KR20200009545A - Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법 - Google Patents

Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법 Download PDF

Info

Publication number
KR20200009545A
KR20200009545A KR1020180084059A KR20180084059A KR20200009545A KR 20200009545 A KR20200009545 A KR 20200009545A KR 1020180084059 A KR1020180084059 A KR 1020180084059A KR 20180084059 A KR20180084059 A KR 20180084059A KR 20200009545 A KR20200009545 A KR 20200009545A
Authority
KR
South Korea
Prior art keywords
protein
stress
autophagy
disease
binding
Prior art date
Application number
KR1020180084059A
Other languages
English (en)
Other versions
KR102151145B1 (ko
Inventor
이진아
장덕진
Original Assignee
한남대학교 산학협력단
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단, 경북대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020180084059A priority Critical patent/KR102151145B1/ko
Publication of KR20200009545A publication Critical patent/KR20200009545A/ko
Application granted granted Critical
Publication of KR102151145B1 publication Critical patent/KR102151145B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 자가소화작용(autophagy) 조절 물질의 스크리닝 방법으로서, (a) 신경세포에 시험대상 물질을 처리하는 단계; 및 (b) 시험대상 물질을 처리하지 않은 대조군에 비해 핵 및 세포질에 존재하던 Nd1-L 단백질이 스트레스 응집체로 위치하거나, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시키는 물질을 선별하는 단계를 포함하는 스크리닝 방법을 제공한다.
본 발명의 자가소화작용(autophagy) 조절 물질의 스크리닝 방법은 Nd1-L 단백질의 스트레스 응집체와 자가소화작용의 활성화 사이의 관련성을 규명하여, 퇴행성 뇌질환 분야에서 스트레스 응집체 조절기전과 관련된 뇌질환 치료의 후보물질 개발시 유용하게 사용할 수 있다.

Description

Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법{A method of screening autophagy regulating material using Nd1-L}
본 발명은 자가소화작용 조절 물질의 스크리닝 방법에 관한 것으로, 더욱 상세하게는, Nd1-L 단백질의 GABARAP 및 GABARAPL1과의 결합 및 이에 의한 Nd1-L 단백질의 스트레스 응집체와 관련된 자가소화작용의 활성화를 통해 퇴행성 신경계 질환의 예방 또는 치료를 위하여 자가소화작용 조절 물질의 스크리닝 방법에 관한 것이다.
신경세포의 성장은 신경세포간의 적합한 연결을 위해 신경세포 축삭 및 수상돌기들의 확장과 수축이 반복되는 매우 활발한 과정으로 알려져 있으며, 이러한 과정에는 단백질 분해를 통한 조절작용이 중요할 것으로 생각된다.
자가소화작용(autophagy)은 리소좀에서 RNA, 단백질, 또는 세포 소기관 등의 세포질 구성 요소를 대규모로 분해하는 경로로서(Lee, 2012, Exp Neurobiol 21(1): 1-8; Nixon, 2013, Nat Med 19(8): 983-997), 단백질과 세포 소기관의 품질 관리(quality control)와도 관련이 있다.
자가소화작용 경로는 몇몇 세포질 함유물을 수반하는 퇴행성 신경계 질환과 관련된다고 알려져 있고, 일부 퇴행성 신경계 질환에서는 뉴런에서 세포의 항상성 및 시그널링의 기능 장애를 초래하는 응집체의 축적 및 손상된 세포 소기관이 나타나는 것으로 알려져 있다. 또한, 산화 스트레스는 루게릭병 발병과 밀접하게 관련되어 있고, 질병의 진행에 중요하다고 알려져 있다(Barber & Shaw, 2010, Free Radic Biol Med 48(5): 629-641).
Nd1-L 단백질은 액틴 필라멘트 안정화에 관련된 단백질로 처음 규명되었으며(Kazushi Sasagawa et al. 2002, JBC 277(46): 44140-44146), Nd1-L 유전자의 발현이 항암제 doxorubicin에 의해 전사 후에 낮게 조절된다는 내용을 개시한 바 있으며(Y Takamori et al., 2006, Int J Mol Med 18: 963-967), 뇌혈관질환인 뇌해면상 혈관기형(Cerebral cavernous malformations)의 주요인자인 KRIT1과 상호작용하는 파트너로서 역할을 하고, 항산화 효소 SOD2의 발현을 증가시키는 것으로 알려져 있다(Paolo Guazzi et al., 2012, PLOSone 7(9): e44705). 또한, 루게릭병 연관된 FUS 돌연변이 복합체(FUS-R52C complex)를 발현하는 뉴런에서 Nd1-L mRNA가 세포 내 FUS 응집체로 함께 존재하는 것으로 알려져 Nd1-L mRNA가 비정상적인 응집체의 회복에 관여하는 것으로 보고된 바 있다(Jun et al., 2017 Jan, SCIENTIFIC REPORTS 7: 40474).
그러나, 지금까지 자가소화작용에서의 Nd1-L 단백질의 역할 및 Nd1-L 단백질과 자가소화작용 인자인 핵심 단백질(LC3/GABARAP)과의 관계에 있어서는 알려진 바가 거의 없다.
한국 공개특허 제10-2018-0026154호 (2018.03.12.)
Jun et al. SCIENTIFIC REPORTS 2017 Jan, 7: 40474 Y Takamori et al. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 2006, 18: 963-967 Paolo Guazzi et al. PLOSone 2012, 7(9): e44705 Kazushi Sasagawa et al. JBC 2002, 277(46): 44140-44146
본 발명의 발명자들은 신경세포에서 Nd1-L 단백질에 의한 루게릭병 또는 전측두엽성 치매 등과 같은 퇴행성 신경계 질환과 관련된 메커니즘에 대하여 연구하던 중, 세포 내 세포질 또는 핵에 존재하던 Nd1-L 단백질이 스트레스 응집체로 위치하고 자가소화작용 연관인자인 GABARAP 또는 GABARAPL1과 결합함으로써 자가소화작용을 활성화시키는 메커니즘을 통하여 퇴행성 신경계 질환, 예를 들어 루게릭병 또는 전측두엽성 치매 등의 치료제를 스크리닝 할 수 있다는 것을 발견하였다.
따라서, 본 발명은 퇴행성 신경계 질환의 예방 또는 치료를 위한 자가소화작용 조절 물질의 스크리닝 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 측면에 따라, 퇴행성 신경계 질환의 예방 또는 치료를 위한 자가소화작용(autophagy) 조절 물질의 스크리닝 방법으로서, (a) 신경세포에 시험대상 물질을 처리하는 단계; 및 (b) 시험대상 물질을 처리하지 않은 대조군에 비해 핵 및 세포질에 존재하던 Nd1-L 단백질이 스트레스 응집체로 위치하거나, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시키는 물질을 선별하는 단계를 포함하는 스크리닝 방법이 제공된다.
일 구현 예에서, 상기 단계 (b)의 Nd1-L 단백질의 위치는 면역세포화학법(immunocytochemistry)으로 측정할 수 있다.
일 구현 예에서, 상기 단계 (b)에서 선별된 물질은 자가소화작용을 활성화하여 스트레스 응집체의 비정상적인 축적을 조절할 수 있다.
일 구현 예에서, 상기 퇴행성 신경계 질환은 루게릭병, 알츠하이머병, 파킨슨병, 헌팅턴병 및 전측두엽성 치매로 이루어진 군으로부터 선택된 1종일 수 있다.
본 발명에 의해, Nd1-L 단백질이 스트레스 유발에 의하여 스트레스 응집체로 위치하거나, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시켜 선택적 자가소화작용 연관인자인 NBR1, p62 및 GABARAPL1의 발현을 감소 또는 증가시켜 자가소화작용을 조절함으로써 퇴행성 뇌질환에서 스트레스 응집체의 비정상적인 축적을 조절할 수 있다는 것이 밝혀졌다.
따라서, 본 발명의 자가소화작용(autophagy) 조절 물질의 스크리닝 방법은 Nd1-L 단백질의 스트레스 응집체와 자가소화작용의 활성화 사이의 관련성을 규명하여, 퇴행성 뇌질환 분야에서 스트레스 응집체 조절기전과 관련된 뇌질환 치료의 후보물질 개발시 유용하게 사용할 수 있다.
도 1은 신경세포에서 스트레스 인자(소디움 아르세나이트(sodium arsenite, SA) 및 디티오트레이톨(Dithiothreitol, DTT))를 처리하여 스트레스를 야기시켜 Nd1-L이 G3BP-GFP 양성 스트레스 응집체로 위치하는 것을 확인한 이미지이다.
도 2는 Nd1-L이 루게릭병 연관 돌연변이 단백질인 R521C와 연관된 비정상 스트레스 응집체에 축적되어 퇴행성 뇌질환에 연관됨을 나타내는 이미지이다.
도 3은 Nd1-L의 단백질 도메인 구조에서 N-말단 도메인에 BTB/POZ 도메인이 있고, Kelch 모티프 내 LIR(LC3-interacting region) 모티프 서열이 존재함을 나타내는 모식도이다.
도 4는 배양 신경세포에서 Nd1-L과 LC3, GABARAP 단백질과의 세포내 결합을 확인하기 위하여, 자가포식체로 위치하지 않는 LC3, GABARAP 패밀리 단백질에 GFP를 붙인 형광 단백질과 Nd1-L의 LIR 및 2xLIR에 3xNLS가 삽입된 RFP 단백질을 발현시켜 핵 또는 세포질에서 형광을 확인한 이미지 결과(A) 및 LC3, GABARAP 단백질의 세포질에서 핵으로의 이동 비율에 대한 GFP 형광 세기를 이용한 정량적 분석을 나타낸 그래프(B)이다.
도 5는 GST-LC3, GABARAP 패밀리 단백질과 HeLa 세포 용해물을 이용하여 이들과 내재적 full length Nd1-L의 결합을 확인한 GST-binding assay 결과(A)를 나타내고, 신경세포에서 GFP-GABARAP을 발현하여 rapamycin으로 자가소화작용을 유도시 Nd1-L이 GABARAP-positive 자가포식체로 이동함을 나타낸 이미지(B)이다.
도 6은 Nd1-L의 기능 확인을 위하여 제조한 Nd1-L 결여(knockout) HeLa 세포에서의 Nd1-L 유전자의 Guide RNA 염기서열(A), Nd1-L의 유전자 결손을 확인한 PCR 결과(B) 및 Nd1-L 단백질의 결여를 나타낸 웨스턴 블랏 결과(C)이다.
도 7은 정상세포와 Nd1-L 결여 HeLa 세포에서 자가소화작용 연관 단백질 NBR1, p62 및 GABARAPL1의 발현량을 나타낸 웨스턴 블랏 결과(A)이고, 단백질 NBR1, p62 및 GABARAPL1에 대한 정량적 분석을 나타낸 그래프(B)이다.
도 8은 Nd1-L 결여 HeLa 세포에서 산화스트레스 유도시 정상 세포에 비하여 G3BP(Stress granule marker)-GFP 양성인 스트레스 응집체 수(SGs number)가 감소함을 나타낸 이미지(A) 및 이를 정량화한 그래프(B)이다.
본 발명은 퇴행성 신경계 질환의 예방 또는 치료를 위한 자가소화작용(autophagy) 조절 물질의 스크리닝 방법으로서, (a) 신경세포에 시험대상 물질을 처리하는 단계; 및 (b) 시험대상 물질을 처리하지 않은 대조군에 비해 핵 및 세포질에 존재하던 Nd1-L 단백질이 스트레스 응집체로 위치하거나, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시키는 물질을 선별하는 단계를 포함하는 스크리닝 방법을 제공한다.
본 발명의 자가소화작용(autophagy) 조절 물질을 스크리닝 방법은 신경세포에 시험대상 물질을 처리하는 단계[즉, 단계(a)]를 포함한다. 단계 (a)는, 신경세포에 시험대상물질을 처리하여 신경세포 내 발현되는 Nd1-L 단백질의 위치를 스트레스 응집체로 변화시킬 수 있는 상태라면 특별히 제한되지 않으며, 특정 성장 시점의 배양 신경세포에 시험대상물질을 첨가하고 인큐베이션 하는 단계일 수 있다.
본 발명의 자가소화작용(autophagy) 조절 물질을 스크리닝 방법은 시험대상 물질을 처리하지 않은 대조군에 비해 핵 및 세포질에 존재하던 Nd1-L 단백질이 스트레스 응집체로 위치하고, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시키는 물질을 선별하는 단계[즉, 단계(b)]를 포함한다. 단계 (b)에서 시험대상물질을 처리하지 않은 대조군 대비 Nd1-L 단백질의 위치 변화는 면역세포화학법(immunocytochemistry)으로 확인한다. 또한, Nd1-L 단백질과 자가소화작용 패밀리 단백질인 GABARAP 또는 GABARAPL1의 결합의 확인 방법은 단백질 사이의 상호작용을 확인하는 방법이라면 제한 없이 사용될 수 있으나, 예를 들어, 면역세포화학법(immunocytochemistry) 또는 글루타치온 S 트랜스퍼라제(Gutathione S-transferase, GST) 결합분석법으로 확인한다.
또한, 단계 (b)에서 선별된 물질은 자가소화작용을 활성화하여 스트레스 응집체의 비정상적인 축적을 조절할 수 있다. 본 출원의 발명자들은 스트레스 유무에 따른 Nd1-L 단백질 위치의 변화를 알아보기 위하여 신경세포에서 산화 및 ER 스트레스를 유도하여 Nd1-L 단백질이 스트레스 응집체에 축적되는 것을 확인하였으며, 또한, 비정상적인 스트레스 응집체 축적을 유발하는 루게릭병 연관 돌연변이 단백질 R521C가 발현된 신경세포에서도 Nd1-L 단백질이 스트레스 응집체에 축적되는 것을 확인할 수 있었다.
Nd1-L 단백질의 구조에서 켈크 모티프(Kelch motif) 내 LIR(LC3-interacting region) 모티프 서열이 존재함을 확인하고, 자가소화작용에 의해 조절되는 핵심 단백질인 LC3 및 GABARAP 패밀리 단백질들의 결합 친화도를 조사해 본 결과, Nd1-L 단백질과 GABARAP 또는 Nd1-L 단백질과 GABARAPL1이 결합하는 것을 확인할 수 있었고, 이들 결합의 증가로 인하여 선택적 자가소화작용 연관인자인 NBR1, p62 및 GABARAPL1의 발현도 증가되어 자가소화작용이 활성화됨으로써 퇴행성 뇌질환에서 스트레스 응집체의 비정상적인 축적을 조절할 수 있을 것으로 판단된다.
일 구현 예에서, 상기 퇴행성 신경계 질환은 자가소화작용의 이상에 의해 유발되는 질환으로 예를 들어, 루게릭병, 알츠하이머병, 파킨슨병, 헌팅턴병 또는 전측두엽성 치매를 포함할 수 있다.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.
<실시예>
1. 실험 방법 및 조건
1) 신경 세포 배양
E17-18 Sprague-Dawley 랫(Samtako, Gyeonggi-do, Korea)으로부터 가져온 신경세포를 Lee et al., 2007(Lee, J. A., A. Beigneux, S. T. Ahmad, S. G. Young, and F. B. Gao. 2007. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17:1561-7.) 및 Lee and Gao, 2009(Lee, J. A., and F. B. Gao. 2009. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci 29:8506-11.)에 기재된 바와 같이 배양하였다.
2) 면역세포화학법
플레이트에 배양된 신경세포에 1xPBS로 1회 세척하고, 0.1 % Triton-X100 400㎕를 넣은 다음 7 ~ 10 분 후에 석션하였다. 1xPBS를 400㎕ 넣고 5 분 뒤 석션한 후 2회 반복하였다. 3 % BSA를 400 ㎕를 넣고 실온에서 1시간 동안 블로킹하였다. 이후, 1xPBS에 1차 항체를 희석한 다음 1시간 동안 상온 인큐베이션 하였다. 1xPBS 400 ㎕를 넣고 5분 뒤 석션한 후 2회 반복하였으며, 1xPBS에 2차 항체를 희석하였다. PBS 석션 후 희석시킨 2차 항체 50 ㎕를 글라스 위에 살살 뿌려준 다음 1 시간 동안 상온 인큐베이션 하였다. 1xPBS를 400 ㎕ 넣고 5분 뒤 석션한 후 2회 반복하고, 봉입(mounting)을 진행하였다.
3) 웨스턴 블랏
용해 버퍼(50 mM Tric-Cl(pH 7.5), 150 mM NaCl, 1 % NP40, 0.5 % 소듐 데옥시 콜레이트, 10 % SDS 및 프로테아제 저해제) 중에 배양된 세포로부터 얻어진 용해액(lysate, 30-50 ㎍)을 이용하여 항-Nd1-L 항체(Novus/NBP1-83180) ICC 1:100 / WB : 1:100), 항-NBR1 항체(NBR1 (cell signaling/#9891) ICC 1:100 / WB 1:1000), 항-p62 항체(SQSTM1 antibody (Abnova/H00008878-M01) WB 1:50,000), 항-GABARAPL1 항체(GABARAPL1 antibody (cell signaling/#26632) ICC 1:100 / WB 1:1000) 및 HRP 컨쥬게이션 항-마우스 또는 항-래빗 이차 항체(HRP conjugated Goat anti mouse (Jackson Immuno research/115-035-146) WB 1:10,000, HRP conjugated Goat anti rabbit (Jackson Immuno research/115-035-144) WB 1:10,000-20,000)로 웨스턴 블랏하여 분석하였다.
2. 스트레스 유무에 따른 Nd1-L 단백질 위치의 변화
배양한 신경세포에 나트륨 아르세나이트(sodium arsenite, SA)를 처리하여 산화 스트레스를 유발하거나 디티오트레이톨(Dithiothreitol, DTT)을 처리하여 ER 스트레스를 유발한 결과, 도 1에 나타난 바와 같이, Nd1-L 단백질이 G3BP-GFP(스트레스 응집체 단백질 마커)를 발현하고 스트레스 유도시 G3BP-GFP 양성 스트레스 응집체로 위치함을 확인하였다.
또한, 스트레스 응집체의 가역적인 변화를 억제하여 비정상적인 스트레스 응집체 축척을 유발하는 루게릭병 연관 돌연변이 단백질 R521C가 발현된 신경세포에서 Nd1-L이 비가역적인 스트레스 응집체에 축척되고, 자가소화작용 수용체 NBR1 또한 함께 축척됨을 확인하였다(도 2 참조). 이는 루게릭병 연관 돌연변이 단백질 521C 연관 비정상 스트레스 응집체에서 Nd1-L이 축적되어 퇴행성 뇌질환에 중요한 역할을 함을 의미한다.
3. Nd1-L 단백질의 자가소화작용 연관성 연구
Nd1-L 단백질이 N-말단 도메인에 BTB/POZ 도메인이 있고, Kelch 모티프에 LIR(LC3-interacting region) 모티프 서열이 존재함을 확인(도 3 참조)하여 자가소화작용의 핵심 단백질인 LC3 및 GABARAP 패밀리 단백질의 결합 친화도를 확인하였다. 도 4A에 나타난 바와 같이, 자가포식체로 위치하지 않는 LC3, GABARAP 패밀리 단백질에 GFP를 붙인 형광 단백질 및 Nd1-L의 LIR에 3xNLS(Nuclear localization signal)를 붙인 RFP 단백질을 발현시켜 LC3/GABARAP 패밀리 단백질 중에서 GABARAP및 GABARAP-L1과 Nd1-L이 결합하는 것을 확인하였다. 또한, 각 LC3, GABARAP 단백질의 세포질로부터 핵으로의 이동 정도를 GFP 형광 세기를 이용하여 정량하여(도 4B 참조), LIR 또는 2xLIR과 LC3/GABARAP 단백질의 결합 친화도를 확인하였고 특히, Nd1-L의 2xLIR은 GABARAP, GABARAPL1과의 결합력이 있음을 나타내었다.
Nd1-L 단백질과 LC3/GABARAP 단백질의 결합을 확인하는 또 다른 방법으로, HeLa cell lysate를 이용한 Glutathione S-transferase(GST) pull-down assay를 수행하여 LC3, GABARAP family protein과 세포 내 Nd1-L의 결합에서 Nd1-L과 GABARAP, GABARAPL1과의 결합을 검증하였다(도 5A 참조). 또한, 신경세포에서 GFP-GABARAP을 발현시켜 rapamycin으로 자가소화작용을 유도시 세포 내에 존재하는 Nd1-L이 GABARAP-양성 자가포식체로 이동함을 확인하였다(도 5B 참조). 즉, Nd1-L이 자가포식체 결합 단백질 GABARAP과 결합하여 자가소화작용에 중요한 역할을 하는 것을 의미한다.
4. Nd1-L 결여 HeLa 세포주 제작 및 이를 이용한 Nd1-L 결여 검증
Nd1-L 단백질의 기능을 알아보기 위해서 HeLa 세포에 Guide RNA를 발현하는 플라스미드와 puroPx-Cas9 플라스미드를 도입하여 puromycin에 선택적으로 선별하는 CRISPR/Cas9 system 방법을 이용하여 Nd1-L 결여 세포주를 제작하였다.
먼저, Guide RNA 제작을 위한 Nd1-L 타겟팅 서열 부위(도 6A)를 확인하고, Genomic PCR을 이용하여 야생형(WT)과 비교하여 Guide RNA에 의해 Nd1-L 내의 유전자 결손(도 6B)을 확인하고, 최종적으로 Nd1-L 결여 세포주에서 Nd1-L 항체에 대한 웨스턴 블랏(도 6C)을 수행하여 이들의 발현 결핍을 검증하였다.
5. Nd1-L 결여 세포를 이용한 자가소화작용 연관성 연구
정상 세포와 Nd1-L 결여 HeLa세포에서 자가소화작용 연관성을 알아보기 위해하여 자가소화작용 핵심 단백질 중에서 자가소화작용 수용체 p62, NBR1 및 자가포식체 결합 마커 단백질 GABARAPL1의 단백질 발현을 웨스턴 블랏을 수행하여 Nd1-L 결여 세포에서 자가소화 작용 핵심 단백질의 양이 현저히 감소함을 나타내었으며(도 7A 참조), 이를 정량분석한 그래프에서 매우 흥미롭게 자가소화작용 연관인자(p62, NBR1 및 GABARAPL1)의 통계적으로 유의한 감소를 확인하였다(도 7B 참조).
또한, Nd1-L 단백질이 스트레스 응집체 형성 또는 축적에 관여하는지 조사하기 위하여, 도 8A에 나타난 바와 같이, Nd1-L 결여 HeLa세포에서 나트륨 아르세나이트(sodium arsenite, SA)를 처리하여 산화 스트레스를 유도시 정상세포에 비하여 G3BP-GFP 양성 스트레스 응집체의 수가 현저히 감소함을 현미경 이미지로 확인하였고, 이를 정량 분석하여 그래프화하여 통계적으로 유의하게 스트레스 응집체의 수가 감소함을 확인하였다(도 8B 참조).
종합적으로, 이러한 결과들은 신경세포 내에서 핵 및 세포질에 존재하던 Nd1-L 단백질이 스트레스 유발에 의하여 스트레스 응집체로 위치하고, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시켜 선택적 자가소화작용 연관인자인 NBR1, p62 및 GABARAPL1의 발현을 증가, 또는 감소시켜 자가소화작용을 조절함으로써 퇴행성 뇌질환에서 스트레스 응집체의 비정상적인 축적을 조절하는 것임을 의미한다.

Claims (4)

  1. 퇴행성 신경계 질환의 예방 또는 치료를 위한 자가소화작용(autophagy) 조절 물질의 스크리닝 방법으로서,
    (a) 신경세포에 시험대상 물질을 처리하는 단계; 및
    (b) 시험대상 물질을 처리하지 않은 대조군에 비해 핵 및 세포질에 존재하던 Nd1-L 단백질이 스트레스 응집체로 위치하거나, Nd1-L 단백질과 GABARAP의 결합 또는 Nd1-L 단백질과 GABARAPL1의 결합을 증가시키는 물질을 선별하는 단계를 포함하는 스크리닝 방법.
  2. 제1항에 있어서, 상기 단계 (b)의 Nd1-L 단백질의 위치는 면역세포화학법(immunocytochemistry)으로 측정하는 것을 특징으로 하는 스크리닝 방법.
  3. 제1항에 있어서, 상기 단계 (b)에서 선별된 물질은 자가소화작용을 활성화하여 스트레스 응집체의 비정상적인 축적을 조절하는 것을 특징으로 하는 스크리닝 방법.
  4. 제1항에 있어서, 상기 퇴행성 신경계 질환은 루게릭병, 알츠하이머병, 파킨슨병, 헌팅턴병 및 전측두엽성 치매로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 스크리닝 방법.
KR1020180084059A 2018-07-19 2018-07-19 Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법 KR102151145B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180084059A KR102151145B1 (ko) 2018-07-19 2018-07-19 Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180084059A KR102151145B1 (ko) 2018-07-19 2018-07-19 Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법

Publications (2)

Publication Number Publication Date
KR20200009545A true KR20200009545A (ko) 2020-01-30
KR102151145B1 KR102151145B1 (ko) 2020-09-02

Family

ID=69321840

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180084059A KR102151145B1 (ko) 2018-07-19 2018-07-19 Nd1-L 단백질을 이용한 자가소화작용 조절 물질의 스크리닝 방법

Country Status (1)

Country Link
KR (1) KR102151145B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150250808A1 (en) * 2012-10-15 2015-09-10 Vojo P. Deretic Treatment of autophagy-based disorders and related pharmaceutical compositions, diagnostic and screening assays and kits
KR20150129166A (ko) * 2014-05-08 2015-11-19 한국식품연구원 자가포식 활성제 또는 억제제를 스크리닝하는 방법
KR20170021525A (ko) * 2015-08-18 2017-02-28 서울대학교산학협력단 p62 ZZ 도메인에 결합하는 리간드 또는 아르기닌화된 BiP에 의해 매개되는 오토파지 활성을 통한 신경변성 질환 예방 및 치료
KR20180026154A (ko) 2016-09-02 2018-03-12 재단법인 의약바이오컨버젼스연구단 자가포식 조절제 스크리닝 방법 및 자가포식-관련 질환의 진단방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150250808A1 (en) * 2012-10-15 2015-09-10 Vojo P. Deretic Treatment of autophagy-based disorders and related pharmaceutical compositions, diagnostic and screening assays and kits
KR20150129166A (ko) * 2014-05-08 2015-11-19 한국식품연구원 자가포식 활성제 또는 억제제를 스크리닝하는 방법
KR20170021525A (ko) * 2015-08-18 2017-02-28 서울대학교산학협력단 p62 ZZ 도메인에 결합하는 리간드 또는 아르기닌화된 BiP에 의해 매개되는 오토파지 활성을 통한 신경변성 질환 예방 및 치료
KR20180026154A (ko) 2016-09-02 2018-03-12 재단법인 의약바이오컨버젼스연구단 자가포식 조절제 스크리닝 방법 및 자가포식-관련 질환의 진단방법

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Guazzi et al., PLOS ONE, Vol. 7, Issue 9, 2012, pp. 1-10. *
Jun et al. SCIENTIFIC REPORTS 2017 Jan, 7: 40474
Kazushi Sasagawa et al. JBC 2002, 277(46): 44140-44146
Nath et al., Nature Cell Biology, Vol. 16, No. 5, 2014, pp. 415-424. *
Paolo Guazzi et al. PLOSone 2012, 7(9): e44705
Y Takamori et al. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 2006, 18: 963-967

Also Published As

Publication number Publication date
KR102151145B1 (ko) 2020-09-02

Similar Documents

Publication Publication Date Title
Jeworutzki et al. GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl− channel auxiliary subunit
Cao et al. Mechanism for selective synaptic wiring of rod photoreceptors into the retinal circuitry and its role in vision
Fox et al. Synaptotagmin I and II are present in distinct subsets of central synapses
Yang et al. Amyloid precursor protein regulates Cav1. 2 L-type calcium channel levels and function to influence GABAergic short-term plasticity
Misonou et al. Immunolocalization of the Ca2+‐activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons
Chao et al. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis
Müller et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons
Beaubien et al. Slitrk1 is localized to excitatory synapses and promotes their development
Cogli et al. Charcot–Marie–Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin
Han et al. Tweety-homolog (Ttyh) family encodes the pore-forming subunits of the swelling-dependent volume-regulated anion channel (VRACswell) in the brain
Verstraelen et al. Pharmacological characterization of cultivated neuronal networks: relevance to synaptogenesis and synaptic connectivity
Tao et al. Erbin interacts with TARP γ-2 for surface expression of AMPA receptors in cortical interneurons
Mambetisaeva et al. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo–Slit interaction is required for midline crossing in vertebrate spinal cord
Chang et al. Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing
Gratacòs-Batlle et al. AMPAR interacting protein CPT1C enhances surface expression of GluA1-containing receptors
Favre‐Kontula et al. GlialCAM, an immunoglobulin‐like cell adhesion molecule is expressed in glial cells of the central nervous system
Teranishi et al. Proton myo‐inositol cotransporter is a novel γ‐secretase associated protein that regulates Aβ production without affecting Notch cleavage
Morita et al. Synaptic localization of growth‐associated protein 43 in cultured hippocampal neurons during synaptogenesis
Nesler et al. Presynaptic CamKII regulates activity-dependent axon terminal growth
Sarria et al. LRIT1 modulates adaptive changes in synaptic communication of cone photoreceptors
Gasperini et al. The hnRNP RALY regulates PRMT1 expression and interacts with the ALS-linked protein FUS: Implication for reciprocal cellular localization
Ferrari-Toninelli et al. TorsinA negatively controls neurite outgrowth of SH-SY5Y human neuronal cell line
Kyle et al. The large conductance, calcium-activated K+ (BK) channel is regulated by cysteine string protein
Saia et al. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling
Tominaga et al. Defining the function of β‐catenin tyrosine phosphorylation in cadherin‐mediated cell–cell adhesion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant