KR20190104016A - 무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치 - Google Patents

무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치 Download PDF

Info

Publication number
KR20190104016A
KR20190104016A KR1020190100569A KR20190100569A KR20190104016A KR 20190104016 A KR20190104016 A KR 20190104016A KR 1020190100569 A KR1020190100569 A KR 1020190100569A KR 20190100569 A KR20190100569 A KR 20190100569A KR 20190104016 A KR20190104016 A KR 20190104016A
Authority
KR
South Korea
Prior art keywords
drone
information
mode
camera
flight
Prior art date
Application number
KR1020190100569A
Other languages
English (en)
Inventor
정유승
김낙영
서정교
이상학
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020190100569A priority Critical patent/KR20190104016A/ko
Publication of KR20190104016A publication Critical patent/KR20190104016A/ko
Priority to US16/567,782 priority patent/US10869004B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • B64F1/362Installations for supplying conditioned air to parked aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • H04N5/2256
    • H04N5/23206
    • H04N5/23245
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/186Video door telephones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • B64C2201/042
    • B64C2201/066
    • B64C2201/127
    • B64C2201/146
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Abstract

본 명세서는 드론, 드론 스테이션 및 기지국으로 구성된 드론의 움직임을 제어하기 위한 드론 시스템을 제공한다.
보다 구체적으로, 드론은 상기 드론 스테이션에 안착된 상태에서 카메라를 이용하여 일정 범위의 지역을 촬영하고, 기 설정된 조건에 따라 설정된 경로를 따라 비행하면서 상기 설정된 경로를 촬영하며, 촬영된 영상 정보를 기지국으로 전송할 수 있다.
기지국은 상기 촬영된 영상 정보에 기초하여 상기 드론에게 특정 동작을 지시하는 제어 정보를 전송할 수 있으며, 상기 드론 스테이션은 상기 드론이 안착된 경우, 충전 패드를 통해 상기 드론의 배터리를 충전시킬 수 있다.

Description

무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치{Shooting method controlling movement of unmanned aerial robot in unmanned aerial system and apparatus for supporting same}
본 발명은 무인 항공 시스템에 관한 것으로서, 보다 상세하게 무인 항공 로봇의 프로펠러의 상태를 측정하여 무인 항공 로봇의 비행을 제어하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
무인 비행체는 조종사 없이 무선전파의 유도에 의해서 비행 및 조종이 가능한 비행기, 헬리콥터 모양의 무인항공기(UAV, Unmanned aerial vehicle / Uninhabited aerial vehicle)의 총칭한다. 최근 무인 비행체는 정찰, 공격 등의 군사적 용도 이외에 영상 촬영, 무인 택배 서비스, 재해 관측 등 다양한 민간?상업 분야에도 활용이 증가되고 있다.
한편, 민간?상업용 무인 비행체는 각종 규제와 인증, 법제도 등의 기반 구축이 미흡하여 제한적으로 운영될 수밖에 없고, 무인 비행체를 사용하는 사람들이 잠재적인 위험이나 공공에 가할 수 있는 위험을 깨닫기도 어렵다. 특히, 무인 비행체의 무분별한 이용으로 충돌사고, 보안 지역의 비행, 프라이버시(Privacy) 침해 등의 발생이 늘어나고 있는 추세에 있다.
많은 국가들이 무인 비행체의 운영과 관련하여 새로운 규정, 표준, 정책 및 절차 등을 개선하기 위해 노력하고 있다.
본 명세서는 5G 시스템을 이용하여 무인 항공 로봇의 움직을 제어하여 일정 지역을 촬영하기 위한 방법을 제공함에 그 목적이 있다.
또한, 본 명세서는 무인 항공 로봇이 스테이션에 착륙한 상태로 일정 지역을 촬영하다 기 설정된 이벤트가 발생하면 설정된 경로를 이동하여 촬영하기 위한 방법을 제공함에 그 목적이 있다.
또한, 본 명세서는 무인 항공 로봇이 일정 경로를 따라 이동하며 촬영하는 중에 특정 이벤트가 발생하는 경우, 발생된 특정 이벤트에 대응되는 특정 동작을 수행하는 방법을 제공함에 그 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 드론, 드론 스테이션 및 기지국으로 구성된 드론의 움직임을 제어하기 위한 드론 시스템에 있어서, 상기 드론은 상기 드론 스테이션에 안착된 상태에서 카메라를 이용하여 일정 범위의 지역을 촬영하고, 기 설정된 조건에 따라 설정된 경로를 따라 비행하면서 상기 설정된 경로를 촬영하며, 촬영된 영상 정보를 기지국으로 전송하고, 상기 드론 스테이션은 상기 드론이 안착된 경우, 충전 패드를 통해 상기 드론의 배터리를 충전시키되, 상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정되며, 상기 기 설정된 조건에 따라 상기 드론의 비행 주기, 비행 경로, 비행 방법이 각각 다르게 설정되는 드론 시스템을 제공한다.
또한, 본 명세서에서, 상기 기지국은 상기 촬영된 영상 정보에 기초하여 상기 드론에게 특정 동작을 지시하는 제어 정보를 전송한다.
또한, 본 명세서에서, 상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정된다.
또한, 본 명세서에서, 상기 제어 정보는 상기 드론의 비행을 통한 촬영 동작을 수행하는 시간 구간과 관련된 비행 시간 구간 정보 및 상기 시간 구간 동안 상기 비행 주기와 관련된 주기 정보를 포함한다.
또한, 본 명세서에서, 상기 드론은 카메라의 촬영 모드를 주간 모드 또는 야간 모드로 변경하여 상기 설정된 경로를 촬영한다.
또한, 본 명세서에서, 상기 촬영 모드는 조도에 따라 주간 모드 또는 야간 모드로 변경된다.
또한, 본 명세서에서, 상기 기지국은 상기 촬영 모드를 변경하기 위한 제어 신호를 상기 드론에게 전송하고, 상기 드론은 상기 제어 신호에 따라 상기 촬영 모드를 주간 모드 또는 야간 모드로 변경한다.
또한, 본 명세서에서, 상기 촬영 모드가 주간 모드인 경우, 상기 드론은 컬러(Red Green Blue: RGB) 카메라를 통해서 촬영을 수행하고, 상기 촬영 모드가 야간 모드인 경우, 상기 드론은 열화상 카메라를 통해서 촬영을 수행한다.
또한, 본 명세서에서, 상기 드론은 상기 야간 모드에서 상기 열화상 카메라를 통해서 상기 촬영을 수행하는 경우, 특정 이벤트 발생시 조명을 온(ON) 시키고 상기 열화상 카메라와 함께 컬러 카메라를 이용하여 상기 촬영을 수행한다.
또한, 본 명세서에서, 상기 특정 이벤트는 기 설정된 범죄 상황 또는 긴급 상황에 대응되는 이벤트이다.
또한, 본 명세서에서, 상기 기지국은 상기 기 설정된 범죄 상황 또는 긴급 상황과 관련된 제어 정보를 상기 드론으로 전송한다.
또한, 본 명세서에서, 상기 드론은 배터리가 임계 값 이하인 경우, 상기 드론은 인접한 다른 드론 스테이션을 탐색하고, 상기 탐색된 다른 드론 스테이션에 안착된 다른 드론에게 상기 설정된 경로의 촬영 동작을 핸드오버 한다.
또한, 본 명세서에서, 상기 드론은 상기 다른 드론에게 상기 촬영 동작과 관련된 정보를 전송한다.
또한, 본 명세서에서, 상기 드론은 상기 다른 드론 스테이션에 착륙하여 배터리를 충전한다.
또한, 본 명세서는, 본체; 상기 본체에 구비되어 일정 지역을 촬영하기 위한 상기 적어도 하나의 카메라; 적어도 하나의 모터; 상기 적어도 하나의 모터 각각에 연결된 적어도 하나의 프로펠러; 및 상기 적어도 하나의 모터와 전기적으로 연결되어 상기 적어도 하나의 모터를 제어하는 프로세서를 포함하되, 상기 프로세서는, 드론 스테이션에 안착된 상태에서 카메라를 이용하여 일정 범위의 지역을 촬영하고, 기 설정된 조건에 따라 설정된 경로를 따라 비행하면서 상기 설정된 경로를 촬영하며, 촬영된 영상 정보를 기지국으로 전송하고, 상기 기지국으로부터 상기 촬영된 영상 정보에 기초하여 특정 동작을 지시하는 제어 정보를 수신하며, 상기 드론이 상기 드론 스테이션이 안착된 경우, 상기 드론의 배터리를 충전하도록 제어하되, 상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정되며, 상기 기 설정된 조건에 따라 상기 드론의 비행 주기, 비행 경로, 비행 방법이 각각 다르게 설정되는 것을 특징으로 하는 드론을 제공한다.
본 발명에 따르면, 5G 통신 기술을 이용하여 무인 항공 로봇의 움직을 제어할 수 있는 효과가 있다.
또한, 본 명세서는 스테이션에 착륙한 상태에서 인접 지역을 촬영하다 설정된 조건을 만족하는 경우, 설정된 경로를 따라 움직이며 일정 지역을 촬영하는 효과가 있다.
또한, 본 명세서는 설정된 경로를 따라 이동하며 촬영하는 무인 항공 로봇을 통해 고정된 상태에서 촬영하는 CCTV를 대체할 수 있는 효과가 있다.
또한, 본 명세서는 이동하며 촬영하는 드론이 특정 이벤트가 발생한 경우, 이에 대응되는 특정 동작을 수행함으로써, 특정 이벤트에 대한 대응을 신속히 할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 무인 비행체의 사시도를 나타낸다.
도 2는 도 1의 무인 비행체의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 항공 제어 시스템의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 4는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 5는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 6은 5G 통신 시스템에서 로봇과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
도 7은 5G 통신을 이용한 로봇 대 로봇 간의 기본 동작의 일 예를 예시한다.
도 8은 UAS를 포함하는 3GPP 시스템 개념도의 일례를 나타낸 도이다.
도 9는 UAV에 대한 C2 통신 모델의 일례들을 나타낸다.
도 10은 본 발명이 적용될 수 있는 측정 수행 방법의 일 예를 나타낸 흐름도이다.
도 11은 본 발명의 일 실시 예에 따른 드론의 움직임을 제어하기 위한 시스템 구조의 일 예를 나타내는 도이다.
도 12는 본 발명의 일 실시 예에 따른 드론의 움직임 제어를 통해 촬영 동작을 수행하기 위한 방법의 일 예를 나타내는 도이다.
도 13은 본 발명의 일 실시 예에 따른 드론의 움직임 제어를 통해 일정 지역을 촬영하기 위한 방법의 일 예를 나타내는 순서도이다.
도 14는 본 발명의 일 실시 예에 따른 특정 이벤트의 발생에 따른 드론의 동작에 대한 일 예를 나타내는 도이다.
도 15는 본 발명의 일 실시 예에 따른 드론의 핸드오버 방법의 일 예를 나타내는 순서도이다.
도 16은 본 발명의 일 실시 예에 따른 드론의 움직임을 제어하기 위한 방법의 일 예를 나타내는 순서도이다.
도 17은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 18은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 실시예에 따른 무인 비행체의 사시도를 나타낸다.
우선, 무인 비행체(100)은 지상의 관리자에 의해 수동 조작되거나, 설정된 비행 프로그램에 의해 자동 조종되면서 무인 비행하게 되는 것이다. 이와 같은 무인 비행체(100)은 도 1에서와 같이 본체(20), 수평 및 수직이동 추진장치(10), 및 착륙용 레그(130)를 포함하는 구성으로 이루어진다.
본체(20)는 작업부(40) 등의 모듈이 장착되는 몸체 부위이다.
수평 및 수직이동 추진장치(10)는 본체(20)에 수직으로 설치되는 하나 이상의 프로펠러(11)로 이루어지는 것으로, 본 발명의 실시예에 따른 수평 및 수직이동 추진장치(10)는 서로 이격 배치된 복수개의 프로펠러(11)와 모터(12)로 이루어진다. 여기서 수평 및 수직이동 추진장치(10)는 프로펠러(11)가 아닌 에어 분사형 추진기 구조로 이루어질 수도 있다.
복수 개의 프로펠러 지지부는 본체(20)에서 방사상으로 형성된다. 각각의 프로펠러 지지부에는 모터(12)가 장착될 수 있다. 각각의 모터(12)에는 프로펠러(11)가 장착된다.
복수 개의 프로펠러(11)는 본체(20)를 중심을 기준하여 대칭되게 배치될 수 있다. 그리고 복수 개의 프로펠러(11)의 회전 방향은 시계 방향과 반 시계 방향이 조합되도록 모터(12)의 회전 방향이 결정될 수 있다. 본체(20)를 중심을 기준하여 대칭되는 한 쌍의 프로펠러(11)의 회전 방향은 동일(예를 들어, 시계 방향)하게 설정될 수 있다. 그리고 다른 한 쌍의 프로펠러(11)은 이와 달리 회전 방향이 반대일 수 있다(예를 들어, 시계 반대 방향).
착륙용 레그(30)는 본체(20)의 저면에 서로 이격 배치된다. 또한, 착륙용 레그(30)의 하부에는 무인 비행체(100)가 착륙할 때 지면과의 충돌에 의한 충격을 최소화하는 완충 지지부재(미도시)가 장착될 수 있다. 물론 무인 비행체(100)는 상술한 바와 다른 비행체 구성의 다양한 구조로 이루어질 수 있다.
도 2는 도 1의 무인 비행체의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 2를 참조하면, 무인 비행체(100)은 안정적으로 비행하기 위해서 각종 센서들을 이용해 자신의 비행상태를 측정한다. 무인 비행체(100)는 적어도 하나의 센서를 포함하는 센싱부(130)를 포함할 수 있다.
무인 비행체(100)의 비행상태는 회전운동상태(Rotational States)와 병진운동상태(Translational States)로 정의된다.
회전운동상태는 ‘요(Yaw)’, ‘피치 (Pitch)’, 및 ‘롤 (Roll)’을 의미하며, 병진운동상태는 경도, 위도, 고도, 및 속도를 의미한다.
여기서, ‘롤’, ‘피치’, 및 ‘요’는 오일러 (Euler) 각도라 부르며, 비행기 기체좌표 x, y, z 세 축이 어떤 특정 좌표, 예를 들어, NED 좌표 N, E, D 세 축에 대하여 회전된 각도를 나타낸다. 비행기 전면이 기체좌표의 z축을 기준으로 좌우로 회전할 경우, 기체좌표의 x축은 NED 좌표의 N축에 대하여 각도 차이가 생기게 되며, 이각도를 "요"(Ψ)라고 한다. 비행기의 전면이 오른쪽으로 향한 y축을 기준으로 상하로 회전을 할 경우, 기체좌표의 z축은 NED 좌표의 D축에 대하여 각도 차이가 생기게 되며, 이 각도를 "피치"(θ)라고 한다. 비행기의 동체가 전면을 향한 x축을 기준으로 좌우로 기울게 될 경우, 기체좌표의 y축은 NED 좌표의 E축에 대하여 각도가 생기게 되며, 이 각도를 "롤"(Φ)이라 한다.
무인 비행체(100)은 회전운동상태를 측정하기 위해 3축 자이로 센서(Gyroscopes), 3축 가속도 센서(Accelerometers), 및 3축 지자기 센서(Magnetometers)를 이용하고, 병진운동상태를 측정하기 위해 GPS 센서와 기압 센서(Barometric Pressure Sensor)를 이용한다.
본 발명의 센싱부(130)는 자이로 센서, 가속도 센서, GPS 센서, 영상 센서 및 기압 센서 중 적어도 하나를 포함한다. 여기서, 자이로 센서와 가속도 센서는 무인 비행체(100)의 기체좌표(Body Frame Coordinate)가 지구관성좌표(Earth Centered Inertial Coordinate)에 대해 회전한 상태와 가속된 상태를 측정해주는데, MEMS(Micro-Electro-Mechanical Systems) 반도체 공정기술을 이용해 관성측정기(IMU: Inertial Measurement Unit)라 부르는 단일 칩(Single Chip)으로 제작될 수도 있다.
또한, IMU 칩 내부에는 자이로 센서와 가속도 센서가 측정한 지구관성좌표 기준의 측정치들을 지역좌표 (Local Coordinate), 예를 들어 GPS가 사용하는 NED(North-East-Down) 좌표로 변환해주는 마이크로 컨트롤러가 포함될 수 있다.
자이로 센서는 무인 비행체(100)의 기체좌표 x, y, z 세 축이 지구관성 좌표에 대하여 회전하는 각속도를 측정한 후 고정좌표로 변환된 값(Wx.gyro, Wy.gyro, Wz.gyro)을 계산하고, 이 값을 선형 미분방정식을 이용해 오일러 각도(Φgyro, θgyro, ψgyro)로 변환한다.
가속도 센서는 무인 비행체(100)의 기체좌표 x, y, z 세 축의 지구관성좌표에 대한 가속도를 측정한 후 고정좌표로 변환된 값(fx,acc, fy,acc, fz,acc)을 계산하고, 이 값을 ‘롤(Φacc)’과 ‘피치(θacc)’로 변환하며, 이 값 들은 자이로 센서의 측정치를 이용해 계산한 ‘롤(Φgyro)’과 ‘피치(θgyro)’에 포함된 바이어스 오차를 제거하는 데 이용된다.
지자기 센서는 무인 비행체(100)의 기체좌표 x, y, z 세 축의 자북점에 대한 방향을 측정하고, 이 값을 이용해 기체좌표의 NED 좌표에 대한 ‘요’ 값을 계산한다.
GPS 센서는 GPS 위성들로부터 수신한 신호를 이용해 NED 좌표 상에서 무인 비행체(100)의 병진운동상태, 즉, 위도(Pn.GPS), 경도(Pe.GPS), 고도(hMSL.GPS), 위도 상의 속도(Vn.GPS), 경도 상의 속도(Ve.GPS), 및 고도 상의 속도(Vd.GPS)를 계산한다. 여기서, 첨자 MSL은 해수면(MSL: Mean Sea Level)을 의미한다.
기압 센서는 무인 비행체(100)의 고도(hALP.baro)를 측정할 수 있다. 여기서, 첨자 ALP는 기압(Air-Level Pressor)을 의미하며, 기압 센서는 무인 비행체(100)의 이륙시 기압과 현재 비행고도에서의 기압을 비교해 이륙 지점으로부터의 현재 고도를 계산한다.
카메라 센서는 적어도 하나의 광학렌즈와, 광학렌즈를 통과한 광에 의해 상이 맺히는 다수 개의 광다이오드(photodiode, 예를 들어, pixel)를 포함하여 구성된 이미지센서(예를 들어, CMOS image sensor)와, 광다이오드들로부터 출력된 신호를 바탕으로 영상을 구성하는 디지털 신호 처리기(DSP: Digital Signal Processor)를 포함할 수 있다. 디지털 신호 처리기는 정지영상은 물론이고, 정지영상으로 구성된 프레임들로 이루어진 동영상을 생성하는 것도 가능하다.
무인 비행체(100)는, 정보를 입력받거나 수신하고 정보를 출력하거나 송신하는 커뮤니케이션 모듈(170)을 포함한다. 커뮤니케이션 모듈(170)은 외부의 다른 기기와 정보를 송수신하는 드론 통신부(175)를 포함할 수 있다. 커뮤니케이션 모듈(170)은 정보를 입력하는 입력부(171)를 포함할 수 있다. 커뮤니케이션 모듈(170)은 정보를 출력하는 출력부(173)를 포함할 수 있다.
물론, 출력부(173)는 무인 비행체(100)에 생략되고 단말기(300)에 형성될 수 있다.
일 예로, 무인 비행체(100)는 입력부(171)로부터 직접 정보를 입력받을 수 있다. 다른 예로, 무인 비행체(100)는 별도의 단말기(300) 또는 서버(200)에 입력된 정보를 드론 통신부(175)를 통해 수신받을 수 있다.
일 예로, 무인 비행체(100)는 출력부(173)로 직접 정보를 출력시킬 수 있다. 다른 예로, 무인 비행체(100)는 드론 통신부(175)를 통해 별도의 단말기(300)로 정보를 송신하여, 단말기(300)가 정보를 출력하게 할 수 있다.
드론 통신부(175)는, 외부의 서버(200), 단말기(300) 등과 통신하게 구비될 수 있다. 드론 통신부(175)는, 스마트폰이나 컴퓨터 등의 단말기(300)로부터 입력된 정보를 수신할 수 있다. 드론 통신부(175)는 단말기(300)로 출력될 정보를 송신할 수 있다. 단말기(300)는 드론 통신부(175)로부터 받은 정보를 출력할 수 있다.
드론 통신부(175)는 단말기(300) 또는/및 서버(200)로부터 각종 명령 신호를 수신할 수 있다. 드론 통신부(175)는 단말기(300) 또는/및 서버(200)로부터 주행을 위한 구역 정보, 주행 경로, 주행 명령을 수신받을 수 있다. 여기서, 구역 정보는 비행 제한 구역(A) 정보, 접근 제한 거리 정보를 포함할 수 있다.
입력부(171)는 On/Off 또는 각종 명령을 입력받을 수 있다. 입력부(171)는 구역 정보를 입력받을 수 있다. 입력부(171)는 물건 정보를 입력받을 수 있다. 입력부(171)는, 각종 버튼이나 터치패드, 또는 마이크 등을 포함할 수 있다.
출력부(173)는 각종 정보를 사용자에게 알릴 수 있다. 출력부(173)는 스피커 및/또는 디스플레이를 포함할 수 있다. 출력부(173)는 주행 중 감지한 발견물의 정보를 출력할 수 있다. 출력부(173)는 발견물의 식별 정보를 출력할 수 있다. 출력부(173)는 발견물의 위치 정보를 출력할 수 있다.
무인 비행체(100)는 맵핑 및/또는 현재 위치를 인식하는 등 각종 정보를 처리하고 판단하는 제어부(140)를 포함한다. 제어부(140)는 무인 비행체(100)를 구성하는 각종 구성들의 제어를 통해, 무인 비행체(100)의 동작 전반을 제어할 수 있다.
제어부(140)는 커뮤니케이션 모듈(170)로부터 정보를 받아 처리할 수 있다. 제어부(140)는 입력부(171)로부터 정보를 입력 받아 처리할 수 있다. 제어부(140)는 드론 통신부(175)로부터 정보를 받아 처리할 수 있다.
제어부(140)는 센싱부(130)로부터 감지 정보를 입력 받아 처리할 수 있다.
제어부(140)는 모터(12)의 구동을 제어할 수 있다. 제어부(140)는 작업부(40)의 동작을 제어할 수 있다.
무인 비행체(100)는 각종 데이터를 저장하는 저장부(150)를 포함한다. 저장부(150)는 무인 비행체(100)의 제어에 필요한 각종 정보들을 기록하는 것으로, 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다.
저장부(150)에는 주행구역에 대한 맵이 저장될 수 있다. 맵은 무인 비행체(100)와 드론 통신부(175)을 통해 정보를 교환할 수 있는 외부 단말기(300)에 의해 입력된 것일 수도 있고, 무인 비행체(100)가 스스로 학습을 하여 생성한 것일 수도 있다. 전자의 경우, 외부 단말기(300)로는 맵 설정을 위한 어플리케이션(application)이 탑재된 리모콘, PDA, 랩탑(laptop), 스마트 폰, 태블릿 등을 예로 들 수 있다.
도 3은 본 발명의 일 실시예에 따른 항공 제어 시스템의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 3을 참조하면, 본 발명의 일 실시예에 다른 항공 제어 시스템은 무인 비행체(100)와 서버(200)를 포함하거나, 무인 비행체(100), 단말기(300) 및 서버(200)를 포함할 수 있다. 무인 비행체(100), 단말기(300) 및 서버(200)는 서로 무선 통신 방법으로 연결된다.
무선 통신 방법은 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등이 사용될 수 있다.
무선 통신 방법은 무선 인터넷 기술이 사용될 수 있다. 무선 인터넷 기술로는, 예를 들어 WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced), 5G 등이 있다. 특히 5G 통신망을 이용하여 데이터를 송수신함으로써 보다 빠른 응답이 가능하다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 명세서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(Next generation NodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP 5G를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
UE 및 5G 네트워크 블록도 예시
도 4는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 4를 참조하면, 드론을 제1 통신 장치로 정의(도 4의 910)하고, 프로세서(911)가 드론의 상세 동작을 수행할 수 있다.
드론은 무인 항공 차량, 무인 항공 로봇 등으로 표현될 수도 있다.
드론과 통신하는 5G 네트워크를 제2 통신 장치로 정의(도 4의 920)하고, 프로세서(921)가 드론의 상세 동작을 수행할 수 있다. 여기서, 5G 네트워크는 드론과 통신하는 다른 드론을 포함할 수 있다.
5G 네트워크가 제 1 통신 장치로, 드론이 제 2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제 1 통신 장치 또는 상기 제 2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 드론 등일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 드론(Drone), UAV(Unmanned Aerial Vehicle), 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 도 4를 참고하면, 제 1 통신 장치(910)와 제 2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
무선 통신 시스템에서 신호 송/수신 방법
도 5는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 5를 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 검출했다고 판단하고, 상기 검출된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 5를 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 5를 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
5G 통신 시스템의 빔 관리(Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고을 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, ?}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 구동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제 1 주파수 자원에서 제 2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
5G 통신을 이용한 로봇 기본 동작
도 6은 5G 통신 시스템에서 로봇과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
로봇은 특정 정보 전송을 5G 네트워크로 전송한다(S1). 그리고, 상기 5G 네트워크는 로봇의 원격 제어 여부를 결정할 수 있다(S2). 여기서, 상기 5G 네트워크는 로봇 관련 원격 제어를 수행하는 서버 또는 모듈을 포함할 수 있다.
그리고, 상기 5G 네트워크는 로봇의 원격 제어와 관련된 정보(또는 신호)를 상기 로봇으로 전송할 수 있다(S3).
5G 통신 시스템에서 로봇과 5G 네트워크 간의 응용 동작
이하, 도 1 내지 도 6과 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 로봇 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 발명에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 S1 단계 및 S3 단계와 같이, 로봇이 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, 로봇은 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, 로봇은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, 로봇이 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, 로봇은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다. 그리고, 상기 5G 네트워크는 상기 로봇으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 로봇은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 로봇으로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 로봇으로 원격 제어와 관련된 정보(또는 신호)를 전송할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, 로봇은 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, 로봇은 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, 로봇은 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, 로봇은 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, 로봇은 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 6의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 6의 S1 단계에서, 로봇은 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 로봇은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
5G 통신을 이용한 로봇 대 로봇 간의 동작
도 7은 5G 통신을 이용한 로봇 대 로봇 간의 기본 동작의 일 예를 예시한다.
제1 로봇은 특정 정보를 제2 로봇으로 전송한다(S61). 제2 로봇은 특정 정보에 대한 응답을 제1 로봇으로 전송한다(S62).
한편, 5G 네트워크가 상기 특정 정보, 상기 특정 정보에 대한 응답의 자원 할당에 직접적(사이드 링크 통신 전송 모드 3) 또는 간접적으로(사이드링크 통신 전송 모드 4) 관여하는지에 따라 로봇 대 로봇 간 응용 동작의 구성이 달라질 수 있다.
다음으로, 5G 통신을 이용한 로봇 대 로봇 간의 응용 동작에 대해 살펴본다.
먼저, 5G 네트워크가 로봇 대 로봇 간의 신호 전송/수신의 자원 할당에 직접적으로 관여하는 방법을 설명한다.
5G 네트워크는, 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 제1 로봇에 전송할 수 있다. 여기서, PSCCH(physical sidelink control channel)는 특정 정보 전송의 스케줄링을 위한 5G 물리 채널이고, PSSCH(physical sidelink shared channel)는 특정 정보를 전송하는 5G 물리 채널이다. 그리고, 제1 로봇은 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 로봇으로 전송한다. 그리고, 제1 로봇이 특정 정보를 PSSCH 상에서 제2 로봇으로 전송한다.
다음으로, 5G 네트워크가 신호 전송/수신의 자원 할당에 간접적으로 관여하는 방법에 대해 살펴본다.
제1 로봇은 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱한다. 그리고, 제1 로봇은, 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택한다. 여기서, 제1 윈도우는 센싱 윈도우(sensing window)를 의미하고, 제2 윈도우는 선택 윈도우(selection window)를 의미한다. 제1 로봇은 상기 선택된 자원을 기초로 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 로봇으로 전송한다. 그리고, 제1 로봇은 특정 정보를 PSSCH 상에서 제2 로봇으로 전송한다.
앞서 살핀 드론의 구조적 특징, 5G 통신 기술 등은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
드론(Drone)
무인 항공 시스템(Unmanned Aerial System): UAV와 UAV 컨트롤러의 결합
무인 항공 차량(Unmanned Aerial Vehicle): 원격 조정되는 인간 조종사가 없는 항공기로서, 무인 항공 로봇, 드론, 또는 단순히 로봇 등으로 표현될 수 있다.
UAV 컨트롤러(controller): UAV를 원격으로 제어하는데 사용되는 디바이스
ATC: Air Traffic Control
NLOS: Non-line-of-sight
UAS: Unmanned Aerial System
UAV: Unmanned Aerial Vehicle
UCAS: Unmanned Aerial Vehicle Collision Avoidance System
UTM: Unmanned Aerial Vehicle Traffic Management
C2: Command and Control
도 8은 UAS를 포함하는 3GPP 시스템 개념도의 일례를 나타낸 도이다.
무인 항공 시스템 (UAS)은 때로는 드론(drone)이라고 불리는 무인 항공 차량 (Unmanned Aerial Vehicle, UAV)과 UAV 컨트롤러(controller)의 결합이다. UAV는 인력 조종 장치가 없는 항공기이다. 대신에, UAV는 UAV 컨트롤러를 통해 지상의 오퍼레이터(operator)로부터 제어되며, 자율 비행 능력들을 가질 수 있다. UAV 및 UAV 컨트롤러 간의 통신 시스템은 3GPP 시스템에 의해 제공된다. 크기와 무게에서 UAV의 범위는 레크리에이션 목적으로 자주 사용되는 작고 가벼운 항공기부터, 상업용으로 더 적합할 수 있는 크고 무거운 항공기에 이르기까지 다양하다. 규제 요구 사항은 이 범위에 따라 다르며, 지역에 따라 다르다.
 UAS에 대한 통신 요구 사항은 UAV와 UAV 컨트롤러 사이의 커맨드(command) 및 제어(C2)뿐만 아니라, 서빙 3GPP 네트워크 및 네트워크 서버 모두에 대한 UAS 컴포넌트로/로부터의 데이터 업 링크(uplink) 및 다운링크(downlink)를 포함한다. UTM (Unmanned Aerial System Traffic Management)은 UAS 식별, 추적, 권한 부여(authorization), 강화(enhancement) 및 UAS 동작들의 규정을 제공하고, 동작을 위해 UAS에 대해 요구되는 데이터를 저장하는데 사용된다. 또한, UTM은 인증된 사용자 (예: 항공 교통 관제(air traffic control), 공공 안전 기관(public safety agency))가 ID(identity), UAV의 메타 데이터 및 UAV의 컨트롤러에게 질의(query)하도록 하게 한다.
3GPP 시스템은 UTM이 UAV 및 UAV 컨트롤러를 연결하도록 하게 하여 UAV 및 UAV 컨트롤러를 UAS로 식별할 수 있도록 한다. 3GPP 시스템은 UAS가 아래 제어 정보를 포함할 수 있는 UAV 데이터를 UTM으로 전송할 수 있게 한다.
제어 정보: 고유한 Identity (이것은 3GPP identity 일 수 있다), UAV의 UE 능력(capability), 제조사 및 모델, 일련 번호, 이륙 중량(take-off weight), 위치, 소유자 identity, 소유자 주소, 소유자 연락처 세부 정보, 소유자 인증(certification), 이륙 위치(take-off location), 임무 유형, 경로 데이터, 작동 상태(operating status).
3GPP 시스템은 UAS가 UTM으로 UAV 컨트롤러 데이터를 전송할 수 있게 한다. 그리고, UAV 컨트롤러 데이터는 고유 ID (3GPP ID 일 수 있음), UAV 컨트롤러의 UE 기능, 위치, 소유자 ID, 소유자 주소, 소유자 연락처 세부 정보, 소유자 인증, UAV 운영자 신원 확인, UAV 운영자 면허, UAV 운영자 인증, UAV 파일럿 identity, UAV 파일럿 라이센스, UAV 파일럿 인증 및 비행 계획 등을 포함할 수 있다.
UAS와 관련된 3GPP 시스템의 기능에 대해서는 다음과 같이 정리할 수 있다.
- 3GPP 시스템은 UAS가 상기 UAS에 적용되는 서로 다른 인증 및 권한 수준에 기초하여 UTM에 서로 다른 UAS 데이터를 전송할 수 있도록 한다.
- 3GPP 시스템은 향후 UTM 및 지원 애플리케이션의 진화와 함께 UTM으로 전송되는 UAS 데이터를 확장하는 기능을 지원한다.
- 규정(regulation) 및 보안 보호에 기초하여, 3GPP 시스템은 UAS가 UTM에 IMEI(International Mobile Equipment Identity), MSISDN(Mobile Station International Subscriber Directory Number) 또는 IMSI(International Mobile Subscriber Identity) 또는 IP 주소와 같은 식별자(identifier)를 전송할 수 있도록 한다.
- 3GPP 시스템은 UAS의 UE가 UTM에게 IMEI, MSISDN 또는 IMSI 또는 IP 주소와 같은 식별자를 전송할 수 있도록 한다.
- 3GPP 시스템은 MNO(Mobile Network Operator)가 UAV 및 UAV 컨트롤러의 네트워크 기반 위치 정보와 함께 UTM으로 전송된 데이터를 보완한다.
- 3GPP 시스템은 UTM이 동작하도록 허가의 결과를 MNO에 알릴 수 있도록 한다.
- 3GPP 시스템은 적절한 가입 정보가 존재하는 경우에만 MNO가 UAS 인증 요청을 허용할 수 있도록 한다.
- 3GPP 시스템은 UTM에 UAS의 ID(s)를 제공한다.
- 3GPP 시스템은 UAS가 UAV 및 UAV 컨트롤러의 라이브 위치 정보로 UTM을 갱신할 수 있게 한다.
- 3GPP 시스템은 UAV 및 UAV 컨트롤러의 보충 위치(supplement location) 정보를 UTM에 제공한다.
- 3GPP 시스템은 UAV들을 지원하며, 대응하는 UAV 컨트롤러는 다른 PLMN에 동시에 연결된다.
- 3GPP 시스템은 해당 시스템이 UAS 동작을 위해 설계된 3GPP 통신 능력의 지원에 관한 UAS 정보를 얻을 수 있는 기능을 제공한다.
- 3GPP 시스템은 UAS 가능(capable) UE를 가진 UAS와 non-UAS 가능 UE를 가지는 UAS를 구별할 수 있는 UAS 식별(identification) 및 가입 데이터(subscription date)를 지원한다.
- 3GPP 시스템은 검출(detection), 식별(identification) 및 문제가 있는 UAV(들) 및 UAV 컨트롤러를 UTM으로 보고하는 것을 지원한다.
Rel-16 ID_UAS의 서비스 요구 사항에서, UAS는 한 쌍의(paired) UAV를 제어하기 위해 UAV 컨트롤러를 사용하여 휴먼 오퍼레이터에 의해 동작되고, UAV와 UAV 컨트롤러가 모두 커맨드와 제어(C2) 통신을 위해 3GPP 네트워크를 통해 두 개의 개별 연결을 사용하여 연결된다. UAS 동작에 대해 고려해야 할 첫 번째 사항은 다른 UAV와의 공중 충돌 위험, UAV 제어 실패 위험, 의도적인 UAV 오용 위험 및 다양한 사용자의 위험 (예: 공중을 공유하는 비즈니스, 여가 활동 등). 따라서, 안전상의 위험을 피하기 위해서, 5G 망을 전송망으로 고려할 때, C2 통신을 위한 QoS 보장에 의해 UAS 서비스를 제공하는 것은 중요하다.
도 9는 UAV에 대한 C2 통신 모델의 일례들을 나타낸다.
모델-A는 직접(direct) C2이다. UAV 컨트롤러 및 UAV는 서로 통신하기 위해 직접 C2 링크(또는 C2 통신)를 설정하고, 둘 다 직접적인 C2 통신을 위해 5G 네트워크에 의해 제공되어 설정 및 스케쥴된 무선 자원을 사용하여 5G 네트워크에 등록된다. 모델-B는 간접(indirect) C2이다. UAV 컨트롤러 및 UAV는 5G 네트워크에 대한 각각의 유니 캐스트 C2 통신 링크를 확립 및 등록하고 5G 네트워크를 통해 서로 통신한다. 또한, UAV 컨트롤러 및 UAV는 서로 다른 NG-RAN 노드를 통해 5G 네트워크에 등록될 수 있다. 5G 네트워크는 어떠한 경우에도 C2 통신의 안정적인 라우팅을 처리하기 위한 메커니즘을 지원한다. 명령(command) 및 제어(control)는 UAV 컨트롤러 / UTM에서 UAV로 명령을 전달하기 위해 C2 통신을 사용한다. 이 타입(모텔-B)의 C2 통신은 시각적 시선 (VLOS) 및 비-시각적 시선 (Non-VLOS)을 포함하는 UAV와 UAV 컨트롤러 / UTM 간의 서로 다른 거리를 반영하기 위한 두 가지 서로 다른 하위 클래스를 포함한다. 이 VLOS 트래픽 타입의 레이턴시는 명령 전달 시간, 인간 반응 시간 및 보조 매체, 예를 들어, 비디오 스트리밍, 전송 대기 시간의 지시를 고려할 필요가 있다. 따라서, VLOS의 지속 가능한 latency는 Non-VLOS보다 짧다. 5G 네트워크는 UAV 및 UAV 컨트롤러에 대한 각각의 세션을 설정한다. 이 세션은 UTM과 통신하고 UAS에 대한 디폴트(default) C2 통신으로 사용할 수 있다.
등록 절차 또는 서비스 요청 절차의 일부로서, UAV 및 UAV 컨트롤러는 UTM으로 UAS 동작을 요청하고, 애플리케이션 ID(들)에 의해 식별되는 사전 정의된 서비스 클래스 또는 요구된 UAS 서비스를 지시한다(예를 들어, 항해(navigational) 원조 서비스 및 날씨 등)을 UTM에 제공한다. UTM은 UAV 및 UAV 컨트롤러에 대한 UAS 동작을 허가하고, 부여된 UAS 서비스를 제공하며, UAS에 임시 UAS-ID를 할당한다. UTM은 5G 네트워크로 UAS의 C2 통신에 필요한 정보를 제공한다. 예를 들어, 서비스 클래스, 또는 UAS 서비스의 트래픽 타입, 인가된 UAS 서비스의 요구된 QoS 및 UAS 서비스의 가입(subscription)을 포함할 수 있다. 5G 네트워크와 C2 통신을 확립하도록 요청할 때, UAV 및 UAV 컨트롤러는 5G 네트워크로 할당된 UAS-ID와 함께 선호되는 C2 통신 모델(예를 들어, 모델-B)를 지시한다. 추가적인 C2 통신 연결을 생성하거나 C2에 대한 기존 데이터 연결의 구성을 변경할 필요가 있는 경우, 5G 네트워크는 UAS의 승인된 UAS 서비스 정보 및 C2 통신에서 요구된 QoS 및 우선 순위에 기초하여 C2 통신 트래픽에 대한 하나 이상의 QoS 플로우들을 수정 또는 할당한다.
UAV 트래픽 관리 (UAV traffic management)
(1) 중앙 집중식 UAV 트래픽 관리(Centralised UAV traffic management)
3GPP 시스템은 UTM이 비행 허가와 함께 경로 데이터를 UAV에 제공하는 메커니즘을 제공한다. 3GPP 시스템은 UTM으로부터 수신한 경로 수정 정보를 500ms 미만의 지연(latency)으로 UAS에 전달한다. 3GPP 시스템은 UTM으로부터 수신 된 통지를 500ms 미만의 대기 시간을 갖는 UAV 제어기에 전달할 수 있어야한다.
(2) 분산식 UAV 교통 관리(De-centralised UAV traffic management)
- 3GPP 시스템은 UAV가 충돌 회피를 위해 근거리 영역에서 UAV(들)를 식별하기 위해 다음의 데이터(예: 다른 규정 요구 사항에 기초하여 요구되는 경우 UAV identities, UAV 타입, 현재 위치 및 시간, 비행 경로(flight route) 정보, 현재 속도, 동작 상태)를 방송한다.
- 3GPP 시스템은 다른 UAV들 간 식별하기 위해 네트워크 연결을 통해 메시지를 전송하기 위해 UAV를 지원하며, UAV가 신원 정보의 방송에서 UAV, UAV 파일럿 및 UAV 오퍼레이터의 소유자의 개인 정보를 보존한다.
- 3GPP 시스템은 UAV가 단거리에서 다른 UAV로부터 로컬 방송 통신 전송 서비스를 수신할 수 있도록 한다.
- UAV는 3GPP 네트워크의 커버리지 밖 또는 내에서 직접(direct) UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 직접 사용할 수 있으며, 송수신 UAV들이 동일하거나 또는 다른 PLMN에 의해 *?*서비스될 때 직접 UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 사용할 수 있다.
- 3GPP 시스템은 직접 UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 최대 320kmph의 상대 속도로 직접 지원한다. 3GPP 시스템은 보안 관련 메시지 구성 요소를 제외하고 50-1500 바이트의 다양한 메시지 페이로드를 가진 직접 UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 지원한다.
- 3GPP 시스템은 UAV들 사이에서 분리를 보장할 수 있는 직접 UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 지원한다. 여기서, UAV들은 최소한 50m의 수평 거리 또는 30m의 수직 거리 또는 둘 다에 있는 경우 분리 된 것으로 간주될 수 있다. 3GPP 시스템은 최대 600m의 범위를 지원하는 직접 UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 지원한다.
- 3GPP 시스템은 초당 최소한 10 메시지의 빈도로 메시지를 전송할 수 있는 직접 UAV 대 UAV 로컬 브로드 캐스트 통신 전송 서비스를 지원하며, 종단 간 대기 시간이 최대 100ms인 메시지를 전송할 수 있는 직접 UAV 대 UAV 로컬 방송 통신 전송 서비스를 지원한다.
- UAV는 1 초에 적어도 한 번 비율로 지역적으로 자신의 identity를 브로드캐스트 할 수 있으며, 500m 범위까지 자신의 identity를 지역적으로 방송할 수 있다.
보안(Security)
3GPP 시스템은 UAS와 UTM 사이에서 데이터 전송을 보호한다. 3GPP 시스템은 UAS ID의 스푸핑(spoofing) 공격으로부터 보호한다. 3GPP 시스템은 응용 계층에서 UAS와 UTM간에 전송되는 데이터의 부인 방지(non-repudiation)를 허용한다. 3GPP 시스템은 UAS와 UTM 연결을 통해 전송되는 데이터뿐만 아니라 UAS와 UTM 사이의 서로 다른 연결에 대해 서로 다른 수준의 무결성(integrity) 및 개인 정보 보호 기능을 제공할 수 있는 능력을 지원한다. 3GPP 시스템은 UAS와 관련된 신원 및 개인 식별 정보의 기밀 보호를 지원한다. 3GPP 시스템은 UAS 트래픽에 대한 규제 요건(예: lawful intercept)을 지원한다.
UAS가 MNO로부터 UAS 데이터 서비스에 액세스할 수 있는 권한을 요청하면, MNO는 동작할 UAS 자격 증명을 확립하기 위해 2차 점검 (초기 상호 인증 이후 또는 이와 동시에)을 수행한다. MNO는 UAS에서 UTM (Unmanned Aerial System Traffic Management)으로 동작하도록 요청에 추가 데이터를 전송하고 잠재적으로 추가할 책임이 있다. 여기서, UTM은 3GPP 엔터티(entity)이다. 이 UTM은 UAS 및 UAV 오퍼레이터의 자격 증명을 운영하고, 확인하는 UAS의 승인을 담당한다. 한 가지 옵션은 UTM이 항공 교통 관제 기관에 의해 운영된다는 것이다. 이는 UAV, UAV 컨트롤러 및 라이브 위치와 관련된 모든 데이터를 저장한다. UAS가 이 점검의 어떤 부분에도 실패하면, MNO는 UAS에 대한 서비스를 거부 할 수 있으며, 그래서 운영 허가를 거부할 수 있다.
공중(Aerial) UE(또는 드론) 통신을 위한 3GPP 지원(Support)
공중 통신이 가능한 UE에 LTE 연결을 제공하는 E-UTRAN 기반 메커니즘은 다음과 같은 기능을 통해 지원된다.
- TS 23.401, 4.3.31 절에 명시된 가입(subscription) 기반 공중 UE 식별(identification) 및 권한 부여(authorization).
- UE의 고도가 네트워크로 구성된 기준 고도 임계 값을 넘는 이벤트에 기초하여 높이 보고.
- 설정된 셀들의 수 (즉, 1보다 큰)가 상기 트리거링 기준을 동시에 만족할 때 트리거되는 측정 보고에 기초한 간섭 검출.
- UE로부터 E-UTRAN으로의 비행 경로 정보의 시그널링.
- UE의 수평 및 수직 속도를 포함한 위치 정보 보고.
(1) 공중 UE 기능의 가입 기반 식별
공중 UE 기능의 지원은 HSS의 사용자 가입 정보에 저장된다. HSS는 Attach, Service Request 및 Tracking Area Update 과정에서 이 정보를 MME로 전송한다. 가입 정보는 attach, tracking area update 및 서비스 요청 절차 동안 S1 AP 초기 컨텍스트 설정 요청(initial context setup request)를 통해 MME에서 기지국으로 제공될 수 있다. 또한, X2 기반 핸드 오버의 경우, 소스 기지국(base station, BS)는 타겟 BS로의 X2-AP Handover Request 메시지에 가입 정보를 포함할 수 있다. 보다 구체적인 내용은 후술하기로 한다. 인트라 및 인터 MME S1 기반 핸드 오버에 대해, MME는 핸드 오버 절차 후에 타겟 기지국에 가입 정보를 제공한다.
(2) 공중 UE 통신에 대한 높이 기반 보고
공중 UE는 이벤트 기반 높이 보고로 설정될 수 있다. UE는 공중 UE의 고도가 구성된 임계 값보다 높거나 낮을 때 높이 보고를 전송한다. 보고는 높이와 위치를 포함한다.
(3) 공중 UE 통신을 위한 간섭 탐지 및 완화(mitigation)
간섭 탐지를 위해, 설정된 셀 수에 대한 개별 (셀당) RSRP 값이 설정된 이벤트를 충족할 때 공중 UE는 측정 보고를 트리거하는 RRM 이벤트 A3, A4 또는 A5로 설정될 수 있다. 보고는 RRM 결과와 위치를 포함한다. 간섭 완화를 위해, 공중 UE는 PUSCH 전력 제어를 위한 전용 UE-특정 알파 파라미터로 설정될 수 있다.
(4) 비행 경로 정보 보고
E-UTRAN은 TS 36.355에서 정의된 대로 3D 위치로 정의된 다수의 중간 지점으로 구성된 비행 경로 정보를 보고하도록 UE에 요청할 수 있다. UE는 비행 경로 정보가 UE에서 이용 가능하면 설정된 수의 웨이포인트(waypoint)를 보고한다. 보고는 상기 요청에 설정되고 UE에서 이용 가능한 경우, 웨이포인트 당 타임 스탬프(time stamp)를 역시 포함할 수 있다.
(5) 공중 UE 통신을 위한 위치 보고
공중 UE 통신을 위한 위치 정보는 설정된 경우 수평 및 수직 속도를 포함할 수 있다. 위치 정보는 RRM 보고 및 높이 보고에 포함될 수 있다.
이하, 공중 UE 통신을 위한 3GPP 지원의 (1) 내지 (5)에 대해 보다 구체적으로 살펴본다.
DL / UL 간섭 검출(interference detection)
DL 간섭 검출을 위해, UE에 의해 보고되는 측정들이 유용할 수 있다. UL 간섭 검출은 기지국에서의 측정에 기초하여 수행되거나 UE에 의해 보고된 측정들에 기초하여 추정될 수 있다. 기존의 측정 보고 메커니즘을 향상시켜 간섭 검출을 보다 효과적으로 수행할 수 있다. 또한, 예를 들어, 이동성 이력 보고(mobility history report), 속도 추정(speed estimation), 타이밍 어드밴스 조정 값 및 위치 정보와 같은 다른 관련된 UE-기반 정보가 간섭 검출을 돕기 위해 네트워크에 의해 사용될 수 있다. 측정 수행의 보다 구체적인 내용은 후술하기로 한다.
DL 간섭 완화(interference mitigation)
공중 UE에서의 DL 간섭을 완화하기 위해, LTE Release-13 FD-MIMO가 사용될 수 있다. 공중 UE의 밀도가 높더라도, Rel-13 FD-MIMO는 DL 공중 UE 처리량 요건을 만족시키는 DL 공중 UE 처리량을 제공하면서 DL 지상 UE 처리량에 대한 영향을 제한하는데 유리할 수 있다. 공중 UE에서의 DL 간섭을 완화하기 위해, 공중 UE에서 지향성 안테나가 사용될 수 있다. 고밀도 공중 (Aerial) UE의 경우에도, 공중 UE에서의 지향성 안테나는 DL 지상 UE 처리량에 대한 영향을 제한하는데 유리할 수 있다. DL 공중 UE 처리량은 공중 UE에서 무 지향성 안테나를 사용하는 것에 비해 개선되었다. 즉, 지향성 안테나는 광범위한 각도들로부터 오는 간섭 전력을 감소시킴으로써 공중 UE들에 대한 하향링크에서의 간섭을 완화시키는데 사용된다. 공중 UE와 서빙 셀 사이의 LOS 방향을 추적하는 관점에서 다음 유형의 능력이 고려된다:
1) Direction of Travel (DoT): 공중 UE는 서빙 셀 LOS의 방향을 인식하지 못하고 공중 UE의 안테나 방향이 DoT와 정렬된다.
2) 이상적인(ideal) LOS: 공중 UE는 서빙 셀 LOS의 방향을 완벽하게 추적하고 안테나 조준선을 서빙 셀 쪽으로 조종한다.
3) 비-이상적인(Non-Ideal) LOS: 공중 UE는 서빙 셀 LOS의 방향을 추적하지만, 실제적인 제약으로 인해 오류가 있다.
공중 UE들에 대한 DL 간섭을 완화하기 위해, 공중 UE들에서의 빔포밍(beamforming)이 사용될 수 있다. 공중 UE들의 밀도가 높더라도, 공중 UE들에서의 빔포밍은 DL 지상 UE 처리량에 대한 영향을 제한하고, DL 공중 UE 처리량을 개선하는데 유리할 수 있다. 공중 UE에서의 DL 간섭을 완화하기 위해, 인트라-사이트(intra-site) 코히런트(coherent) JT CoMP가 사용될 수 있다. 공중 UE의 밀도가 높더라도, 인트라-사이트(intra-site) 코히런트(coherent) JT는 모든 UE의 처리량을 향상시킬 수 있다. 비-대역폭 제한 디바이스들에 대한 LTE Release-13 커버리지 확장 기술도 사용될 수 있다. 공중 UE에서의 DL 간섭을 완화하기 위해, 조정된 데이터 및 제어 전송 방식이 사용될 수 있다. 상기 조정된 데이터 및 제어 전송 방식의 이점은 주로 지상 UE 처리량에 대한 영향을 제한하면서 공중 UE 처리량을 증가시키는 데 있다. 전용 DL 자원을 지시하기 위한 시그널링, 셀 뮤팅(cell muting) / ABS에 대한 옵션, 셀 (재) 선택에 대한 프로시저 업데이트, 조정된(coordinated) 셀에 적용하기 위한 획득 및 조정된 셀에 대한 셀 ID를 포함할 수 있다.
UL 간섭 완화
공중 UE들에 의해 야기되는 UL 간섭을 완화하기 위해, 강화된 전력 제어 메커니즘들이 사용될 수 있다. 공중 UE의 밀도가 높더라도, 향상된 전력 제어 메커니즘은 UL 지상 UE 처리량에 대한 영향을 제한하는데 유리할 수 있다.
위의 전력 제어 기반 메커니즘에는 다음과 같은 사항들에 영향을 미친다.
- UE 특정 부분 경로 손실 보상 인자
- UE 특정 Po 파라미터
- 이웃 셀 간섭 제어 파라미터
- 폐쇄 루프 전력 제어
UL 간섭 완화를 위한 전력 제어 기반 메커니즘에 대해 보다 구체적으로 살펴본다.
1) UE 특정 부분 경로 손실 보상 계수(UE specific fractional pathloss compensation factor)
기존의 오픈 루프 전력 제어 메커니즘에 대한 강화가 UE 특정 부분 경로 손실 보상 인자
Figure pat00001
도입되는 곳에서 고려된다. UE 특정 부분 경로 손실 보상 인자
Figure pat00002
도입으로, 공중 UE를 지상 UE에 설정된 부분 경로 손실 보상 인자와 비교하여 서로 다른
Figure pat00003
구성할 수 있다.
2) UE 특정 P0 파라미터
공중 UE들은 지상 UE들에 대해 설정된 Po와 비교하여 서로 다른 Po로 설정된다. UE 특정 Po가 기존의 오픈 루프 전력 제어 메커니즘에서 이미 지원되기 때문에, 기존의 전력 제어 메커니즘에 대한 강화는 필요하지 않다.
또한, UE 특정 부분 경로 손실 보상 인자
Figure pat00004
및 UE 특정 Po는 상향링크 간섭 완화를 위해 공동으로 사용될 수 있다. 이로부터, UE 특정 부분 경로 손실 보상 인자
Figure pat00005
및 UE 특정 Po은 공중 UE의 저하된 상향링크 처리량을 희생시키면서 지상 UE의 상향링크 처리량을 향상시킬 수 있다.
3) 폐쇄 루프 전력 제어 (Closed loop power control)
공중 UE에 대한 목표 수신 전력은 서빙 및 이웃 셀 측정 보고를 고려하여 조정된다. 공중 UE들에 대한 폐루프 전력 제어는 또한 공중 UE들이 기지국 안테나들의 사이드로브 (sidelobe)들에 의해 지원될 수 있기 때문에 하늘에서 잠재적인 고속 신호 변화에 대처할 필요가 있다.
공중 UE로 인한 UL 간섭을 완화하기 위해 LTE Release-13 FD-MIMO가 사용될 수 있다. 공중 UE에 의해 야기된 UL 간섭을 완화하기 위해, UE 지향성 안테나가 사용될 수 있다. 고밀도 공중 (Aerial) UE의 경우에도, UE 지향성 안테나는 UL Terrestrial UE 처리량에 대한 영향을 제한하는데 유리할 수 있다. 즉, 방향성 UE 안테나는 넓은 각도 범위의 공중 UE로부터의 상향링크 신호 전력을 감소시킴으로써 공중 UE에 의해 생성된 상향링크 간섭을 감소 시키는데 사용된다. 공중 UE와 서빙 셀 사이의 LOS 방향을 추적하는 관점에서 다음 유형의 능력이 고려된다:
1) Direction of Travel (DoT): 공중 UE는 서빙 셀 LOS의 방향을 인식하지 못하고 공중 UE의 안테나 방향이 DoT와 정렬된다.
2) 이상적인(ideal) LOS: 공중 UE는 서빙 셀 LOS의 방향을 완벽하게 추적하고 안테나 조준선을 서빙 셀 쪽으로 조종한다.
3) 비-이상적인(Non-Ideal) LOS: 공중 UE는 서빙 셀 LOS의 방향을 추적하지만, 실제적인 제약으로 인해 오류가 있다.
공중 UE와 서빙 셀 사이의 LOS의 방향을 추적하는 능력에 따라, UE는 안테나 방향을 LOS 방향과 정렬하고 유용한 신호의 전력을 증폭시킬 수 있다. 또한, UL 전송 빔포밍 역시 UL 간섭을 완화시키는데 사용될 수 있다.
이동성(Mobility)
공중 UE의 이동성 성능 (예를 들어, 핸드 오버 실패, RLF(Radio Link Failure), 핸드 오버 중단, Qout에서의 시간 등)은 지상 UE에 비해 악화된다. 앞서 살핀, DL 및 UL 간섭 완화 기술은 공중 UE에 대한 이동성 성능을 향상시킬 것으로 기대된다. 도시 지역 네트워크에 비해 농촌 지역 네트워크에서 더 나은 이동성 성능이 관찰된다. 또한, 기존의 핸드 오버 절차가 이동성 성능을 향상시키기 위해 향상될 수 있다.
- 위치 정보, UE의 공중 상태, 비행 경로 계획 등과 같은 정보에 기초하여 공중 UE에 대한 핸드 오버 절차 및/또는 핸드 오버 관련 파라미터의 이동성 향상
- 새로운 이벤트를 정의하고, 트리거 조건을 강화하고, 측정 보고의 양(quantity)을 제어하는 *?*등의 방법으로 측정 보고 메커니즘을 향상시킬 수 있다.
기존의 이동성 향상 메카니즘 (예를 들어, 이동성 히스토리 보고, 이동성 상태 추정, UE 지원 정보 등)은 그들이 공중 UE 용으로 동작하고, 추가 개선이 필요한 경우 먼저 평가될 수 있다. 공중의 UE에 대한 핸드오버 절차 및 관련 파라미터는 UE의 공중 상태 및 위치 정보에 기초하여 향상될 수 있다. 기존의 측정 보고 메커니즘은 예를 들어, 새로운 이벤트를 정의하고, 트리거링 조건을 강화하며, 측정 보고의 양을 제어하는 등으로 향상될 수 있다. 비행 경로 계획 정보는 이동성 향상을 위해 사용될 수 있다.
공중 UE에 적용될 수 있는 측정 수행 방법에 대해 보다 구체적으로 살펴본다.
도 10은 본 발명이 적용될 수 있는 측정 수행 방법의 일 예를 나타낸 흐름도이다.
공중 UE는 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다(S1010). 여기서, 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 공중 UE는 측정 설정 정보를 기반으로 측정을 수행한다(S1020). 공중 UE는 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다(S1030). 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다. 측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 공중 UE가 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀 내 측정의 대상인 인트라-주파수 측정 대상, 셀간 측정의 대상인 인터-주파수 측정 대상, 및 인터-RAT 측정의 대상인 인터-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, 인트라-주파수 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-주파수 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 공중 UE가 측정 결과를 전송하는 것을 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 설정 정보는 보고 설정의 리스트로 구성될 수 있다. 각 보고 설정은 보고 기준(reporting criterion) 및 보고 포맷(reporting format)을 포함할 수 있다. 보고 기준은 단말이 측정 결과를 전송하는 것을 트리거하는 기준이다. 보고 기준은 측정 보고의 주기 또는 측정 보고를 위한 단일 이벤트일 수 있다. 보고 포맷은 공중 UE가 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
공중 UE와 관련된 이벤트는 (i) 이벤트 H1 및 (ii) 이벤트 H2를 포함한다.
이벤트 H1 (임계값 초과의 공중 UE 높이)
UE는 아래 1) 아래 명시된 조건 H1-1이 충족될 때, 이 이벤트에 대한 진입 조건이 충족되는 것으로 간주하고, 2) 아래에 명시된 조건 H1-2가 충족될 때, 이 이벤트에 대한 이탈 조건이 충족되는 것으로 간주한다.
부등식(inequality) H1-1 (진입 조건, entering condition):
Figure pat00006
부등식 H1-2 (탈퇴 조건, leaving condition):
Figure pat00007
위의 수식에서 변수(variable)는 다음과 같이 정의된다.
MS는 공중 UE 높이이며, 어떠한 오프셋도 고려하지 않는다. Hys는 이 이벤트에 대한 히스테리시스(hysteresis) 파라미터 (즉, ReportConfigEUTRA 내에서 정의된 것과 같이 h1- 히스테리시스)이다. Thresh는 MeasConfig에 지정된 이 이벤트에 대한 참조 임계 값 매개 변수이다 (즉, MeasConfig 내에 정의된 heightThreshRef). Offset은 이 이벤트에 대한 절대 임계 값을 얻기 위한 heightThreshRef에 대한 오프셋 값이다(즉, ReportConfigEUTRA에 정의 된 h1-ThresholdOffset). Ms는 미터로 표시된다. Thresh는 Ms와 같은 단위로 표현된다.
이벤트 H2 (임계값 미만의 공중 UE 높이)
UE는 1) 아래 명시된 조건 H2-1이 충족될 때, 이 이벤트에 대한 진입 조건이 충족되는 것으로 간주하고, 2) 아래에 명시된 조건 H2-2이 충족될 때, 이 이벤트에 대한 이탈 조건이 충족되는 것으로 간주한다.
부등식 H2-1 (진입 조건):
Figure pat00008
부등식 H2-2 (이탈 조건):
Figure pat00009
위의 수식에서 변수(variable)는 다음과 같이 정의된다.
MS는 공중 UE 높이이며, 어떠한 오프셋도 고려하지 않는다. Hys는 이 이벤트에 대한 히스테리시스(hysteresis) 파라미터 (즉, ReportConfigEUTRA 내에서 정의된 것과 같이 h1- 히스테리시스)이다. Thresh는 MeasConfig에 지정된 이 이벤트에 대한 참조 임계 값 매개 변수이다 (즉, MeasConfig 내에 정의된 heightThreshRef). Offset은이 이벤트에 대한 절대 임계 값을 얻기 위한 heightThreshRef에 대한 오프셋 값이다(즉, ReportConfigEUTRA에 정의 된 h2-ThresholdOffset). Ms는 미터로 표시된다. Thresh는 Ms와 같은 단위로 표현된다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 공중 UE가 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케쥴링되지 않아, 공중 UE가 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
공중 UE는 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다. 공중 UE의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
여기서, 공중 UE의 측정 보고와 관련하여 다음과 같은 파라미터들이 UE-EUTRA-Capability Information Element에 포함될 수 있다. IE UE-EUTRA-Capability는 E-UTRA UE Radio Access Capability 파라미터 및 필수 기능에 대한 기능 그룹 지시자를 네트워크로 전달하는데 사용된다. IE UE-EUTRA-Capbility는 E-UTRA 또는 다른 RAT에서 전송된다. 표 1은 UE-EUTRA-Capability IE의 일례를 나타낸 표이다.
-- ASN1START...
MeasParameters-v1530 ::= SEQUENCE {
qoe-MeasReport-r15 ENUMERATED {supported} OPTIONAL,
qoe-MTSI-MeasReport-r15 ENUMERATED {supported} OPTIONAL,
ca-IdleModeMeasurements-r15 ENUMERATED {supported} OPTIONAL,
ca-IdleModeValidityArea-r15 ENUMERATED {supported} OPTIONAL,
heightMeas-r15 ENUMERATED {supported} OPTIONAL,
multipleCellsMeasExtension-r15 ENUMERATED {supported} OPTIONAL
}...
상기 heightMeas-r15 필드는 UE가 TS 36.331에 명시된 높이 기반 측정 보고를 지원하는지 여부를 정의한다. TS 23.401에서 정의된 것과 같이, 공중 UE 가입을 가지는 UE에 대해서는 이 기능을 지원하는 것이 필수적이다. 상기 multipleCellsMeasExtension-r15 필드는 UE가 다수의 셀들을 기반으로 트리거된 측정 보고를 지원하는지 여부를 정의한다. TS 23.401에서 정의된 것과 같이, 공중 UE 가입을 가진 UE에 대해 이 기능을 지원하는 것이 필수적이다.UAV UE 식별
UE는 LTE 네트워크에서 UAV 관련 기능을 지원하는 관련된 기능을 가진 UE를 식별하는데 사용될 수 있는 네트워크에서 무선 능력을 나타낼 수 있다. UE가 3GPP 네트워크에서 공중 UE로서 기능하도록 하는 허가는 MME로부터 S1 시그널링을 통해 RAN으로 전달되는 가입 정보로부터 알 수 있다. UE의 실제적인 "공중 사용" 인증 / 라이센스 / 제한 및 그것이 가입 정보에 반영되는 방법은 Non-3GPP 노드로부터 3GPP 노드로 제공될 수 있다. 비행중인 UE는 UE-기반 보고 (예를 들어, 비행 중 모드 지시, 고도 또는 위치 정보, 강화된 측정 보고 메커니즘 (예를 들어, 새로운 이벤트의 도입)을 이용함으로써 또는 네트워크에서 이용 가능한 이동성 이력 정보에 의해 식별될 수 있다.
공중 UE를 위한 가입 핸들링(subscription handling)
이하 설명은 TS 36.300 및 TS 36.331에서 정의된 E-UTRAN을 통한 공중 UE 기능을 지원하기 위한 가입 정보 처리(handling)에 관한 것이다. 공중 UE 기능 처리를 지원하는 eNB는 UE가 공중 UE 기능을 사용할 수 있는지 여부를 결정하기 위해 MME에 의해 제공된 사용자 별 정보를 사용한다. 공중 UE 기능의 지원은 HSS에서 사용자의 가입 정보에 저장된다. HSS는 이 정보를 attach 및 tracking area update procedure 동안 위치 업데이트 메시지를 통해 MME로 전송한다. 홈 오퍼레이터는 언제든지 공중 UE를 동작하기 위한 사용자의 가입 승인을 취소할 수 있다. 공중 UE 기능을 지원하는 MME는 attach, tracking area update 및 service request procedure 동안 S1 AP 초기 컨텍스트 설정 요청(initial context setup request)을 통해 공중 UE 승인에 대한 사용자의 가입 정보를 eNB에 제공한다.
초기 컨텍스트 설정 절차의 목적은 E-RAB 컨텍스트, 보안 키, 핸드오버 제한 리스트, UE 무선 기능 및 UE 보안 기능 등을 포함하여 필요한 전체 초기 UE 컨텍스트를 확립하는 것이다. 상기 절차는 UE-관련 시그널링을 사용한다.
인트라 및 인터 MME S1 핸드오버 (인트라 RAT) 또는 E-UTRAN으로의 Inter-RAT 핸드 오버의 경우, 사용자에 대한 공중 UE 가입 정보는 핸드오버 절차 이후 타겟 BS로 전송된 S1-AP UE 컨텍스트 변경 요청(context modification request) 메시지에 포함된다.
UE 컨텍스트 변경 절차의 목적은 예를 들어, 보안 키 또는 RAT / 주파수 우선 순위에 대한 가입자 프로파일 ID로 설정된 UE 컨텍스트를 부분적으로 변경하는 것이다. 상기 절차는 UE-관련 시그널링을 사용한다.
X2 기반 핸드 오버의 경우, 사용자에 대한 공중 UE 가입 정보는 다음과 같이 타겟 BS에 전송된다:
- 소스 BS가 공중 UE 기능을 지원하고, 사용자의 공중 UE 가입 정보가 UE 컨텍스트에 포함되는 경우, 소스 BS는 타겟 BS에 X2-AP 핸드오버 요청 메시지에 해당 정보를 포함한다.
- MME는 Path Switch Request Acknowledge 메시지에서 공중(Aerial) UE 가입(subscription) 정보를 target BS로 보낸다.
핸드오버 자원 할당 절차의 목적은 UE의 핸드오버를 위해 타겟 BS에서 자원을 확보하는 것이다.
공중 UE 가입 정보가 변경된 경우, 업데이트된 공중 UE 가입 정보는 BS에 전송된 S1-AP UE 컨텍스트 변경 요청 메시지에 포함된다.
아래 표 2는 공중 UE 가입 정보의 일례를 나타낸 표이다.
IE/Group Name Presence Range IE type and reference
Aerial UE subscription information M ENUMERATED (allowed, not allowed,...)
공중 UE 가입 정보(Aerial UE subscription information)는 UE가 공중 UE 기능을 사용할 수 있는지를 알기 위해 BS에 의해 사용된다.
드론과 eMBB의 결합
3GPP 시스템은 UAV (공중 UE 또는 드론) 및 eMBB 사용자를 위한 데이터 전송을 동시에 지원할 수 있다.
제한된 대역폭 자원 하에서, 기지국은 공중의 UAV 및 지상의 eMBB 사용자에 대한 데이터 전송을 동시에 지원할 필요가 있을 수 있다. 예를 들어, 생방송 시나리오에서, 100미터 이상의 UAV는 캡처된 그림이나 비디오를 실시간으로 기지국으로 전송해야 하므로, 높은 전송 속도와 넓은 대역폭이 필요하다. 동시에, 기지국은 지상 사용자들 (예를 들어, eMBB 사용자들)에 대해 요구되는 데이터 레이트(data rate)를 제공할 필요가 있다. 그리고, 이러한 2 가지 종류의 통신들 간의 간섭은 최소화될 필요가 있다.
CCTV는 전국적으로 수많은 곳에 설치되어 있으나, 영상품질/시야각 제한으로 인하여 기존의 CCTV가 주기적으로 교체된다.
즉, CCTV는 고정된 위치에 설치되어 일정한 범위만 촬영이 가능하기 때문에 촬영이 되지 않는 사각지대가 존재한다. 또한, 고정된 위치에 설치된 CCTV가 좌우/상하로 CCTV의 각도를 변경하며 촬영을 하더라도 위치가 고정되어 있기 때문에 모든 지역을 촬영할 수 없다.
또한, 야간의 경우, CCTV의 영상 품질의 한계로 인하여 촬영된 영상이 선명하지 못한 경우가 많다.
특히, 야간에 범죄 발생 빈도수가 많은 곳 위주로 CCTV가 설치되기 때문에 CCTV가 설치되지 않은 외각 지역에서 발생하는 범죄는 예방을 할 수 없다는 문제점이 존재한다.
또한, CCTV를 대신해 드론을 사용하는 경우에도, 드론의 한정된 배터리 용량으로 인하여 비행시간이 일정시간(예를 들면, 2~30분)으로 제한되기 때문에 넓은 지역을 비행하며 촬영하기 어렵다는 문제점이 있다.
본 발명은 이러한 문제점을 해결하기 위해서, CCTV 대신에 드론이 스테이션에 착륙된 상태에서 일정한 지역을 촬영하다가 설정된 조건을 만족하면 경로를 따라 비행하며 촬영을 수행하는 방법을 제안한다.
또한, 드론의 배터리 제한에 따른 문제점을 해결하기 위해서, 가로등 또는 신호등과 같이 기존에 설치된 구조물을 드론의 배터리 충전을 위한 스테이션으로 이용하는 방법을 제안한다.
도 11은 본 발명의 일 실시 예에 따른 드론의 움직임을 제어하기 위한 시스템 구조의 일 예를 나타내는 도이다.
도 11을 참조하면, 드론은 스테이션에 안착된 상태에서 배터리 충전 및 인접 지역을 촬영할 수 있으며, 관제센터와 통신을 수행할 수 있다.
구체적으로, 스테이션에 안착된 드론을 통한 드론의 움직임을 제어하기 위한 시스템은 드론(100), 충전 스테이션(500), CCTV 스탠드(폴대) 및 관제센터(기지국, 500)으로 구성될 수 있다.
드론(100)은 충전 스테이션(500)에 착륙되어 안착될 수 있으며, 안착된 상태에서 무선 충전 패드를 통해 배터리를 충전할 수 있다. 또한, 드론(100)의 본체에 구비된 짐볼의 카메라를 통해서 일정 지역을 촬영할 수 있으며, 촬영된 영상을 관제센터(기지국, 500)으로 실시간으로 전송하거나, 메모리에 저장할 수 있다.
드론(100)에 구비된 카메라는 짐볼을 통해서 360°회전할 수 있으며, 색상(Red, Green, Blue: RGB) 카메라, 적외선 카메라 및/또는 열화상 카메라 등일 수 있다.
이때, 드론(100)은 RBG 카메라, 적외선 카메라 및/또는 열화상 카메라 중 적어도 하나를 구비할 수 있다.
드론(100)은 충전 스테이션(500)에 안착된 상태에서 일정 지역을 촬영하다가 설정된 조건을 만족하거나, 관제센터(500)로부터 순찰 명령을 지시하는 신호를 수신하면, 설정된 경로를 따라 비행하면서 CCTV와 같이 카메라를 이용하여 경로상의 지역을 촬영할 수 있다.
순찰 명령은 드론(100)이 경로를 따라 비행을 하면서 경로 상의 촬영 가능한 범위를 촬영하는 동작을 의미하며, 경로는 드론(100)에 기 설정되거나, 관제센터(500)로부터 전송되는 제어 신호에 따라 설정될 수 있다.
드론의 순찰 임무를 위한 설정된 조건은 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역에 따라 설정될 수 있으며, 순찰 명령을 수행할 시간 대 또는 조도가 될 수 있다.
예를 들면, 드론의 순찰 명령 수행 조건은 아래와 같이 설정될 수 있다.
- 야간 시간대(21:00 ? 23:59): 30분마다 10분씩 deploy(열화상 카메라 온, 6회)
- 오전 시간대(09:00-11:59): 1시간마다 10분씩 deploy(RGB 카메라 온, 3회)
- 심야시간대(03:00-05:59): 우범지역을 중심으로 1시간마다 10분씩 deploy(열화상 카메라 온, 3회)
또는, 드론(100)은 조도량에 따라 조도가 일정 값 이하이면 특정 시간마다 한번씩 순찰 임무를 수행하고, 조도가 일정 값 이상이면 충전 스테이션(500)에 안착되어 촬영을 수행할 수 있다.
드론(100)은 비행 모드가 자동 모드인 경우, 설정된 경로를 따라 자동으로 비행하면서 경로를 촬영할 수 있으며, 수동 모드인 경우 관제 센터(500)로부터 전송되는 제어 정보에 따라 비행할 수 있다.
이때, 수동 모드에 따라 관제센터(500)로부터 전송되는 제어 정보가 설정된 경로를 이탈하여 비행을 지시하는 경우, 드론(100)은 설정된 경로를 이탈하여 비행하며 촬영을 수행할 수 있다.
하지만, 관제 센터로부터의 제어 정보에 따른 비행이 드론이 비행할 수 있는 영역을 벗어나는 경우, 드론은 경고 메시지를 관제 센터로 전송하거나 영역의 경계 지역에서 호버링 또는 충전 스테이지로 복귀할 수 있다.
예를 들면, 수동 모드에 따른 드론의 움직임 제어가 과조작이나 드론의 비행 가능 영역을 이탈하는 경우, 드론은 이러한 제어를 방지하거나 경고하기 위해서 관제 센터로 경고 메시지를 관제 센터로 전송하거나 영역의 경계 지역에서 호버링 또는 충전 스테이지로 복귀할 수 있다.
드론(100)은 순찰 임무에 따라 설정된 경로를 비행하는 중에 특정 이벤트가 발생된 경우, 발생된 이벤트에 따라 이에 대응되는 특정 동작을 수행할 수 있다.
이때, 드론(100)은 발생된 이벤트에 대한 정보를 관제센터(500)로 전송할 수 있으며, 관제센터로부터 특정 동작과 관련된 제어 정보를 수신하여 이에 따라 동작할 수 있다.
예를 들면, 드론(100)은 아래와 같이 특정 이벤트 발생 시 이에 대응되는 동작을 수행할 수 있다.
- 순찰 임무에 따라 설정된 경로를 비행하는 중 범죄 형장을 발견하거나 응급 상황을 발견하는 경우, 영상의 화질을 향상 시키기 위해서 열화상 카메라 뿐만 아니라 RGB 카메를 추가로 이용하여 영상을 촬영. 이때, RGB 카메라의 화질 향상을 위해서 조명을 온 시킬 수 있으며, 고도를 높이거나, 낮출 수 있다.
- 순찰 임무도중에 경로상의 사람들을 스캔할 수 있으며, 스캔된 사람들 중에서 범죄 용의자를 식별할 수 있음. 이 경우, 드론(100)은 식별된 범죄 용의자의 영상 정보를 관제 센터로 전송할 수 있으며, 식별된 용의자를 추격할 수 있다.
- 범죄 현장이나, 응급 상황 발생 시 발생된 장소로 근접하여 경광등과 사이렌 음으로 경고(경광등 온, 사이렌 온, 스포트라이트 온). 이때, 경광등, 사이렌, 스포트라이트는 개별적으로 제어 가능.
드론(100)은 주간 모드 또는 야간 모드에 따라 카메라를 이용하여 설정된 경로의 영상을 촬영할 수 있다. 드론(100)은 주간 모드에서는 RGB 카메라를 이용하여 영상 촬영을 수행하고, 야간 모드에서는 카메라를 열화상 카메라 또는 적외선 카메라로 변경하여 촬영을 수행할 수 있다.
만약, 야간 모드에서 열화상 카메라 또는 적외선 카메라를 이용하여 영상을 촬영하던 도중 특정 물체를 추적하거나, 긴급 상황 또는 범죄 현장을 촬영하는 경우, 드론은 열화상 카메라 또는 적외선 카메라 뿐만 아니라 RGB 카메라를 추가적으로 이용하여 영상을 촬영할 수 있다.
이때, 드론(100)은 RBG 카메라의 영상 품질 향상을 위해서 조명 또는 스포트라이트를 온 시키거나, 넓은 지역의 촬영을 위해 고도를 높일 수 있다.
드론(100)은 순찰 임무를 수행하는 도중 배터리가 임계 값 이하로 떨어지는 경우, 인접한 다른 충전 스테이션 및 다른 드론을 탐색할 수 있다. 인접한 다른 충전 스테이션 및 다른 드론을 탐색한 드론(100)은 다른 드론에게 순찰 임무를 핸드오버하고, 다른 충전 스테이션에 착륙하여 배터리를 충전할 수 있다.
구체적으로, 드론(100)은 다른 드론에게 촬영된 영상 및 순찰 임무와 관련된 정보(순찰 경로, 순찰 주기 등)를 전송하고, 다른 드론이 충전 스테이션에서 이륙하여 경로를 비행하면, 다른 충전스테이션에 착륙하여 배터리를 충전할 수 있다.
충전 스테이션(500)은 CCTV 스탠드(폴대, 400)에 부착되어 있으며, 드론(100)이 안착되어 하부에 부착된 카메라를 통해 일정한 지역을 촬영할 수 있도록 가운데가 비어있는 구조로 설계될 수 있다.
CCTV 스탠드(400)는 CCTV가 부착되어 있던 폴대, 신호등 및/또는 가로등일 수 있다.
충전 스테이션(500)은 CCTV가 부착되어 있던 폴대, 신호등 및/또는 가로등의 상부에 부착되어 드론(100)의 충전 및 촬영을 지원할 수 있으며, 관제센터(500)로부터 전송되는 제어 정보에 따라 제어될 수 있다.
또한, 충전 스테이션(500)은 드론의 상태를 인식하여 인식된 드론의 상태정보를 관제센터(500)에게 전송할 수 있다.
관제 센터(500)는 드론(100) 및 충전 스테이션(500)의 동작을 제어하고, 드론(100)으로부터 실시간으로 전송되는 영상 정보를 수신할 수 있다.
관제 센터(500)는 드론으로부터 실시간으로 전송되는 영상 정보를 수신하고, 이에 대응되는 특정 동작을 지시하는 제어 정보를 드론(100)에게 전송할 수 있으며, 특정 동작의 수행 결과를 응답 메시지를 통해서 수신할 수 있다.
관제 센터(500)는 드론(100)의 비행 모드를 자동 모드에서 수동 모드로, 수동 모드에서 자동모드로 변경하는 제어 메시지를 드론에게 전송할 수 있으며, 수동 모드로 전환하는 경우, 드론의 움직임을 제어하기 위한 제어 메시지를 드론에게 전송할 수 있다.
관제 센터(500)는 드론(100)의 촬영 모드를 야간 모드에서 주간 모드로 주간 모드에서 야간 모드로 변경하는 제어 메시지를 전송할 수 있다.
이와 같은 방법을 이용하여 드론을 이용하여 일정 지역을 감시하며 촬영함으로써, 범죄 예방 및 긴급 상황에 대한 신속한 대처가 가능하다.
도 12는 본 발명의 일 실시 예에 따른 드론의 움직임 제어를 통해 촬영 동작을 수행하기 위한 방법의 일 예를 나타내는 도이다.
도 12를 참조하면 도 11에서 살펴본 바와 같이 드론이 일정 조건을 만족하는 경우, 설정된 경로를 따라 이동하며 촬영을 할 수 있다.
구체적으로, 도 12의 (a)에 도시된 바와 같이 드론(100)은 도 11에서 설명한 설정된 조건을 만족하지 않는 경우, 충전 스테이션(500)에 안착되어 배터리를 충전시키며, 카메라를 통해 인접 지역을 촬영한다.
드론(100)은 촬영된 영상을 실시간으로 관제 센터에 전송하거나, 메모리에 저장할 수 있으며, 도 11에서 설명한 촬영 모드에 따라 RGB 카메라 또는 열화상(또는 적외선) 카메라를 이용하여 촬영을 할 수 있다.
이후, 드론(100)은 설정된 조건을 만족하거나, 관제 센터로부터 경로를 따라 이동하며 촬영을 수행하라는 제어 정보를 수신하면, 도 12의 (b)에 도시된 바와 같이 충전 스테이션에서 이륙하여 기 설정된 경로를 따라 이동하며, 설정된 경로를 촬영할 수 있다.
이때, 드론(100)은 관제 센터로부터 전송된 제어 정보에 포함된 설정 정보 또는 기 설정된 설정 정보에 따라 촬영을 할 수 있다.
설정 정보는, 드론(100)의 비행 주기, 촬영하는 촬영 범위, 비행 고도 등의 정보를 포함할 수 있다.
드론(100)은 경로를 따라 이동하며 영상을 촬영하는 경우, 도 11에서 설명한 동작들을 수행할 수 있으며, 순찰 임무가 완료되면 다시 도 12의 (a)에 도시된 바와 같이 충전 스테이션(500)으로 복귀하여 배터리를 충전하면서 인접 지역을 촬영할 수 있다.
도 13은 본 발명의 일 실시 예에 따른 드론의 움직임 제어를 통해 일정 지역을 촬영하기 위한 방법의 일 예를 나타내는 순서도이다.
도 13을 참조하면, 드론은 설정된 조건을 만족하는 경우, 경로를 따라 이동하면서 일정한 지역을 촬영할 수 있으며, 경로를 따라 촬영하는 도중 특정 이벤트가 발생하면, 이에 대응하는 특정 동작을 수행할 수 있다.
구체적으로, 드론은 충전 스테이션에 착륙되어 안착될 수 있으며, 안착된 상태에서 무선 충전 패드를 통해 배터리를 충전할 수 있다. 또한, 드론의 본체에 구비된 짐볼의 카메라를 통해서 일정 지역을 촬영할 수 있으며, 촬영된 영상을 관제센터으로 실시간으로 전송하거나, 메모리에 저장할 수 있다(S13010).
드론에 구비된 카메라는 짐볼을 통해서 360°회전할 수 있으며, 색상(Red, Green, Blue: RGB) 카메라, 적외선 카메라 및/또는 열화상 카메라 등일 수 있다.
이때, 드론은 RBG 카메라, 적외선 카메라 및/또는 열화상 카메라 중 적어도 하나를 구비할 수 있다.
드론은 충전 스테이션(500)에 안착된 상태에서 일정 지역을 촬영하면서, 기 설정된 조건이 만족되었는지 여부를 확인할 수 있다.
드론은 충전 스테이션에 안착된 상태에서 일정 지역을 촬영하다가 설정된 조건을 만족하거나, 관제센터로부터 순찰 명령을 지시하는 신호를 수신하면, 설정된 경로를 따라 비행하면서 CCTV와 같이 카메라를 이용하여 경로상의 일정 지역을 촬영할 수 있다(S13020).
순찰 명령은 드론이 경로를 따라 비행을 하면서 경로 상의 촬영 가능한 범위를 촬영하는 동작을 의미하며, 경로는 드론에 기 설정되거나, 관제센터로부터 전송되는 제어 신호에 따라 설정될 수 있다.
드론의 순찰 임무를 위한 설정된 조건은 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역에 따라 설정될 수 있으며, 순찰 명령을 수행할 시간 대 또는 조도가 될 수 있다.
예를 들면, 드론의 순찰 명령 수행 조건은 아래와 같이 설정될 수 있다.
- 야간 시간대(21:00 ? 23:59): 30분마다 10분씩 deploy(열화상 카메라 온, 6회)
- 오전 시간대(09:00-11:59): 1시간마다 10분씩 deploy(RGB 카메라 온, 3회)
- 심야시간대(03:00-05:59): 우범지역을 중심으로 1시간마다 10분씩 deploy(열화상 카메라 온, 3회)
또는, 드론은 조도량에 따라 조도가 일정 값 이하이면 특정 시간마다 한번씩 순찰 임무를 수행하고, 조도가 일정 값 이상이면 충전 스테이션에 안착되어 촬영을 수행할 수 있다.
드론은 비행 모드가 자동 모드인 경우, 설정된 경로를 따라 자동으로 비행하면서 경로를 촬영할 수 있으며, 수동 모드인 경우 관제 센터(500)로부터 전송되는 제어 정보에 따라 비행할 수 있다.
이때, 수동 모드에 따라 관제센터로부터 전송되는 제어 정보가 설정된 경로를 이탈하여 비행을 지시하는 경우, 드론은 설정된 경로를 이탈하여 비행하며 촬영을 수행할 수 있다.
드론은 순찰 임무에 따라 설정된 경로를 비행하는 중에 특정 이벤트가 발생된 경우, 발생된 이벤트에 따라 이에 대응되는 특정 동작을 수행할 수 있다(S13030).
이때, 드론은 발생된 이벤트에 대한 정보를 관제센터로 전송할 수 있으며, 관제센터로부터 특정 동작과 관련된 제어 정보를 수신하여 이에 따라 동작할 수 있다.
예를 들면, 드론은 아래와 같이 특정 이벤트 발생 시 이에 대응되는 동작을 수행할 수 있다.
- 순찰 임무에 따라 설정된 경로를 비행하는 중 범죄 형장을 발견하거나 응급 상황을 발견하는 경우, 영상의 화질을 향상 시키기 위해서 열화상 카메라 뿐만 아니라 RGB 카메를 추가로 이용하여 영상을 촬영. 이때, RGB 카메라의 화질 향상을 위해서 조명을 온 시킬 수 있으며, 고도를 높이거나, 낮출 수 있다.
- 순찰 임무도중에 경로상의 사람들을 스캔할 수 있으며, 스캔된 사람들 중에서 범죄 용의자를 식별할 수 있음. 이 경우, 드론은 식별된 범죄 용의자의 영상 정보를 관제 센터로 전송할 수 있으며, 식별된 용의자를 추격할 수 있다.
- 범죄 현장이나, 응급 상황 발생 시 발생된 장소로 근접하여 경광등과 사이렌 음으로 경고(경광등 온, 사이렌 온, 스포트라이트 온). 이때, 경광등, 사이렌, 스포트라이트는 개별적으로 제어 가능.
드론은 주간 모드 또는 야간 모드에 따라 카메라를 이용하여 설정된 경로의 영상을 촬영할 수 있다. 드론은 주간 모드에서는 RGB 카메라를 이용하여 영상 촬영을 수행하고, 야간 모드에서는 카메라를 열화상 카메라 또는 적외선 카메라로 변경하여 촬영을 수행할 수 있다.
만약, 야간 모드에서 열화상 카메라 또는 적외선 카메라를 이용하여 영상을 촬영하던 도중 특정 물체를 추적하거나, 긴급 상황 또는 범죄 현장을 촬영하는 경우, 드론은 열화상 카메라 또는 적외선 카메라 뿐만 아니라 RGB 카메라를 추가적으로 이용하여 영상을 촬영할 수 있다.
이때, 드론은 RBG 카메라의 영상 품질 향상을 위해서 조명 또는 스포트라이트를 온 시키거나, 넓은 지역의 촬영을 위해 고도를 높일 수 있다.
도 14는 본 발명의 일 실시 예에 따른 특정 이벤트의 발생에 따른 드론의 동작에 대한 일 예를 나타내는 도이다.
도 14를 참조하면, 드론은 경로를 따라 이동하며 영상을 촬영하는 도중 특정 이벤트가 발생하는 경우 에이 대응되는 특정 동작을 수행할 수 있다.
구체적으로, 드론은 설정된 조건에 따라 드론 스테이션에서 이륙하여 경로를 따라 이동하며 순찰 임무를 수행할 수 있다. 이 때, 드론은 경로를 따라 이동하며 순찰 임무를 수행하던 도중 도 14의 (a)에 도시된 바와 같이 특정 이벤트의 발생을 인식할 수 있다.
이후, 드론은 인식된 특정 이벤트에 대응되는 특정 동작을 수행할 수 있다. 이때, 특정 동작은 각각의 특정 이벤트에 따라 드론에 기 설정되거나, 드론이 특정 이벤트의 발생에 따라 관제 센터로부터 전송되는 특정 동작을 지시하는 지시 메시지 포함될 수 있다.
이 경우, 드론은 특정 이벤트의 발생을 보고하기 위한 보고 메시지를 관제 센터로 전송할 수 있다.
예를 들면, 범죄 현장, 긴급 상황 또는 응급 상황이 발생한 경우, 도 14의 (b)에 도시된 바와 같이 드론은 이러한 상황이 발생한 영역에 근접하여 경고음 및/또는 경고 메시지를 출력할 수 있으며, 스포트라이트를 온하여 특정 이벤트가 발생한 영역을 비출 수 있다.
도 15는 본 발명의 일 실시 예에 따른 드론의 핸드오버 방법의 일 예를 나타내는 순서도이다.
도 15를 참조하면, 드론은 순찰 임무 중 배터리가 일정 값 이하로 떨어지는 경우, 인접한 드론 스테이션에 안착된 다른 드론을 탐색하여 핸드오버를 수행할 수 있다.
구체적으로, 드론은 도 11 내지 도 14에서 설명한 설정된 경로를 따라 이동하면서 일정 지역을 촬영하는 순찰 임무를 수행할 수 있다(S15010).
드론은 순찰 임무 수행 도중 배터리를 주기적으로 체크할 수 있으며, 배터리의 잔량이 임계 값 이하로 낮아지는 경우, 기 설정된 경로 상의 또는 경로에 인접한 지역에 위치한 다른 드론 스테이션 및 다른 드론 스테이션에 착륙해있는 다른 드론을 탐색할 수 있다(S15020).
인접한 다른 충전 스테이션 및 다른 드론을 탐색한 드론은 다른 드론에게 순찰 임무를 핸드오버하고, 다른 충전 스테이션에 착륙하여 배터리를 충전할 수 있다(S15030).
구체적으로, 드론은 다른 드론에게 촬영된 영상 및 순찰 임무와 관련된 정보(순찰 경로, 순찰 주기 등)를 전송하고, 다른 드론이 충전 스테이션에서 이륙하여 경로를 비행하면, 다른 충전스테이션에 착륙하여 배터리를 충전할 수 있다.
이와 같은 방법을 통해서 드론은 경로를 따라 비행하며 순찰 임무를 수행해는 도중에 배터리의 부족으로 인한 순찰 임무의 중단을 방지할 수 있으며, 연속적으로 순찰 임무를 수행할 수 있다.
도 16은 본 발명의 일 실시 예에 따른 드론의 움직임을 제어하기 위한 방법의 일 예를 나타내는 순서도이다.
도 16을 참조하면, 드론은 기 설정된 경로를 따라 순찰 임무를 수행하며 실시간으로 관제 센터로 촬영된 영상 정보를 전송할 수 있다.
구체적으로, 드론은 충전 스테이션에 착륙되어 안착될 수 있으며, 안착된 상태에서 무선 충전 패드를 통해 배터리를 충전할 수 있다. 또한, 드론의 본체에 구비된 짐볼의 카메라를 통해서 일정 지역을 촬영할 수 있으며, 촬영된 영상을 관제센터으로 실시간으로 전송하거나, 메모리에 저장할 수 있다(S16010).
드론에 구비된 카메라는 짐볼을 통해서 360°회전할 수 있으며, 색상(Red, Green, Blue: RGB) 카메라, 적외선 카메라 및/또는 열화상 카메라 등일 수 있다.
이때, 드론은 RBG 카메라, 적외선 카메라 및/또는 열화상 카메라 중 적어도 하나를 구비할 수 있다.
드론은 충전 스테이션(500)에 안착된 상태에서 일정 지역을 촬영하면서, 기 설정된 조건이 만족되었는지 여부를 확인할 수 있다.
드론은 충전 스테이션에 안착된 상태에서 일정 지역을 촬영하다가 설정된 조건을 만족하거나, 관제센터로부터 순찰 명령을 지시하는 신호를 수신하면, 도 11 내지 도 13에서 설명한 바와 같이 설정된 경로를 따라 비행하면서 CCTV와 같이 카메라를 이용하여 경로상의 일정 지역을 촬영할 수 있으며, 촬영된 영상 정보를 기지국으로 전송할 수 있다(S16020).
순찰 명령은 드론이 경로를 따라 비행을 하면서 경로 상의 촬영 가능한 범위를 촬영하는 동작을 의미하며, 경로는 드론에 기 설정되거나, 관제센터로부터 전송되는 제어 신호에 따라 설정될 수 있다.
드론의 순찰 임무를 위한 설정된 조건은 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역에 따라 설정될 수 있으며, 순찰 명령을 수행할 시간 대 또는 조도가 될 수 있다.
예를 들면, 드론의 순찰 명령 수행 조건은 아래와 같이 설정될 수 있다.
- 야간 시간대(21:00 ? 23:59): 30분마다 10분씩 deploy(열화상 카메라 온, 6회)
- 오전 시간대(09:00-11:59): 1시간마다 10분씩 deploy(RGB 카메라 온, 3회)
- 심야시간대(03:00-05:59): 우범지역을 중심으로 1시간마다 10분씩 deploy(열화상 카메라 온, 3회)
또는, 드론은 조도량에 따라 조도가 일정 값 이하이면 특정 시간마다 한번씩 순찰 임무를 수행하고, 조도가 일정 값 이상이면 충전 스테이션에 안착되어 촬영을 수행할 수 있다.
드론은 비행 모드가 자동 모드인 경우, 설정된 경로를 따라 자동으로 비행하면서 경로를 촬영할 수 있으며, 수동 모드인 경우 관제 센터(500)로부터 전송되는 제어 정보에 따라 비행할 수 있다.
이때, 수동 모드에 따라 관제센터로부터 전송되는 제어 정보가 설정된 경로를 이탈하여 비행을 지시하는 경우, 드론은 설정된 경로를 이탈하여 비행하며 촬영을 수행할 수 있다.
이후, 드론은 도 11 내지 도 14에서 설명한 바와 같이 기지국으로부터 촬영된 영상 정보에 기초하여 특정 동작을 지시하는 제어 정보를 수신할 수 있으며(S16030), 수신된 제어 정보에 기초하여 특정 동작을 수행할 수 있다(S16050).
이때, 특정 동작은 드론이 기지국으로 특정 이벤트가 발생하여 이를 기지국으로 보고한 경우 기지국이 특정 이벤트에 따라 드론에게 지시할 수 있으며, 드론은 특정 이벤트에 따라 기지국으로부터 전송된 제어 메시지에 의해서 지시되는 특정 동작을 수행할 수 있다.
또는, 드론은 특정 이벤트가 발생한 경우, 기지국으로부터의 제어 메시지의 전송 없이 각각의 특정 이벤트에 대응되어 기 설정된 각각의 특정 동작을 수행할 수 있다.
특정 이벤트 및 특정 동작은 도 11 내지 도 14에서 설명한 바와 같다.
이하, 도 1 내지 도 4 및 도 11 내지 도 16를 참고하여 본 명세서에서 제안하는 드론의 움직임을 제어하기 위한 방법이 드론에서 구현되는 구체적인 방법에 대해 설명한다.
드론은 본체, 상기 본체에 구비되어 일정 지역을 촬영하기 위한 상기 적어도 하나의 카메라, 적어도 하나의 모터, 상기 적어도 하나의 모터 각각에 연결된 적어도 하나의 프로펠러, 및상기 적어도 하나의 모터와 전기적으로 연결되어 상기 적어도 하나의 모터를 제어하는 프로세서를 포함할 수 있다.
상기 드론의 프로세서는 드론의 착륙 레그를 제어하여 충전 스테이션에 착륙할 수 있으며, 안착된 상태에서 무선 충전 패드를 통해 배터리가 충전되도록 제어할 수 있다.
또한, 드론의 프로세서는 본체에 구비된 짐볼의 카메라를 제어하여 일정 지역을 촬영하도록 제어할 수 있으며, 무선 통신 유닛을 제어하여 촬영된 영상을 관제센터으로 실시간으로 전송하거나, 메모리에 저장할 수 있다.
드론에 구비된 카메라는 짐볼을 통해서 360°회전할 수 있으며, 색상(Red, Green, Blue: RGB) 카메라, 적외선 카메라 및/또는 열화상 카메라 등일 수 있다.
이때, 적어도 하나의 카메라는 RBG 카메라, 적외선 카메라 및/또는 열화상 카메라 중 적어도 하나일 수 있다.
드론의 프로세서는 충전 스테이션에 안착된 상태에서 적어도 하나의 카메라를 제어하여 일정 지역을 촬영하면서, 기 설정된 조건이 만족되었는지 여부를 판단할 수 있다.
드론의 프로세서는 충전 스테이션에 안착된 상태에서 일정 지역을 촬영하다가 설정된 조건을 만족하거나, 관제센터로부터 순찰 명령을 지시하는 신호를 수신하면, 도 11 내지 도 13에서 설명한 바와 같이 적어도 하나의 모터 및 이에 연결된 적어도 하나의 프로펠러를 제어하여 설정된 경로를 따라 비행하면서 CCTV와 같이 카메라를 이용하여 경로상의 일정 지역을 촬영할 수 있으며, 무선 통신 유닛을 제어하여 촬영된 영상 정보를 기지국으로 전송할 수 있다.
순찰 명령은 드론이 경로를 따라 비행을 하면서 경로 상의 촬영 가능한 범위를 촬영하는 동작을 의미하며, 경로는 드론에 기 설정되거나, 관제센터로부터 전송되는 제어 신호에 따라 설정될 수 있다.
드론의 순찰 임무를 위한 설정된 조건은 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역에 따라 설정될 수 있으며, 순찰 명령을 수행할 시간 대 또는 조도가 될 수 있다.
예를 들면, 드론의 순찰 명령 수행 조건은 아래와 같이 설정될 수 있다.
- 야간 시간대(21:00 ? 23:59): 30분마다 10분씩 deploy(열화상 카메라 온, 6회)
- 오전 시간대(09:00-11:59): 1시간마다 10분씩 deploy(RGB 카메라 온, 3회)
- 심야시간대(03:00-05:59): 우범지역을 중심으로 1시간마다 10분씩 deploy(열화상 카메라 온, 3회)
또는, 드론은 조도량에 따라 조도가 일정 값 이하이면 특정 시간마다 한번씩 순찰 임무를 수행하고, 조도가 일정 값 이상이면 충전 스테이션에 안착되어 촬영을 수행할 수 있다.
드론은 비행 모드가 자동 모드인 경우, 설정된 경로를 따라 자동으로 비행하면서 경로를 촬영할 수 있으며, 수동 모드인 경우 관제 센터(500)로부터 전송되는 제어 정보에 따라 비행할 수 있다.
이때, 수동 모드에 따라 관제센터로부터 전송되는 제어 정보가 설정된 경로를 이탈하여 비행을 지시하는 경우, 드론은 설정된 경로를 이탈하여 비행하며 촬영을 수행할 수 있다.
이후, 드론의 프로세서는 무선 통신 유닛을 제어하여 도 11 내지 도 14에서 설명한 바와 같이 기지국으로부터 촬영된 영상 정보에 기초하여 특정 동작을 지시하는 제어 정보를 수신할 수 있으며, 수신된 제어 정보에 기초하여 드론의 각 유닛을 제어하여 특정 동작을 수행할 수 있다.
이때, 특정 동작은 드론이 기지국으로 특정 이벤트가 발생하여 이를 기지국으로 보고한 경우 기지국이 특정 이벤트에 따라 드론에게 지시할 수 있으며, 드론은 특정 이벤트에 따라 기지국으로부터 전송된 제어 메시지에 의해서 지시되는 특정 동작을 수행할 수 있다.
또는, 드론은 특정 이벤트가 발생한 경우, 기지국으로부터의 제어 메시지의 전송 없이 각각의 특정 이벤트에 대응되어 기 설정된 각각의 특정 동작을 수행할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 17은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 17을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1710)와 단말(1720)을 포함한다.
여기서, 단말은 UE, UAV, 드론(Drone), 무선 항공 로봇 등일 수 있다.
기지국(1710)는 프로세서(processor, 1711), 메모리(memory, 1712) 및 통신 모듈(communication module, 1713)을 포함한다.
프로세서는 앞서 도 1 내지 도 16에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1711)에 의해 구현될 수 있다. 메모리(1712)는 프로세서(1711)와 연결되어, 프로세서(1711)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1713)은 프로세서(1711)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1713)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1720)은 프로세서(1721), 메모리(1722) 및 통신 모듈(또는 RF부)(1723)을 포함한다. 프로세서(1721)는 앞서 도 1 내지 도 16에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1721)에 의해 구현될 수 있다. 메모리(1722)는 프로세서(1721)와 연결되어, 프로세서(1721)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1723)는 프로세서(1721)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1712, 1722)는 프로세서(1711, 1721) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1711, 1721)와 연결될 수 있다.
또한, 기지국(1710) 및/또는 단말(1720)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 18은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 18에서는 앞서 도 17의 단말을 보다 상세히 예시하는 도면이다.
도 18을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1810), RF 모듈(RF module)(또는 RF 유닛)(1835), 파워 관리 모듈(power management module)(1805), 안테나(antenna)(1840), 배터리(battery)(1855), 디스플레이(display)(1815), 키패드(keypad)(1820), 메모리(memory)(1830), 심카드(SIM(Subscriber Identification Module) card)(1825)(이 구성은 선택적임), 스피커(speaker)(1845) 및 마이크로폰(microphone)(1850)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1810)는 앞서 도 1 내지 도 16에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1810)에 의해 구현될 수 있다.
메모리(1830)는 프로세서(1810)와 연결되고, 프로세서(1810)의 동작과 관련된 정보를 저장한다. 메모리(1830)는 프로세서(1810) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1810)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1820)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1850)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1810)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1825) 또는 메모리(1830)로부터 추출할 수 있다. 또한, 프로세서(1810)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1815) 상에 디스플레이할 수 있다.
RF 모듈(1835)는 프로세서(1810)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1810)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1835)에 전달한다. RF 모듈(1835)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1840)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1835)은 프로세서(1810)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1845)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
1710: 기지국 1720: 단말
1711: 프로세서 1721: 프로세서
1712: 메모리 1722: 메모리
1713: RF 유닛 1723: RF 유닛
1714: 안테나 1724: 안테나

Claims (20)

  1. 드론, 드론 스테이션 및 기지국으로 구성된 드론의 움직임을 제어하기 위한 드론 시스템에 있어서,
    상기 드론은 상기 드론 스테이션에 안착된 상태에서 카메라를 이용하여 일정 범위의 지역을 촬영하고, 기 설정된 조건에 따라 설정된 경로를 따라 비행하면서 상기 설정된 경로를 촬영하며, 촬영된 영상 정보를 기지국으로 전송하고,
    상기 드론 스테이션은 상기 드론이 안착된 경우, 충전 패드를 통해 상기 드론의 배터리를 충전시키되,
    상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정되며,
    상기 기 설정된 조건에 따라 상기 드론의 비행 주기, 비행 경로, 비행 방법이 각각 다르게 설정되는 것을 특징으로 하는 드론 시스템.
  2. 제 1 항에 있어서,
    상기 기지국은 상기 촬영된 영상 정보에 기초하여 상기 드론에게 특정 동작을 지시하는 제어 정보를 전송하는 것을 특징으로 하는 드론 시스템.
  3. 제 1 항에 있어서,
    상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정되는 것을 특징으로 하는 드론 시스템.
  4. 제 2 항에 있어서,
    상기 제어 정보는 상기 드론의 비행을 통한 촬영 동작을 수행하는 시간 구간과 관련된 비행 시간 구간 정보 및 상기 시간 구간 동안 상기 비행 주기와 관련된 주기 정보를 포함하는 것을 특징으로 하는 드론 시스템.
  5. 제 1 항에 있어서,
    상기 드론은 카메라의 촬영 모드를 주간 모드 또는 야간 모드로 변경하여 상기 설정된 경로를 촬영하는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 촬영 모드는 조도에 따라 주간 모드 또는 야간 모드로 변경되는 것을 특징으로 하는 드론 시스템.
  7. 제 5 항에 있어서,
    상기 기지국은 상기 촬영 모드를 변경하기 위한 제어 신호를 상기 드론에게 전송하고,
    상기 드론은 상기 제어 신호에 따라 상기 촬영 모드를 주간 모드 또는 야간 모드로 변경하는 것을 특징으로 하는 드론 시스템.
  8. 제 5 항에 있어서,
    상기 촬영 모드가 주간 모드인 경우, 상기 드론은 컬러(Red Green Blue: RGB) 카메라를 통해서 촬영을 수행하고,
    상기 촬영 모드가 야간 모드인 경우, 상기 드론은 열화상 카메라를 통해서 촬영을 수행하는 것을 특징으로 하는 드론 시스템.
  9. 제 8 항에 있어서,
    상기 드론은 상기 야간 모드에서 상기 열화상 카메라를 통해서 상기 촬영을 수행하는 경우, 특정 이벤트 발생시 조명을 온(ON) 시키고 상기 열화상 카메라와 함께 컬러 카메라를 이용하여 상기 촬영을 수행하는 것을 특징으로 하는 드론 시스템.
  10. 제 9 항에 있어서,
    상기 특정 이벤트는 기 설정된 범죄 상황 또는 긴급 상황에 대응되는 이벤트인 것을 특징으로 하는 방법.
  11. 제 5 항에 있어서,
    상기 기지국은 상기 기 설정된 범죄 상황 또는 긴급 상황과 관련된 제어 정보를 상기 드론으로 전송하는 것을 특징으로 하는 드론 시스템.
  12. 제 3 항에 있어서,
    상기 드론은 배터리가 임계 값 이하인 경우, 상기 드론은 인접한 다른 드론 스테이션을 탐색하고, 상기 탐색된 다른 드론 스테이션에 안착된 다른 드론에게 상기 설정된 경로의 촬영 동작을 핸드오버 하는 것을 특징으로 하는 드론 시스템.
  13. 제 12 항에 있어서,
    상기 드론은 상기 다른 드론에게 상기 촬영 동작과 관련된 정보를 전송하는 것을 특징으로 하는 드론 시스템.
  14. 제 13 항에 잇어서,
    상기 드론은 상기 다른 드론 스테이션에 착륙하여 배터리를 충전하는 것을 특징으로 하는 드론 시스템.
  15. 드론의 촬영 방법에 있어서, 상기 드론은,
    본체;
    상기 본체에 구비되어 일정 지역을 촬영하기 위한 상기 적어도 하나의 카메라;
    적어도 하나의 모터;
    상기 적어도 하나의 모터 각각에 연결된 적어도 하나의 프로펠러; 및
    상기 적어도 하나의 모터와 전기적으로 연결되어 상기 적어도 하나의 모터를 제어하는 프로세서를 포함하되, 상기 프로세서는,
    드론 스테이션에 안착된 상태에서 카메라를 이용하여 일정 범위의 지역을 촬영하고,
    기 설정된 조건에 따라 설정된 경로를 따라 비행하면서 상기 설정된 경로를 촬영하며, 촬영된 영상 정보를 기지국으로 전송하고,
    상기 기지국으로부터 상기 촬영된 영상 정보에 기초하여 특정 동작을 지시하는 제어 정보를 수신하며,
    상기 드론이 상기 드론 스테이션이 안착된 경우, 상기 드론의 배터리를 충전하도록 제어하되,
    상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정되며,
    상기 기 설정된 조건에 따라 상기 드론의 비행 주기, 비행 경로, 비행 방법이 각각 다르게 설정되는 것을 특징으로 하는 드론.
  16. 제 15 항에 있어서,
    상기 기 설정된 조건은, 범죄 발생 비율, 범죄 발생 시간, 또는 범죄 발생 지역 등에 기초하여 결정되는 것을 특징으로 하는 드론.
  17. 제 15 항에 있어서,
    상기 기 설정된 조건은 상기 드론의 비행을 통한 촬영 동작을 수행하는 시간 구간과 관련된 비행 시간 구간 정보 및 상기 시간 구간 동안 비행 주기와 관련된 주기 정보를 포함하는 것을 특징으로 하는 드론.
  18. 제 15 항에 있어서, 프로세서는,
    상기 카메라의 촬영 모드를 주간 모드 또는 야간 모드로 변경하여 상기 설정된 경로가 촬영되도록 제어하는 것을 특징으로 하는 드론.
  19. 제 18 항에 있어서,
    상기 촬영 모드는 조도에 따라 주간 모드 또는 야간 모드로 변경되는 것을 특징으로 하는 드론 시스템.
  20. 제 18 항에 있어서, 상기 프로세서는,
    상기 기지국으로부터 상기 촬영 모드를 변경하기 위한 제어 신호를 수신하고,
    상기 제어 신호에 따라 상기 촬영 모드는 주간 모드 또는 야간 모드로 변경되는 것을 특징으로 하는 드론.
KR1020190100569A 2019-08-16 2019-08-16 무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치 KR20190104016A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190100569A KR20190104016A (ko) 2019-08-16 2019-08-16 무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치
US16/567,782 US10869004B2 (en) 2019-08-16 2019-09-11 Shooting method controlling movement of unmanned aerial robot in unmanned aerial system and apparatus for supporting same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190100569A KR20190104016A (ko) 2019-08-16 2019-08-16 무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치

Publications (1)

Publication Number Publication Date
KR20190104016A true KR20190104016A (ko) 2019-09-05

Family

ID=67949943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190100569A KR20190104016A (ko) 2019-08-16 2019-08-16 무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치

Country Status (2)

Country Link
US (1) US10869004B2 (ko)
KR (1) KR20190104016A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392822B1 (ko) * 2021-06-10 2022-05-02 주식회사 에이투마인드 주간 타입 카메라 및 야간 타입 카메라를 이용하여 객체를 탐지 및 추적하는 장치 및 방법
KR102485302B1 (ko) * 2022-04-07 2023-01-06 한화시스템 주식회사 영상 표시장치 및 영상 표시방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD944683S1 (en) * 2020-02-28 2022-03-01 SZ DJI Technology Co., Ltd. Aerial vehicle
CN111652153B (zh) * 2020-06-04 2023-12-22 北京百度网讯科技有限公司 场景自动识别方法、装置、无人车及存储介质
US11558106B2 (en) * 2020-07-24 2023-01-17 T-Mobile Usa, Inc. Signal interference mitigation for UAVs
EP4201092A4 (en) * 2020-09-24 2024-02-28 Samsung Electronics Co Ltd SYSTEM AND METHOD FOR PROTECTING PRIVACY OF BROADCAST ID IN UNMANNED AERIAL VEHICLE (UAV) COMMUNICATION
CN113147436B (zh) * 2021-03-04 2023-03-14 广西电网有限责任公司电力科学研究院 一种多无人机无线充电系统及其充电控制方法
US20220315220A1 (en) * 2021-03-31 2022-10-06 Skydio, Inc. Autonomous Aerial Navigation In Low-Light And No-Light Conditions
US11861896B1 (en) 2021-03-31 2024-01-02 Skydio, Inc. Autonomous aerial navigation in low-light and no-light conditions
US11541999B2 (en) * 2021-06-01 2023-01-03 Hoversurf, Inc. Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation
US20220380034A1 (en) * 2021-06-01 2022-12-01 Hoversurf, Inc. Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation
US11383831B1 (en) 2021-06-01 2022-07-12 Hoversurf, Inc. Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation
IT202100022652A1 (it) * 2021-09-01 2023-03-01 Rithema S R L S Lampione stradale con integrata piattaforma per ricarica di droni ad elevata efficienza energetica
US11377220B1 (en) * 2021-09-27 2022-07-05 Hoversurf, Inc. Methods of increasing flight safety, controllability and maneuverability of aircraft and aircraft for implementation thereof
CN114827452B (zh) * 2022-03-09 2024-02-02 中国农业科学院果树研究所 一种控制无线摄像头远程收集果树图像的方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539079B2 (ja) * 2010-07-15 2014-07-02 キヤノン株式会社 撮像装置、その制御方法及びプログラム
WO2015143615A1 (zh) * 2014-03-24 2015-10-01 深圳市大疆创新科技有限公司 飞行器状态实时修正的方法和装置
JP6650691B2 (ja) * 2015-07-02 2020-02-19 キヤノン株式会社 撮像装置
US10155587B1 (en) * 2015-09-25 2018-12-18 Rujing Tang Unmanned aerial vehicle system and method for use
CN113238581A (zh) * 2016-02-29 2021-08-10 星克跃尔株式会社 无人飞行器的飞行控制的方法和系统
JP6746408B2 (ja) * 2016-07-08 2020-08-26 キヤノン株式会社 レンズ鏡筒及びその制御方法、撮像装置
US20190266901A1 (en) * 2018-02-28 2019-08-29 Walmart Apollo, Llc Systems and methods for assisting unmanned vehicles in delivery transactions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392822B1 (ko) * 2021-06-10 2022-05-02 주식회사 에이투마인드 주간 타입 카메라 및 야간 타입 카메라를 이용하여 객체를 탐지 및 추적하는 장치 및 방법
KR102485302B1 (ko) * 2022-04-07 2023-01-06 한화시스템 주식회사 영상 표시장치 및 영상 표시방법

Also Published As

Publication number Publication date
US10869004B2 (en) 2020-12-15
US20200007825A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
US10869004B2 (en) Shooting method controlling movement of unmanned aerial robot in unmanned aerial system and apparatus for supporting same
US11449054B2 (en) Method for controlling flight of unmanned aerial robot by unmanned aerial system and apparatus supporting the same
US20210405655A1 (en) Drone, drone station and method for controlling drone take-off using drone station
US20210208602A1 (en) Aerial control system
KR102276649B1 (ko) 무인 항공 시스템에서 무인 항공 로봇의 배터리를 충전하기 위한 방법 및 이를 지원하기 위한 장치
US11492110B2 (en) Method of landing unmanned aerial robot through station recognition in unmanned aerial system and device supporting the same
US11579606B2 (en) User equipment, system, and control method for controlling drone
US20210157336A1 (en) Unmanned aerial vehicle and station
US20210263538A1 (en) Unmanned aerial vehicle and unmanned aerial vehicle system
KR20190104015A (ko) 무인 항공 시스템에서 무인 항공 로봇의 촬영 방법 및 이를 지원하기 위한 장치
US20210331813A1 (en) Method and device for landing unmanned aerial vehicle
US20210116941A1 (en) Positioning method using unmanned aerial robot and device for supporting same in unmanned aerial system
KR20210114647A (ko) 무인비행체를 제어하기 위한 장치, 시스템 및 방법
US11459101B2 (en) Method of flying unmanned aerial robot in unmanned aerial system and apparatus for supporting the same
US11485516B2 (en) Precise landing method of unmanned aerial robot using multi-pattern in unmanned aerial control system and apparatus therefor
US20210331798A1 (en) Unmanned aerial robot landing method through station recognition in unmanned aerial system and apparatus for supporting the same
KR20190104014A (ko) 무인 항공 시스템에서 무인 항공 로봇의 자세 제어를 이용한 착륙 방법 및 이를 지원하기 위한 장치
US20210240205A1 (en) Measuring method using unmanned aerial robot and device for supporting same in unmanned aerial system
US20210197968A1 (en) Unmanned aerial vehicle
KR20190104923A (ko) 무인 항공 시스템에서 스테이션 인식을 통한 무인 항공 로봇의 자세 제어 방법 및 이를 지원하기 위한 장치
CN111699717B (zh) 通信设备、基站设备、方法和程序
US20230141017A1 (en) Method and apparatus for detecting terminal that deviates from cluster