략 2 또는 3 배를 가지도록 크기가 결정될 수 있어서, 솔리드 스테이트 릴레이(200)에서 설치되도록 선택된 MOSFET들은 약 1200 볼트의 전압 정격을 가질 수 있다. 그러나, TVS 디바이스들(292 및 294)에 의해 제공된 추가적인 과전압 보호로, MOSFET들은 더욱 저 전압 정격 요건(예컨대, 대략 1000 V)에 기초하여 선택될 수 있다. 이와 같이, 선택된 MOSFET들과 연관된 비용들이 감소될 수 있다. 많은 경우에는, MOSFET들이 솔리드 스테이트 릴레이(200)의 가장 고가의 컴포넌트들일 수 있다. 따라서, MOSFET들(212, 214)의 비용을 최소화함으로써, 솔리드 스테이트 릴레이의 비용들은 전체적으로 감소될 수 있다.
위에서 언급된 바와 같이, 전력 MOSFET들(212 및 214) 및 역병렬 다이오드들(217 및 218)은 도 1의 광격리기 회로(110) 대신에 이용된다. 도 1의 솔리드 스테이트 릴레이(100)로부터 도 2의 솔리드 스테이트 릴레이(200)를 추가로 구별하는 것은, 게이트와 역병렬로, 각각의 SCR(220 및 230)의 캐소드로의 저 Vf 쇼트키 다이오드(Schottky diode)들(227 및 228)의 추가이다. 이 구성에서는, 결국, 순방향 바이어싱된 SCR의 게이트를 접속하는 다이오드들(228 및 227)을 턴 온 함으로써, SCR들(220 및 230)의 출력이 턴 온 된다. 일단 전류가 반전되면, 전류는 중단 없이 흐른다. 여기서, 부하 전류는 저항기(234) 양단의 순방향 전압 강하가 0.1 볼트에 도달할 때에 다이오드(227)를 통해 흐를 수 있다. 전류는 그 다음으로, SCR 게이트 대 캐소드의 문턱 전압에 도달될 때까지, 다이오드(228) 또는 다이오드(227), 및 저항기들(224 및 234)을 통해 흐를 수 있다.
예시적인 예에서, 포화 영역에서 동작할 때, MOSFET(212) 및 MOSFET(214)의 저항 RDS(on)은 총 약 9 오옴(Ohm)에 대하여 각각, 약 4.5 오옴일 수 있다. 대략 20 mA의 전류로, 어느 쪽이든 순방향 바이어싱되는, 0.1 볼트의 다이오드(227) 또는 다이오드(228) 양단의 전압 강하에, 직렬인 MOSFET(212) 및 MOSFET(214) 양단의 전압 강하를 더한 것은, 따라서, 총 전압 강하는 합산하여 0.3 볼트가 될 것이고, SCR(220) 또는 SCR(230)의 게이트 대 캐소드에 인가되고, 이것은 약 0.7 볼트인, SCR(220) 및 SCR(230)의 정상적인 게이트 대 캐소드 문턱 전압 미만이다. 트리거링 컴포넌트들(예컨대, 저항기(224) 및 다이오드(228) 및 저항기(234) 및 다이오드(227))을 통한 부하 전류가 대략 0.7 볼트의 SCR(230) 및 SCR(220) 게이트 대 캐소드 전압에 근접함에 따라, 부하 전류는 SCR(230)의 게이트(233)로 흐르기 시작한다. 게이트(233)로 흐르는 게이트 전류가 SCR(230)을 트리거하기 위한 전류 레벨에 도달할 때, SCR(230)은 턴 온 되고, 부하 전류는 저항기(234) 및 다이오드(227)의 병렬 경로와 SCR(230)의 게이트(233) 사이에서 공유된다. 이와 같이, 부하에서의 돌발적인 변화가 조우되지 않고, 그러므로, 고 주파수 전도된 방출들이 생성되지 않는다. 부하 전류가 증가함에 따라, SCR들의 트리거링 경로를 통한 전류는 SCR(230)의 Igt 레벨에서 대략 일정하게 유지되고, 부하 전류의 대부분은 SCR(230)에 의해 또한 반송(carry)된다. 이러한 비중단된 턴 온은 전력 MOSFET들(212, 214)의 게이트들이 턴 오프될 때까지 절반 사이클(half cycle)마다 계속된다. 일부 경우에는, 저항기들(234 및 224)은 SCR들(230 및 220)의 게이트들이 부유(floating)하고 있지 않다는 것을 보장하기 위하여 이용될 수 있고, 이 저항기들은 일부 구성에서 임의로 생략될 수 있다.
예시적인 예에서, 전력 MOSFET들(212 및 214)은 반대로 직렬 접속될 수 있고, 출력 SCR들과 동일한 전압에서 정격화(rate)될 수 있다. 인에이블(예컨대, 턴 온 하도록 제어)될 때, 전력 MOSFET들은 SCR들의 문턱 전압 미만에서 동작하도록 제어될 수 있다. 그렇게 할 때, 전도된 방출들은 감소될 수 있거나 제거될 수 있다. 예를 들어, 테스트들은 1 암페어(amp) 부하에 대하여, 전도된 방출들이 현저하지 않았다는 것을 보여주었다. 일부 경우에는, 전력 MOSFET들이 스위칭 회로에서 SCR들 대신에 이용될 수 있지만, 그러나, SCR들 및/또는 TRIAC들은 고 전력 MOSFET들과 달리, 돌입 전류를 취급하는 것이 가능할 수 있는 견고한 컴포넌트들이다. 예를 들어, 대응하는 돌입 전류가 트랜지스터들을 손상시킬 수 있으므로, 전력 MOSFET들은 백열 램프(incandescent lamp)에 의해 생성된 부하들을 취급할 수 없다. 이 MOSFET들과 달리, SCR들은 더 강인하다.
솔리드 스테이트 릴레이(200 및 300)는 50 Hz 또는 60 Hz에서 약 400 볼트 내지 약 600 볼트 AC의 범위에 있을 수 있는 AC 전압 출력들을 제어하기 위하여 이용될 수 있다. 솔리드 스테이트 릴레이(200)의 출력에서 이 범위에서의 전압들을 제어하기 위하여, 전력 MOSFET들(212 및 214)은 각각 적어도 1200 볼트의 전압 정격을 가질 수 있다. 그러나, 임의적인 TVS 과전압 보호가 TVS(292) 및 TVS(294)의 포함에서 도시된 바와 같이 가능하게 될 경우에, 전력 MOSFET들(212 및 214)의 전압 정격은 각각 1000 볼트에서 정격화될 수 있고, 이것은 상당한 비용 절감들로 귀결될 수 있다. 또한, 전력 MOSFET 회로(210)에서 전력 MOSFET들(212 및 214)을 이용함으로써, 전력 라인들 상으로 다시 도입된 전도된 방출들은 극적으로 하강할 수 있다.
일부 경우에는, 부하(260)가 예를 들어, 세탁기 또는 사출 성형기(injection molding machine)를 위한 히터, 턴 온 및 턴 오프 되는 조명, 턴 온 및 턴 오프 되는 모터, 및/또는 전기적 부하인 것으로 고려될 수 있는 어떤 다른 디바이스와 같은 하나 이상의 상이한 애플리케이션들에 대응할 수 있다.
도 3은 예시적인 솔리드 스테이트 릴레이(300), 및 제어 회로(205)와 유사할 수 있는 제어 회로(310)를 도시한다. 일부 경우에는, 제어 회로가 더 높은 전력 부하 전압들로부터 제어 회로부를 격리시키기 위하여 이용될 수 있는 하나 이상의 광격리기들을 포함할 수 있다. 도 3에서와 같은 다른 경우들에는, 트랜스포머(312)가 더 높은 부하측 전압들로부터 더 낮은 전력 제어 회로부를 전기적으로 격리시키기 위하여 이용될 수 있다. 예시적인 예에서, 발진기(315)는 정의된 주파수에서 AC 전압 소스를 제공하기 위하여 하나 이상의 제어 라인들(320)을 이용하여 인에이블될 수 있다. 교류 전압 출력은 트랜스포머(312)를 통해 솔리드 스테이트 릴레이 제어 회로부에 전기적으로 결합될 수 있다. AC 전압은 그 다음으로, 브릿지 정류기(bridge rectifier)(314)를 이용하는 것에 의한 것과 같이 정류될 수 있고, DC 게이트 신호들을 솔리드 스테이트 릴레이(300)의 전력 MOSFET들(예컨대, MOSFET들(212 및 214))에 제공하기 위하여 이용될 수 있다. 게이팅 신호들을 위한 다른 DC 소스들이 이용될 수 있다. 제어 신호는 정의된 듀티 사이클(duty cycle)에 기초하여 제어될 수 있다.
비-전도로부터 전도 상태로의 릴레이의 스위칭은 AC 주 전압이 AC 전압을 표현하는 사인파(sine wave)의 제로 크로싱 포인트에 도달할 때에 발생한다. 솔리드 스테이트 릴레이를 AC 메인(AC main)의 제로 크로싱과 동기화하는 것은 솔리드 스테이트 릴레이에서의 전도성 방출들의 양을 감소시킨다는 것이 발견되었다. 더 상세하게는, 제1 전도 사이클 동안에 부하를 통해 이동하는 서지 전류(surge current)가 최소화되고, 이것은 전도성 방출들을 감소시킨다.
도 5a는 종래 기술의 솔리드 스테이트 릴레이의 동작을 예시한다. 시간은 X-축(512) 상에서 도표화된다. 전압은 Y-축(510) 상에서 도표화된다. 포인트(530)가 발생하고 솔리드 스테이트 릴레이가 턴 온 하기 위한 명령을 수신하자마자, 솔리드 스테이트 릴레이는 즉시 턴 온 된다. 이것은 도 5a의 음영표시된 부분(540)에 의해 표시되고, 여기서, 음영표시된 부분은 솔리드 스테이트 릴레이가 턴 온 되는 것을 표시한다. 위에서 설명된 바와 같이, 솔리드 스테이트 릴레이가 비-제로 포인트(non-zero point)에서 턴 온 될 때, RF 방출은 최대이다.
도 5b는 도 4의 솔리드 스테이트 릴레이(400)의 동작을 예시한다. 포인트(530)가 발생하고 솔리드 스테이트 릴레이가 턴 온 하기 위한 명령을 수신할 때, 솔리드 스테이트 릴레이는 즉시 턴 온 되지 않는다. 그 대신에, 음영표시된 부분(560)에 의해 예시된 바와 같이, 솔리드 스테이트 릴레이는 신호(520)가 제로 크로싱 포인트에 도달할 때까지 턴 온 되지 않는다. 이와 같이, RF 방출은 최소화된다.
도 4를 참조하면, 제로 크로싱 기능부를 특징으로 하는 예시적인 솔리드 스테이트 릴레이(400)가 제시된다. 도 1 내지 도 3에서 제시된 것과 유사한 방식으로, 제어 회로(405)는 하나 이상의 입력 단자들(411)을 통해 솔리드 스테이트 릴레이(400)에 전기적으로 결합된다.
출력 스위치 회로(417)는 도 1의 출력 스위치 회로(117)의 방식과 유사한 방식으로 동작한다. 출력 스위치 회로(417)의 반도체 스위치들(예컨대, SCR(420) 및 SCR(430))은 제너 다이오드(Zener diode)(427) 및/또는 제너 다이오드(428)를 통해 흐르는 전류에 의해 전도 상태로 트리거될 수 있다. 이 구성에서는, 결국, 순방향 바이어싱되는 SCR(420 또는 430)의 어느 것인가의 게이트를 접속하는 제너 다이오드들(427 및 428)을 턴 온 함으로써, SCR들(420 및 430)의 출력이 턴 온 된다. 일단 전류가 반전되면, 전류는 중단 없이 흐른다. 여기서, 부하 전류는 저항기(434) 양단의 순방향 전압 강하가 0.1 볼트에 도달할 때에 다이오드(427)를 통해 흐를 수 있다. 전류는 그 다음으로, SCR 게이트 대 캐소드의 문턱 전압에 도달될 때까지, 다이오드(427) 또는 다이오드(428), 및 저항기들(424 및 434)을 통해 흐를 수 있다. 출력 스위치 회로(417)의 출력들은 출력 단자들(440 및 450)에서 액세스될 수 있다. 출력 단자들(440 및 450)은 원하는 출력이 출력 단자들(440 및 450)을 통해 전력 소스로부터 부하로 제공되는 것을 가능하게 하기 위하여 이용될 수 있다. 실리콘 제어된 정류기들은 반도체 스위치들로서 예시되지만, 게이트 턴-오프 사이리스터(GTO)들, 교류용 트라이오드(TRIAC)들, 절연된 게이트 쌍극성 트랜지스터(IGBT)들, 및/또는 등과 같은 다른 유형들의 반도체 스위치들이 그 대신에 이용될 수 있다는 것이 이해되어야 한다.
회로(460)는 제로 크로싱 드라이버 회로(zero crossing driver circuit)로서 역할을 한다. 저항기(462), 트랜지스터(463), 트랜지스터(464), 및 저항기(465)는 제로 크로싱 드라이버 회로의 전류 레귤레이터(current regulator)로서 역할을 한다. 저 방출 드라이버 회로가 회로(460)에서 또한 존재한다. 저 방출 드라이버 회로는 정상적인 동작 동안에 솔리드 스테이트 릴레이(400)의 방출을 저하시키는 역할을 한다. 그러나, 저 방출 드라이버 회로는 (도 5a 및 도 5b를 참조하여 예시된 바와 같이) 턴-온 부분 동안에 방출들을 방지하지 않는다.
제로 크로싱 기능부는 회로의 나머지 구성요소들에 의해 제공된다. 저항기들(480 및 481)은 광결합기들(482 및 483)에 의한 이용을 위하여 전압 강하를 생성하는 역할을 한다. 광결합기들(482 및 483)은 통합된 제로 크로싱 검출기들을 가진다. 광결합기(482 또는 483) 중의 하나의 활성화는 전류가 저항기(434) 및 제너 다이오드(427)를 통해 흐르게 하고 위에서 설명된 바와 같이 동작하게 한다.
제로 크로싱 기능부 때문에, 광결합기들(482 및 483)은 턴 온 되는 입력 신호의 제1 사이클 동안에만 활성화된다. 추후의 사이클들은 위에서 설명된 저 방출 드라이버에 의해 취급된다. 이것은 광결합기(486)의 이용을 통해 달성된다. 실리콘 제어된 정류기들(420 및 430)의 활성화는 광결합기(486)에 의해 감지된다. 광결합기(486)는 저 방출 드라이버를 턴 온 하기 위하여 이용되는 신호를 실리콘 제어된 정류기(470)로 전송한다. 실리콘 제어된 정류기(470)는 제너 다이오드(471)와 병렬이다. 실리콘 제어된 정류기(470)가 온 일 때, 전압 강하는 제너 다이오드(471)의 전압 강하보다 더 낮고, 따라서, 제너 다이오드(471)를 디스에이블한다. 전류는 그 다음으로, 광결합기(473)로 흐른다. 광결합기(473)는 저항기(474), 제너 다이오드(475), 트랜지스터(476), 및 트랜지스터(477)를 포함하는 저 방출 드라이버에 결합된다. 저 방출 드라이버는 제로 크로싱 회로가 제1 사이클에 대하여 동작된 후의 RF 방출들의 저하된 양을 보장하도록 동작한다.
도 6을 참조하면, 예시적인 솔리드 스테이트 릴레이의 동작을 예시하는 그래프가 제시된다. X-축(602)은 시간을 표현하는 반면, Y-축(604)은 전압을 표현한다. 포인트(650)에서, 제어 신호(620)는 입력에 인가된다. AC 라인 극성은 전압(610)에서 도시된다. 포인트(650)에서, 전압(610)은 여전히 네거티브이다. 포인트(660)에서, 전압(610)은 네거티브 값으로부터 포지티브 값으로 진행함으로써 제로 전압을 교차한다. 포인트(670)에 의해, 전압(610)이 포지티브 값으로부터 네거티브 값으로 진행함으로써 제로 전압을 다시 교차할 때, 저 방출 드라이버는 광결합기(486) 및 실리콘 제어된 정류기(470)에 의해 턴 온 되었다. 제어 신호(620)가 포인트(680)에서 턴 오프 될 때, 출력은 포인트(690)에 의해 턴 오프 된다.
본원에서 개시된 시스템들 및 방법들의 장점들 및 다른 특징들은 본 발명의 대표적인 실시예들을 기재한 도면들과 함께 취해진 어떤 바람직한 실시예들의 다음의 상세한 설명으로부터 본 기술 분야에서의 통상의 기술자들에게 더 용이하게 분명해질 것이다. 유사한 참조 번호들은 유사한 부분들을 나타내기 위하여 본원에서 이용된다. 또한, "상부" 및 "하부"와 같은 방위를 정의하는 단어들은 서로에 대한 컴포넌트들의 위치를 설명하는 것을 돕기 위하여 단지 이용된다. 예를 들어, 부분의 "상부" 표면은 그 동일한 부분의 "하부" 표면으로부터 별도인 표면을 설명하도록 단지 의도된다. 방위를 나타내는 단어들은 절대적인 방위(즉, 여기서, "상부" 부분은 항상 상단 위에 있어야 함)를 설명하기 위하여 이용되지는 않는다.
몇몇 구성요소들의 기능들은 대안적인 실시예들에서, 더 적은 요소들 또는 단일 요소에 의해 수행될 수 있다는 것이 관련된 기술 분야에서의 통상의 기술자들에 의해 인식될 것이다. 유사하게, 일부 실시예에서, 임의의 기능적 요소는 예시된 실시예에 대하여 설명된 것들보다 더 적거나, 또는 이와 상이한 동작들을 수행할 수 있다. 또한, 예시의 목적들을 위하여 분명한 것으로 도시된 기능적 요소들은 특정한 구현예에서 다른 기능적 요소들 내에서 편입될 수 있다.
당면한 기술은 바람직한 실시예들에 대하여 설명되었지만, 본 기술 분야에서의 통상의 기술자들은 다양한 변화들 및/또는 수정들이 당면한 기술의 사상 또는 범위로부터 이탈하지 않으면서 당면한 기술에 대해 행해질 수 있다는 것을 인식할 것이다. 예를 들어, 각각의 청구항은 이러한 것이 원래 청구되지 않았더라도, 다수의 종속적인 방식으로 임의의 또는 모든 청구항들로부터 종속적일 수 있다.

Claims (15)

  1. 솔리드 스테이트 스위치(solid state switch)로서,
    복수의 스위칭 디바이스들을 포함하는 출력 회로 - 상기 복수의 스위칭 디바이스들은 인에이블될 때에 전력을 전압 소스로부터 부하로 선택적으로 제공함 -; 및
    제2 복수의 반도체 스위칭 디바이스들을 포함하는 입력 회로 - 상기 제2 복수의 반도체 스위칭 디바이스들 각각은 상기 제1 복수의 반도체 스위칭 디바이스들의 대응하는 하나의 반도체 스위칭 디바이스의 게이트에 전기적으로 결합됨 -
    를 포함하고,
    상기 제2 복수의 반도체 스위칭 디바이스들은 제로 크로싱 검출 기능부(zero crossing detection functionality)를 갖는 복수의 광결합기 디바이스들을 포함하고;
    상기 제2 복수의 반도체 스위칭 디바이스들은 상기 제2 복수의 반도체 스위칭 디바이스들에 인가된 제어 신호의 제로 크로싱 시에 상기 출력 회로를 턴 온 하도록 구성되는 솔리드 스테이트 스위치.
  2. 제1항에 있어서,
    상기 솔리드 스테이트 스위치는 솔리드 스테이트 릴레이를 포함하는 솔리드 스테이트 스위치.
  3. 제1항에 있어서,
    상기 출력 회로의 방출들을 저하시키도록 구성되는 저 방출 드라이버 회로(low emission driver circuit)를 더 포함하는 솔리드 스테이트 스위치.
  4. 제3항에 있어서,
    상기 저 방출 드라이버는 상기 제2 복수의 반도체 스위칭 디바이스들이 턴 오프 될 때에 동작하도록 구성되는 솔리드 스테이트 스위치.
  5. 제4항에 있어서,
    상기 저 방출 드라이버는 상기 저 방출 드라이버가 턴 온 될 때에 상기 제2 복수의 반도체 스위칭 디바이스들을 턴 오프 하기 위하여 제3 광결합기를 통해 상기 제2 복수의 반도체 스위치들에 결합되는 솔리드 스테이트 스위치.
  6. 제5항에 있어서,
    상기 제3 광결합기는 상기 제2 복수의 반도체 스위칭 디바이스들을 턴 오프 하고 상기 저 방출 드라이버를 턴 온 하기 위하여, 제너 다이오드(Zener diode)와 병렬로 실리콘 제어된 저항기에 결합되는 솔리드 스테이트 스위치.
  7. 제4항에 있어서,
    상기 저 방출 드라이버는 상기 제어 신호의 제2 제로 크로싱 후에 턴 온 하도록 구성되는 솔리드 스테이트 스위치.
  8. 제1항에 있어서,
    상기 제1 복수의 반도체 디바이스들은 제너 다이오드를 통해 제2 복수의 결합 디바이스들에 결합되는 솔리드 스테이트 스위치.
  9. 제1항에 있어서,
    상기 제1 복수의 반도체 스위칭 디바이스들은 복수의 실리콘 제어된 정류기들을 포함하는 솔리드 스테이트 스위치.
  10. 제1항에 있어서,
    상기 제1 복수의 반도체 스위칭 디바이스들은 복수의 트라이오드들 또는 교류용 트라이오드들(triodes for alternating current)(TRIAC)을 포함하는 솔리드 스테이트 스위치.
  11. 제1항에 있어서,
    상기 제2 복수의 반도체 스위칭 디바이스들에 결합된 전류 레귤레이터(current regulator)를 더 포함하는 솔리드 스테이트 스위치.
  12. 교류 소스로부터 부하로의 전력 전달을 제어하기 위한 시스템으로서,
    솔리드 스테이트 스위치
    를 포함하고, 상기 솔리드 스테이트 스위치는,
    제어 회로에 전기적으로 결합된 복수의 입력들 - 상기 제어 회로는 상기 솔리드 스테이트 스위치를 폐쇄할 것을 트리거하기 위한 커맨드를 제공함 -; 및
    전력 소스와 부하 사이에서 전기적으로 결합되고, 상기 복수의 입력들에 결합된 복수의 출력들 - 상기 솔리드 스테이트 스위치를 폐쇄할 것을 트리거하기 위한 상기 커맨드는 상기 전력 소스로부터 상기 부하로의 전력 전달로 귀결됨 -
    을 포함하고;
    상기 솔리드 스테이트 스위치는 상기 솔리드 스테이트 스위치를 폐쇄할 것을 트리거하기 위한 상기 커맨드를 수신한 후의 제1 제로 크로싱 후에 폐쇄하도록 구성되는 시스템.
  13. 제12항에 있어서,
    상기 복수의 출력들은 복수의 스위칭 디바이스들을 포함하는 출력 회로에 결합되고, 상기 복수의 스위칭 디바이스들은 인에이블 될 때에 전력을 전압 소스로부터 부하로 선택적으로 제공하는 시스템.
  14. 제12항에 있어서,
    상기 복수의 입력들은 제2 복수의 반도체 스위칭 디바이스들을 포함하는 입력 회로에 결합되고, 상기 제2 복수의 반도체 스위칭 디바이스들 각각은 상기 제1 복수의 반도체 스위칭 디바이스들의 대응하는 하나의 반도체 스위칭 디바이스의 게이트에 전기적으로 결합되는 시스템.
  15. 제14항에 있어서,
    상기 제2 복수의 반도체 스위칭 디바이스들은 제로 크로싱 검출 기능부를 갖는 복수의 광결합기 디바이스들을 포함하는 시스템.
KR1020190096711A 2018-08-13 2019-08-08 초 저 방출 솔리드 스테이트 릴레이 KR20200019089A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/101,912 2018-08-13
US16/101,912 US10693452B2 (en) 2018-08-13 2018-08-13 Ultra low emission solid state relay

Publications (1)

Publication Number Publication Date
KR20200019089A true KR20200019089A (ko) 2020-02-21

Family

ID=66647091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190096711A KR20200019089A (ko) 2018-08-13 2019-08-08 초 저 방출 솔리드 스테이트 릴레이

Country Status (4)

Country Link
US (1) US10693452B2 (ko)
EP (1) EP3611840B1 (ko)
KR (1) KR20200019089A (ko)
CN (1) CN110830018B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969995B (zh) * 2020-08-11 2023-08-08 北京机械设备研究所 兼容型数字量输入接口电路
US11747878B2 (en) 2021-05-10 2023-09-05 Samsung Electronics Co., Ltd. Electronic device controlling application of power and method for operating thereof
KR102551100B1 (ko) * 2021-11-03 2023-07-06 주식회사 오토닉스 전력 조정기

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812382A (en) * 1972-03-03 1974-05-21 Grigsby Barton Inc Synchronous switching circuit
US5155289A (en) 1991-07-01 1992-10-13 General Atomics High-voltage solid-state switching devices
US6603221B1 (en) 1999-04-22 2003-08-05 Zhongdu Liu Solid state electrical switch
JP3565322B2 (ja) * 1999-10-15 2004-09-15 シャープ株式会社 光結合素子
US6583997B1 (en) 2002-01-30 2003-06-24 Square D Company Ultra-wide input range switching power supply for circuit protection devices
US20050073789A1 (en) 2003-08-28 2005-04-07 James Tanis Solid state multi-pole switching device for plug-in switching units
US8154841B2 (en) 2003-09-03 2012-04-10 Legrand Home Systems, Inc. Current zero cross switching relay module using a voltage monitor
CN2735662Y (zh) * 2004-08-14 2005-10-19 李云孝 固态继电器
JP4783220B2 (ja) 2006-06-20 2011-09-28 株式会社リコー 過電圧保護回路、電子装置
JP5236723B2 (ja) * 2007-04-27 2013-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スイッチングdc−dcコンバータで使用する自励発振スイッチ回路
US20110182094A1 (en) * 2007-08-13 2011-07-28 The Powerwise Group, Inc. System and method to manage power usage
KR101002582B1 (ko) * 2008-09-27 2010-12-20 주식회사 오토닉스 위상 제어 및 제로크로스 사이클 제어 기능을 갖는 온도조절기
US8614866B2 (en) * 2009-09-14 2013-12-24 Electronic Systems Protection, Inc. Hybrid switch circuit
US8461881B2 (en) 2010-01-27 2013-06-11 Larry A. Park High power, high speed solid state relay
US9581626B2 (en) 2012-11-14 2017-02-28 Diehl Ako Stiftung & Co. Kg Circuit and method for detecting zero-crossings and brownout conditions on a single phase or multi-phase system
US20170104326A1 (en) * 2013-10-02 2017-04-13 Astronics Advanced Electronic Systems Corp. Virtual Electronic Circuit Breaker
US9991075B2 (en) 2013-10-04 2018-06-05 Lutron Electronics Co., Inc. Controlling a controllably conductive device based on zero-crossing detection
US9564891B1 (en) * 2015-10-28 2017-02-07 Crydom, Inc. Low conducted emission solid state switch
US9788391B1 (en) * 2015-12-03 2017-10-10 Heartland, Inc. Solid state lighting panel
CN107872214B (zh) * 2017-12-12 2020-06-30 无锡豪帮高科股份有限公司 一种抗干扰的光耦继电器

Also Published As

Publication number Publication date
US20200052688A1 (en) 2020-02-13
CN110830018A (zh) 2020-02-21
CN110830018B (zh) 2023-10-24
EP3611840A3 (en) 2020-04-15
EP3611840B1 (en) 2023-10-11
EP3611840A2 (en) 2020-02-19
US10693452B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
US8614866B2 (en) Hybrid switch circuit
EP3611840B1 (en) Ultra low emission solid state relay
US9564891B1 (en) Low conducted emission solid state switch
US7612471B2 (en) Hybrid electrical switching device
CN109983680B (zh) 固态开关系统
CN113454864A (zh) 固态电路中断器
US11588321B2 (en) Low-voltage protection switch unit
CN109716473B (zh) 断路器
US20180082814A1 (en) Galvanically Isolated Hybrid Contactor
US4656365A (en) Solid state power controller leakage current shunt circuit
US11373815B2 (en) Circuit breaker
US9621069B2 (en) Rectifier with voltage detection and controllable output path
WO2019086058A1 (en) The method of connection to limit the value of voltage between the neutral point and ground in an alternating current electric network
RU2321945C2 (ru) Переключающее устройство для надежного переключения токовых цепей
WO2018116860A1 (ja) 電路異常検出装置、及びそれを備える開閉器
CN106653483B (zh) 交流继电器过零动作控制电路
CN112582998A (zh) 一种浪涌电流抑制装置
TW201806289A (zh) 智慧型開關系統及開關箱控制方法
CN116964939A (zh) 用于隔离开关的谐振电路
KR20200136250A (ko) 외부전원으로부터 공급되는 과전압을 차단하는 전력 변환 장치
KR20210102428A (ko) 본질 안전 회로부 (intrinsically safe circuitry)
US5390071A (en) Low interference controlled switching circuit for multiple loads
US9997908B2 (en) Circuit for a voltage power optimiser
CN216749740U (zh) 一种继电器电路和继电器设备
RU2765106C2 (ru) Схема подачи напряжения