KR20190107128A - 구동가능 저온 커패시터를 가지는 능동 열 제어 헤드 - Google Patents

구동가능 저온 커패시터를 가지는 능동 열 제어 헤드 Download PDF

Info

Publication number
KR20190107128A
KR20190107128A KR1020197024961A KR20197024961A KR20190107128A KR 20190107128 A KR20190107128 A KR 20190107128A KR 1020197024961 A KR1020197024961 A KR 1020197024961A KR 20197024961 A KR20197024961 A KR 20197024961A KR 20190107128 A KR20190107128 A KR 20190107128A
Authority
KR
South Korea
Prior art keywords
cold
manifold
heater
reservoir
cooling reservoir
Prior art date
Application number
KR1020197024961A
Other languages
English (en)
Inventor
래리 스턱키
제리 아이호르 투스타니우스키으즈
새머 캐바니
Original Assignee
델타 디자인, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 델타 디자인, 인코포레이티드 filed Critical 델타 디자인, 인코포레이티드
Publication of KR20190107128A publication Critical patent/KR20190107128A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2877Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • G01R31/2867Handlers or transport devices, e.g. loaders, carriers, trays

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

반도체 장치 핸들러를 위한 열 제어 헤드가 개시된다. 상기 열 제어 헤드는 반도체 장치를 가열하도록 구성된 히터; 저온 매니폴드(manifold); 및 이동 가능한 냉각 저장체로서, 상기 냉각 저장체의 제1 면이 저온 매니폴드의 표면과 접하는 제1 위치와 냉각 저장체의 제1 면이 저온 매니폴드로부터 분리되고 상기 냉각 저장체의 제2면은 상기 히터의 표면과 접하는 제2 위치 사이에서 이동 가능한 냉각 저장체;를 포함한다.

Description

구동가능 저온 커패시터를 가지는 능동 열 제어 헤드
[관련 출원에 대한 상호 참조]
본 발명은 2018년 1월 24일 출원된 미국 출원 제15/879,154 및 2017년 1월 31일 출원된 미국 임시출원 62/452,655에 대한 우선권을 주장하고 상기 출원의 내용 모두는 참조로서 본 출원에 포함된다.
본 발명은 반도체 장치 및 집적 회로 (IC) 장치와 같은 전자 장치용 핸들러(handler)에 관한 것이다.
장치 핸들러는 전자 장치에 대한 테스트를 수행하는데 사용된다. 대류 온도 챔버는 전자 테스트에 앞서 피시험장치(被試驗裝置)(DUT, devices under test)를 열적으로 조절하는 데 자주 사용된다. 예를 들어, - 60℃ ~ 175℃의 온도 설정 값 범위. 온도 챔버는 크고 비용이 비싸며 비효율적이며 온도를 변경하기 위해 상당한 시간과 에너지가 필요하며 DUT가 테스트 온도 설정 값에 도달하려면 최대 3분의 열 담금 시간이 필요하다.
온도 챔버 내에서 하나의 설정 값 온도에서 다른 설정 값 온도로 전환하는 데에 1 시간 또는 그 이상이 일반적이다. 이 때문에 특정 설정 값 온도(고온 또는 저온)에서 핸들러를 실행하는 것이 일반적인 절차이다. 이는 다수의 핸들러, 다수의 변경 키트(kit)(핸들러를 변환하여 다른 DUT를 테스트하는) 및 다수의 전자 접촉기(테스트 소켓)가 필요하다. 다중 핸들러의 필요성은 또한 스케줄링 문제점을 야기하고 로트(lot) 무결성을 손상시킬 수 있다.
온도 챔버의 사용은 또한 DUT를 이송하는 모든 기계 장치들이 고온 설정 값 온도에서 또는 그 이상 및 저온 설정 값 온도에서 또는 그 이하이어야 함을 필요로 한다. 이는 외국산의 값비싼 소재, 구성 요소, 유체 및 윤활의 사용을 유도한다.
온도 극단은 또한 열팽창을 유발하여, 기계 장치의 부정확함 및 걸림을 초래할 수 있다. 서로 다른 소재의 열팽창이 다르면 뒤틀림에 의한 마모 및 추가적인 걸림이 발생할 수 있다.
걸림을 해결하거나 고장난 구성 요소를 고치기 위해 온도 챔버를 주변 온도로 되돌리는 데에 일반적으로 1시간 또는 그 이상이 요구된다. 완료 후, 온도 챔버를 테스트 온도로 되돌리는 데 1 시간이 더 걸린다. 극한의 저온 테스트의 경우, 이 문제는 구성 요소가 응결되거나 서리화로 인해 악화될 수 있다. 이 경우, 챔버의 온도는 서리를 녹이고 챔버를 건조시키기에 충분히 높아야 하고, 이후, 설정 값 온도로 냉각된다.
일부 챔버없는 핸들러는 이러한 많은 문제들을 해결한다. 예를 들어, 핸들러는 전자 테스트를 수행하기 전에 DUT가 핸들러에 있는 동안 미리 정해진 설정 값 온도로 빠르게 가열 또는 냉각되는 능동 열 제어(ATC)를 때때로 포함한다. 예를 들어, 때때로 저항 가열 또는 옴(ohmic) 가열이라고도 하는 주울(Joule) 가열은 고온 테스트 설정 값 제어를 위한 많은 ATC 솔루션에 사용된다. 주울 가열을 사용하는 경우, DUT의 목표 설정 값 온도와 DUT의 현재 온도 사이의 높은 차이('고온 오프셋'이라고 함)는 고온 테스트 수행에 큰 장애가 되지 않는다. 히터(heater)에 추가 전원을 공급하면 현재 온도와 관계없이 히터의 온도가 빠르게 높아지기 때문이다. 가열 속도는 히터에 가해지는 전력량에 비례한다.
그러나, 저온 테스트를 위해 DUT의 온도를 빠르게 낮추는 것이 더 어렵다. 왜냐하면 DUT 온도를 낮추는 경우 주울 가열에 상응하는 것이 없기 때문이다. DUT의 온도를 낮추기 위해 냉각 속도는 DUT와 저온 소스(cold source) 사이의 온도 차이에 비례한다. 저온 소스 온도와 DUT 온도의 차이가 충분히 높지 않으면 DUT를 빠르게 냉각할 수 없다.
본 출원과 동일한 양수인에게 양도되고 출원 내용 모두가 참조로서 포함되는 미국 특허 제 5,821,505호('505 특허')는 극저온의 저온 소스(액체 냉각제에 의해 냉각된 방열체)을 사용하여 저온 소스에 의해 흡수 가능한 열량을 최대화하는 시스템을 기술한다.
'505 특허'에 기술된 시스템은 전자 장치 내의 전력 손실의 큰 변화에 신속하게 반응할 수 있고, 따라서 장치가 테스트되는 동안 장치 온도를 일정한 설정 값 온도 근처에서 유지한다. 그러나, 히터와 영구적으로 접촉하는 극저온 방열체 형태의 저온 소스를 사용하는 경우 발생할 수 있는 문제는 히터가 방열체를 통한 열 제거를 지속적으로 극복해야만 한다는 것이다.
본 발명은 열을 빠르게 흡수할 수 있는 저온 열 저장체(thermal cold mass)를 사용함으로써 증가된 DUT 냉각 속도를 제공하는 시스템을 기술한다.
냉각 저장체(cooling mass)(또는 '저온 커패시터(cold capacitor)')은 DUT 온도를 원하는 저온 설정 값으로 변경하도록 구성된다. 해당 값에 도달하면 최소 정상(定常) 상태 에너지 전달이 수행되어 설정 값을 유지하는 데 필요한 히터 전력을 제한한다.
단일 삽입 사용(즉, 동일한 핸들러에서 DUT 고온 테스트 및 DUT 저온 테스트가 차례대로 수행되는 테스트에서)에 대해, 저온 열 저장체는 고온 테스트 동안 충전된다. 고온 테스트 후, DUT의 신속한 '저온 담금(cold soak)'위해, 저온 열 저장체가 DUT로부터 열을 빠르게 흡수할 수 있도록 저온 열 저장체는 장치와 열 전도성 접촉을 한다.
일 실시 예에 의하면, 반도체 장치 핸들러를 위한 열 제어 헤드는 반도체 장치를 가열하도록 구성된 히터; 저온 매니폴드(manifold); 및 냉각 저장체를 포함하는데, 상기 냉각 저장체는, 상기 냉각 저장체의 제1 면이 저온 매니폴드의 표면과 접하는 제1 위치와 냉각 저장체의 제1 면이 저온 매니폴드로부터 분리되고 상기 냉각 저장체의 제2면이 상기 히터의 표면과 접하는 제2 위치 사이에서 이동 가능하다.
본 발명의 특징에 있어서, 저온 매니폴드는 저온 매니폴드 플레이트 및 상기 저온 매니폴드 플레이트로부터 분리된 짐벌(gimbal)부를 포함하고, 냉각 저장체가 제1 위치에 있을 때, 상기 냉각 저장체의 상기 표면은 짐벌편의 표면과 접한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 열 제어 헤드는 냉각 저장체와 짐벌편 사이에 위치한 열 전도성 부합 링크를 더 포함한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 열 전도성 부합 링크는 환형 코일이다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 환형 코일은 상기 짐벌편 주위로 연장되는 홈에 배치된다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 짐벌편의 적어도 일부는 냉각 저장체의 제1 측면의 리세스(recess)에 위치한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 열 제어 헤드는 저온 매니폴드 플레이트의 표면에 대해 짐벌편의 제2 면을 유지하도록 구성된 짐벌 스프링을 더 포함한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 열 제어 헤드는 밀봉 방식으로 히터에 부착된 히터 홀딩 플레이트(heater holding plate); 상기 냉각 저장체를 둘러싸는 벨로우즈(bellows) 조립체 - 상기 벨로우즈 조립체의 제1 단부는 밀봉 방식으로 상기 냉각 저장체의 제1 단부에 부착되고, 상기 벨로우즈 조립체의 제2 단부는 밀봉 방식으로 상기 히터 홀딩 플레이트에 부착되며, 제1 챔버는 상기 벨로우즈 조립체에 위치하는; 상기 벨로우즈 조립체의 일부를 둘러싸는 인클로저(enclosure) - 상기 벨로우즈 조립체와 인클로저 사이에 제2 챔버가 형성되는; 및 상기 제1 챔버로 이어지는 제1 포트(port) 및 상기 제2 챔버로 이어지는 제2 포트를 포함하는 가스 매니폴드를 포함한다. 상기 가스 매니폴드는 제1 포트를 통해 제1 챔버에 가압 가스를 제공하고 제2 포트를 통해 제2 챔버에 가압 가스를 제공하도록 구성된다. 가스 매니폴드가 가압 가스를 제1 챔버에 제공하는 경우, 냉각 저장체는 제1 위치로 이동하고, 제1 챔버 내의 가압 가스는 벨로우즈 조립체의 제2 단부가 히터 홀딩 플레이트를 가압하게 한다. 가스 매니폴드가 가압 가스를 제2 챔버에 공급하는 경우, 냉각 저장체는 제2 위치로 이동한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 인클로저의 제1 단부는 밀봉 방식으로 상기 저온 매니폴드에 부착되고, 상기 인클로저의 제2 단부는 밀봉 방식으로 상기 가스 매니폴드에 부착된다.
다른 실시 예에 의하면, 시스템은 청구항 1의 열 제어 헤드; 및 고정 베이스에 고정된 적어도 하나의 플레이트, 상기 적어도 하나의 플레이트에 고정된 푸셔 홀딩 플레이트(pusher holding plate), 및 상기 푸셔 홀딩 플레이트를 통해 연장되고 푸셔 홀딩 플레이트에 대해 이동하도록 구성된 푸셔(pusher)를 포함하는 푸셔 조립체(pusher assembly);를 포함한다. 상기 푸셔의 제1 면은 히터에 의해 접촉되도록 구성된다. 푸셔의 제2 면은 테스트중인 반도체 장치와 접촉하도록 구성된다.
다른 실시 예에 의하면, 열 제어 헤드를 사용하여 반도체 장치의 온도를 제어하는 방법은, 반도체 장치를 가열하도록 구성된 히터, 저온 매니폴드, 및 냉각 저장체 (상기 냉각 저장체의 제1 면이 저온 매니폴드의 표면과 접하는 제1 위치와, 냉각 저장체의 제1 면이 저온 매니폴드로부터 분리되고, 냉각 저장체의 제2면은 상기 히터의 표면과 접하는 제2 위치 사이에서 이동가능함)를 포함하는 열 제어 헤드를 제공하는 단계; 냉각 저장체를 제1 위치로 이동시키고, 냉각 저장체가 제1 위치에 있는 동안 히터를 사용하여 반도체 장치를 가열하고, 저온 매니폴드를 사용하여 냉각 저장체를 냉각시키는 단계; 및 냉각 저장체를 제2 위치로 이동시키고 냉각 저장체가 제2 위치에 있는 동안 냉각 저장체를 사용하여 히터를 통해 반도체 장치를 냉각시키는 단계;를 포함한다.
본 발명의 특징에 있어서, 저온 매니폴드는 저온 매니폴드 플레이트 및 상기 저온 매니폴드 플레이트로부터 분리된 짐벌(gimbal)부를 포함하고, 냉각 저장체가 제1 위치에 있을 때, 상기 냉각 저장체의 상기 표면은 짐벌편의 표면과 접한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 열 제어 헤드는 냉각 저장체와 짐벌편 사이에 위치한 열 전도성 부합 링크를 더 포함한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 열 전도성 부합 링크는 환형 코일이다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 환형 코일은 상기 짐벌편 주위로 연장되는 홈에 배치된다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 짐벌편의 적어도 일부는 냉각 저장체의 제1 측면의 리세스(recess)에 위치한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 열 제어 헤드는 저온 매니폴드 플레이트의 표면에 대해 짐벌편의 제2 면을 유지하도록 구성된 짐벌 스프링을 더 포함한다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 열 제어 헤드는 밀봉 방식으로 히터에 부착된 히터 홀딩 플레이트; 상기 냉각 저장체를 둘러싸는 벨로우즈(bellows) 조립체 - 상기 벨로우즈 조립체의 제1 단부는 밀봉 방식으로 상기 냉각 저장체의 제1 단부에 부착되고, 상기 벨로우즈 조립체의 제2 단부는 밀봉 방식으로 상기 히터 홀딩 플레이트에 부착되며, 제1 챔버는 상기 벨로우즈 조립체에 위치하는; 상기 벨로우즈 조립체의 일부를 둘러싸는 인클로저(enclosure) - 상기 벨로우즈 조립체와 인클로저 사이에 제2 챔버가 형성되는; 및 상기 제1 챔버로 이어지는 제1 포트(port) 및 상기 제2 챔버로 이어지는 제2 포트를 포함하는 가스 매니폴드를 포함한다. 상기 가스 매니폴드는 제1 포트를 통해 제1 챔버에 가압 가스를 제공하고 제2 포트를 통해 제2 챔버에 가압 가스를 제공하도록 구성된다. 가스 매니폴드를 사용하여 가압 가스를 제1 챔버에 제공함으로써 냉각 저장체가 제1 위치로 이동하고, 냉각 저장체가 제1 위치에 있는 동안, 제1 챔버 내의 가압 가스는 벨로우즈 조립체의 제2 단부가 상기 히터 홀딩 플레이트를 가압하게 한다. 가스 매니폴드를 사용하여 가압 가스를 제2 챔버에 제공함으로써 냉각 저장체는 제2 위치로 이동된다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 인클로저의 제1 단부는 밀봉 방식으로 상기 저온 매니폴드에 부착되고, 상기 인클로저의 제2 단부는 밀봉 방식으로 상기 가스 매니폴드에 부착된다.
상기 실시 예들 및 특징들 중 임의의 것과 결합 가능한 본 발명의 특징에 있어서, 상기 방법은, 고정 베이스에 고정된 적어도 하나의 플레이트, 상기 적어도 하나의 플레이트에 고정된 푸셔 홀딩 플레이트(pusher holding plate), 및 상기 푸셔 홀딩 플레이트를 통해 연장되고 푸셔 홀딩 플레이트에 대해 이동하도록 구성된 푸셔(pusher)를 포함하는 푸셔 조립체(pusher assembly)를 제공하는 단계, 상기 푸셔의 제1 면을 히터와 접촉시키는 단계, 및 테스트 중인 반도체 장치를 상기 푸셔의 제2면과 접촉시키는 단계를 더 포함한다.
도 1은 히터, 히터 홀딩 플레이트, 밀봉부, 및 벨로우즈 조립체를 포함하는 열 헤드의 일부의 사시도이다.
도 2a는 도 1에 도시된 히터, 홀딩 플레이트 및 밀봉부의 단면 사시도이다.
도 2b는 도 1에 도시된 벨로우즈 조립체의 단면 사시도이다.
도 2c는 열 헤드의 냉각 저장체, 부합 링크, 짐벌편, 및 스프링의 단면 사시도이다.
도 3은 도 1에 도시된 열 헤드의 단면 사시도이다.
도 4a는 가스 매니폴드, 저온 매니폴드, 및 가스 매니폴드와 저온 매니폴드 사이에 위치한 인클로저와 함께 열 헤드가 도시된 사시도이다.
도 4b는 도 4a에 도시된 열 헤드, 가스 매니폴드, 저온 매니폴드 및 인클로저의 단면 사시도이다.
도 4c는 도 4a에 도시된 열 헤드, 가스 매니폴드, 저온 매니폴드 및 인클로저의 정면도이다.
도 4d는 도 4a에 도시된 열 헤드, 가스 매니폴드, 저온 매니폴드 및 인클로저의 정면 단면도이다.
도 5a는 도 1의 열 헤드와 함께 사용하기 위한 푸셔 조립체 및 고정 베이스의 사시도이다.
도 5b는 도 5a에 도시된 푸셔 조립체의 정면 단면도이다.
도 5c는 도 5a에 도시된 푸셔 조립체의 사시도이다.
도 6은 푸셔 조립체의 일부와 인터페이스하는 도 1에 도시된 열 헤드의 일부의 사시도이다.
도 7은 고온 담금(hot soak) 공정 동안 푸셔 조립체의 푸셔와 인터페이스하는 열 헤드의 히터를 도시한 사시도이다.
도 8은 냉각 저장체로부터 열을 배출하는 동안 저온 매니폴드와 인터페이스하는 열 헤드의 냉각 저장체 및 짐벌(gimbal)부의 단면 사시도이다.
도 9는 저온 담금 공정 동안 열 헤드의 히터와 인터페이스하는 열 헤드의 냉각 저장체의 단면 사시도이다.
도 10은 저온 담금 공정 동안 짐벌편으로부터 분리되는 냉각 저장체의 단면 사시도이다.
도 11은 본 발명의 일 실시 예의 열 헤드를 사용하는 경우 저온 테스트에 이은 고온 테스트를 개략적으로 나타내는 도면이다.
도 12a 내지 12e는 본 발명의 일 실시 예의 열 헤드를 사용하는 경우 저온 담금 공정(도 12a), -10℃에서의 정상 상태(도 12b), 고온 담금 공정(도 12c), 90 ℃에서의 정상 상태(도 12d) 및 125 ℃에서의 정상 상태(도 12e) 동안의 DUT 온도 대 시간을 나타내는 그래프이다.
도 13 및 14는 종래의 핸들러 소재 흐름을 개략적으로 나타내는 도면이다.
도 15 및 도 16은 본 발명의 일 실시 예에 따른 저온 커패시터를 구비한 열 헤드가 장착된 핸들러를 사용하는 경우 소재의 흐름을 개략적으로 나타내는 도면이다.
도 17은 본 발명의 일 실시 예에 따른 열 헤드의 배열을 나타내는 사시도이다.
본 발명은 많은 다른 형태의 실시의 예가 가능하다. 특정 실시의 예들이 이하에서 설명되고 도면들에 도시되어 있지만, 본 발명은 본 발명의 원리의 예시적인 것으로 간주되어야 하고 본 발명의 광범위한 특징을 도시되고 설명되는 실시 예들로 한정하는 것이 아니다.
본 발명의 실시 예는 빠른 설정 값 온도 변화(예를 들어, 10 초 미만) 및 온도 극한의 전체 범위로 단일 삽입 다중 온도 테스트를 가능하게 한다.
온도 챔버의 매우 큰 열량은 제거 가능하여, 온도에 도달하는 열량은 DUT 및 DUT와 접하는 작은 열 구성요소들만의 열량으로 크게 감소된다.
도 1은 히터(heater)(11), 상부 히터 홀딩 플레이트(holding plate)(12), 하부 히터 홀딩 플레이트(13), 밀봉부(25) (예를 들어, O-링), 벨로우즈(bellows) 조립체(20), 짐벌(gimbal)부(32a), 및 스프링(17)을 포함하는 열 제어 헤드(head)(10)의 일부의 사시도이다. 도 2a는 상기 히터(11), 상부 히터 홀딩 플레이트(12), 하부 히터 홀딩 플레이트(13), 및 밀봉부(25)의 단면 사시도이다. 도 2b는 도 1에 도시된 벨로우즈 조립체(20)의 단면 사시도이다. 도 2c는 열 헤드(10)의 냉각 저장체(14), 부합 링크(15), 짐벌편(32a) 및 스프링(17)의 단면 사시도이다. 도 3은 도 1에 도시된 열 헤드(10)의 단면 사시도이다.
도 4a는 열 접촉 헤드(10)의 사시도로서, 가스 매니폴드(manifold)(31), 저온 매니폴드(32) 및 가스 매니폴드(31)와 저온 매니폴드(32) 사이에 위치한 인클로저(enclosure)(33)를 도시한다. 도 4b는 도 4a에 도시된 열 헤드(10), 가스 매니폴드(31), 저온 매니폴드(32), 및 인클로저(33)의 단면 사시도이다. 도 4c는 도 4a에 도시된 열 헤드 (10), 가스 매니폴드, 저온 매니폴드 및 인클로저의 정면도이다. 도 4d는 도 4a에 도시된 열 헤드(10), 가스 매니폴드(31), 저온 매니폴드(32) 및 인클로저(33)의 정면 단면도이다.
상부 및 하부 히터 홀딩 플레이트(12, 13)은 히터(11)에 부착된다. 히터(11)는 각 모서리에 오목한 단차를 가지고 이를 통해 열 홀딩 플레이트(12, 13)로 고정(clamping)하여 히터(11)의 표면을 넘어서 돌출함 없이 히터(11)를 O-링(25)에 끼운다. 스크류는 상부 및 하부 홀딩 플레이트(12, 13)를 함께 클램핑한다. 밀봉부(25)는 하부 히터 홀딩 플레이트(13)과 히터(11) 사이에 위치한다. 밀봉부(25)는, 예를 들어, 실리콘 고무로 이루어질 수 있다.
가스 매니폴드(31) 및 저온 매니폴드(32)는 열 제어 헤드가 통합된 장치 핸들러에 고정된다. 벨로우즈 조립체(20)의 중심 부분은 가스 매니폴드(31)에 고정된다. 제1 내부 챔버(21)는 벨로우즈 조립체(20) 내부에 위치된다. 화살표(21 및 22)는 각각 저온 저장체 및 벨로우즈를 가리키는 것으로 보인다. 화살표는 이동하여 캐비티를 보여줄 수 있을까? 인클로저(33)는 예컨대 가스 매니폴드(31)와 저온 매니폴드(32) 사이에 볼트로 인클로저(33)를 끼우고 O-링(26a, 26b)을 압축함으로써 가스 매니폴드(31)와 저온 매니폴드(32) 모두에 고정된다. 따라서, 제2 외부 챔버(22)가 벨로우즈 조립체(20)와 인클로저(33) 사이에 형성된다. 밀봉부(26a, 26b)(예를 들어, O-링)는 인클로저(33)와 가스 매니폴드(31) 사이 및 인클로저(33)와 저온 매니폴드(32) 사이에 각각 위치한다. 밀봉부(26a, 26b)는 예를 들어 실리콘 고무로 제조될 수 있다. 저온 매니폴드(32)는 도 4b 내지 4d에 도시된 바와 같이 짐벌편(32a) 및 저온 매니폴드 플레이트(32b)를 포함한다. 4b-4d. 짐벌 스프링(17)은 짐벌편(32a)에 부착되고 인클로저(33) 또는 저온 매니폴드 플레이트(32b)에도 부착된다. 짐벌 스프링(17)은 저온 매니폴드 플레이트(32b)에 대하여 짐벌편(32a)를 가압하도록 구성된다. 짐벌편은 예를 들어 Ni-도금된 구리로 만들어질 수 있다.
가스 매니폴드(31)는 내부 챔버(21)로 이어지는 제1 포트(23) 및 외부 챔버(22)로 이어지는 제2 포트(24)를 포함한다. 가스 매니폴드(31)는 가압 가스(예를 들어, 청정 건조 공기와 같은, N2 또는 공기)를 제1 포트(23)를 통해 내부 챔버(21)에 공급하고 압력 가스를 제2 포트(24)를 통해 외부 챔버(22)에 공급하도록 구성된다.
냉각 저장체(14)의 바닥면은 벨로우즈 조립체(20)의 바닥면에 (예를 들어, 납땜에 의해) 부착된다. 따라서, 벨로우즈 조립체(20)의 바닥이 상방 또는 하방으로 이동할 때, 냉각 저장체(14)는 벨로우즈 조립체(20)의 바닥과 함께 이동한다. 짐벌편(32a)는 냉각 저장체(14)의 바닥에 있는 리세스(recess)에 위치한다. 부합 링크(15)는 짐벌편(32a)와 냉각 저장체(14) 사이에 위치한다. 부합 링크(15)는 환형 코일이고, 짐벌편(32a) 주위에 형성된 홈에 끼워진다. 냉각 저장체(14) 및 부합 링크(15)는 구리와 같은 열 전도성 재료로 제조될 수 있다.
하부 히터 홀딩 플레이트(13)의 하부는 벨로우즈 조립체의 상면에 (예를 들어, 납땜에 의해) 부착되어, 벨로우즈 조립체의 상면이 상방 또는 하방으로 이동할 때, 하부 히터 홀딩 플레이트(13) 및 이에 따른 상부 히터 홀딩 플레이트(12)와 히터(11)는 벨로우즈 조립체(20)와 함께 이동한다. 상부 및 하부 히터 홀딩 플레이트(12, 13)는 예를 들어 스테인레스 스틸로 제조될 수 있다. 벨로우즈 조립체(20)는 예를 들어 니켈 또는 니켈 합금으로 제조될 수 있다. 다른 실시 예에서, 단일 히터 홀딩 플레이트만이 사용될 수 있다.
도 5a는 도 1의 열 헤드(10)와 함께 사용될 수 있는 푸셔 조립체(40) 및 고정 베이스(41)의 사시도이다. 도 5b는 도 5a에 도시된 푸셔 조립체(40)의 정면 단면도이다. 도 5c는 도 5a에 도시된 푸셔 조립체(40)의 사시도이다.
푸셔 조립체(40)는 특정 DUT 타입과 함께 사용하도록 특별히 설계된 키트(kit)이다. 고정 베이스(41)는 열 헤드가 위치하는 장치 핸들러에 고정된다. 푸셔 조립체(40)는 제1 플레이트(50), 제1 플레이트(50)에 부착된 제2 플레이트(51), 및 제2 플레이트(51)로부터 제1 플레이트(50)를 분리하는 복수의 인클로저(52)를 포함한다. 푸셔 조립체는 또한 제2플레이트에 부착된 푸셔 홀딩 플레이트(53)와 푸셔 홀딩 플레이트(53)를 통해 연장되는 열 전도성 푸셔(42)를 포함한다. 푸셔(42)는 DUT접촉면(43) 및 히터 접촉면(44)을 가진다. 제1 플레이트(50)는 제1 플레이트(50)를 고정 베이스(41)에 정렬시키는 정렬 모서리면(45)을 포함한다. 푸셔(42)는 푸셔 홀딩 플레이트(53)에 대해 이동하도록 구성된다. 따라서, 열 헤드(10)의 히터(11)가 히터 접촉면(44)과 접촉하는 경우, 푸셔(42)는 상방으로 이동하여 DUT에 대한 접촉력을 가할 수 있다. 푸셔(42)는 또한 푸셔 홀딩 플레이트(53) 내에서 수평을 유지할 수 있으므로(gimbal), DUT와의 자기 정렬을 허용한다. 고정 베이스(41)에는 복수의 짐벌링 푸셔 조립체가 부착될 수 있다. 예를 들어, 수백 개의 짐벌링 푸셔 조립체(40)는 단일 베이스(41)에 부착될 수 있으며, 각각의 푸셔 조립체(40)는 열 헤드(10)에 대응한다. 다른 실시 예에서, 열 헤드(10)는 짐벌링 푸셔 조립체(40) 없이 사용될 수 있다.
도 6은 푸셔 조립체(40)의 일부와 인터페이스하는 도 1내지 4에 도시된 열 헤드(10)의 일부의 사시도이다.
히터(11)는, 고온 담금을 수행하고 고온 DUT 온도 설정 값을 유지하는데 사용된다. 고온 DUT 온도 설정 값은 25℃ 내지 175℃ 범위 또는 50℃ 내지 150℃ 범위 또는 75℃ 내지 125℃ 범위일 수 있다. 히터(11)는 높은 와트 밀도(예를 들어, 20W/cm2 내지 2000W/cm2의 범위 및 20W/cm2 내지 800W/cm2의 범위, 보다 바람직하게는 약 25W/cm2의 범위)와 낮은 열량(예를 들어, 0.1 J/℃ 내지 4 J/℃, 바람직하게는 0.3 J/℃ 내지 0.5 J/℃의 범위)을 가진다. 히터(11)는 예를 들어 질화 알루미늄으로 이루어질 수 있다.
냉각 저장체(14)는 냉각 저장체(14)의 하부면이 짐벌편(32a)의 표면과 접촉하는 제1 위치와 냉각 저장체의 상부면이 히터(11)의 표면과 접촉하는 제2 위치 사이에서 이동 가능하도록 구성된다. 따라서, 냉각 저장체(14)는 고온 담금 및 고온 테스트 공정 동안 히터(11)로부터 분리되도록 구동될 수 있고, 열량이 고온 공정에 부담을 주지 않도록 히터(11)와 열적으로 독립하도록 한다. 냉각 저장체(14)는 미결정 저온 설정 값 테스트 온도보다 훨씬 낮은 온도로 냉각된다. 이러한 냉각은, 저온 매니폴드(32)(예를 들어, 저온 매니폴드(32)의 짐벌편(32a))와 전도성 열 접촉하도록 냉각 저장체(14)를 작동시킴으로써 일어나는 열 전도에 의하여 고온 담금 및 고온 테스트 공정 중에 완료된다. 냉각 저장체(14)는 전기 커패시터의 열 유사체이다. 냉각 저장체(14)는 저온 예를 들어 -40 내지 -180℃, 바람직하게는 -80 내지 -140℃, 더욱 바람직하게는 -100 내지 -140℃로 냉각된다. 따라서, 냉각 저장체(14)가 작동되어 히터(11)와 열 접촉하는 경우, 냉각 저장체(14)는 히터(11)로부터 많은 양의 열을 신속하게 흡수할 수 있다. 이는 저온 DUT 설정 값 온도로의 전이를 가속시킨다. 저온 DUT 설정 값 온도는 -70℃ 내지 20℃ 범위, 또는 -40℃ 내지 10℃ 범위 또는 -10℃ 내지 0℃ 범위일 수 있다.
제1 위치와 제2 위치 사이에서 냉각 저장체(14)를 작동시키는 과정은 다음과 같다.
도 6은 고온 담금 공정 중에 푸셔 조립체(40)의 푸셔(42)와 인터페이스하는 열 헤드(10)의 히터를 도시하는 사시도이다. 도 8은 냉각 저장체(14) 및 냉각 저장체(14)의 냉열 충전 동안 냉각 저장체(14)와 인터페이스하는 저온 매니폴드(32)의 짐벌편(32a)의 단면 사시도이다. DUT의 고온 담금 중에(즉, 히터(11)가 DUT를 높은 설정 값 온도로 가열하는데 사용되는 경우), 가스 매니폴드(31)는 가압 가스를 내부 챔버(21)로 공급한다. 내부 챔버(21)의 증가된 압력은 벨로우즈 조립체(20)를 팽창시킨다. 벨로우즈 조립체(20)의 하단부는 밀봉 방식으로 냉각 저장체(14)의 하단부에 부착되고, 벨로우즈 조립체(20)의 상단부는 밀봉 방식으로 하부 히터 홀딩 플레이트(13)에 부착된다. 따라서, 벨로우즈 조립체(20)가 팽창하는 경우, 냉각 저장체(14)는 냉각 저장체(14)가 저온 매니폴드(32), 보다 구체적으로, 저온 매니폴드(32)의 짐벌편(32a)와 접하는 제1 위치로 하향 이동한다. 냉각 저장체(14)가 저온 매니폴드(32)와 접하기 때문에, 저온 매니폴드(32)에 의해 냉각 저장체(14)로부터 열이 흡수되어, 냉각 저장체(14)는 차가워진다(즉, 냉각 저장체(14)는 '충전된다'). 동시에, 하부 히터 홀딩 플레이트(13) 및 이에 따른 히터(11)는 벨로우즈 조립체(20)의 상부에 의해 상향으로 가압된다. 이러한 상향 압력은 DUT에 대해 히터(11)를 (직접 또는 열 전도성 푸셔를 통해, 하기에 설명됨) 가압한다. 이러한 상향 압력은 또한 접촉기에 힘을 제공하여 DUT를 접촉기 소켓의 전기 접점으로 가압한다. 이 힘은 벨로우즈 조립체(20)의 내부 챔버(21)의 압력을 제어함으로써 변화될 수 있다.
도 9는 저온 담금 공정 중에 열 헤드(10)의 히터(11)와 인터페이스하는 열 헤드(10)의 냉각 저장체(14)의 단면 사시도이다. 도 10은 저온 담금 공정 중에 저온 매니폴드(32)(예를 들어, 짐벌편(32a))로부터 분리되는 냉각 저장체(14)의 단면 사시도이다. DUT의 저온 담금 중에(즉, 열 헤드가 DUT를 낮은 설정 값 온도로 냉각시키는 데 사용 중에 있는 경우), 가스 매니폴드(31)는 가압 가스를 외부 챔버(22)로 제공한다. 외부 챔버(22)의 증가된 압력은 벨로우즈 조립체(20)의 하부가 수축되게 한다. 벨로우즈 조립체(20)의 하단은 냉각 저장체(14)에 부착되기 때문에, 벨로우즈 조립체(20)의 하단이 상향 이동하면, 냉각 저장체(14)는 냉각 저장체의 상부면이 히터(11)의 표면과 접하는 제2 위치로 상향 이동하고, 냉각 저장체(14)의 하부면은 저온 매니폴드(32)로부터 분리된다(부합 링크(15)와의 접함 제외). 벨로우즈 조립력이 가해짐에 따라, 냉각 저장체(14)를 히터(11)와 접하게 하면서, (i) 냉각 저장체(14)와 히터(11), (ii) 히터(11)와 푸셔(42), 및 (iii) 푸셔(42)와 DUT 사이에 열 전도성 접촉이 형성된다. 따라서, 냉각 저장체(14)는 히터(11) 및 푸셔(42)를 통해 DUT로부터 열을 빠르게 흡수할 수 있다. 히터(11)의 냉각 저장체(14)의 압력은 또한 접촉기에 힘을 제공하여 DUT를 접촉기 소켓의 전기 접점으로 가압한다. 이 힘은 외부 챔버(21)의 압력을 제어함으로써 변화될 수 있다.
저온 담금 동안, 히터(11)는 전자 테스트 완료에 필요한 온도 허용 오차 내에 DUT가 있도록 제어될 수 있다. 냉각 저장체(14)와 저온 매니폴드(32) 사이의 에너지 전송률은 허용 가능한 히터 전력량보다 낮아야 한다. 저온 매니폴드(32)와 냉각 저장체(14) 사이에 어느 정도의 에너지 전송량이 필요하지만, 너무 많은 에너지 전송(즉, 히터(11) 및 냉각 저장체(14)로부터 짐벌편(32a) 및 저온 매니폴드(32)로의 너무 많은 열 전달)은 히터(11)가 설정 값 온도에서 DUT를 유지할 수 없게 한다. 냉각 저장체(14)로부터 짐벌편(32a)로 전달되는 열의 양을 제한하지만 여전히 이 경로에 의해 어느 정도의 열이 전달되도록 하기 위해, 열 전도성 부합 링크(15)는 냉각 저장체(14)와 짐벌편(32a) 사이에 구비된다. 따라서, 저온 담금 공정 중, 저온 매니폴드(32)(예를 들어, 짐벌편(32a))와 냉각 저장체(11) 사이에 직접적인 열 전도성 접촉이 없다. 이 실시 예에서, 열 전도성 부합 링크(15)는 금속 코일이다. 열 전도성 부합 링크(15)는 저온 담금 공정 동안 저온 매니폴드(32)와 냉각 저장체(14) 사이 및 이에 따른 히터(11)와 DUT 사이에서 전달되는 에너지의 양을 제한하면서, 열 저장체(예를 들어, 냉각 저장체(14))로 하여금 수평을 유지하게 한다.
고온 공정 중에 벨로우즈 조립체(20)의 내부 챔버(21)의 가스에 의해 히터(11)의 푸셔(42)에 의해 제공되는 접촉기 힘은 바람직하게는 저온 공정 중에 히터(11)의 냉각 저장체(14)의 압력에 의해 제공되는 접촉기 힘과 실질적으로 동일하다. 도 1 내지 10에 도시된 실시 예에서, 이는 내부 및 외부 챔버에서 동일한 가스 압력을 사용하고 (i) 히터(11)의 하측에 압력이 제공되는 밀봉부(25)에 의해 정의된 영역 및 (ii) 냉각 저장체(14)의 바닥의 면적에 동일한 유효 영역을 제공함으로써 달성된다. 다른 실시 예에서, 이는 상부 및 하부에서 상이한 유효 영역을 가지는 벨로우즈 조립체에서 내부 및 외부 챔버의 상이한 압력을 사용하여 차이를 보상함으로써 달성될 수 있다.
도 11은 본 발명의 일 실시 예의 열 헤드(10)를 사용하는 경우 저온 테스트에 이은 고온 테스트를 개략적으로 나타내는 도면이다. 본 발명의 열 헤드(10)는 예를 들어 -40 ℃ 내지 125 ℃의 범위에서 온도 테스트를 위해 사용될 수 있다. 열 헤드는 약 10 초 안에 DUT의 온도를 -25℃내지 90℃로 또는 그 반대로 조절할 수 있다. 열 헤드(10)는 약 15 초 안에 DUT의 온도를 -40℃ 내지 125℃로 또는 그 반대로 조절할 수 있다. 열 헤드(10)는 DUT의 온도를 설정 값 온도의 +/- 1.5℃ 내로 유지할 수 있다. 온도 제어 피드백은 Tjunction, Tcase, Textrapolated, Theatsink/heater type feedback을 사용하여 수행할 수 있다. 온도 챔버의 사용을 제거하는 것이 바람직하지만, 전용 담금(soak) 챔버 및/또는 탈담금(de-soak) 챔버는 전술한 열 헤드와 조합하여 사용될 수 있다.
도 12a 내지 12e는 본 발명의 일 실시 예의 열 헤드를 사용하는 경우 저온 담금 공정(도 12a), -10℃에서의 정상 상태(도 12b), 고온 담금 공정(도 12c), 90 ℃에서의 정상 상태(도 12d) 및 125 ℃에서의 정상 상태(도 12e) 동안의 DUT 온도 대 시간을 나타내는 그래프이다.
도 13 및 14는 종래의 핸들러 소재 흐름을 개략적으로 나타내는 도면이다. 도 13에 도시된 바와 같이, 종래의 핸들러 소재 흐름은 새로운 로트(lot)를 전용 저온 핸들러로 가져 오는 단계(1301), 로트를 5분 동안 로딩하는 단계(1302), 3분 동안 챔버 담금 단계(1303), 약 5 초 동안 온도를 급락 및 회복시키는 단계(1304), 일정 기간(기간은 길이가 변할 수 있음) 동안의 저온 테스트 단계(1305), 접촉기 인덱스 시간을 3초 동안 수행하는 단계(1306), 로트를 언로딩하는 단계(1307), 로트를 전용 고온 핸들러로 옮기는 단계(1308), 고온 테스트를 위해 로트를 스케쥴링하는 단계(1309), 새로운 로트를 전용 고온 핸들러로 옮기는 단계(1310), 5 분에서 로트를 로딩하는 단계(1311), 3 분 동안 챔버 담금 단계(1312), 약 5 초 동안 온도를 급락 및 회복시키는 단계(1313), 일정 기간(기간은 길이가 변할 수 있음) 동안의 고온 테스트 단계(1314), 접촉기 인덱스 시간을 3 초 동안 수행하는 단계(1315), 및 로트를 5 분 동안 언로드하는 단계(1316)를 포함한다. 도 14에 도시된 바와 같이, 종래의 핸들러 소재 흐름은, 2 개의 표준 핸들러가 이용 가능하고 각각의 테스트 온도 전용이라고 가정할 때, 5,000 시간당 유닛(UPH)의 최고의 생산 속도를 가져온다. 생산 속도의 한계는 제2 온도 테스트가 없는 생산에 대해 단위 생산을 절반으로 줄이는 제2 온도 테스트에 의해 결정된다.
도 15 및 도 16은 본 발명의 일 실시 예에 따른 저온 커패시터를 구비한 열 헤드(10)가 장착된 핸들러(100)를 사용하는 경우 소재의 흐름을 개략적으로 나타내는 도면이다. 도 15에 도시된 바와 같이, 저온 커패시터를 가지는 열 제어 헤드(10)를 사용하는 소재의 흐름은 새로운 로트(lot)를 전용 저온 핸들러로 가져 오는 단계(1501), 로트를 5분 동안 로딩하는 단계(1502), 빠르게 온도를 변화시키는 단계(1503)(예를 들어, 10 초 미만의 시간 동안 온도를 변화시킴), 일정 기간(기간은 길이가 변할 수 있음) 동안의 저온 테스트 단계(1504), 빠르게 온도를 변화시키는 단계(1505)(예를 들어, 10 초 미만의 시간 동안 온도를 변화시킴), 일정 기간(기간은 길이가 변할 수 있음) 동안의 고온 테스트 단계(1506), 및 로트를 5 분 동안 언로드하는 단계(1507)를 포함한다. 도 16에 도시된 바와 같이, 이 방법은 담금 손실 또는 탈담금 손실이 없으며 챔버 담금이 필요 없다. 또한 이 방법은 접촉기 수명을 두 배로 늘리고 걸림률을 50 % 감소시킨다. 결과적으로, 이 공정은 종래 공정의 생산 속도의 2 배의 생산 속도를 가져올 수 있다(도 16에 도시).
도 17에 도시된 바와 같이, 핸들러(100)는 도 1 내지 10과 관련하여 전술한 복수의 열 헤드(10)를 포함할 수 있다(예를 들어, 핸들러는 128, 256 또는 512개의 열 헤드를 포함할 수 있다). 각각의 열 헤드는 DUT 접촉 표면(43)을 가진다. 열 헤드(10)는 예를 들어 6 mm 내지 20 mm 범위의 길이 및 폭과 27.5 mm x 28.5 mm의 최소 피치를 가지는 장치에서 사용될 수 있다.
본 발명의 실시 예는 온도 챔버를 우선 준비할 필요 없이 전자 장치 온도 테스트 동안 전형적으로 사용되는 임의의 온도에서 온도 테스트를 수행할 수 있게 한다. 담금 및 탈담금 공정 동안 고온 및 저온 테스트 사이에 WIP에 장치를 유지하고 온도 챔버에 장치를 유지하기 위해 추가적인 트레이가 필요하지 않기 때문에 WIP의 양이 줄어들고 사용되는 테스트 트레이 수를 2 내지 4 배 줄일 수 있다. 두 개의 별도의 전용 고온 및 저온 핸들러에 의해 야기되는 스케줄링 문제를 제거할 수 있다. 고온 테스트를 실행할 때 걸림 해결이 2 배 향상되고 저온 테스트를 실행할 때 걸림 해결 기능이 30 배 향상될 수 있다. 주변 온도에서 추가 기계 장치들을 작동시키면 걸림이 줄어들고 고가의 고온 소재에 대한 필요성이 줄어든다.
또한, 접촉기 수명은 2 배가 되는데, 이는 각각의 장치가 고온 및 저온 테스트를 위해 단지 하나의 접촉기 소켓에 삽입되어 접촉기 부싱(bushings) 및 포고(pogo) 핀/접점의 마모를 감소시키기 때문이다. 접촉기 전자 장치는 또한, 고온 및 저온 테스트가 번갈아 반복되어 접촉기가 주변 온도에 더 가까울 수 있기 때문에, 더욱 안정적이다.
본 발명의 실시 예의 또 다른 이점은 장치가 접촉점 소켓에 삽입되는 경우 온도 강하가 거의 없거나 전혀 없다는 것이다. 장치가 설정 값 온도에 도달하는 동안 장치가 삽입될 수 있고 테스트는 설정 값에 도달한 후에만 시작되기 때문이다. 추가 온도 결정 시간은 필요하지 않다.
장치를 로딩 및 언로딩하는 데 소요되는 시간이 줄어들고, 걸림의 횟수가 감소되며, 걸림을 해결하는데 필요한 시간이 감소되기 때문에, 운영자 개입이 감소될 수 있다. 수리가 덜 필요하고 부품 교체 비용이 절감되므로 전문가의 개입도 줄어든다.
동일한 핸들러에서 고온 및 저온 테스트가 모두 수행될 수 있는 경우 더 적은 DUT 처리가 요구되기 때문에, DUT 손상도 최소화된다.
또한, 본 발명의 실시 예에 따른 열 헤드는 비전 정렬 시스템(vision alignment system)과의 호환성을 증가시킨다. 온도 챔버가 필요하지 않기 때문에, 카메라, 조명 및 영상(vision) 전자 장치를 극한의 온도에 노출시킬 필요가 없다. 또한, 각 장치는 장시간(고온 및 저온 테스트 모두를 위해) 접촉기에 머무르기 때문에 다음에 접촉기에 배치될 장치(예를 들어, 선택 배치 장치에 의해 유지되는 장치들 및/또는 테스트 트레이의 장치들)에 대해 비전 정렬 공정을 수행할 수 있는 시간을 증가시킨다.
다양한 예시적인 실시 예들의 구성 및 배열은 단지 예시적인 것임을 주목하는 것이 중요하다. 비록 본 명세서에서 소수의 실시 예들만이 상세하게 설명되었지만, 본 명세서를 검토하는 당업자는 많은 수정(예를 들어, 다양한 요소들의 크기, 치수, 구조, 형태 및 비율의 변화, 파라미터의 값, 장착 배열, 재료의 사용, 색상, 배향 등)이 본 명세서에 기술된 발명의 요지의 신규 교시 및 장점을 실질적으로 벗어나지 않고 가능하다는 것을 용이하게 이해할 수 있다. 예를 들어, 일체로 형성된 것으로 도시된 요소는 다수의 부분 또는 요소로 구성될 수 있고, 요소의 위치는 반대로 되거나 변경될 수 있으며, 개별 요소 또는 위치의 성질 또는 개수는 변경되거나 변화될 수 있다. 임의의 프로세스 또는 방법 단계의 순서 또는 차례는 대안적인 실시 예에 따라 변경되거나 재배열될 수 있다. 본 발명의 범위를 벗어나지 않고 다양한 예시적인 실시 예의 설계, 작동 조건 및 배열에서 다른 대체, 수정, 변경 및 생략이 또한 이루어질 수 있다.
10: 열 제어 헤드
11: 히터
12: 상부 히터 홀딩 플레이트
13: 하부 히터 홀딩 플레이트
14: 냉각 저장체
15: 부합 링크
32a: 짐벌편
17: 스프링
20: 벨로우즈 조립체
25: 밀봉부
31: 가스 매니폴드
32: 저온 매니폴드
33: 인클로저

Claims (20)

  1. 반도체 장치를 가열하도록 구성된 히터;
    저온 매니폴드(manifold); 및
    냉각 저장체로서, 상기 냉각 저장체의 제1 면이 저온 매니폴드의 표면과 접하는 제1 위치와, 상기 냉각 저장체의 제1 면이 상기 저온 매니폴드로부터 분리되고 상기 냉각 저장체의 제2면은 상기 히터의 표면과 접하는 제2 위치 사이에서 이동 가능한 냉각 저장체;를 포함하는,
    반도체 장치 핸들러를 위한 열 제어 헤드.
  2. 제1항에 있어서,
    저온 매니폴드는 저온 매니폴드 플레이트 및 상기 저온 매니폴드 플레이트로부터 분리된 짐벌(gimbal)편을 포함하고, 상기 냉각 저장체가 제1 위치에 있을 때, 상기 냉각 저장체의 상기 표면은 상기 짐벌편의 표면과 접하는,
    열 제어 헤드.
  3. 제2항에 있어서,
    냉각 저장체와 상기 짐벌편 사이에 위치한 열 전도성 부합 링크를 더 포함하는,
    열 제어 헤드.
  4. 제3항에 있어서,
    상기 열 전도성 부합 링크는 환형 코일인,
    열 제어 헤드.
  5. 제4항에 있어서,
    상기 환형 코일은 상기 짐벌편 주위로 연장되는 홈에 배치되는,
    열 제어 헤드.
  6. 제2항에 있어서,
    상기 짐벌편의 적어도 일부는 냉각 저장체의 제1 측면의 리세스(recess)에 위치하는,
    열 제어 헤드.
  7. 제2항에 있어서,
    상기 저온 매니폴드 플레이트의 표면에 대해 상기 짐벌편의 제2 면을 유지하도록 구성된 짐벌 스프링을 더 포함하는,
    열 제어 헤드.
  8. 제1항에 있어서,
    밀봉 방식으로 히터에 부착된 히터 홀딩 플레이트(heater holding plate);
    상기 냉각 저장체를 둘러싸는 벨로우즈(bellows) 조립체로서, 상기 벨로우즈 조립체의 제1 단부는 밀봉 방식으로 상기 냉각 저장체의 제1 단부에 부착되고, 상기 벨로우즈 조립체의 제2 단부는 밀봉 방식으로 상기 히터 홀딩 플레이트에 부착되며, 제1 챔버가 상기 벨로우즈 조립체에 위치하는, 벨로우즈 조립체;
    상기 벨로우즈 조립체의 일부를 둘러싸는 인클로저(enclosure)로서, 상기 벨로우즈 조립체와 상기 인클로저 사이에 제2 챔버가 형성되는 인클로저; 및
    상기 제1 챔버로 이어지는 제1 포트(port) 및 상기 제2 챔버로 이어지는 제2 포트를 포함하는 가스 매니폴드;를 더 포함하고,
    상기 가스 매니폴드는, 상기 제1 포트를 통해 상기 제1 챔버에 가압 가스를 공급하고, 상기 제2 포트를 통해 상기 제2 챔버에 가압 가스를 공급하도록 구성되고,
    상기 가스 매니폴드가 가압 가스를 상기 제1 챔버에 제공하는 경우, 상기 냉각 저장체는 제1 위치로 이동하고, 상기 제1 챔버 내의 가압 가스는 상기 벨로우즈 조립체의 제2 단부가 히터 홀딩 플레이트를 가압하게 하고,
    상기 가스 매니폴드가 가압 가스를 상기 제2 챔버에 공급하는 경우, 상기 냉각 저장체는 제2 위치로 이동하는,
    열 제어 헤드.
  9. 제8항에 있어서,
    상기 인클로저의 제 1 단부는 밀봉 방식으로 상기 저온 매니폴드에 부착되고, 상기 인클로저의 제 2 단부는 밀봉 방식으로 상기 가스 매니폴드에 부착되는,
    열 제어 헤드.
  10. 제1항의 열 제어 헤드; 및
    고정 베이스에 고정된 적어도 하나의 플레이트, 상기 적어도 하나의 플레이트에 고정된 푸셔 홀딩 플레이트(pusher holding plate), 및 상기 푸셔 홀딩 플레이트를 통해 연장되고 푸셔 홀딩 플레이트에 대해 이동하도록 구성된 푸셔(pusher)
    를 포함하는 푸셔 조립체(pusher assembly);를 포함하고,
    상기 푸셔의 제1 면은 히터에 의해 접촉되도록 구성되며,
    상기 푸셔의 제2 면은 테스트중인 반도체 장치와 접촉하도록 구성되는,
    시스템.
  11. 반도체 장치를 가열하도록 구성된 히터, 저온 매니폴드, 및 냉각 저장체를 포함하는 열 제어 헤드를 제공하는 단계로서, 상기 냉각 저장체는, 상기 냉각 저장체의 제1 면이 상기 저온 매니폴드의 표면과 접하는 제1 위치와 상기 냉각 저장체의 제1 면이 상기 저온 매니폴드로부터 분리되고, 상기 냉각 저장체의 제2 면이 상기 히터의 표면과 접하는 제2 위치 사이에서 이동 가능한 것인 단계;
    상기 냉각 저장체를 상기 제1 위치로 이동시키고, 상기 냉각 저장체가 제1 위치에 있는 동안 상기 히터를 사용하여 상기 반도체 장치를 가열하고, 상기 저온 매니폴드를 사용하여 상기 냉각 저장체를 냉각시키는 단계; 및
    상기 냉각 저장체를 상기 제2 위치로 이동시키고, 상기 냉각 저장체가 제2 위치에 있는 동안 상기 냉각 저장체를 사용하여 상기 히터를 통해 상기 반도체 장치를 냉각시키는 단계;를 포함하는,
    열 제어 헤드를 사용하여 반도체 장치의 온도를 제어하는 방법.
  12. 제11항에 있어서,
    상기 저온 매니폴드는 저온 매니폴드 플레이트 및 상기 저온 매니폴드 플레이트로부터 분리된 짐벌(gimbal)편을 포함하고,
    상기 냉각 저장체가 상기 제1 위치에 있을 때, 상기 냉각 저장체의 상기 표면은 짐벌편의 표면과 접하는,
    방법.
  13. 제12항에 있어서,
    상기 열 제어 헤드는 상기 냉각 저장체와 상기 짐벌편 사이에 위치한 열 전도성 부합 링크를 더 포함하는,
    방법.
  14. 제13항에 있어서,
    상기 열 전도성 부합 링크는 환형 코일인,
    방법.
  15. 제14항에 있어서,
    상기 환형 코일은 상기 짐벌편 주위로 연장되는 홈에 배치되는,
    방법.
  16. 제12항에 있어서,
    상기 짐벌편의 적어도 일부는 상기 냉각 저장체의 제1 측면의 리세스(recess)에 위치하는,
    방법.
  17. 제12항에 있어서,
    상기 열 제어 헤드는 상기 저온 매니폴드 플레이트의 표면에 대해 상기 짐벌편의 제2 면을 유지하도록 구성된 짐벌 스프링을 더 포함하는,
    방법.
  18. 제11항에 있어서,
    상기 열 제어 헤드는,
    밀봉 방식으로 히터에 부착된 히터 홀딩 플레이트;
    상기 냉각 저장체를 둘러싸는 벨로우즈(bellows) 조립체로서, 상기 벨로우즈 조립체의 제1 단부는 밀봉 방식으로 상기 냉각 저장체의 제1 단부에 부착되고, 상기 벨로우즈 조립체의 제2 단부는 밀봉 방식으로 상기 히터 홀딩 플레이트에 부착되며, 제1 챔버가 상기 벨로우즈 조립체에 위치하는, 벨로우즈 조립체;
    상기 벨로우즈 조립체의 일부를 둘러싸는 인클로저(enclosure)로서, 상기 벨로우즈 조립체와 인클로저 사이에 제2 챔버가 형성되는 인클로저; 및
    상기 제1 챔버로 이어지는 제1 포트(port) 및 상기 제2 챔버로 이어지는 제2 포트를 포함하는 가스 매니폴드;를 더 포함하고,
    상기 가스 매니폴드는, 상기 제1 포트를 통해 상기 제1 챔버에 가압 가스를 공급하고, 상기 제2 포트를 통해 상기 제2 챔버에 가압 가스를 공급하도록 구성되고,
    상기 가스 매니폴드를 사용하여 가압 가스를 상기 제1 챔버에 제공함으로써 상기 냉각 저장체가 상기 제1 위치로 이동되고, 상기 냉각 저장체가 상기 제1 위치에 있는 동안, 제1 챔버 내의 가압 가스는 벨로우즈 조립체의 제2 단부가 상기 히터 홀딩 플레이트를 가압하게 하고,
    상기 가스 매니폴드를 사용하여 가압 가스를 상기 제2 챔버에 제공함으로써 상기 냉각 저장체는 제2 위치로 이동되는,
    방법.
  19. 제18항에 있어서,
    상기 인클로저의 제1 단부는 밀봉 방식으로 상기 저온 매니폴드에 부착되고, 상기 인클로저의 제2 단부는 밀봉 방식으로 상기 가스 매니폴드에 부착되는,
    방법.
  20. 제11항에 있어서,
    고정 베이스에 고정된 적어도 하나의 플레이트, 상기 적어도 하나의 플레이트에 고정된 푸셔 홀딩 플레이트(pusher holding plate), 및 상기 푸셔 홀딩 플레이트를 통해 연장되고 푸셔 홀딩 플레이트에 대해 이동하도록 구성된 푸셔(pusher)를 포함하는 푸셔 조립체(pusher assembly)를 제공하는 단계;
    상기 푸셔의 제1 면을 히터와 접촉시키는 단계; 및
    테스트 중인 반도체 장치를 상기 푸셔의 제2면과 접촉시키는 단계;를 더 포함하는,
    방법.
KR1020197024961A 2017-01-31 2018-01-30 구동가능 저온 커패시터를 가지는 능동 열 제어 헤드 KR20190107128A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762452655P 2017-01-31 2017-01-31
US62/452,655 2017-01-31
US15/879,154 2018-01-24
US15/879,154 US20180218926A1 (en) 2017-01-31 2018-01-24 Active thermal control head having actuatable cold capacitor
PCT/US2018/015914 WO2018144443A1 (en) 2017-01-31 2018-01-30 Active thermal control head having actuatable cold capacitor

Publications (1)

Publication Number Publication Date
KR20190107128A true KR20190107128A (ko) 2019-09-18

Family

ID=62980705

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197024961A KR20190107128A (ko) 2017-01-31 2018-01-30 구동가능 저온 커패시터를 가지는 능동 열 제어 헤드

Country Status (4)

Country Link
US (1) US20180218926A1 (ko)
KR (1) KR20190107128A (ko)
TW (1) TW201836096A (ko)
WO (1) WO2018144443A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500701B2 (en) * 2010-03-17 2016-11-22 Delta Design, Inc. Alignment mechanism
CN111381530A (zh) * 2018-12-29 2020-07-07 中国科学院长春光学精密机械与物理研究所 应用于空间遥感载荷的集成控制系统
US11469968B2 (en) * 2020-04-07 2022-10-11 Arbor Networks, Inc. Automated classification of network devices to protection groups
US11493551B2 (en) 2020-06-22 2022-11-08 Advantest Test Solutions, Inc. Integrated test cell using active thermal interposer (ATI) with parallel socket actuation
US11549981B2 (en) 2020-10-01 2023-01-10 Advantest Test Solutions, Inc. Thermal solution for massively parallel testing
US11808812B2 (en) 2020-11-02 2023-11-07 Advantest Test Solutions, Inc. Passive carrier-based device delivery for slot-based high-volume semiconductor test system
US11821913B2 (en) 2020-11-02 2023-11-21 Advantest Test Solutions, Inc. Shielded socket and carrier for high-volume test of semiconductor devices
US20220155364A1 (en) 2020-11-19 2022-05-19 Advantest Test Solutions, Inc. Wafer scale active thermal interposer for device testing
US11567119B2 (en) 2020-12-04 2023-01-31 Advantest Test Solutions, Inc. Testing system including active thermal interposer device
US11573262B2 (en) 2020-12-31 2023-02-07 Advantest Test Solutions, Inc. Multi-input multi-zone thermal control for device testing
US11587640B2 (en) 2021-03-08 2023-02-21 Advantest Test Solutions, Inc. Carrier based high volume system level testing of devices with pop structures
US11656273B1 (en) 2021-11-05 2023-05-23 Advantest Test Solutions, Inc. High current device testing apparatus and systems
US11835549B2 (en) 2022-01-26 2023-12-05 Advantest Test Solutions, Inc. Thermal array with gimbal features and enhanced thermal performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821505A (en) 1997-04-04 1998-10-13 Unisys Corporation Temperature control system for an electronic device which achieves a quick response by interposing a heater between the device and a heat sink
US6771086B2 (en) * 2002-02-19 2004-08-03 Lucas/Signatone Corporation Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control
US20110132000A1 (en) * 2009-12-09 2011-06-09 Deane Philip A Thermoelectric Heating/Cooling Structures Including a Plurality of Spaced Apart Thermoelectric Components

Also Published As

Publication number Publication date
WO2018144443A1 (en) 2018-08-09
TW201836096A (zh) 2018-10-01
US20180218926A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
KR20190107128A (ko) 구동가능 저온 커패시터를 가지는 능동 열 제어 헤드
US11719743B2 (en) Method and apparatus for conducting burn-in testing of semiconductor devices
US7397258B2 (en) Burn-in system with heating blocks accommodated in cooling blocks
KR102438150B1 (ko) 회오리바람 냉각판으로 집적 회로 장치에 시험 공구 세공을 적합하게 하기 위한 시스템 및 방법
JP2522872B2 (ja) 試験用オ―ブン装置並びに試験及び付着方法
KR20010024447A (ko) 적응성 있는 방열 장치를 구비한 번인 보드
CA2967727C (en) Heat transfer device for producing a soldered connection of electrical components
US9804223B2 (en) Systems and methods for conforming test tooling to integrated circuit device with heater socket
JP2021530686A (ja) 電子デバイスの熱制御のためのアセンブリ及びサブアセンブリ
KR20010024445A (ko) 높은 열 방출 능력을 갖는 번인 보드
JP2021009146A (ja) 半導体パッケージテスト装置
EP3190423B1 (en) Thermal clutch for thermal control unit and methods related thereto
KR20150095727A (ko) 시험중인 장치를 위한 써멀 헤드 및 시험중인 장치의 온도를 제어하기 위한 방법
KR102372074B1 (ko) 압력 경감 밸브로 집적 회로 디바이스에 디바이스 테스터를 적응시키기 위한 시스템 및 방법
KR101919088B1 (ko) 테스트핸들러용 가압장치
KR20160086707A (ko) 테스트핸들러용 가압장치
KR101015600B1 (ko) 프로브 스테이션용 스테이지 유닛 및 이를 포함하는 웨이퍼검사 장치
KR20180028759A (ko) 테스트 핸들러
KR20070029874A (ko) 번인장치
CN110749783B (zh) 高低温测试设备及其测试方法
KR102436204B1 (ko) 반도체 소자 테스트 장치
US20070132471A1 (en) Method and apparatus for testing integrated circuits over a range of temperatures
KR102559273B1 (ko) 반도체 소자 테스트 장치의 온도를 조절하는 장치 및 그 방법
US9494642B2 (en) Systems and methods for conforming test tooling to integrated circuit device profiles with ejection mechanisms
WO2016160730A1 (en) Systems and methods for conforming test tooling to integrated circuit device with heater socket