KR20190129114A - 선택적 투과성 그래핀 옥시드 멤브레인 - Google Patents

선택적 투과성 그래핀 옥시드 멤브레인 Download PDF

Info

Publication number
KR20190129114A
KR20190129114A KR1020197031094A KR20197031094A KR20190129114A KR 20190129114 A KR20190129114 A KR 20190129114A KR 1020197031094 A KR1020197031094 A KR 1020197031094A KR 20197031094 A KR20197031094 A KR 20197031094A KR 20190129114 A KR20190129114 A KR 20190129114A
Authority
KR
South Korea
Prior art keywords
water
permeable membrane
membrane
graphene oxide
porous support
Prior art date
Application number
KR1020197031094A
Other languages
English (en)
Other versions
KR102282787B1 (ko
Inventor
시준 정
웨이핑 린
유지 야마시로
이사무 기타하라
존 에릭슨
오자이르 시디쿠이
완윈 시에
펑 왕
크래이그 로저 바텔스
마코토 고부케
?스케 노우미
Original Assignee
닛토덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛토덴코 가부시키가이샤 filed Critical 닛토덴코 가부시키가이샤
Publication of KR20190129114A publication Critical patent/KR20190129114A/ko
Application granted granted Critical
Publication of KR102282787B1 publication Critical patent/KR102282787B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00046Organic membrane manufacture by agglomeration of particles by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21817Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본원에는 투수율을 제공하면서 용질에 대한 선택적 저항을 제공하는 가교된 그래핀 및 생체중합체(예, 리그닌)계 복합체 멤브레인이 기재되어 있다. 멤브레인은 물로부터 향상된 염 분리를 제공할 수 있는 가교된 소재 메트릭스에서 선택적 추가 기능의 첨가제를 포함할 수 있다. 이러한 멤브레인의 제조 방법, 및 물로부터 용질을 탈수 또는 제거하기 위한 멤브레인의 사용 방법도 또한 기재되어 있다.

Description

선택적 투과성 그래핀 옥시드 멤브레인
관련 출원에 대한 교차 참조
본원은 2017년 3월 24일자로 출원된 미국 가출원 제62/476,135호를 우선권 주장하며, 이 출원의 개시내용은 본원에 그 전문이 참조로 포함된다.
분야
본 실시양태는 수 처리, 염수의 탈염 및/또는 물 제거와 같은 용도를 위한 그래핀 소재를 포함하는 멤브레인을 포함한 중합체 멤브레인에 관한 것이다.
인구수의 증가 및 지구상에서의 제한된 담수 자원과 관련된 물 소비로 인하여, 안전한 담수를 제공하기 위한 해수 탈염 및 수 처리/재생과 같은 기술은 우리 사회에서 더 중요해지고 있다. 역삼투 멤브레인을 사용한 탈염 과정은 염수로부터 담수를 생성하기 위한 선두 기술이다. 대부분의 통상의 상업적 역삼투 멤브레인은 통상적으로 부직 폴리에스테르 상의 폴리술폰 멤브레인인 미세다공성 기재의 상부에 얇은 방향족 폴리아미드 선택적 층으로 이루어진 박막 복합체(TFC) 구조를 채택한다. 그러한 역삼투 멤브레인이 우수한 염 제거율 및 더 높은 수 투과유속을 제공할 수 있으나, 역삼투 과정의 에너지 효율을 추가로 개선시키기 위하여 더 얇고 친수성이 더 큰 멤브레인이 여전히 요구된다. 그러므로, 상기 기재된 바와 같은 원하는 성질을 달성하기 위하여 신규한 멤브레인 소재 및 합성 방법이 절실히 요구된다.
개요
본 개시내용은 높은 수 투과유속 적용예에 적절한 그래핀 옥시드 멤브레인 조성물에 관한 것이다. 그래핀 옥시드 멤브레인 조성물은 하나 이상의 수용성 가교제, 예컨대 리그닌을 사용하여 제조될 수 있다. 그러한 그래핀 옥시드 멤브레인 조성물을 효율적으로 및 경제적으로 생성하는 방법도 또한 기재되어 있다. 물은 상기 그래핀 옥시드 멤브레인 조성물의 제조에서 용매로서 사용될 수 있으며, 이는 멤브레인 제조 공정을 더욱 친환경적이게 하며, 비용적으로 더 효과적이게 한다.
몇몇 실시양태는 선택적 투과성 멤브레인, 예컨대 투수성 멤브레인을 포함하며, 이는 다공성 지지체; 및 가교된 그래핀 옥시드 화합물을 포함하는 다공성 지지체 상에 코팅된 복합체를 포함하고, 상기 가교된 그래핀 옥시드 화합물은 그래핀 옥시드 화합물 및 리그닌과 같은 생체중합체를 포함한 가교제를 포함하는 혼합물을 반응시켜 형성되며, 상기 멤브레인은 투수성이고 멤브레인을 통한 물 흐름을 제어하면서 제곱 인치당 50 파운드의 수압을 견디기에 충분히 강하다.
몇몇 실시양태는 본원엔 기술된 선택적 투수성 멤브레인의 제조 방법으로서, 다공성 지지체 상에 코팅된 수성 혼합물을 경화시키는 것을 포함하는 방법을 포함한다. 몇몇 실시양태에서, 경화는 수성 혼합물 내에서의 가교를 촉진하기 위해 90℃ 내지 150℃의 온도와 같은 고온에서 30초 이상, 예를 들어 약 30초 내지 5시간 동안 수행된다. 다공성 지지체는, 수성 혼합물을 다공성 지지체에 적용하고 약 50-2000 nm의 두께를 갖는 층을 얻기 위해 필요에 따라 반복함으로써 수성 혼합물에 의해 코팅된다. 수성 혼합물은 그래핀 옥시드 재료, 리그닌과 같은 생체중합체를 포함하는 가교제 및 첨가제를 수성액 중에서 혼합함으로써 형성된다.
몇몇 실시양태는 미처리된 용액을 본원에 개시된 임의의 멤브레인에 노출시키는 것을 포함하는, 미처리된 용액으로부터 용질을 제거하는 방법을 포함한다.
도 1은 염 제거 층 또는 보호 코팅을 포함하지 않는 투수성 멤브레인의 가능한 실시양태를 도시한다.
도 2는 염 제거 층을 포함하지 않지만 보호 코팅을 포함하는 투수성 멤브레인의 가능한 실시양태를 도시한다.
도 3은 염 제거 층을 포함하지만 보호 코팅을 포함하지 않는 투수성 멤브레인의 가능한 실시양태를 도시한다.
도 4는 염 제거 층 및 보호 코팅을 포함하는 투수성 멤브레인의 가능한 실시양태를 도시한다.
도 5는 투수성 멤브레인의 제조 방법을 위한 가능한 실시양태를 도시한다.
도 6은 투습도 및 기체 누출 시험을 위한 실험 장치를 도시하는 개략도이다.
도 7은 다양한 멤브레인 실시양태의 기계 성능을 도시하는 차트이다.
선택적 투과성 멤브레인은 특정한 유체, 예컨대 특정한 액체 또는 기체에 대하여서는 비교적 투과성이지만, 기타 유체 또는 용질을 포함한 기타 물질에 대하여서는 불투과성인 멤브레인을 포함한다. 예를 들면, 멤브레인은 물 또는 수증기에 대하여서는 비교적 투과성이며, 이온성 화합물 또는 중금속에 대하여서는 비교적 불투과성일 수 있다. 몇몇 실시양태에서, 선택적 투과성 멤브레인은 물에 대하여서는 투과성이며, 염에 대하여서는 비교적 불투과성일 수 있다.
본원에 사용된 바와 같이, 용어 "유체 연통"은 물리적으로 연통 또는 정렬의 순서로 존재하는지의 여부와는 상관 없이 유체가 제1의 부품을 통과하여 제2의 부품 또는 더 많은 부품으로 및 이들을 통하여 이동될 수 있다는 것을 의미한다.
본 개시내용은 낮은 유기 화합물 투과성 및 높은 기계적 및 화학적 안정성을 갖는 고 친수성 복합체 소재가 역삼투 멤브레인에서 폴리아미드 염 제거 층을 지지하는데 유용할 수 있는 수 분리 멤브레인에 관한 것이다. 그러한 멤브레인 소재는 미처리된 유체로부터의 용질 제거, 예컨대 염수로부터의 탈염, 음용수의 정제 또는 폐수 처리에 적절할 수 있다. 본원에 기재된 몇몇 선택적 투과성 멤브레인은 높은 수 투과유속을 갖는 그래핀 옥시드계 멤브레인이며, 이는 역삼투 멤브레인의 에너지 효율을 개선시키며, 수 복구/분리 효율을 개선시킬 수 있다. 몇몇 실시양태에서, 그래핀 옥시드계 멤브레인은 하나 이상의 여과층을 포함할 수 있으며, 여기서 하나 이상의 층은 다른 화합물에 또는 그래핀 소판(platelet) 사이에 공유결합 또는 가교된 그래핀과 같은 그래핀 옥시드(GO)를 함유하는 복합체를 포함할 수 있다. 그래핀 옥시드의 잠재적 친수성 및 선택적 투과성을 갖는 가교된 GO 층은 투과성의 높은 선택성과 함께 높은 투수성이 중요한 넓은 적용예에 대한 멤브레인을 제공할 수 있는 것으로 여겨진다. 게다가, 그러한 선택적 투과성 멤브레인은 물을 용매로서 사용하여 생성될 수 있는데, 이는 제조 공정을 더욱 친환경적이며 비용면에서 효과적이게 한다.
일반적으로, 선택적 투과성 멤브레인, 예컨대 투수성 멤브레인은 다공성 지지체 및 지지체 상에 코팅된 또는 배치된 복합체를 포함한다. 예를 들면, 도 1에 도시한 바와 같이, 선택적 투과성 멤브레인(100)은 다공성 지지체(120)를 포함할 수 있다. 복합체(110)는 다공성 지지체(120) 상에 코팅된다.
몇몇 실시양태에서, 다공성 지지체는 복합체 층 사이에 개재될 수 있다.
추가의 임의적인 여과 층은 또한 예컨대 염 제거 층 등이 존재할 수 있다. 게다가, 멤브레인은 또한 보호 층을 포함할 수 있다. 몇몇 실시양태에서, 보호 층은 친수성 중합체를 포함할 수 있다. 몇몇 실시양태에서, 멤브레인을 통과하는 유체, 예컨대 액체 또는 기체는 그들이 물리적으로 연통하는지의 여부 또는 그의 배열 순서와는 상관 없이 모든 부품을 통하여 이동한다.
보호 층은 선택적 투과성 멤브레인, 예컨대 투수성 멤브레인을 거친 환경, 예컨대 층을 악화시킬 수 있는 화합물, 방사, 예컨대 자외선 방사, 극한의 온도 등으로부터 보호하는 것을 돕는 임의의 위치에 배치될 수 있다. 예를 들면 도 2에서, 도 1에 나타낸 선택적 투과성 멤브레인(100)은 복합체(110)에 또는 복합체(110) 상에 배치되는 보호 코팅(140)을 추가로 포함할 수 있다.
몇몇 선택적 투과성 멤브레인, 예컨대 투수성 멤브레인은 물 및/또는 수증기의 통과를 허용할 수 있으나, 용질의 통과는 막는다. 몇몇 멤브레인의 경우 구속된 용질은 이온성 화합물, 예컨대 염 또는 중금속을 포함할 수 있다.
본원에 기재된 것과 같은 투수성 멤브레인은 물을 제어 부피로부터 제거하는데 사용될 수 있다. 몇몇 실시양태에서, 멤브레인은 저수조가 멤브레인을 통하여 유체 연통되도록 제1의 유체 저수조 및 제2의 유체 저수조 사이에 배치될 수 있다. 몇몇 실시양태에서, 제1의 저수조는 공급 유체를 상류에서 및/또는 멤브레인에서 함유할 수 있다.
몇몇 실시양태에서, 멤브레인은 액체 물 또는 수증기를 선택적으로 통과되도록 하면서 용질 또는 액체 물질이 통과되는 것을 막는다. 몇몇 실시양태에서, 멤브레인의 유체 상류는 물 및 용질의 용액을 포함할 수 있다. 몇몇 실시양태에서, 멤브레인의 유체 하류는 정제수 또는 처리된 유체를 함유할 수 있다. 몇몇 실시양태에서, 층의 결과로서, 멤브레인은 물에 대하여 선택적으로 투과성이며, 염에 대하여서는 덜 투과성일 수 있는 내구성 탈염계를 제공할 수 있다. 몇몇 실시양태에서, 층의 결과로서, 멤브레인은 염수, 오염된 물 또는 공급 유체를 효율적으로 여과할 수 있는 내구성 역삼투계를 제공할 수 있다.
선택적 투과성 멤브레인, 예컨대 투수성 멤브레인은 염이 멤브레인 통과를 방지하는 것을 돕기 위하여 염 제거 층을 추가로 포함할 수 있다.
염 제거 층을 포함하는 선택적 투과성 멤브레인의 몇몇 비제한적인 예는 도 3 및 4에 도시한다. 도 3 및 4에서, 멤브레인(200)은 다공성 지지체(120)에 배치되는 복합체(110) 상에 배치된 염 제거 층(130)을 포함한다. 도 4에서, 선택적 투과성 멤브레인(200)은 염 제거 층(130) 상에 배치된 보호 코팅(140)을 추가로 포함한다.
몇몇 실시양태에서, 멤브레인은 약 10-1,000 gal·ft-2·일-1·bar-1; 약 20-750 gal·ft-2·일-1·bar-1; 약 100-500 gal·ft-2·일-1·bar-1; 약 10-50 gal·ft-2·일-1·bar-1; 약 50-100 gal·ft-2·일-1·bar-1; 약 10-200 gal·ft-2·일-1·bar-1; 약 200-400 gal·ft-2·일-1·bar-1; 약 400-600 gal·ft-2·일-1·bar-1; 약 600-800 gal·ft-2·일-1·bar-1; 약 800-1,000 gal·ft-2·일-1·bar-1; 적어도 약 10 gal·ft-2·일-1·bar-1, 약 20 gal·ft-2·일-1·bar-1, 약 100 gal·ft-2·일-1·bar-1, 약 200 gal·ft-2·일-1·bar-1의 정규화된 부피 물 유량 또는 상기 임의의 값에 포함된 범위 내의 임의의 정규화된 부피 물 유량을 나타낸다.
몇몇 실시양태에서, 멤브레인은 선택적 투과성일 수 있다. 몇몇 실시양태에서, 멤브레인은 삼투 멤브레인일 수 있다. 몇몇 실시양태에서, 멤브레인은 물 분리 멤브레인일 수 있다. 몇몇 실시양태에서, 멤브레인은 역삼투 멤브레인일 수 있다. 몇몇 실시양태에서, 선택적 투과성 멤브레인은 복수의 층을 포함할 수 있으며, 여기서 적어도 하나의 층은 그래핀 옥시드 화합물 및 가교제를 포함하는 혼합물의 반응 생성물인 복합체를 함유한다.
본원에 기재된 멤브레인은 혼합물을 반응시켜 공유 결합을 형성함으로써 형성된 복합체를 포함할 수 있다. 복합체를 형성하기 위해 반응하는 혼합물은 그래핀 옥시드 화합물 및 리그닌과 같은 생체중합체를 포함할 수 있다. 생체중합체, 예컨대 리그닌 이외에, 폴리비닐 알콜은 제2 가교제로서 존재할 수 있다. 또한, 첨가제가 반응 혼합물에 존재할 수 있다. 반응 혼합물은 복합체의 성분(예, 그래핀 옥시드 화합물, 리그닌, 폴리비닐 알콜 및/또는 첨가제) 사이에 가교 결합과 같은 공유 결합을 형성할 수 있다. 예를 들어, 그래핀 옥시드 화합물의 소판은 다른 소판에 결합될 수 있고, 그래핀 옥시드 화합물은 가교제(예, 리그닌 또는 폴리비닐 알콜)에 결합될 수 있고, 그래핀 옥시드 화합물은 첨가제에 결합될 수 있고, 가교제(예, 리그닌 또는 폴리비닐 알콜)는 첨가제 등에 결합될 수 있다. 몇몇 실시양태에서, 그래핀 옥시드 화합물, 가교제(예, 리그닌 또는 폴리비닐 알콜) 및 첨가제의 임의의 조합은 공유 결합되어 소재 매트릭스를 형성할 수 있다.
몇몇 실시양태에서, 복합체 층의 그래핀 옥시드는 약 0.5-3 ㎚, 약 0.6-2 ㎚, 약 0.7-1.8 ㎚, 약 0.8-1.7 ㎚, 약 0.9-1.7 ㎚, 약 1.2-2 ㎚, 약 1.5-2.3 ㎚, 약 1.61 ㎚, 약 1.67 ㎚, 약 1.55 ㎚의 층간 거리 또는 d-간격 또는 임의의 상기 값에 포함된 범위 내의 임의의 거리를 가질 수 있다. d-간격은 X선 분말 회절(XRD)에 의하여 측정될 수 있다.
복합체 층은 임의의 적절한 두께를 가질 수 있다. 예를 들면, 몇몇 그래핀 옥시드계 복합체 층은 약 5-2000 nm, 약 50-2000 nm, 약 5-1000 nm, 약 1000-2000 nm, 약 10-500 nm, 약 50-500 nm, 약 500-1000 nm, 약 50-500 nm, 약 50-400 nm, 약 20-1,000 ㎚, 약 5-40 ㎚, 약 10-30 ㎚, 약 20-60 ㎚, 약 50-100 ㎚, 약 70-120 nm, 약 120-170 ㎚, 약 150-200 ㎚, 약 180-220 ㎚, 약 200-250 ㎚, 약 220-270 nm, 약 250-300 ㎚, 약 280-320 nm, 약 300-400 ㎚, 약 330-480 nm, 약 400-600 ㎚, 약 600-800 ㎚, 약 800-1,000 ㎚, 약 50-500 ㎚, 약 100 ㎚-400 ㎚, 약 100 nm, 약 150 nm, 약 200 nm, 약 225 nm, 약 250 nm, 약 300 nm, 약 350 nm, 약 400 ㎚ 범위 내의 두께, 또는 임의의 상기 값에 포함된 범위 내의 임의의 두께를 가질 수 있다. 하기 두께를 포함하는 상기 범위가 특히 중요하다: 약 100 nm, 약 200 nm, 약 225 nm, 및 약 300 nm.
일반적으로, 그래핀계 소재는 다수의 중요한 성질, 예컨대 매우 높은 기계적 강도 및 나노미터 규모의 두께를 갖는 2차원 시트형 구조를 갖는다. 그라파이트의 박리된 산화형인 그래핀 옥시드(GO)는 저렴한 비용으로 대량 생산될 수 있다. 그의 높은 산화도로, 그래핀 옥시드는 높은 투수성을 지니며, 또한 다수의 작용기, 예컨대 아민 또는 알콜에 의하여 작용화되어 다양한 멤브레인 구조를 형성하는 융통성을 나타낸다. 물이 소재의 공극을 통하여서만 수송되는 통상의 멤브레인과 달리, 그래핀 옥시드 멤브레인에서는 물의 수송이 또한 층간 공간 사이에서 이루어질 수 있다. 그래핀 옥시드의 모세 효과는 신속한 물 수송율을 제공하는 긴 물 슬립 길이를 생성할 수 있다. 추가로, 멤브레인의 선택성 및 수 투과유속은 그래핀 시트의 층간 거리의 조절 또는 상이한 가교 모이어티의 사용에 의하여 제어될 수 있다.
개시된 멤브레인에서, 그래핀 옥시드 재료 화합물은 임의로 치환된 그래핀 옥시드를 포함한다. 몇몇 실시양태에서, 임의로 치환된 그래핀 옥시드는 화학적 개질 또는 작용화된 그래핀을 함유할 수 있다. 개질된 그래핀은 화학적 개질 또는 작용화된 임의의 그래핀 소재일 수 있다. 몇몇 실시양태에서, 그래핀 옥시드는 임의로 치환될 수 있다.
달리 나타내지 않는다면, 화합물 또는 화학적 구조식, 예를 들면 그래핀 옥시드가 "임의로 치환된"으로 지칭될 경우 치환기를 갖지 않거나(즉, 비치환) 또는 하나 이상의 치환기를 갖는(즉, 치환) 화합물 또는 화학적 구조식을 포함한다. 용어 "치환기"는 당업계에 공지된 광의의 의미를 가지며, 모 화합물 또는 구조식에 결합된 하나 이상의 수소 원자를 대체하는 모이어티를 포함한다. 몇몇 실시양태에서, 치환기는 15-50 g/mol, 15-100 g/mol, 15-150 g/mol, 15-200 g/mol, 15-300 g/mol 또는 15-500 g/mol의 분자량(즉, 치환기의 원자의 원자량의 합)을 가질 수 있는, 유기 화합물의 구조 상에 존재할 수 있는 임의의 유형의 기가 될 수 있다. 몇몇 실시양태에서, 치환기는 0-30, 0-20, 0-10 또는 0-5개의 탄소 원자; 및 0-30, 0-20, 0-10 또는 0-5개의 헤테로원자를 포함하거나 또는 이로써 이루어지며, 여기서 각각의 헤테로원자는 독립적으로 N, O, S, Si, F, Cl, Br 또는 I일 수 있으나, 단 치환기는 1개의 C, N, O, S, Si, F, Cl, Br 또는 I 원자를 포함한다. 치환기의 예는 알킬, 알케닐, 알키닐, 헤테로알킬, 헤테로알케닐, 헤테로알키닐, 아릴, 헤테로아릴, 히드록시, 알콕시, 아릴옥시, 아실, 아실옥시, 알킬카르복실레이트, 티올, 알킬티오, 시아노, 할로, 티오카르보닐, O-카르바밀, N-카르바밀, O-티오카르바밀, N-티오카르바밀, C-아미도, N-아미도, S-술폰아미도, N-술폰아미도, 이소시아나토, 티오시아나토, 이소티오시아나토, 니트로, 실릴, 술페닐, 술피닐, 술포닐, 할로알킬, 할로알콕실, 트리할로메탄술포닐, 트리할로메탄술폰아미도, 아미노 등을 포함하나 이에 제한되지 않는다.
편의상, 용어 "분자량"은 완전한 분자가 되지 않을 수도 있기는 하나 분자의 모이어티 또는 부분에서의 원자의 원자량의 합을 나타내기 위하여 분자의 모이어티 또는 부분에 관하여 사용된다.
작용화된 그래핀은 그래핀 옥시드 중에 존재하지 않는 하나 이상의 작용기, 예컨대 그래핀 베이스의 C-원자에 직접 부착된 OH, COOH 또는 에폭시드 기가 아닌 작용기를 포함하는 그래핀 옥시드 화합물이다. 작용화된 그래핀 중에 존재할 수 있는 작용기의 예는 할로겐, 알켄, 알킨, 시아노, 에스테르, 아미드 또는 아민을 포함한다.
몇몇 실시양태에서, 그래핀 옥시드 화합물의 그래핀 분자의 적어도 약 99%, 적어도 약 95%, 적어도 약 90%, 적어도 약 80%, 적어도 약 70%, 적어도 약 60%, 적어도 약 50%, 적어도 약 40%, 적어도 약 30%, 적어도 약 20%, 적어도 약 10% 또는 적어도 약 5%는 산화 또는 작용화될 수 있다. 몇몇 실시양태에서, 그래핀 옥시드 화합물은 그래핀 옥시드이며, 기체, 유체 및/또는 증기에 대한 선택적 투과성을 제공할 수 있다. 몇몇 실시양태에서, 그래핀 옥시드 화합물은 또한 환원된 그래핀 옥시드를 포함할 수 있다. 몇몇 실시양태에서, 그래핀 옥시드 화합물은 그래핀 옥시드, 환원된 그래핀 옥시드, 작용화된 그래핀 옥시드, 또는 작용화 및 환원된 그래핀 옥시드일 수 있다. 몇몇 실시양태에서, 그래핀 옥시드 화합물은 작용화되지 않은 그래핀 옥시드이다.
고온에서 히드록실 기와 쉽게 반응할 수 있는, 그래핀 옥시드 상의 에폭시 기의 다수(~30%)가 존재할 수 있는 것으로 여겨진다. 또한, 그래핀 옥시드 시트는 기타 소재에 비하여 큰 이용 가능한 기체/물 확산 표면을 제공하는 매우 큰 종횡비를 가지며, 유동율을 유지하면서 오염물 주입을 최소로 하기 위하여 소재를 지지하는 임의의 기재의 유효 공극 직경을 감소시키는 능력을 갖는 것으로 여겨진다. 또한, 에폭시 또는 히드록실 기는 소재의 친수성을 증가시키며, 그리하여 멤브레인의 투습도 및 선택성의 증가에 기여하는 것으로 여겨진다.
몇몇 실시양태에서, 임의로 치환된 그래핀 옥시드는 시트, 평면 또는 플레이크의 형태로 존재할 수 있다. 몇몇 실시양태에서, 그래핀 소재는 약 100-5,000 ㎡/g, 약 150-4,000 ㎡/g, 약 200-1,000 ㎡/g, 약 500-1,000 ㎡/g, 약 1,000-2,500 ㎡/g, 약 2,000-3,000 ㎡/g, 약 100-500 ㎡/g, 약 400-500 ㎡/g의 표면적 또는 임의의 상기 값에 포함된 범위 내의 임의의 표면적을 가질 수 있다.
몇몇 실시양태에서, 그래핀 옥시드는 독립적으로 나노미터 내지 미크론 범위 내의 각각의 치수의 크기를 갖는 1, 2 또는 3 차원을 갖는 소판일 수 있다. 몇몇 실시양태에서, 그래핀은 상기 차원 중 임의의 하나로 소판 크기를 가질 수 있거나 또는 약 0.05-100 ㎛, 약 0.05-50 ㎛, 약 0.1-50 ㎛, 약 0.5-10 ㎛, 약 1-5 ㎛, 약 0.1-2 ㎛, 약 1-3 ㎛, 약 2-4 ㎛, 약 3-5 ㎛, 약 4-6 ㎛, 약 5-7 ㎛, 약 6-8 ㎛, 약 7-10 ㎛, 약 10-15 ㎛, 약 15-20 ㎛, 약 20-50 ㎛, 약 약 50-100 ㎛, 약 60-80 ㎛, 약 50-60 ㎛, 약 25-50 ㎛의 소판의 최대 표면적의 제곱근 또는 임의의 상기 값에 포함된 범위 내의 임의의 소판 크기를 가질 수 있다.
몇몇 실시양태에서, 그래핀 옥시드 재료는 약 5,000-200,000 달톤의 분자량을 갖는 그래핀 소재의 적어도 70%, 적어도 75%, 적어도 80%, 적어도 85%, 적어도 90%, 적어도 95%, 적어도 97% 또는 적어도 99%를 포함할 수 있다.
몇몇 실시양태에서, 복합체의 총 중량에 대한 그래핀 옥시드의 질량 비율은 약 4-80 중량%, 약 4-75 중량%, 약 5-70 중량%, 약 7-65 중량%, 약 7-60 중량%, 약 7.5-55 중량%, 약 8-50 중량%, 약 8.5-50 중량%, 약 15-50 중량%, 약 1-5 중량%, 약 3-8 중량%, 약 5-10 중량%, 약 7-12 중량%, 약 10-15 중량%, 약 12-17 중량%, 약 12.8-13.3 중량%, 약 13-13.5 중량%, 약 13.2-13.7 중량%, 약 13.4-13.9 중량%, 약 13.6-14.1 중량%, 약 13.8-14.3 중량%, 약 14-14.5 중량%, 약 14.2-14.7 중량%, 약 14.4-14.9 중량%, 약 14.6-15.1 중량%, 약 14.8-15.3 중량%, 약 15-15.5 중량%, 약 15.2-15.7 중량%, 약 15.4-15.9 중량%, 약 15.6-16.1 중량%, 약 12-14 중량%, 약 13-15 중량%, 약 14-16 중량%, 약 15-17 중량%, 약 16-18 중량%, 약 15-20 중량%, 약 17-23 중량%, 약 20-25 중량%, 약 23-28 중량%, 약 25-30 중량%, 약 30-40 중량%, 약 35-45 중량%, 약 40-50 중량%, 약 45-55 중량%, 또는 약 50-70 중량%, 또는 임의의 상기 값에 포함된 범위 내의 임의의 비율일 수 있다. 그래핀 옥시드와 같은 그래핀 옥시드 화합물의 하기 중량%를 포함하는 상기 범위가 특히 중요하다: 약 13.2 중량%, 약 15.0 중량%, 및 약 15.3 중량%.
복합체는 그래핀 옥시드 화합물 및 가교제를 함유하는 혼합물을 반응시켜 형성된다. 가교제는 리그닌과 같은 생체중합체를 포함하고, 폴리비닐 알콜과 같은 제2 가교제를 추가로 포함할 수 있다.
몇몇 실시양태에서, 가교제는 리그닌과 같은 식물계 중합체일 수 있다. 리그닌은 가교된 페놀성 중합체, 예컨대 가교된 파라쿠마릴 알콜, 코니페릴 알콜, 시나필 알콜을 포함하는 중합체 또는 이들의 조합, 또는 이들 중합체의 유도체이다. 예를 들어, 리그노술포네이트, 또는 이의 염, 예컨대 나트륨 리그노술포네이트(CAS : 8061-51-6), 칼슘 리그노술포네이트, 마그네슘 리그노술포네이트, 칼륨 리그노술포네이트 등과 같이 리그닌은 술폰화될 수 있다. 몇몇 실시양태에서, 가교제는 나트륨 리그노술포네이트를 포함한다.
몇몇 실시양태에서, 리그노술포네이트의 중량 평균 분자량은 약 20-40 Da, 약 30-50 Da, 약 40-60 Da, 약 50-70 Da, 약 60-80 Da, 약 70-90 Da, 약 80-100 Da, 약 90-110 Da, 약 100-120 Da, 약 110-130 Da, 약 120-140 Da, 약 52,000 Da, 또는 임의의 상기 값에 포함된 범위 내의 임의의 분자량일 수 있다.
몇몇 실시양태에서, 리그노술포네이트의 수 평균 분자량은 약 2-7 Da, 약 4-9 Da, 약 6-11 Da, 약 8-13 Da, 약 7,000 Da, 또는 임의의 상기 값에 포함된 범위 내의 임의의 분자량일 수 있다.
리그닌, 예컨대 리그노술포네이트는 임의의 적절한 양으로 존재할 수 있다. 예를 들면, 복합체의 총 중량과 관련하여, 리그닌은 0.1-90 중량%, 0.1-10 중량%, 5-15 중량%, 10-20 중량%, 약 18-22 중량%, 약 20-24 중량%, 약 22-26 중량%, 약 24-28 중량%, 약 26-30 중량%, 약 28-32 중량%, 약 30-34 중량%, 약 32-36 중량%, 약 34-38 중량%, 약 36-40 중량%, 약 38-42 중량%, 약 40-50 중량%, 약 45-55 중량%, 약 50-54 중량%, 약 52-56 중량%, 약 54-58 중량%, 약 56-60 중량%, 약 58-62 중량%, 약 60-64 중량%, 약 62-66 중량%, 약 64-68 중량%, 약 66-70 중량%, 약 68-72 중량%, 약 70-74 중량%, 약 72-76 중량%, 약 74-78 중량%, 약 76-80 중량%, 약 78-82 중량%, 약 80-100 중량%, 또는 임의의 상기 값에 포함된 범위 내의 임의의 중량%의 양으로 존재할 수 있다. 리그노술포네이트와 같은 리그닌의 임의의 하기 백분율을 포함하는 상기 임의의 범위가 특히 중요하다: 25 중량%, 37 중량%, 38 중량%, 57 중량%, 72 중량%, 73 중량%, 74 중량%, 75 중량%, 76 중량%, 및 77 중량%.
몇몇 복합체에서, 그래핀 옥시드 및 리그닌은 가교 결합 네트워크 또는 소재 매트릭스를 형성하도록 결합될 수 있다. 결합은 물리적 또는 화학적일 수 있다. 결합은 직접적이거나, 그래핀 옥시드를 리그닌에 공유 연결하는 연결기를 통하는 것과 같이 간접적일 수 있다.
몇몇 멤브레인에서, 가교제는 폴리비닐 알콜을 추가로 포함할 수 있다. 몇몇 실시양태에서, 리그닌에 대한 폴리비닐 알콜의 중량비는 0-10(10 mg의 폴리비닐 알콜 및 1 mg의 리그닌은 10의 비임), 0.1-2, 0.2-0.4, 0.3-0.5, 0.4-0.6, 0.5-1, 0.6-1.1, 0.8-1.2, 또는 0.2-1.5의 범위일 수 있다.
폴리비닐 알콜(PVA)의 분자량은 약 100-1,000,000 달톤(Da), 약 10,000-500,000 Da, 약 10,000-50,000 Da, 약 50,000-100,000 Da, 약 70,000-120,000 Da, 약 80,000-130,000 Da, 약 90,000-140,000 Da, 약 90,000-100,000 Da, 약 95,000-100,000 Da, 약 89,000-98,000 Da, 약 89,000 Da, 약 98,000 Da 또는 임의의 상기 값에 포함된 범위 내의 임의의 분자량일 수 있다.
몇몇 복합체에서, 생체중합체에 대한 PVA의 중량비(중량비 = PVA의 중량 / 생체중합체의 중량)는 약 0.0-5, 약 0.01-2.5, 약 0.33-2, 예컨대 0, 약 0.05, 약 0.33, 약 1, 약 2(예, 1 mg의 생체중합체 당 2 mg의 PVA)일 수 있다.
몇몇 실시양태에서, 복합체의 총 중량을 기준으로 폴리비닐 알콜의 중량%는 약 0.1-5 중량%, 약 2-5 중량%, 약 3-6 중량%, 약 4-10 중량%, 약 8-15 중량%, 약 12-20 중량%, 약 18-22 중량%, 약 20-24 중량%, 약 22-26 중량%, 약 24-28 중량%, 약 26-30 중량%, 약 28-32 중량%, 약 30-34 중량%, 약 32-36 중량%, 약 34-38 중량%, 약 36-40 중량%, 약 38-42 중량%, 약 40-50 중량%, 약 45-55 중량%, 약 50-54 중량%, 약 52-56 중량%, 약 55-65 중량%, 약 60-70 중량%, 약 65-75 중량%, 약 70-74 중량%, 약 72-76 중량%, 약 74-78 중량%, 약 76-80 중량%, 약 78-82 중량%, 또는 약 80-90 중량%, 또는 임의의 상기 값에 포함된 범위 내의 임의의 중량%이다. 폴리비닐 알콜의 임의의 하기 백분율을 포함하는 임의의 상기 범위는 특히 중요하다: 4 중량%, 19 중량%, 25 중량%, 37 중량%, 38 중량%, 50 중량%, 및 77 중량%.
몇몇 실시양태에서, GO에 대한 가교제의 중량비(중량비 = 가교제의 중량 / 옥시드 그래핀의 중량)는 약 0.25-15, 약 0.2-13, 약 0.3-12, 약 0.5-10, 약 3-9, 약 4-8, 약 4.5-6, 예컨대 약 4.7, 약 4.9, 약 5(예, 5 mg의 가교제 및 1 mg의 임의로 치환된 그래핀 옥시드), 또는 임의의 상기 값에 포함된 범위 내의 임의의 비일 수 있다. 몇몇 멤브레인에서, 그래핀 옥시드에 대한 가교제의 중량비는 2-6의 범위일 수 있다.
그래핀 옥시드의 가교는 또한 복합체 내에서 모이어티 사이의 기계적 강도를 증가시키면서 물이 소판을 쉽게 통과시키기 위하여 그래핀 소판 사이에서 넓은 채널 및 강한 화학적 결합을 생성하여 그래핀 옥시드의 기계적 강도 및 투수성 성질을 향상시킬 수 있는 것으로 여겨진다. 몇몇 실시양태에서, 그래핀 옥시드 소판의 적어도 약 1%, 약 5%, 약 10%, 약 20%, 약 30%, 약 40% 약 50%, 약 60%, 약 70%, 약 80%, 약 90%, 약 95% 또는 전부는 가교될 수 있다. 몇몇 실시양태에서, 대다수의 그래핀 소재는 가교될 수 있다. 가교의 양은 그래핀 소재의 총량에 비하여 가교제의 중량에 기초하여 상정될 수 있다.
첨가제 또는 첨가제 혼합물은, 몇몇 경우에, 복합체의 성능을 개선시킬 수 있다. 몇몇 실시양태에서, 첨가제 또는 첨가제 혼합물은 CaCl2, 보레이트 염, 실리카 나노입자, 또는 그의 임의의 조합을 포함할 수 있다.
몇몇 첨가제 또는 첨가제 혼합물은 염화칼슘을 포함할 수 있다. 몇몇 실시양태에서, 염화칼슘은 복합체 중량의 약 0-2%, 약 0-1.5%, 약 0.4-1.5%, 약 0.4-0.8%, 약 0.6-1%, 약 0.8-1.2%, 약 0-1.5%, 약 0-1%, 약 0.8%, 또는 임의의 상기 값에 포함된 범위 내의 임의의 중량%이다. 염화칼슘 약 0.8 중량%를 포함하는 임의의 상기 범위는 특히 중요하다.
몇몇 실시양태에서, 첨가제 또는 첨가제 혼합물은 보레이트 염을 포함할 수 있다. 몇몇 실시양태에서, 보레이트 염은 테트라보레이트 염, 예 K2B4O7, Li2B4O7, 및 Na2B4O7을 포함한다. 몇몇 실시양태에서, 보레이트 염은 K2B4O7을 포함할 수 있다. 몇몇 실시양태에서, 복합체의 총 중량에 기초한 보레이트 염의 중량%는 약 0-20 중량%, 약 0.5-15 중량%, 약 4-8 중량%, 약 6-10 중량%, 약 8-12 중량%, 약 10-14 중량%, 또는 약 1-10 중량%의 범위, 또는 임의의 상기 값에 포함된 범위 내의 임의의 중량%일 수 있다. 임의의 하기 백분율의 보레이트 염을 포함하는 임의의 상기 범위는 특히 중요하다: 7 중량%, 8 중량%, 및 10 중량%.
첨가제 또는 첨가제 혼합물은 실리카 나노입자를 포함할 수 있다. 몇몇 실시양태에서, 적어도 하나의 다른 첨가제는 실리카 나노입자와 존재한다. 몇몇 실시양태에서, 실리카 나노입자는 약 5-200 ㎚, 약 6-100 ㎚, 약 6-50 ㎚, 약 7-50 ㎚, 약 2-8 nm, 약 5-9 nm, 약 5-15 ㎚, 약 10-20 nm, 약 15-25 nm, 약 7-20 nm, 약 18-22 nml의 평균 크기 또는 임의의 상기 값에 포함된 범위 내의 임의의 크기를 가질 수 있다. 나노입자 세트에 대한 평균 크기는 평균 부피를 구한 후, 동일한 부피를 대체하는 필적하는 구체와 관련된 직경을 구함으로써 결정되어 평균 크기를 얻을 수 있다. 특히 중요한 것은 하기 입자 크기를 포함하는 상기 나열된 범위이다: 약 7 nm 및 약 20 nm.
몇몇 실시양태에서, 실리카 나노입자는 복합체 중량의 약 0-15%, 약 0-10%, 약 0-5%, 약 1-10%, 약 0.1-3%, 약 2-4%, 약 3-5%, 약 4-6%, 또는 약 0-6%, 또는 임의의 상기 값에 의해 포함된 임의의 범위이다. 특히 중요한 것은 임의의 하기 값을 포함하는 상기 임의의 범위이다: 약 1%, 약 2%, 및 약 4%.
다공성 지지체는 임의의 적절한 소재 및 임의의 적절한 형태로 존재할 수 있으며, 층, 예컨대 복합체의 층은 적층 또는 배치될 수 있다. 몇몇 실시양태에서, 다공성 지지체는 중공 섬유 또는 다공성 소재를 포함할 수 있다. 몇몇 실시양태에서, 다공성 지지체는 다공성 소재, 예컨대 중합체 또는 중공 섬유를 포함할 수 있다. 몇몇 다공성 지지체는 부직 직물을 포함할 수 있다. 몇몇 실시양태에서, 중합체는 폴리아미드(나일론), 폴리이미드(PI), 폴리비닐리덴 플루오라이드(PVDF), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리에틸렌 테레프탈레이트(PET), 폴리술폰(PSF), 폴리에테르 술폰(PES) 및/또는 그의 임의의 혼합물일 수 있다. 몇몇 실시양태에서, 중합체는 PET를 포함할 수 있다.
몇몇 멤브레인은 예를 들면 지지체 상에 코팅된 복합체 상에 배치된 염 제거 층을 추가로 포함한다. 몇몇 실시양태에서, 염 제거 층은 멤브레인에 낮은 염 투과성을 부여할 수 있다. 염 제거 층은 이온성 화합물 또는 염의 통과를 감소시키기에 적절한 임의의 소재를 포함할 수 있다. 몇몇 실시양태에서, 제거, 배제 또는 부분 배제된 염은 KCl, MgCl2, CaCl2, NaCl, K2SO4, MgSO4, CaSO4 또는 Na2SO4를 포함할 수 있다. 몇몇 실시양태에서, 제거, 배제 또는 부분 배제된 염은 NaCl을 포함할 수 있다. 몇몇 염 제거 층은 중합체, 예컨대 폴리아미드 또는 폴리아미드의 혼합물을 포함한다. 몇몇 실시양태에서, 폴리아미드는 아민(예, 메타-페닐렌디아민, 파라-페닐렌디아민, 오르토-페닐렌디아민, 피페라진, 폴리에틸렌이민, 폴리비닐아민 등) 및 아실 클로라이드(예, 트리메소일 클로라이드, 이소프탈로일 클로라이드 등)로 생성된 폴리아미드일 수 있다. 몇몇 실시양태에서, 아민은 메타-페닐렌디아민일 수 있다. 몇몇 실시양태에서, 아실 클로라이드는 트리메소일 클로라이드일 수 있다. 몇몇 실시양태에서, 폴리아미드는 메타-페닐렌디아민 및 트리메소일 클로라이드로부터(예, 메타-페닐렌디아민 및 트리메소일 클로라이드의 중합 반응에 의하여) 생성될 수 있다.
몇몇 멤브레인은 보호 코팅을 추가로 포함할 수 있다. 예를 들면, 보호 코팅은 멤브레인의 상부에 배치되어 이를 환경으로부터 보호할 수 있다. 보호 코팅은 멤브레인을 환경으로부터 보호하기에 적절한 임의의 조성을 가질 수 있다. 다수의 중합체는 보호 코팅에 사용하기에 적절하며, 예컨대 친수성 중합체 중 하나 또는 그의 혼합물, 예를 들면 폴리비닐 알콜(PVA), 폴리비닐 피롤리돈(PVP), 폴리에틸렌 글리콜(PEG), 폴리에틸렌 옥시드(PEO), 폴리옥시에틸렌(POE), 폴리아크릴산(PAA), 폴리메타크릴산(PMMA) 및 폴리아크릴아미드(PAM), 폴리에틸렌이민(PEI), 폴리(2-옥사졸린), 폴리에테르술폰(PES), 메틸 셀룰로스(MC), 키토산, 폴리(알릴아민 히드로클로라이드)(PAH) 및 폴리(소듐 4-스티렌 술포네이트)(PSS) 및 그의 임의의 조합이다. 몇몇 실시양태에서, 보호 코팅은 PVA를 포함할 수 있다.
몇몇 실시양태는 선택적 투과성 멤브레인, 예컨대 투수성 멤브레인의 제조 방법으로서, 그래핀 옥시드 화합물, 가교제(예, 리그닌, 및 경우에 따라 폴리비닐 알콜을 포함), 및 첨가제를 수성 혼합물에서 혼합하고, 상기 혼합물을 다공성 지지체에 적용하고, 필요에 따라 다공성 지지체에 대한 상기 혼합물의 적용을 반복하고, 코팅된 지지체를 경화하는 것을 포함하는 방법을 포함한다. 몇몇 방법은 다공성 지지체를 복합체로 코팅시키는 것을 포함한다. 몇몇 실시양태에서, 그러한 방법은 다공성 지지체를 전처리하는 것을 임의로 포함한다. 몇몇 실시양태에서, 상기 방법은 염 제거 층을 적용하는 것을 추가로 포함할 수 있다. 몇몇 방법은 또한 염 제거 층을 얻어진 어셈블리 상에 적용한 후, 얻어진 어셈블리를 추가로 경화시키는 것을 포함한다. 몇몇 방법에서, 보호층은 또한 어셈블리 상에 배치될 수 있다. 전술한 멤브레인을 제조하는 가능한 실시양태의 예는 도 5에 도시되어 있다.
몇몇 실시양태에서, 그래핀 옥시드 재료, 가교제(예, 리그닌, 및 경우에 따라 폴리비닐 알콜을 포함) 및 첨가제의 수성 혼합물을 혼합하는 것은 적절한 양의 그래핀 옥시드 화합물, 폴리비닐 알콜 및 첨가제(예를 들어 보레이트 염, 염화칼슘, 또는 실리카 나노입자)를 물에 용해시킴으로써 달성될 수 있다. 일부 방법은 2종 이상의 별개의 수성 혼합물, 예를 들어 그래핀 옥시드계 혼합물 및 가교제 및 첨가제계 혼합물을 혼합한 다음, 적절한 질량비의 혼합물을 함께 혼합하여 원하는 결과를 달성하는 것을 포함한다. 기타 방법은 혼합물 중에 분산된 질량 기준의 적절한 양의 그래핀 옥시드 재료, 가교제 및 첨가제를 용해시켜 하나의 수성 혼합물을 생성하는 것을 포함한다. 몇몇 실시양태에서, 혼합물은 용질의 균일한 용해를 보장하기에 충분한 온도 및 시간에서 진탕시킬 수 있다. 그 결과는 지지체 상에 코팅되고 반응하여 복합체를 형성할 수 있는 혼합물이다.
몇몇 실시양태에서, 다공성 지지체는 복합체 층의 다공성 지지체에 대한 접착을 돕기 위해 임의로 전처리될 수 있다. 몇몇 실시양태에서, 폴리비닐 알콜의 수용액을 다공성 지지체에 도포한 다음 건조시킬 수 있다. 몇몇 용액의 경우, 수용액은 약 0.01 중량%, 약 0.02 중량%, 약 0.05 중량% 또는 약 0.1 중량% PVA를 포함할 수 있다. 몇몇 실시양태에서, 전처리된 지지체는 25℃, 약 50℃, 약 65℃ 또는 75℃의 온도에서 2 분, 10 분, 30 분, 1 시간 동안 또는 지지체가 건조 될 때까지 건조될 수 있다.
몇몇 실시양태에서, 코팅 혼합물을 다공성 지지체에 적용하는 것은 원하는 두께의 층을 생성하기 위하여 당업계에 공지된 방법에 의하여 수행될 수 있다. 몇몇 실시양태에서, 코팅 혼합물을 기재에 적용하는 것은 우선 기재를 코팅 혼합물에 진공 침지시킨 후, 원하는 코팅 두께가 달성될 수 있을 때까지 기재를 가로질러 부압 구배를 적용하여 용액을 기재로 흡인시켜 달성될 수 있다. 몇몇 실시양태에서, 코팅 혼합물을 기재에 적용하는 것은 블레이드 코팅, 분무 코팅, 침지 코팅, 다이 코팅 또는 스핀 코팅에 의하여 달성될 수 있다. 몇몇 실시양태에서, 그러한 방법은 코팅 혼합물의 각각의 적용 후 기재를 탈이온수로 온화하게 헹구어 과잉으로 느슨한 소재를 제거하는 것을 추가로 포함할 수 있다. 몇몇 실시양태에서, 코팅은 원하는 두께의 복합체 층이 생성되도록 수행된다. 멤브레인의 원하는 두께는 약 5-2,000 ㎚, 약 10-2000 nm, 약 5-1,000 ㎚, 약 1,000-2,000 ㎚, 약 10-500 ㎚, 약 500-1,000 ㎚, 약 50-400 nm, 약 50-150 nm, 약 100-200 nm, 약 150-250 nm, 약 200-300 ㎚, 약 250-350 nm, 약 300-400 nm, 약 10-200 ㎚, 약 10-100 ㎚, 약 10-50 ㎚, 약 20-50 ㎚, 약 50-500 ㎚의 범위, 또는 임의의 상기 값에 포함되는 범위의 임의의 두께일 수 있다. 하기 두께를 포함하는 범위는 특히 중요하다: 약 100 nm, 약 200 nm, 약 225 nm, 및 약 300 nm. 몇몇 실시양태에서, 층의 수는 약 1-250, 약 1-100, 약 1-50, 약 1-20, 약 1-15, 약 1-10, 또는 약 1-5의 범위 내일 수 있다. 그러한 과정은 완전 코팅된 기재 또는 코팅된 지지체를 생성한다.
몇몇 방법의 경우, 코팅된 지지체의 경화는 다공성 지지체 상에 침착된 수성 혼합물의 모이어티 사이의 가교를 촉진시키기에 충분한 온도 및 시간에서 수행될 수 있다. 몇몇 실시양태에서, 코팅된 지지체는 약 45-200℃, 약 90-170℃ 또는 약 90-150℃의 온도에서 가열될 수 있다. 몇몇 실시양태에서, 코팅된 지지체는 적어도 약 30 초, 적어도 약 1 분, 적어도 약 15 분, 적어도 약 30 분, 적어도 약 1 시간, 적어도 약 3 시간, 최대 약 1 시간, 최대 약 3 시간, 최대 약 5 시간 동안 가열될 수 있으며, 승온의 경우 시간 단축이 요구된다. 몇몇 실시양태에서, 기재는 약 1 분 동안 약 140℃ 또는 약 30 분 동안 약 90℃에서 가열될 수 있다. 그 결과는 경화된 멤브레인이다.
몇몇 실시양태에서, 멤브레인의 제조 방법은 염 제거 층을 멤브레인 또는 경화된 멤브레인에 적용하여 염 제거 층을 갖는 멤브레인을 얻는 것을 추가로 포함한다. 몇몇 실시양태에서, 염 제거 층은 경화된 멤브레인을 혼합된 용매 중의 전구체의 용액에 침지시켜 적용될 수 있다. 몇몇 실시양태에서, 전구체는 아민 및 아실 클로라이드를 포함할 수 있다. 몇몇 실시양태에서, 전구체는 메타-페닐렌디아민 및 트리메소일 클로라이드를 포함할 수 있다. 몇몇 실시양태에서, 메타-페닐렌디아민의 농도는 약 0.01-10 중량%, 약 0.1-5 중량%, 약 5-10 중량%, 약 1-5 중량%, 약 2-4 중량%, 약 4 중량%, 약 2 중량% 또는 약 3 중량% 범위 내일 수 있다. 몇몇 실시양태에서, 트리메소일 클로라이드 농도는 약 0.001 내지 약 1 부피%, 약 0.01-1 부피%, 약 0.1-0.5 부피%, 약 0.1-0.3 부피%, 약 0.2-0.3 부피%, 약 0.1-0.2 부피% 또는 약 0.14 부피% 범위 내일 수 있다. 몇몇 실시양태에서, 메타-페닐렌디아민 및 트리메소일 클로라이드의 혼합물은 침지가 발생되기 전 중합이 수행될 수 있도록 충분한 양의 시간 동안 정치되도록 할 수 있다. 몇몇 실시양태에서, 상기 방법은 혼합물을 실온에서 약 1-6 시간, 약 5 시간, 약 2 시간 또는 약 3 시간 동안 정치시키는 것을 포함한다. 몇몇 실시양태에서, 상기 방법은 경화된 멤브레인을 코팅 혼합물 중에 약 15 초 내지 약 15 분; 약 5 초 내지 약 5 분, 약 10 초 내지 약 10 분, 약 5-15 분, 약 10-15 분, 약 5-10 분 또는 약 10-15 초 동안 침지시키는 것을 포함한다.
기타 실시양태에서, 염 제거 층은 경화된 멤브레인을 유기 용매 중의 수성 메타-페닐렌디아민의 별도의 용액 및 트리메소일 클로라이드의 용액 중에서 코팅시켜 적용될 수 있다. 몇몇 실시양태에서, 메타-페닐렌디아민 용액은 약 0.01-10 중량%, 약 0.1-5 중량%, 약 5-10 중량%, 약 1-5 중량%, 약 2-4 중량%, 약 4 중량%, 약 2 중량% 또는 약 3 중량% 범위 내의 농도를 가질 수 있다. 몇몇 실시양태에서, 트리메소일 클로라이드 용액은 약 0.001-1 부피%, 약 0.01-1 부피%, 약 0.1-0.5 부피%, 약 0.1-0.3 부피%, 약 0.2-0.3 부피%, 약 0.1-0.2 부피% 또는 약 0.14 부피% 범위 내의 농도를 가질 수 있다. 몇몇 실시양태에서, 상기 방법은 경화된 멤브레인을 수성 메타-페닐렌디아민 중에서 약 1 초 내지 약 30 분, 약 15 초 내지 약 15 분 또는 약 10 초 내지 약 10 분의 기간 동안 침지시키는 것을 포함한다. 그 후, 몇몇 실시양태에서, 상기 방법은 과잉의 메타-페닐렌디아민을 경화된 멤브레인으로부터 제거하는 것을 포함한다. 그 후, 몇몇 실시양태에서, 상기 방법은 경화된 멤브레인을 트리메소일 클로라이드 용액에 약 30 초 내지 약 10 분, 약 45 초 내지 약 2.5 분 또는 약 1 분의 기간 동안 침지시키는 것을 포함한다. 몇몇 실시양태에서, 상기 방법은 얻어진 어셈블리를 오븐 내에서 후속 건조시켜 염 제거 층을 갖는 멤브레인을 얻는 것을 포함한다. 몇몇 실시양태에서, 경화된 멤브레인은 약 45-200℃에서 약 5 분-20 분의 기간 동안, 약 75℃-120℃에서 약 5 분-15 분의 기간 동안 또는 약 90℃에서 약 10 분 동안 건조될 수 있다. 그러한 과정은 염 제거 층을 갖는 멤브레인을 생성한다.
몇몇 실시양태에서, 멤브레인의 제조 방법은 보호 코팅을 멤브레인 상에 후속 적용하는 것을 추가로 포함할 수 있다. 몇몇 실시양태에서, 보호 코팅의 적용은 친수성 중합체 층을 첨가하는 것을 포함한다. 몇몇 실시양태에서, 보호 코팅의 적용은 멤브레인을 PVA 수용액으로 코팅시키는 것을 포함한다. 보호층의 적용은 방법, 예컨대 블레이드 코팅, 분무 코팅, 침지 코팅, 스핀 코팅 등에 의하여 달성될 수 있다. 몇몇 실시양태에서, 보호층의 적용은 멤브레인을 보호 코팅 용액 중에 약 1-10 분, 약 1-5 분, 약 5 분 또는 약 2 분 동안 침지 코팅시켜 달성될 수 있다. 몇몇 실시양태에서, 그러한 방법은 멤브레인을 약 75-120℃의 온도에서 약 5-15 분 동안, 또는 약 90℃의 온도에서 약 10 분 동안 건조시키는 것을 추가로 포함한다. 그 결과는 보호 코팅을 갖는 멤브레인이다.
본원에 기술된 투수성 멤브레인은 오염물 제거 또는 탈염과 같은 적용예에 대하여, 용해된 용질을 함유하는 미처리된 수용액으로부터 액체 물을 추출하는 방법에서 사용될 수 있다. 예를 들면, 미처리된 용액은 본원에 기재된 투수성 멤브레인에 노출될 수 있다. 한 방법은 미처리된 용액을 멤브레인에 통과시켜 물이 통과되도록 하면서 용질은 보유되도록 하여 생성된 물의 용질 함유량을 감소시키는 것을 추가로 포함한다.
따라서, 작업 동안, 투수성 멤브레인은 복합체를 통과하지 않은 다공성 지지체의 공극 내에 제1 수용액 (또는 미처리 액체) 및 복합체를 통과하고 감소된 염 농도를 갖는 다공성 지지체 반대편의 복합체의 표면과 접촉하는 제2 수용액을 가질 수 있다. 따라서, 제1 수용액 및 제2 수용액은 상이한 염 농도를 갖는다.
용질을 함유하는 미처리된 물은 임의의 수 또는 방법에 의해, 예컨대 멤브레인을 가로질러 압력 구배를 적용함으로써 멤브레인에 통과시킬 수 있다. 압력 구배의 적용은 멤브레인을 가로질러 헤드 압력을 생성하는 수단을 공급하여 달성될 수 있다. 몇몇 실시양태에서, 헤드 압력은 삼투 역압을 극복하기에 충분할 수 있다.
몇몇 실시양태에서, 멤브레인을 가로질러 압력 구배를 제공하는 것은 제1의 저수조 내에서 정압을 생성하며, 제2의 저수조 내에서 부압을 생성하거나 또는 제1의 저수조 내에서 정압을 생성하고, 제2의 저수조 내에서 부압을 생성하여 달성될 수 있다. 몇몇 실시양태에서, 제1의 저수조 내에서 정압을 생성하는 수단은 피스톤, 펌프, 증력 낙하 및/또는 수격 펌프를 사용하여 달성될 수 있다. 몇몇 실시양태에서, 제2의 저수조 내에서 부압을 생성하는 수단은 진공을 적용하거나 또는 제2의 저수조로부터 액체를 배출시켜 달성될 수 있다.
하기 실시양태를 구체적으로 고려한다:
실시양태 1. 투수성 멤브레인으로서,
다공성 지지체; 및
가교된 그래핀 옥시드 화합물을 포함하는, 다공성 지지체 상에 코팅된 복합체로서, 상기 가교된 그래핀 옥시드 화합물은 그래핀 옥시드 화합물 및 리그닌을 포함한 가교제를 포함하는 혼합물을 반응시켜 형성되는 것인 복합체
를 포함하고, 상기 멤브레인은 투수성이고 멤브레인을 통한 물 흐름을 제어하면서 제곱 인치당 50 파운드의 수압을 견디기에 충분히 강한 것인 투수성 멤브레인.
실시양태 2. 실시양태 1에 있어서, 그래핀 옥시드 화합물이 그래핀 옥시드, 환원된 그래핀 옥시드, 작용화된 그래핀 옥시드, 또는 작용화 및 환원된 그래핀 옥시드를 포함하는 것인 투수성 멤브레인.
실시양태 3. 실시양태 2에 있어서, 그래핀 옥시드 화합물이 그래핀 옥시드인 투수성 멤브레인.
실시양태 4. 실시양태 1 내지 3 중 어느 한 실시양태에 있어서, 리그닌이 나트륨 리그노술포네이트, 칼슘 리그노술포네이트, 마그네슘 리그노술포네이트, 또는 칼륨 리그노술포네이트를 포함하는 것인 투수성 멤브레인.
실시양태 5. 실시양태 1 내지 4 중 어느 한 실시양태에 있어서, 가교제가 폴리비닐 알콜을 추가로 포함하는 것인 투수성 멤브레인.
실시양태 6. 실시양태 5에 있어서, 리그닌에 대한 폴리비닐 알콜의 중량비가 약 0-5인 투수성 멤브레인.
실시양태 7. 실시양태 1 내지 6 중 어느 한 실시양태에 있어서, 복합체가 보레이트 염을 추가로 포함하는 것인 투수성 멤브레인.
실시양태 8. 실시양태 7에 있어서, 보레이트 염이 K2B4O7, Li2B4O7, 또는 Na2B4O7을 포함하는 것인 투수성 멤브레인.
실시양태 9. 실시양태 7 또는 8에 있어서, 보레이트 염이 복합체의 약 0 중량% 내지 20 중량%인 투수성 멤브레인.
실시양태 10. 실시양태 1 내지 9 중 어느 한 실시양태에 있어서, 복합체가 CaCl2를 추가로 포함하는 것인 투수성 멤브레인.
실시양태 11. 실시양태 10에 있어서, CaCl2가 복합체의 0 중량% 내지 약 1.5 중량%인 투수성 멤브레인.
실시양태 12. 실시양태 1 내지 11 중 어느 한 실시양태에 있어서, 복합체가 실리카 나노입자를 추가로 포함하는 것인 투수성 멤브레인.
실시양태 13. 실시양태 12에 있어서, 실리카 나노입자가 복합체의 0 중량% 내지 10 중량%이고, 실리카 나노입자의 평균 크기가 약 5 nm 내지 약 200 nm인 투수성 멤브레인.
실시양태 14. 실시양태 1 내지 13 중 어느 한 실시양태에 있어서, 다공성 지지체가 부직포인 투수성 멤브레인.
실시양태 15. 실시양태 1 내지 14 중 어느 한 실시양태에 있어서, 다공성 지지체가 폴리아미드, 폴리이미드, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리술폰 또는 폴리에테르 술폰을 포함하는 것인 투수성 멤브레인.
실시양태 16. 실시양태 15에 있어서, 다공성 지지체가 폴리에틸렌 테레프탈레이트를 포함하는 것인 투수성 멤브레인.
실시양태 17. 실시양태 1 내지 16 중 어느 한 실시양태에 있어서, 두께가 약 10 nm 내지 약 2000 nm인 투수성 멤브레인.
실시양태 18. 실시양태 1 내지 17 중 어느 한 실시양태에 있어서, 그래핀 옥시드 화합물에 대한 가교제의 중량비가 약 2 내지 약 6인 투수성 멤브레인.
실시양태 19. 실시양태 1 내지 18 중 어느 한 실시양태에 있어서, 멤브레인의 염 투과율을 감소시키기 위해 염 제거 층을 추가로 포함하는 투수성 멤브레인.
실시양태 20. 실시양태 19에 있어서, 염이 NaCl인 투수성 멤브레인.
실시양태 21. 실시양태 19 또는 20에 있어서, 염 제거 층이 복합체 상에 배치되는 것인 투수성 멤브레인.
실시양태 22. 실시양태 19 내지 21 중 어느 한 실시양태에 있어서, 염 제거 층이 메타-페닐렌디아민 및 트리메소일 클로라이드를 반응시켜 제조된 폴리아미드를 포함하는 것인 투수성 멤브레인.
실시양태 23. 실시양태 1 내지 22 중 어느 한 실시양태에 있어서, 복합체가 약 50 nm 내지 약 2000 nm의 두께를 갖는 층인 투수성 멤브레인.
실시양태 24. 실시양태 1 내지 23 중 어느 한 실시양태에 있어서, 복합체가 물을 추가로 함유하는 것인 투수성 멤브레인.
실시양태 25. 실시양태 1 내지 24 중 어느 한 실시양태에 있어서, 다공성 지지체의 공극 내에 제1 수용액 및 다공성 지지체 반대편의 복합체의 표면과 접촉하는 제2 수용액을 추가로 포함하고, 상기 제1 수용액 및 제2 수용액은 상이한 농도의 염을 갖는 것인 투수성 멤브레인.
실시양태 26. 다공성 지지체 상에 코팅된 수성 혼합물을 경화시키는 것을 포함하는 투수성 멤브레인의 제조 방법으로서, 상기 다공성 지지체 상에 코팅된 수성 혼합물은, 수성 혼합물 내에서의 가교를 촉진하기 위해 90℃ 내지 150℃의 온도에서 30초 내지 5시간 동안 경화되고, 다공성 지지체는, 수성 혼합물을 다공성 지지체에 적용하고 약 50 nm 내지 약 2000 nm의 두께를 갖는 층을 얻기 위해 필요에 따라 반복함으로써 수성 혼합물에 의해 코팅되고, 수성 혼합물은 그래핀 옥시드 재료, 리그닌을 포함한 가교제 및 첨가제를 수성액 중에서 혼합함으로써 형성되는 것인 제조 방법.
실시양태 27. 실시양태 26에 있어서, 리그닌은 나트륨 리그노술포네이트, 칼슘 리그노술포네이트, 마그네슘 리그노술포네이트, 또는 칼륨 리그노술포네이트를 포함하는 것인 방법.
실시양태 28. 실시양태 26 또는 27에 있어서, 가교제가 폴리비닐 알콜을 추가로 포함하는 것인 방법.
실시양태 29. 실시양태 26 내지 28 중 어느 한 실시양태에 있어서, 첨가제가 CaCl2, 보레이트 염, 또는 실리카 나노입자를 포함하는 것인 방법.
실시양태 30. 실시양태 26 내지 29 중 어느 한 실시양태에 있어서, 멤브레인을 염 제거 층으로 추가로 코팅하고, 얻어진 어셈블리를 45℃ 내지 200℃에서 5분 내지 20분 동안 경화시키는 것을 포함하는 방법.
실시양태 31. 미처리된 용액을 실시양태 1 내지 25 중 어느 한 실시양태의 멤브레인에 노출시키는 것을 포함하는, 미처리된 용액으로부터 용질을 제거하는 방법.
실시양태 32. 실시양태 31에 있어서, 미처리된 용액을 멤브레인에 통과시키는 것인 방법.
실시양태 33. 실시양태 32에 있어서, 멤브레인을 가로질러 압력 구배를 적용하여 미처리된 용액을 멤브레인에 통과시키는 것인 방법.
실시예
본원에 기재된 선택적 투과성 멤브레인의 실시양태는 기타 선택적 투과성 멤브레인에 비하여 개선된 성능을 갖는 것으로 밝혀졌다. 그러한 잇점은 하기 실시예에 의하여 추가로 입증되며, 이는 본 개시내용을 예시하고자 하지만, 어떠한 방식으로도 그의 범주 또는 그의 원리를 제한하지 않는다.
실시예 1.1.1: 코팅 혼합물의 제조
그래핀 옥시드 용액 제조: 그래핀 옥시드는 변형된 휴머즈(Hummers) 방법을 사용하여 그라파이트로부터 생성하였다. 그라파이트 플레이크(2.0 g)(시그마 알드리치(Sigma Aldrich), 미국 미주리주 세인트 루이스 소재, 100 메쉬)를 2.0 g의 NaNO3(알드리치), 10 g의 KMnO4(알드리치) 및 96 ㎖의 진한 H2SO4(알드리치, 98%)의 혼합물 중에서 50℃에서 15 시간 동안 산화시켰다. 생성된 페이스트와 같은 혼합물을 400 g의 얼음에 붓고, 30 ㎖의 과산화수소(알드리치, 30%)를 첨가하였다. 그 후, 생성된 용액을 실온에서 2 시간 동안 교반하여 이산화망간을 환원시키고, 여과지로 여과하고, 탈이온수로 세정하였다. 고체를 수집한 후, 교반하면서 탈이온수 중에 분산시키고, 6,300 rpm에서 40 분 동안 원심분리하고, 수성 층을 기울여 따랐다. 그 후, 나머지 고체를 탈이온수 중에 다시 분산시키고, 세정 과정을 4회 반복하였다. 그 후, 정제된 그래핀 옥시드를 탈이온수 중에 초음파(10 W의 출력) 하에서 2.5 시간 동안 분산시켜 GO-1로서 그래핀 옥시드 분산액(0.4 중량%)을 얻었다.
코팅 혼합물 제조: 탈이온수 중에 나트륨 리그노술포네이트(2.5 g, S1834, Spectrun Chemical)를 용해시켜 10 ㎖의 2.5 중량% 나트륨 리그노술포네이트 용액을 제조하였다. 다음으로, CaCl2의 0.1 중량% 수용액(무수물, Aldrich) 0.1 ㎖를 첨가하였다. 이어서, 0.47 중량%의 K2B4O7(Aldrich) 0.21 ㎖를 첨가하고 생성된 용액을 혼합될 때까지 교반하였다. 그 결과는 가교제 용액(XL-1)이었다. 이어서, GO-1(1 ㎖) 및 XL-1 용액을 10 ㎖의 탈이온수와 합하고 6분 동안 초음파 처리하여 균일한 혼합을 보장하여 코팅 용액(CS-1)을 생성하였다.
실시예 2.1.1: 멤브레인 제조
멤브레인 제조: 7.6 cm 직경의 PET 다공성 지지체 또는 기재(히드라노틱스(Hydranautics), 미국 샌디에고 소재)를 탈이온수 용액 중의 0.05 중량% PVA(알드리치)에 침지시켰다. 이어서, 기재를 65℃의 오븐(DX400, 야마토 사이언티픽 코포레이션 리미티드, 일본 도쿄 소재)에서 건조시켜 전처리된 기재를 수득하였다.
혼합물 적용: 이어서 코팅 혼합물(CS-1)을 전처리된 기재를 통하여 중력 하에서 여과하여 200 nm 두께의 코팅층이 지지체 상에 침착되도록 기재를 통하여 용액을 흡인시켰다. 그 후, 생성된 멤브레인을 90℃의 오븐(DX400, 야마토 사이언티픽)에 30 분 동안 넣어 가교를 촉진하였다. 이러한 공정은 염 제거 층이 없는 멤브레인을 생성하였다(MD-1.1.1.1).
실시예 2.1.1.1 : 추가 멤브레인의 제조.
표 1에 나타낸 바와 같이 파라미터가 변하는 것을 제외하고는, 실시예 1.1.1 및 실시예 2.1.1과 유사한 방법을 사용하여 추가의 멤브레인을 구축하였다. 구체적으로, 개별 농도가 변하고, 추가의 첨가제가 수성 코팅 첨가제 용액에 첨가되었다(예, SiO2(5-15 nm, Aldrich), SiO2(10-20 nm, Aldrich), PVA(Aldrich)). 또한, 몇몇 실시양태에서, 제2 유형의 PET 지지체(PET2)(Hydranautics, 미국 캘리포니아주 샌디에고 소재)가 제1 유형의 PET 지지체 대신 사용되었다.
멤브레인이 여과 대신 염료 코팅으로 코팅된 것으로 확인된 경우, 절차는 다음과 같이 다양하였다. 원하는 코팅 두께를 생성하도록 설정된 다이 캐스터(Taku-Die 200, Die-Gate Co., Ltd., 일본 도쿄 소재)를 사용하여 멤브레인 표면 상에 여과 대신 코팅 용액을 침착시켰다.
Figure pct00001
실시예 2.2.1: 멤브레인에 염 제거 층의 첨가
멤브레인의 염 제거 능력을 향상시키기 위하여, MD-1.1.1.1은 폴리아미드 염 제거 층으로 추가로 코팅하였다. 3.0 중량% MPD 수용액은 적절한 양의 MPD(알드리치)를 탈이온수 중에 희석하여 생성하였다. 0.14 부피% 트리메소일 클로라이드 용액은 적절한 양의 트리메소일 클로라이드(알드리치)를 이소파라핀 용매(이소파르 이 앤 지(Isopar E & G), 엑손 모빌 케미칼(Exxon Mobil Chemical), 미국 텍사스주 휴스턴 소재) 중에서 희석하여 생성하였다. 그 후, 그래핀 옥시드-MPD 코팅된 멤브레인을 3.0 중량%의 MPD(알드리치)의 수용액 중에 기재에 의존하여 10 초 내지 10 분의 기간 동안 침지시킨 후, 제거하였다. 멤브레인 상에 잔존하는 과잉의 용액은 공기 건조에 의하여 제거하였다. 그 후, 멤브레인을 0.14 부피% 트리메소일 클로라이드 용액에 약 10 초 동안 침지시키고, 제거하였다. 그 후, 얻어진 어셈블리를 오븐(DX400, 야마토 사이언티픽) 내에서 120℃에서 3 분 동안 건조시켰다. 그러한 과정은 염 제거 층이 있는 멤브레인을 생성하였다(MD-2.1.1.1).
실시예 2.2.1.1: 추가 멤브레인에 염 제거 층의 첨가.
추가의 멤브레인을 실시예 2.2.1에서와 유사한 절차를 사용하여 염 제거 층으로 코팅하였다. 생성된 새로운 멤브레인의 결과 구성이 표 2에 제시되어 있다.
Figure pct00002
실시예 2.2.2: 보호 코팅이 있는 멤브레인의 제조(예측)
임의의 멤브레인을 보호층으로 코팅할 수 있다. 우선, 2.0 중량%의 PVA 용액은 20 g의 PVA(알드리치)를 1 ℓ의 탈이온수 중에서 90℃에서 20 분 동안 모든 과립이 용해될 때까지 교반하여 생성할 수 있다. 그 후, 용액을 실온으로 냉각시킬 수 있다. 선택된 기재를 용액 중에 10 분 동안 침지시킨 후, 제거할 수 있다. 멤브레인 상에 잔존하는 과잉의 용액을 종이 와이프스에 의하여 제거할 수 있다. 얻어진 어셈블리를 오븐(DX400, 야마토 사이언티픽) 내에서 90℃에서 30 분 동안 건조시킬 수 있다. 그리하여, 보호 코팅이 있는 멤브레인을 얻을 수 있다.
실시예 3.1: 선택된 멤브레인의 성능 시험
기계적 강도 시험: 각종 다공성 기재 상에 코팅된 그래핀 옥시드-리그닌계 멤브레인의 수 투과유속은 매우 높은 것으로 밝혀졌으며, 이는 현재 역삼투 멤브레인에 널리 사용되는 다공성 폴리술폰 기재와 비교할 수 있다.
기계적 강도 가능성을 시험하기 위하여, 멤브레인은 도 6에 도시된 바와 유사한 실험실 장치에 넣어 시험하도록 설계하였다. 그 후, 멤브레인을 시험 장치에 고정시키면 미처리된 유체에 50 psi의 게이지 압력에서 노출시켰다. 멤브레인을 통한 수 투과유속은 상이한 시간 간격에서 시간 경과에 따른 투과유속을 구하여 기록하였다. 수 투과유속은 가능할 경우 다양한 시간 간격(예, 15 분, 60 분, 120 분 및 180 분)에서 기록하였다. 도 7에서 볼 수 있듯이, 대부분의 멤브레인은 50 psi의 헤드 압력에 의해 생성된 힘에 저항하면서 우수한 기계적 강도를 나타내면서도 유사한 멤브레인에 비해 더 우수한 수 투과유속을 보여 주었다. 수집한 데이터로부터, 그래핀 옥시드-PVA계 멤브레인은 충분한 투과유속을 제공하면서 역삼투압을 견딜 수 있는 것으로 밝혀졌다.
염 제거 시험: 멤브레인의 염 제거 성능을 특성화하기 위해 측정을 수행하였다. 멤브레인을 도 6에 기술된 것과 유사한 시험 셀에 위치시켰으며, 여기서 멤브레인은 약 225 psi의 상류 압력에서 1500 ppm NaCl의 염-용액에 적용되었고 투과 물은 유량 및 염 함량 둘다에 대해 측정하여 염을 거부하고 적절한 수 투과유속을 유지하는 멤브레인의 능력을 결정하였다. 결과를 표 3에 나타냈다.
Figure pct00003
달리 나타내지 않는다면, 본원에 사용된 성분, 성질, 예컨대 분자량, 반응 조건 등의 양을 나타내는 모든 숫자는 모든 경우에서 용어 "약"에 의하여 변형되는 것으로 이해하여야 한다. 각각의 수치 파라미터는 적어도 보고된 유효 숫자의 수에 관하여 및 통상의 어림 기술을 적용하여 해석되어야 한다. 따라서, 달리 나타내지 않는다면, 수치 파라미터는 달성하고자 하는 원하는 성질에 따라 변형될 수 있으므로, 본 개시내용의 일부로서 간주되어야 한다. 적어도, 본원에 제시된 예는 단지 예시를 위한 것일 뿐, 본 개시내용의 범주를 제한하지 않는다.
본 개시내용의 실시양태를 기재하는 문맥(특히 하기 청구범위의 문맥)에서 사용된 단수형 및 유사 지시대상은 본원에서 달리 나타내거나 또는 문맥에 의하여 달리 명백하게 부정하지 않는다면 단수형 및 복수형 둘다를 포함하는 것으로 해석되어야 한다. 본원에 기재된 모든 방법은 본원에서 달리 나타내거나 또는 문맥에 의하여 달리 명백하게 부정하지 않는다면 임의의 적절한 순서로 수행될 수 있다. 본원에 제공된 임의의 및 모든 예 또는 예시의 언어(예, "예컨대")의 사용은 단지 본 개시내용의 실시양태를 더 잘 예시하고자 하며, 임의의 청구범위의 범주에 제한을 가하지 않는다. 명세서에서의 언어는 본 개시내용의 실시양태의 실시에 필수적인 임의의 청구되지 않은 요소를 나타내는 것으로 해석되지 않아야 한다.
본원에 개시된 대체의 요소 또는 실시양태의 그루핑은 제한으로서 해석되어서는 안 된다. 각각의 군 구성원은 본원에서 존재하는 그룹 또는 기타 요소의 기타 구성원으로 지칭될 수 있으며, 개별적으로 또는 그와의 임의의 조합으로 청구될 수 있다. 그룹의 하나 이상의 구성원은 편리성 및/또는 특허성의 이유로 그룹에 포함되거나 또는 그로부터 삭제될 수 있는 것으로 예상된다.
실시양태를 실시하기 위하여 본 발명자들에게 공지된 최적의 방식을 포함한 특정한 실시양태가 본원에 기재된다. 물론, 상기 기재된 실시양태의 수정예는 상기 기재의 숙독시 당업자에게 자명할 것이다. 본 발명자들은 당업자가 적절하게 상기 수정예를 사용할 것으로 예상하며, 본 발명자들은 본 개시내용의 실시양태에 대하여 본원에 구체적으로 기재된 것보다 달리 실시하고자 한다. 따라서, 청구범위는 적용 가능한 법이 허용하는 바와 같이 청구범위에서 인용된 보호받고자 하는 사항의 모든 변형예 및 등가예를 포함한다. 게다가, 본원에 달리 나타내거나 또는 문맥에 의하여 달리 명백하게 부정하지 않는다면 그의 모든 가능한 변형예에서 상기 기재된 요소의 임의의 조합을 고려한다.
마지막으로, 본원에 개시된 실시양태는 청구범위의 원리의 예시인 것으로 이해하여야 한다. 사용될 수 있는 기타 변형예는 청구범위의 범주에 포함된다. 그래서, 제한하지 않는 예로서, 대체의 실시양태는 본원의 교시내용에 따라 사용될 수 있다. 따라서, 청구범위는 제시 및 기재된 바와 같이 정확하게 실시양태로 한정되지 않는다.

Claims (33)

  1. 투수성 멤브레인으로서,
    다공성 지지체; 및
    가교된 그래핀 옥시드 화합물을 포함하는, 다공성 지지체 상에 코팅된 복합체로서, 상기 가교된 그래핀 옥시드 화합물은 그래핀 옥시드 화합물 및 리그닌을 포함한 가교제를 포함하는 혼합물을 반응시켜 형성되는 것인 복합체
    를 포함하고, 상기 멤브레인은 투수성이고 멤브레인을 통한 물 흐름을 제어하면서 제곱 인치당 50 파운드의 수압을 견디기에 충분히 강한 것인 투수성 멤브레인.
  2. 제1항에 있어서, 그래핀 옥시드 화합물이 그래핀 옥시드, 환원된 그래핀 옥시드, 작용화된 그래핀 옥시드, 또는 작용화 및 환원된 그래핀 옥시드를 포함하는 것인 투수성 멤브레인.
  3. 제2항에 있어서, 그래핀 옥시드 화합물이 그래핀 옥시드인 투수성 멤브레인.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 리그닌이 나트륨 리그노술포네이트, 칼슘 리그노술포네이트, 마그네슘 리그노술포네이트, 또는 칼륨 리그노술포네이트를 포함하는 것인 투수성 멤브레인.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 가교제가 폴리비닐 알콜을 추가로 포함하는 것인 투수성 멤브레인.
  6. 제5항에 있어서, 리그닌에 대한 폴리비닐 알콜의 중량비가 약 0-5인 투수성 멤브레인.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 복합체가 보레이트 염을 추가로 포함하는 것인 투수성 멤브레인.
  8. 제7항에 있어서, 보레이트 염이 K2B4O7, Li2B4O7, 또는 Na2B4O7을 포함하는 것인 투수성 멤브레인.
  9. 제7항 또는 제8항에 있어서, 보레이트 염이 복합체의 약 0 중량% 내지 20 중량%인 투수성 멤브레인.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 복합체가 CaCl2를 추가로 포함하는 것인 투수성 멤브레인.
  11. 제10항에 있어서, CaCl2가 복합체의 0 중량% 내지 약 1.5 중량%인 투수성 멤브레인.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 복합체가 실리카 나노입자를 추가로 포함하는 것인 투수성 멤브레인.
  13. 제12항에 있어서, 실리카 나노입자가 복합체의 0 중량% 내지 10 중량%이고, 실리카 나노입자의 평균 크기가 약 5 nm 내지 약 200 nm인 투수성 멤브레인.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 다공성 지지체가 부직포인 투수성 멤브레인.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서, 다공성 지지체가 폴리아미드, 폴리이미드, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리술폰 또는 폴리에테르 술폰을 포함하는 것인 투수성 멤브레인.
  16. 제15항에 있어서, 다공성 지지체가 폴리에틸렌 테레프탈레이트를 포함하는 것인 투수성 멤브레인.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서, 두께가 약 10 nm 내지 약 2000 nm인 투수성 멤브레인.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서, 그래핀 옥시드 화합물에 대한 가교제의 중량비가 약 2 내지 약 6인 투수성 멤브레인.
  19. 제1항 내지 제18항 중 어느 한 항에 있어서, 멤브레인의 염 투과율을 감소시키기 위해 염 제거 층을 추가로 포함하는 투수성 멤브레인.
  20. 제19항에 있어서, 염이 NaCl인 투수성 멤브레인.
  21. 제19항 또는 제20항에 있어서, 염 제거 층이 복합체 상에 배치되는 것인 투수성 멤브레인.
  22. 제19항 내지 제21항 중 어느 한 항에 있어서, 염 제거 층이 메타-페닐렌디아민 및 트리메소일 클로라이드를 반응시켜 제조된 폴리아미드를 포함하는 것인 투수성 멤브레인.
  23. 제1항 내지 제22항 중 어느 한 항에 있어서, 복합체가 약 50 nm 내지 약 2000 nm의 두께를 갖는 층인 투수성 멤브레인.
  24. 제1항 내지 제23항 중 어느 한 항에 있어서, 복합체가 물을 추가로 함유하는 것인 투수성 멤브레인.
  25. 제1항 내지 제24항 중 어느 한 항에 있어서, 다공성 지지체의 공극 내에 제1 수용액 및 다공성 지지체 반대편의 복합체의 표면과 접촉하는 제2 수용액을 추가로 포함하고, 상기 제1 수용액 및 제2 수용액은 상이한 농도의 염을 갖는 것인 투수성 멤브레인.
  26. 다공성 지지체 상에 코팅된 수성 혼합물을 경화시키는 것을 포함하는 투수성 멤브레인의 제조 방법으로서, 상기 다공성 지지체 상에 코팅된 수성 혼합물은, 수성 혼합물 내에서의 가교를 촉진하기 위해 90℃ 내지 150℃의 온도에서 30초 내지 5시간 동안 경화되고, 다공성 지지체는, 수성 혼합물을 다공성 지지체에 적용하고 약 50 nm 내지 약 2000 nm의 두께를 갖는 층을 얻기 위해 필요에 따라 반복함으로써 수성 혼합물에 의해 코팅되고, 수성 혼합물은 그래핀 옥시드 재료, 리그닌을 포함한 가교제 및 첨가제를 수성액 중에서 혼합함으로써 형성되는 것인 제조 방법.
  27. 제26항에 있어서, 리그닌은 나트륨 리그노술포네이트, 칼슘 리그노술포네이트, 마그네슘 리그노술포네이트, 또는 칼륨 리그노술포네이트를 포함하는 것인 제조 방법.
  28. 제26항 또는 제27항에 있어서, 가교제가 폴리비닐 알콜을 추가로 포함하는 것인 제조 방법.
  29. 제26항 내지 제28항 중 어느 한 항에 있어서, 첨가제가 CaCl2, 보레이트 염, 또는 실리카 나노입자를 포함하는 것인 제조 방법.
  30. 제26항 내지 제29항 중 어느 한 항에 있어서, 멤브레인을 염 제거 층으로 추가로 코팅하고, 얻어진 어셈블리를 45℃ 내지 200℃에서 5분 내지 20분 동안 경화시키는 것을 포함하는 제조 방법.
  31. 미처리된 용액을 제1항 내지 제25항 중 어느 한 항의 멤브레인에 노출시키는 것을 포함하는, 미처리된 용액으로부터 용질을 제거하는 방법.
  32. 제31항에 있어서, 미처리된 용액을 멤브레인에 통과시키는 것인 방법.
  33. 제32항에 있어서, 멤브레인을 가로질러 압력 구배를 적용하여 미처리된 용액을 멤브레인에 통과시키는 것인 방법.
KR1020197031094A 2017-03-24 2018-03-23 선택적 투과성 그래핀 옥시드 멤브레인 KR102282787B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762476135P 2017-03-24 2017-03-24
US62/476,135 2017-03-24
PCT/US2018/023968 WO2018175853A1 (en) 2017-03-24 2018-03-23 Selectively permeable graphene oxide membrane

Publications (2)

Publication Number Publication Date
KR20190129114A true KR20190129114A (ko) 2019-11-19
KR102282787B1 KR102282787B1 (ko) 2021-07-30

Family

ID=61913657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197031094A KR102282787B1 (ko) 2017-03-24 2018-03-23 선택적 투과성 그래핀 옥시드 멤브레인

Country Status (7)

Country Link
US (1) US11117101B2 (ko)
EP (1) EP3600635A1 (ko)
JP (1) JP2020512187A (ko)
KR (1) KR102282787B1 (ko)
CN (1) CN110719807A (ko)
CA (1) CA3056926A1 (ko)
WO (1) WO2018175853A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6744987B2 (ja) * 2016-09-08 2020-08-19 日東電工株式会社 酸化グラフェン抗微生物要素
CA3101476A1 (en) 2018-06-25 2020-01-02 2599218 Ontario Inc. Graphene membranes and methods for making graphene membranes
US20220040645A1 (en) * 2018-09-18 2022-02-10 Nitto Denko Corporation Selectively permeable graphene oxide membrane
CN110180407A (zh) * 2019-06-17 2019-08-30 湖南工业大学 一种多层复合生物质水处理膜
US11058997B2 (en) * 2019-08-16 2021-07-13 2599218 Ontario Inc. Graphene membrane and method for making graphene membrane
US11332374B2 (en) 2020-03-06 2022-05-17 2599218 Ontario Inc. Graphene membrane and method for making graphene membrane
JPWO2021193501A1 (ko) * 2020-03-26 2021-09-30
CN113797773B (zh) * 2020-06-12 2023-04-14 三达膜科技(厦门)有限公司 一种氧化二硫化钼-氧化石墨烯-pei复合陶瓷纳滤膜及其制备方法
CN112280073B (zh) * 2020-10-30 2022-05-06 哈尔滨工业大学 一种多功能薄膜的制备方法
CN117000045B (zh) * 2023-06-01 2024-02-20 贵州省材料产业技术研究院 一种用于去除重金属的疏松纳滤膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432218B1 (ko) * 2011-06-20 2014-09-19 주식회사 엘지화학 염제거율 및 투과유량 특성이 우수한 역삼투 분리막 및 그 제조방법
KR20150060732A (ko) * 2012-09-26 2015-06-03 도레이 카부시키가이샤 복합 반투막
KR20160123425A (ko) * 2015-04-15 2016-10-26 한국화학연구원 폴리아미드 코팅층을 포함하는 복합 멤브레인 및 이의 제조방법
CN106192376A (zh) * 2016-07-08 2016-12-07 张麟德 石墨烯材料涂层及其制备方法、以及空气过滤装置及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108227B2 (ja) * 1999-07-05 2008-06-25 旭化成ケミカルズ株式会社 親水性濾過膜
US20080000830A1 (en) 2004-08-10 2008-01-03 Kimihiro Mabuchi Highly Water Permeable Hollow Fiber Membrane Type Blood Purifier and Process for Manufacturing the Same
JP4838352B2 (ja) 2006-05-12 2011-12-14 ダウ グローバル テクノロジーズ エルエルシー 改質膜
WO2008027530A1 (en) 2006-09-01 2008-03-06 Seldon Technologies, Llc Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same
US8465812B2 (en) 2009-03-23 2013-06-18 The Boeing Company Durable transparent intelligent coatings for polymeric transparencies
US8816007B2 (en) 2010-07-28 2014-08-26 Fpinnovations Phenol-formaldehyde polymer with carbon nanotubes, a method of producing same, and products derived therefrom
KR101889094B1 (ko) 2011-05-25 2018-08-16 닛산 가가쿠 가부시키가이샤 고분기 폴리머 및 카본나노튜브 분산제
US20130146530A1 (en) * 2011-12-08 2013-06-13 General Electric Company Membrane, water treatment system, and method of making
HUE033097T2 (en) 2013-07-22 2017-11-28 Trinseo Europe Gmbh Polymerization initiators
EP3040115B1 (en) 2013-08-27 2021-02-24 Nissan Chemical Corporation Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR102082544B1 (ko) 2013-09-27 2020-02-27 트린세오 유럽 게엠베하 낮은 비닐 결합 개질된 탄성 공중합체
US20150368540A1 (en) * 2014-06-19 2015-12-24 Api Intellectual Property Holdings, Llc Drilling fluid additives and fracturing fluid additives containing cellulose nanofibers and/or nanocrystals
JP2016047521A (ja) * 2014-08-08 2016-04-07 東レ株式会社 耐溶剤性分離膜およびその製造方法
JP6623758B2 (ja) * 2014-08-08 2019-12-25 東レ株式会社 耐溶剤性分離膜
US9919280B2 (en) 2014-11-24 2018-03-20 The Florida State University Research Foundation, Inc. Method of forming polyelectrolyte complex capsules
JP6744987B2 (ja) * 2016-09-08 2020-08-19 日東電工株式会社 酸化グラフェン抗微生物要素
CN111225735A (zh) 2017-08-04 2020-06-02 日东电工株式会社 选择性渗透的氧化石墨烯膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432218B1 (ko) * 2011-06-20 2014-09-19 주식회사 엘지화학 염제거율 및 투과유량 특성이 우수한 역삼투 분리막 및 그 제조방법
KR20150060732A (ko) * 2012-09-26 2015-06-03 도레이 카부시키가이샤 복합 반투막
KR20160123425A (ko) * 2015-04-15 2016-10-26 한국화학연구원 폴리아미드 코팅층을 포함하는 복합 멤브레인 및 이의 제조방법
CN106192376A (zh) * 2016-07-08 2016-12-07 张麟德 石墨烯材料涂层及其制备方法、以及空气过滤装置及系统

Also Published As

Publication number Publication date
WO2018175853A1 (en) 2018-09-27
CA3056926A1 (en) 2018-09-27
KR102282787B1 (ko) 2021-07-30
EP3600635A1 (en) 2020-02-05
US11117101B2 (en) 2021-09-14
CN110719807A (zh) 2020-01-21
US20200016547A1 (en) 2020-01-16
JP2020512187A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
KR102282787B1 (ko) 선택적 투과성 그래핀 옥시드 멤브레인
KR102329604B1 (ko) 선택적 투과성 그래핀 옥시드 멤브레인
KR102126881B1 (ko) 선택적 투과성 그라핀 옥시드 멤브레인
JP6750017B2 (ja) 選択透過性酸化グラフェン膜
KR102278938B1 (ko) 선택적 투과성 그래핀 옥시드 멤브레인
EP3303458B1 (en) Chemical additives for enhancement of water flux of a membrane
KR102278939B1 (ko) 선택적 투과성 그래핀 옥시드 멤브레인
KR20140005489A (ko) 크산텐계 화합물을 포함하는 고투과 유량 역삼투 분리막 및 이를 제조하는 방법
US20220040645A1 (en) Selectively permeable graphene oxide membrane
KR102182178B1 (ko) 수처리 분리막의 제조 방법 및 이에 의하여 제조된 수처리 분리막

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right