KR20190100104A - 자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법 - Google Patents

자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법 Download PDF

Info

Publication number
KR20190100104A
KR20190100104A KR1020190097017A KR20190097017A KR20190100104A KR 20190100104 A KR20190100104 A KR 20190100104A KR 1020190097017 A KR1020190097017 A KR 1020190097017A KR 20190097017 A KR20190097017 A KR 20190097017A KR 20190100104 A KR20190100104 A KR 20190100104A
Authority
KR
South Korea
Prior art keywords
data
vehicle
bsm message
bsm
communication device
Prior art date
Application number
KR1020190097017A
Other languages
English (en)
Inventor
박수호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190100104A publication Critical patent/KR20190100104A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • H04W72/1278
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Abstract

자율주행시스템에서 차량에 구비된 V2X 통신 장치의 BSM 메시지 전송 방법이 개시된다. 본 발명의 일 실시예에 따른 V2X 통신 장치의 BSM 메시지 전송 방법은, 센서 오류로 인한 BSM 데이터를 정상적으로 구성하지 못하는 경우, 차량 내부의 복수의 센서로부터 각각 수신되는 센서 데이터와 GPS 데이터를 다중화 처리하고 다중화 처리된 센서 데이터를 BSM 데이터의 생성에 이용할 수 있다. 이로 인해 V2X 시스템의 안정성 강화하고, 센서간의 발생되는 오차 등을 보다 효율적으로 보정할 수 있다.
본 발명의 자율 주행 차량은 인공 지능(Artificial Intelligence) 모듈, 드론(Unmanned Aerial Vehicle, UAV), 로봇, 증강 현실(Augmented Reality, AR) 장치, 가상 현실(virtual reality, VR) 장치, 5G 서비스와 관련된 장치 등과 연계될 수 있다.

Description

자율주행시스템에서 차량에 구비된 V2X 통신 장치의 BSM 메시지 전송 방법{METHOD FOR TRANSMITTING BSM MESSAGE OF V2X CONNUMICATION DEVICE PROVIDED IN VEHICLE IN AUTONOMOUS DRIVING SYSTEM}
본 발명은 자율주행시스템에서 차량에 구비된 V2X 통신 장치의 BSM 메시지 전송 방법에 관한 것으로서, 보다 구체적으로는 차량 센서가 고장난 경우에도 BSM 메시지를 구성할 수 있는 V2X 통신 장치의 BSM 메시지 전송 방법에 관한 것이다.
최근 차량(vehicle)은 기계 공학 중심에서 전기, 전자, 통신 기술이 융합된 복합적인 산업 기술의 결과물이 되어 가고 있으며, 이러한 면에서 차량은 스마트카라고도 불린다. 스마트카는 운전자, 차량, 교통 인프라 등을 연결하여 교통 안전/복잡 해소와 같은 전통적인 의미의 차량 기술뿐 아니라 다양한 사용자 맞춤형 이동 서비스를 제공하게 되었다. 이러한 연결성은 V2X(Vehicle to Everything) 통신 기술을 사용하여 구현될 수 있다.
차량의 경우 차량 내부 센서(자체정보나, 휠속도 등)가 고장나거나 일부 파손되는 경우가 있을 수 있으며, 이런 센서 정보를 취득하지 못하면 현재 V2X 표준에는 BSM을 송신하지 못하도록 되어 있다. 이에 따라 차량 내부의 수많은 센서들 중에 한 가지 센서만 고장나더라도 V2X 통신을 수행하지 못하는 문제점이 있다.
본 발명은 전술한 필요성 및/또는 문제점을 해결하는 것을 목적으로 한다.
또한, 본 발명은, 자율 주행 시스템에서 센서 다중화를 통해 V2X 시스템의 안정성 강화하도록 하는 V2X 통신 장치에서 BSM 데이터 전송 방법을 제공한다.
또한, 본 발명은, 센서간의 발생되는 오차 등을 보정할 수 있는 V2X 통신 장치에서 BSM 데이터 전송 방법을 제공한다.
본 발명의 일 양상에 따른 자율주행시스템(Autounomous Driving System)에서 차량에 구비된 V2X(Vehicle to everything) 통신 장치의 BSM(BasicSafetyMessage) 메시지 전송 방법은, 상기 차량에 구비된 복수의 센서로부터 센서 데이터를 수신하는 단계; 상기 복수의 센서로부터 각각 수신된 상기 센서 데이터를 다중화 처리하는 단계; 및 상기 수신된 센서 데이터에 기초하여 상기 BSM 메시지를 생성할 수 없는 경우, 상기 다중화 처리된 센서 데이터 중 적어도 하나를 이용하여 상기 BSM 메시지를 생성하는 단계; 및 상기 BSM 메시지를 전송하는 단계;를 포함한다.
상기 BSM 메시지를 생성하는 단계는, 상기 복수의 센서 중 적어도 하나의 오류가 검출되어 상기 BSM 메시지를 생성할 수 없는 상태인지 판단하는 단계; 및 상기 오류가 검출된 것으로 판단된 경우, 상기 다중화 처리된 센서 데이터 중 적어도 하나가, 상기 BSM 메시지의 코어 데이터(coreData)를 구성하는 적어도 하나의 데이터 엘리먼트를 대체할 수 있는지 여부를 판단하는 단계; 상기 대체가 가능한 경우, 상기 다중화 처리된 센서 데이터 중 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 단계;를 더 포함할 수 있다.
상기 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 단계는, 상기 특정 센서 데이터 자체를 상기 코어 데이터의 데이터 엘리먼트로 대체할 수 있다.
상기 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 단계는, 상기 다중화 처리된 복수의 센서 데이터 중 적어도 하나의 센서 데이터를 이용하여 상기 코어 데이터 중 누락된 데이터 엘리먼트를 추정하는 단계; 및 상기 추정된 데이터 엘리먼트에 기초하여 상기 BSM 메시지를 생성하는 단계;를 더 포함할 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, 상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하지 않는 경우, 상기 복수의 센서 중 특정 센서의 고장으로 인해 상기 오류가 검출된 것으로 판단할 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, 상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하되, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터가 정상 범위 내의 데이터인지 판단하는 단계; 상기 센서 데이터가 상기 정상 범위를 벗어난 것으로 판단한 경우, 상기 특정 센서의 고장으로 인해 상기 오류가 검출된 것으로 판단하는 단계;를 더 포함할 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, 상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하되, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터가 상기 차량의 현재 상태를 잘못 반영한 경우, 상기 오류가 검출된 것으로 판단하는 단계;를 더 포함할 수 있다.
상기 다중화 처리된 센서 데이터와 비교하여, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터의 값이 미리 설정된 오차 범위 내에 포함되는 경우, 상기 센서 데이터의 값을 이용하여 상기 BSM 메시지를 생성하는 단계;를 더 포함할 수 있다.
상기 다중화 처리되는 데이터는, 외부 기기로부터 수신된 GPS 데이터를 더 포함할 수 있다.
상기 BSM 메시지를 생성하는 단계는, 상기 GPS 데이터에 기초하여 상기 차량의 GPS 좌표, 상기 GPS 좌표의 변동 추이, 상기 차량의 이동 경로에 기초하여 상기 BSM 메시지를 생성할 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, 상기 BSM 메시지의 전송을 스케쥴링하기 위해 사용되는 DCI(Downlink Control Information)를 네트워크로부터 수신하는 단계;를 더 포함하며, 상기 BSM 메시지의 전송은 상기 DCI에 기초하여 상기 네트워크로 전송될 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, SSB(synchronization signal block)에 기초하여 네트워크와 초기 접속 절차를 수행하는 단계;를 더 포함하며, 상기 BSM 메시지는 PUSCH를 통해 전송되며, 상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있는 것일 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 네트워크로부터 수신하는 단계; 상기 BMS 메시지 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 다른 차량으로 전송하는 단계; 및 상기 BMS 메시지를 PSSCH 상에서 상기 다른 차량으로 전송하는 단계;를 더 포함할 수 있다.
상기 V2X 통신 장치에서 BSM 메시지를 전송하는 방법은, 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱하는 단계; 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택하는 단계; 상기 선택된 자원을 기초로 상기 BSM 메시지 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 다른 차량으로 전송하는 단계; 및 상기 BMS 메시지를 PSSCH 상에서 상기 다른 차량으로 전송하는 단계;를 더 포함할 수 있다.
본 발명은 자율 주행 시스템에서 센서 다중화를 통해 V2X 시스템의 안정성 강화할 수 있다.
또한, 본 발명은 센서간의 발생되는 오차 등을 보정할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 3은 5G 통신 시스템에서 사용자 단말과 5G 네트워크의 기본동작의 일 예를 나타낸다.
도 4는 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 응용 동작의 일 예를 나타낸다.
도 5 내지 도 8은 5G 통신을 이용한 자율 주행 차량의 동작의 일 예를 나타낸다.
도 9는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 예시한다.
도 10 내지 도 11은 5G 통신을 이용한 차량 대 차량 간의 응용 동작의 일 예를 예시한다.
도 12는 본 발명의 실시예에 따른 지능형 교통 시스템(ITS; Intelligent Transport System)을 나타낸다.
도 13은 본 발명의 실시예에 따른 V2X 송수신 시스템을 나타낸다.
도 14는 본 발명의 다른 실시예에 따른 V2X 시스템의 구성을 나타낸다.
도 15는 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 16은 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 17은 본 발명의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 18은 본 발명의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
도 19는 본 발명의 일 실시예에 따른 V2X 통신 장치의 블럭 구성도의 예이다.
도 20은 본 발명의 일 실시예에 따른 V2X 통신 장치에서 전송하는 BSM 메시지의 데이터 엘리먼트의 예시이다.
도 21은 본 발명의 일 실시예에 따른 V2X 통신 장치의 BSM 메시지 전송 방법의 흐름도이다.
도 22는 본 발명의 일 실시예에 따른 V2X 통신 장치에서 BSM 메시지를 생성하는 일 예를 설명하기 위한 도면이다.
도 23은 본 발명의 일 실시예에 따른 V2X 통신 장치에서 BSM 메시지를 생성하는 다른 예를 설명하기 위한 도면이다.
도 24는 본 발명의 일 실시예에 따른 V2X 통신 장치에서 BSM 메시지를 생성하는 다른 예를 설명하기 위한 도면이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 자율 주행 정보를 필요로 하는 장치 및/또는 자율 주행 차량이 필요로 하는 5G 통신(5th generation mobile communication)을 단락 A 내지 단락 G를 통해 설명하기로 한다.
A. UE 및 5G 네트워크 블록도 예시
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 1을 참조하면, 자율 주행 모듈을 포함하는 장치(자율 주행 장치)를 제1 통신 장치로 정의(도 1의 910)하고, 프로세서(911)가 자율 주행 상세 동작을 수행할 수 있다.
자율 주행 장치와 통신하는 다른 차량을 포함하는 5G 네트워크를 제2 통신 장치로 정의(도 1의 920)하고, 프로세서(921)가 자율 주행 상세 동작을 수행할 수 있다.
5G 네트워크가 제 1 통신 장치로, 자율 주행 장치가 제 2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제 1 통신 장치 또는 상기 제 2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 자율 주행 장치 등일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 차량(vehicle), 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 도 1을 참고하면, 제 1 통신 장치(910)와 제 2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
B. 무선 통신 시스템에서 신호 송/수신 방법
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 2를 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 검출했다고 판단하고, 상기 검출된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 2를 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 2를 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
C. 5G 통신 시스템의 빔 관리(Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고을 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, ?}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
D. URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
E. mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 구동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제 1 주파수 자원에서 제 2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
F. 5G 통신을 이용한 자율 주행 차량 간 기본 동작
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
자율 주행 차량(Autonomous Vehicle)은 특정 정보 전송을 5G 네트워크로 전송한다(S1). 상기 특정 정보는 자율 주행 관련 정보를 포함할 수 있다. 그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정할 수 있다(S2). 여기서, 상기 5G 네트워크는 자율 주행 관련 원격 제어를 수행하는 서버 또는 모듈을 포함할 수 있다. 그리고, 상기 5G 네트워크는 원격 제어와 관련된 정보(또는 신호)를 상기 자율 주행 차량으로 전송할 수 있다(S3).
G. 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크 간의 응용 동작
이하, 도 1 및 도 2와 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 자율 주행 차량의 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 발명에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 S1 단계 및 S3 단계와 같이, 자율 주행 차량이 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, 자율 주행 차량은 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, 자율 주행 차량이 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다. 그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 자율 주행 차량은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 자율 주행 차량으로 원격 제어와 관련된 정보(또는 신호)를 전송할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, 자율 주행 차량은 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, 자율 주행 차량은 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, 자율 주행 차량은 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, 자율 주행 차량은 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, 자율 주행 차량은 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 3의 S1 단계에서, 자율 주행 차량은 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
도 4는 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 응용 동작의 일 예를 나타낸다.
자율 주행 차량은 5G 네트워크와 초기 접속(initial access) 절차를 수행한다(S20).
상기 초기 접속 절차는 하향 링크(Downlink, DL) 동직 획득을 위핸 셀 서치(cell search), 시스템 정보(system information)를 획득하는 과정 등을 포함하며, 단락 F 에서 보다 구체적으로 설명한다.
그리고, 상기 자율 주행 차량은 상기 5G 네트워크와 임의 접속(random access) 절차를 수행한다(S21).
상기 임의 접속 과정은 상향 링크(Uplink, UL) 동기 획득 또는 UL 데이터 전송을 위해 프리엠블 전송, 임의 접속 응답 수신 과정 등을 포함하며, 단락 G에서 보다 구체적으로 설명한다.
그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송한다(S22).
상기 UL Grant 수신은 5G 네트워크로 UL 데이터의 전송을 위해 시간/주파수 자원 스케줄링을 받는 과정을 포함하며, 단락 H에서 보다 구체적으로 설명한다.
그리고, 상기 자율 주행 차량은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다(S23).
그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정한다(S24).
그리고, 자율 주행 차량은 5ㅎ 네트워크로부터 특정 정보에 대한 응답을 수신하기 위해 물리 하향링크 제어 채널을 통해 DL grant를 수신한다(S25).
그리고, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 자율 주행 차량으로 원격 제어와 관련된 정보(또는 신호)를 전송한다(S26).
한편, 도 4에서는 자율 주행 차량과 5G 통신의 초기 접속 과정 및또는 임의 접속 과정 및 하향링크 그랜트 수신 과정이 결합된 예를 S20 내지 S26의 과정을 통해 예시적으로 설명하였지만, 본 발명은 이에 한정되지 않는다.
예를 들어, S20, S22, S23, S24, S24 과정을 통해 초기 접속 과정 및/또는 임의접속 과정을 수행할 수 있다. 또한, 예를 들어 S21, S22, S23, S24, S26 과정을 통해 초기접속 과정 및/또는 임의 접속 과정을 수행할 수 있다. 또한 S23, S24, S25, S26을 통해 AI 동작과 하향링크 그랜트 수신과정이 결합되는 과정을 수행할 수 있다.
또한, 도 4에서는 자율 주행 차량 동작에 대하여 S20 내지 S26을 통해 예시적으로 설명한 것이며, 본 발명은 이에 한정되지 않는다.
예를 들어, 상기 자율 주행 차량 동작은, S20, S21, S22, S25가 S23, S26과 선택적으로 결합되어 동작할 수 있따, 또한 예를 들어, 상기 자율 주행 차량 동작은, S21, S22, S23, S26으로 구성될 수도 있다. 또한 예를 들어, 상기 자율 주행 차량 동작은, S20, S21, S23, S26으로 구성될 수 있다. 또한, 예를 들어, 상기 자율 주행 차량 동작은, S22, S23, S25, S26으로 구성될 수 있다.
도 5 내지 도 8은 5G 통신을 이용한 자율 주행 차량 동작의 일 예를 나타낸다.
먼저 도 5를 참고하면, 자율 주행 모듈을 포함하는 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSBsynchronization signal block)에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다(S30).
그리고, 상기 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다(S31).
그리고, 상기 지율 주행 차량은 특정 정보를 전송하기 위해 5G 네트워크로 UL grant를 수신한다(S32).
그리고, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다(S33).
그리고, 상기 자율 주행 차량은 특정 정보에 대한 응답을 수신하기 위한 DL grant를 5G 네트워크로부터 수신한다(S34).
그리고, 상기 자율 주행 차량은 원격 제어와 관련된 정보(또는 신호)를 DL grant에 기초하여 5G 네트워크로부터 수신한다(S35).
S30에 빔 관리(beam management, BM) 과정이 추가될 수 있으며, S31에 PRACH(physical random access channel) 전송과 관련된 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, S32에 UL grant를 포함하는 PDCCH의 빔 수신 방향과 관련하여 QCL 관계 추가될 수 있으며, S33에 특정 정보를 포함하는 PUCCH (physical uplink control channel)/PUSCH (physical uplink shared channel)의 빔 전송 방향과 관련하여 QCL 관계 추가가 추가될 수 있다. 또한, S34에 DL grant를 포함하는 PDCCH의 빔 수신 방향과 관련하여 QCL 관계 추가될 수 있으며, 이에 관한 보다 구체적인 설명은 단락 I에서 보다 구체적으로 설명한다.
다음, 도 6을 참고하면, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다(S40).
그리고, 상기 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다(S41).
그리고, 상기 자율 주행 차량은 설정된 그랜트(configured grant)에 기초하여 특정 정보를 5G 네트워크로 전송한다(S42). 상기 5G 네트워크로부터 UL grant를 수행하는 과정 대신, 설정된 그랜드(configured grant)를 과정은 단락 H에서 보다 구체적으로 설명한다.
그리고, 상기 자율 주행 차량은 원격 제어와 관련된 정보(또는 신호를) 상기 설정된 그랜트에 기초하여 5G 네트워크로부터 수신한다(S43).
다음, 도 7을 참고하면, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다(S50).
그리고, 상기 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다(S51).
그리고, 상기 자율 주행 차량은 5G 네트워크로부터 DownlinkPreemption IE를 수신한다(S52).
그리고, 상기 자율 주행 차량은 상기 DownlinkPreemption IE에 기초하여 프리엠션 지시를 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다(S53).
그리고, 상기 자율 주행 차량은 pre-emption indication에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다(S54).
프리엠션 지시(preemption indication) 관련 동작은 단락 J에서 보다 구체적으로 설명한다.
그리고, 상기 자율 주행 차량은 특정 정보를 전송하기 위해 5G 네트워크로 UL grant를 수신한다(S55).
그리고, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다(S56).
그리고, 상기 자율 주행 차량은 특정 정보에 대한 응답을 수신하기 위한 DL grant를 5G 네트워크로부터 수신한다(S57).
그리고, 상기 자율 주행 차량은 원격제어와 관련된 정보(또는 신호)를 DL grant에 기초하여 5G 네트워크로부터 수신한다(S58).
다음, 도 8을 참고하면, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다(S60).
그리고, 상기 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다(S61).
그리고, 상기 자율 주행 차량은 특정 정보를 전송하기 위해 5G 네트워크로 UL grant를 수신한다(S62).
상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송된다(S63).
그리고, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다.
그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다.
상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
그리고, 상기 자율 주행 차량은 특정 정보에 대한 응답을 수신하기 위한 DL grant를 5G 네트워크로부터 수신한다(S64).
그리고, 상기 자율 주행 차량은 원격제어와 관련된 정보(또는 신호)를 DL grant에 기초하여 5G 네트워크로부터 수신한다(S65).
한편, 도 8에서 설명한 mMTC 관련하여 단락 K에서 보다 구체적으로 설명한다.
C. 5G 통신을 이용한 차량 대 차량 간의 자율 주행 동작
도 9는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 예시한다.
제1 차량은 특정 정보를 제2 차량으로 전송한다(S61).
제2 차량은 특정 정보에 대한 응답을 제1 차량으로 전송한다(S61).
여기서, 상기 특정 정보 및 상기 특정 정보에 대한 응답의 전송/수신과 관련된 구체적인 내용은 V2X 통신의 동작을 설명하는 단락 M에 개시된 내용을 참조할 수 있으며, 상기 도 8과 단락 M에 개시된 내용이 결합되어 적용될 수 있음을 의미한다.
한편, 5G 네트워크가 상기 특정 정보, 상기 특정 정보에 대한 응답의 자원 할다에 직접적(사이드 링크 통신 전송 모드 3) 또는 간접적으로(사이드링크 통신 전송 모드 4) 관여하는지에 따라 차량 대 차량 간 응용 동작의 구성이 달라질 수 있다.
도 10 내지 도 11은 5G 통신을 이용한 차량 대 차량 간의 응용 동작의 일 예를 예시한다.
도 10은 5G 네트워크가 신호 전송/수신의 자원 할당에 직접적으로 관여하는 실시예를 나타낸다.
5G 네트워크는, 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 제1 차량에 전송할 수 있다(S70).
여기서 PSCCH(physical sidelink control channel): 특정 정보 전송의 스케줄링을 위한 5G 물리 채널이고, PSSCH(physical sidelink shared channel): 특정 정보를 전송하는 5G 물리 채널이다.
제1 차량은 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다(S71).
그리고, 제1 차량이 특정 정보를 PSSCJ 상에서 제2 차량으로 전송한다(S72)
도 11은 5G 네트워크가 신호 전송/수신의 자원 할다에 간접적으로 관여하는 실시예를 나타낸다.
도 11을 참고하면, 제1 차량은 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱한다(S80).
그리고, 제1 차량은, 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택한다(S81).
여기서, 제1 윈도우는 센싱 윈도우(sensing window)를 의미하고, 제2 윈도우는 선택 윈도우(selection window)를 의미한다.
제1 차량은 상기 선택된 자원을 기초로 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다(S82)
그리고, 제1 차량은 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다(S83).
본 발명은 V2X 통신 장치에 대한 것으로, V2X 통신 장치는 ITS(Intelligent Transport System) 시스템에 포함되어, ITS 시스템의 전체 또는 일부 기능들을 수행할 수 있다. V2X 통신 장치는 차량과 차량, 차량과 인프라, 차량과 자전거, 모바일 기기 등과의 통신을 수행할 수 있다. V2X 통신 장치는 V2X 장치라고 약칭될 수도 있다. 실시예로서 V2X 장치는 차량의 온보드유닛(OBU; On Board Unit)에 해당하거나, OBU에 포함될 수도 있다. OBU는 OBE(On Board Equipment)라고 치칭될 수도 있다. V2X 장치는 인프라스트럭처의 RSU(Road Side Unit)에 해당하거나, RSU에 포함될 수도 있다. RSU는 RSE(RoadSide Equipment)라고 지칭될 수도 있다. 또는, V2X 통신 장치는 ITS 스테이션에 해당하거나, ITS 스테이션에 포함될 수 있다. V2X 통신을 수행하는 임의의 OBU, RSU 및 모바일 장비 등을 모두 ITS 스테이션 또는 V2X 통신 장치라고 지칭할 수도 있다.
도 12는 본 발명의 실시예에 따른 지능형 교통 시스템(ITS; Intelligent Transport System)을 나타낸다.
지능형 교통 시스템은 자동차, 버스, 기차 등의 교통 수단과 신호등, 전광판 등의 도로 주변에 설치된 교통 시설에 전자 제어 및 통신 장치와 같은 정보 통신 기술(information and communication technology)을 적용함으로써 효율적이고 안전한 교통 서비스를 제공하는 시스템을 의미한다. ITS를 지원하기 위해, V2X(Vehicle to everything) 기술이 사용될 수 있다. V2X 통신 기술은 차량과 차량 또는 차량과 주변 기기와의 통신 기술을 나타낸다.
V2X 통신을 지원하는 차량은 OBU를 장착하고 있으며, OBU는 DSRC(Dedicated Short-Range Communication) 통신 모뎀을 포함한다. 신호등과 같이 도로 주변에 설치된 V2X 모듈을 포함하는 인프라 스트럭처는 RSU라고 지칭될 수 있다. VRU(Vulnerable Road Users)는 교통 약자로서, 보행자, 자전거, 휠체어 등이 VRU에 해당할 수 있다. VRU는 V2X 통신 가능할 수 있다.
V2V(Vehicle to Vehicle)는 V2X 통신 장치를 포함하는 차량 간의 통신 또는 통신 기술을 지칭한다. V2I(Vehicle to Infra-structure)는 V2X 통신 장치를 포함하는 챠랑과 인프라 스트럭처 간의 통신 또는 통신 기술을 지칭한다. 그 외에, 차량과 교통 약자 간의 통신은 V2O라고 지칭될 수 있으며, 인프라 스트럭처와 교통 약자 간의 통신은 I2O라고 지칭될 수 있다.
도 13은 본 발명의 실시예에 따른 V2X 송수신 시스템을 나타낸다.
V2X 송수신 시스템은 V2X 송신기(2100) 및 V2X 수신기(2200) 송신기와 수신기는 데이터를 송신 및 수신하는 역할에 따라 구분한 것으로, 장치의 구성 차이는 없다. V2X 송신기(2100) 및 V2X 수신기(2200)는 모두 V2X 통신 장치에 해당한다.
V2X 송신기(2100)는 GNSS(Global Navigation Satellite System) 수신기(GNSS Receiver; 2110), DSRC 라디오(DSRC Radio; 2120), DSRC 디바이스 프로세서(DSRC device processor; 2130), 어플리케이션 ECU(Electronic Control Unit)(Application ECU; 2140), 센서(Sensor; 2150), 휴먼 인터페이스(Human Interface(2160)을 포함한다.
DSRC 라디오(2120)는 WLAN(Wireless Local Area Network) 기반의 IEEE 802.11 표준 및/또는 미국 자동차 기술학회인 SAE(Society of Automotive Engineer)의 WAVE(Wireless Access in Vehicular Environments) 표준에 기초하여 통신을 수행할 수 있다. DSRC 라디오(2120)는 피지컬 레이어와 MAC 레이어의 동작을 수행할 수 있다.
DSRC 디바이스 프로세서(2130)는 DSRC 라디오(2120)가 수신한 메세지를 디코딩하거나 송신할 메세지를 디코딩할 수 있다. GNSS 리시버(2110)는 GNSS를 처리하며, 위치 정보 및 시간 정보를 획득할 수 있다. 실시예로서, GNSS 리시버(2110)는 GPS(Global Positioning System) 장치가 될 수 있다.
어플리케이션 ECU(2140)는 특정 어플리케이션 서비스를 제공하기 위한 마이크로 프로세서가 될 수 있다. 어플리케이션 ECU는 서비스를 제공하기 위해 센서 정보 및 사용자 입력에 기초하여 동작/메세지를 생성하고, DSRC 디바이스 프로세서를 사용하여 메세지를 송수신할 수 있다. 센서(2150)는 차량 상태 및 주변 센서 정보를 획득할 수 있다. 휴먼 인터페이스(2160)는 입력 버튼이나 모니터 등의 인터페이스를 통해 사용자의 입력을 수신하거나 메세지를 표시/제공할 수 있다.
V2X 수신기(2200)는 GNSS(Global Navigation Satellite System) 수신기(GNSS Receiver; 2210), DSRC 라디오(DSRC Radio; 2220), DSRC 디바이스 프로세서(DSRC device processor; 2230), 어플리케이션 ECU(Electronic Control Unit)(Application ECU; 2240), 센서(Sensor; 2250), 휴먼 인터페이스(Human Interface(2260)을 포함한다. V2X 수신기의 구성(2200)에 대해서는 V2X 송신기(2100)의 구성에 대한 상술한 설명이 적용된다.
DSRC 라디오와 DSRC 디바이스 프로세서는 통신 유닛의 하나의 실시예에 해당한다. 통신 유닛은 3GPP, LTE(Long Term Evolution)와 같은 셀룰러 통신 기술에 기초하여 통신할 수도 있다.
도 14는 본 발명의 일 실시예에 따른 V2X 시스템의 구성을 나타낸다.
도 14는 V2X 시스템의 다른 실시예에 해당하는 계층 아키텍처를 나타낸다. 실시예로서, 북미 V2X 시스템은 IEEE 802.11의 PHY 기술과 MAC 기술을 사용하며, 추가로 IEEE 1609.4의 MAC 기술을 사용할 수 있다. 네트워크/트랜스포트 레이어 기술에서, LLC 블록에는 IEEE802.2 표준의 기술이 적용되고, WSMP(WAVE short message protocol)에는 IEEE 1609.3 기술이 적용될 수 있다. 퍼실리티 레이어는 SAE의 J2735 표준의 메세지 세트를 사용할 수 있으며, 어플리케이션 레이어는 J2945 표준에서 V2V, V2I, V2O 용으로 정의된 어플리케이션을 사용할 수 있다.
어플리케이션 레이어는 사용-케이스를 구현하여 지원하는 기능을 수행할 수 있다. 어플리케이션은 사용-케이스에 따라 선택적으로 사용될 수 있다. 각 사용-케이스의 시스템 요구(requirement)는 J2945 표준에서 정의될 수 있다. J2945/1은 V2V 안전 통신과 같은 V2V 기술의 어플리케이션을 정의한다.
J2945/1 문서는 EEBL(emergency electronic brake lights), FCW(forward crash warning), BSW(blind spot warning), LCW(lane change warning), IMA(intersection movement assist), CLW(control loss warning)와 같은 어플리케이션을 정의한다. 실시예로서, FCW 기술은 선행 차량과의 충돌을 경고하는 V2V 안전 통신 기술이다. V2X 통신 장치를 구비한 차량이 급 정거를 하거나 사고로 멈춘 경우, 후속 차량의 충돌을 방지하기 위해 FCW 안전 메세지를 전송할 수 있다. 후속 차량은 FCW 메세지를 수신하고 운전자에게 경고를 하거나 속도 감속 또는 차선 변경과 같은 제어를 수행할 수 있다. 특히 정차한 차량과 운전 차량 사이에 다른 차량이 있는 경우에도 FCW를 통해 정차한 차량의 상태를 파아갈 수 있는 장점이 있다. FCW 안전 메세지는 차량의 위치 정보(위도, 경도, 차선), 차량 정보(차량 종류, 길이, 방향, 속도), 이벤트 정보(정지, 급정지, 서행)를 포함할 수 있으며, 이러한 정보는 퍼실리티 레이어의 요청에 의해 생성될 수 있다.
퍼실리티 레이어는 OSI 레이어 5(세션 레이어), 레이어 6(프리젠테이션 레이어), 레이어7(어플리케이션 레이어)에 해당할 수 있다. 퍼실리티 레이어는 어플리케이션을 지원하기 위해 상황에 따른 메세지 세트를 생성할 수 있다. 메세지 세트는 J2735 표준에서 정의되며, ASN.1을 통해 기술/복호될 수 있다. 메세지 세트는 BasicSafetyMessage 메시지, MapData 메시지, SPAT 메시지, CommonSafetyRequest 메시지, EmergencyVehicleAlert 메시지, IntersectionCollision 메시지, ProbeVehicleData 메시지, RoadSideAlert 메시지, PersonalSafetyMessag 메시지를 포함할 수 있다.
퍼실리티 레이어는 상위 레이어에서 전송하려는 정보를 취합하여 메세지 세트를 생성할 수 있다. 메세지 세트는 ASN.1(Abstract Syntax Notation 1) 방식으로 표시될 수 있다. ASN.1은 데이터 구조를 기술하는데 사용하는 표기법으로, 인코딩/디코딩 규칙도 정할 수 있다. ASN.1은 특정 장치, 데이터 표현 방식, 프로그래밍 언어, 하드웨어 플랫폼 등에 종속되지 않는다. ASN.1은 플랫폼에 상관없이 데이터를 기술하는 언어로서, CCITT (Consultative Committee on International Telegraphy and Telephony, X.208)와 ISO(international Organization for Standardization, ISO 8824)의 공동 표준이다.
메세지 세트는 V2X 동작과 관련된 메세지의 모음으로, 상위 어플리케이션의 상황에 맞는 메세지 세트가 존재한다. 메세지 세트는 데이터 프레임의 형식으로 표현되며, 적어도 하나의 엘레먼트를 포함할 수 있다. 각 엘레먼트는 데이터 프레임 또는 데이터 엘레먼트를 포함할 수 있다.
데이터 프레임은 2개 이상의 데이터 나열을 표시한다. 데이터 프레임은 데이터 엘레먼트의 나열 구조 또는 데이터 프레임의 나열 구조가 될 수 있다. 실시예로서, DV_vehicleData는 자동차의 정보를 나타내는 데이터 프레임 구조로서, 복수의 데이터 엘레먼트(예를 들면, Height, Bumbers, mass, trailerweight)를 포함할 수 있다. 데이터 엘레먼트는 데이터 요소에 대한 설명을 정의한다. 실시예로서, 데이터 프레임에서 사용하는 Height라는 엘레먼트는 DE_VehicleHeight에 정의되며, 차량의 높이를 표현할 수 있다. 실시예로서 차량의 높이는 0~127까지 표현될 수 있으며, LBS 단위는 5cm 단위로 증가되며 최대 6.35미터까지 표현될 수 있다.
실시예로서, 베이직 안전 메세지(BasicSafetyMessage)가 전송될 수 있다. BasicSafetyMessage는 메세지 세트 중 가장 기본적이고 중요한 메세지로서, 차량의 기본 정보를 주기적으로 전송하는데 사용된다. 해당 메시지는 BSMcoreData로 정의 된 coreData 와 Optional 인 PartII 와 regional 데이터를 포함할 수 있다. coreData는 msgCnt, id, lat, long, elev, speed, deading, break, size 등과 같은 데이터 엘레먼트를 포함할 수 있다. coreData는 데이터 엘레먼트들을 사용함으로써, 메시지 카운트, ID, 위도, 경도, 고도, 속도, 방향, 브레이크, 차량 사이즈 등을 표시하게 된다. 해당 BSM 은 coreData에 해당하는 정보를 일반적으로 100msec(1초에 10번) 주기로 전송할 수 있다.
네트워크/트랜스포트 레이어는 OSI 레이어 3(네트워크 레이어), 레이어 4(트랜스포트 레이어)에 해당할 수 있다. 상위 레이어에서 전달되는 WSM(WAVE Short Message)를 전송하기 위해 WSMP(WAVE short message protocol)가 사용될 수 있다. 추가로 종래의 IP 신호를 처리하기 위해 IPv6/TCP 프로토콜이 사용될 수 있다. LLC 블록은 IEEE802.2 표준이 사용되며, IP 다이어그램과 WSM 패킷을 구별할 수 있다.
액세스 레이어는 OSI 레이어 1(피지컬 레이어), 레이어 2(데이터 링크 레이어)에 해당할 수 있다. 액세스 레이어는 IEEE 802.11의 PHY 기술과 MAC 기술을 사용할 수 있으며, 추가로 차량 통신을 지원하기 위해 IEEE 1609.4의 MAC 기술이 사용될 수 있다.
시큐리티 엔터티(security entity)와 매니지먼트 엔터티는 전 구간에서 연결되어 동작될 수 있다.
앞서 살핀 5G 통신 기술은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
주행
(1) 차량 외관
도 15는 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 15를 참조하면, 본 발명의 실시예에 따른 차량(10)은, 도로나 선로 위를 주행하는 수송 수단으로 정의된다. 차량(10)은, 자동차, 기차, 오토바이를 포함하는 개념이다. 차량(10)은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량등을 모두 포함하는 개념일 수 있다. 차량(10)은 개인이 소유한 차량일 수 있다. 차량(10)은, 공유형 차량일 수 있다. 차량(10)은 자율 주행 차량일 수 있다.
(2) 차량의 구성 요소
도 16은 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 16을 참조하면, 차량(10)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)를 포함할 수 있다. 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)는 각각이 전기적 신호를 생성하고, 상호간에 전기적 신호를 교환하는 전자 장치로 구현될 수 있다.
1) 사용자 인터페이스 장치
사용자 인터페이스 장치(200)는, 차량(10)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(10)에서 생성된 정보를 제공할 수 있다. 차량(10)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interface) 또는 UX(User Experience)를 구현할 수 있다. 사용자 인터페이스 장치(200)는, 입력 장치, 출력 장치 및 사용자 모니터링 장치를 포함할 수 있다.
2) 오브젝트 검출 장치
오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 오브젝트에 대한 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(10)과 오브젝트와의 거리 정보 및 차량(10)과 오브젝트와의 상대 속도 정보 중 적어도 어느 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있는 적어도 하나의 센서를 포함할 수 있다. 오브젝트 검출 장치(210)는, 카메라, 레이다, 라이다, 초음파 센서 및 적외선 센서 중 적어도 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 센서에서 생성되는 센싱 신호에 기초하여 생성된 오브젝트에 대한 데이터를 차량에 포함된 적어도 하나의 전자 장치에 제공할 수 있다.
2.1) 카메라
카메라는 영상을 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 카메라는 적어도 하나의 렌즈, 적어도 하나의 이미지 센서 및 이미지 센서와 전기적으로 연결되어 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
카메라는, 모노 카메라, 스테레오 카메라, AVM(Around View Monitoring) 카메라 중 적어도 어느 하나일 수 있다. 카메라는, 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 스테레오 카메라에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
카메라는, 차량 외부를 촬영하기 위해 차량에서 FOV(field of view) 확보가 가능한 위치에 장착될 수 있다. 카메라는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 카메라는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다. 카메라는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 카메라는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다. 카메라는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
2.2) 레이다
레이다는 전파를 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 레이다는, 전자파 송신부, 전자파 수신부 및 전자파 송신부 및 전자파 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 레이다는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keyong) 방식으로 구현될 수 있다. 레이다는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 레이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
2.3) 라이다
라이다는, 레이저 광을 이용하여, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 라이다는, 광 송신부, 광 수신부 및 광 송신부 및 광 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리된 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 라이다는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다. 라이다는, 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다는, 모터에 의해 회전되며, 차량(10) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다는, 광 스티어링에 의해, 차량을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(100)은 복수의 비구동식 라이다를 포함할 수 있다. 라이다는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 라이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
3) 통신 장치
통신 장치(220)는, 차량(10) 외부에 위치하는 디바이스와 신호를 교환할 수 있다. 통신 장치(220)는, 인프라(예를 들면, 서버, 방송국), 타 차량, 단말기 중 적어도 어느 하나와 신호를 교환할 수 있다. 통신 장치(220)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 발명의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 발명의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
4) 운전 조작 장치
운전 조작 장치(230)는, 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(10)은, 운전 조작 장치(230)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(230)는, 조향 입력 장치(예를 들면, 스티어링 휠), 가속 입력 장치(예를 들면, 가속 페달) 및 브레이크 입력 장치(예를 들면, 브레이크 페달)를 포함할 수 있다.
5) 메인 ECU
메인 ECU(240)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치의 전반적인 동작을 제어할 수 있다.
6) 구동 제어 장치
구동 제어 장치(250)는, 차량(10)내 각종 차량 구동 장치를 전기적으로 제어하는 장치이다. 구동 제어 장치(250)는, 파워 트레인 구동 제어 장치, 샤시 구동 제어 장치, 도어/윈도우 구동 제어 장치, 안전 장치 구동 제어 장치, 램프 구동 제어 장치 및 공조 구동 제어 장치를 포함할 수 있다. 파워 트레인 구동 제어 장치는, 동력원 구동 제어 장치 및 변속기 구동 제어 장치를 포함할 수 있다. 샤시 구동 제어 장치는, 조향 구동 제어 장치, 브레이크 구동 제어 장치 및 서스펜션 구동 제어 장치를 포함할 수 있다. 한편, 안전 장치 구동 제어 장치는, 안전 벨트 제어를 위한 안전 벨트 구동 제어 장치를 포함할 수 있다.
구동 제어 장치(250)는, 적어도 하나의 전자적 제어 장치(예를 들면, 제어 ECU(Electronic Control Unit))를 포함한다.
구종 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 차량 구동 장치를 제어할 수 있다. 예를 들면, 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 파워 트레인, 조향 장치 및 브레이크 장치를 제어할 수 있다.
7) 자율 주행 장치
자율 주행 장치(260)는, 획득된 데이터에 기초하여, 자율 주행을 위한 패스를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 경로를 따라 주행하기 위한 드라이빙 플랜을 생성할 수 있다. 자율 주행 장치(260)는, 드라이빙 플랜에 따른 차량의 움직임을 제어하기 위한 신호를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 신호를 구동 제어 장치(250)에 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 ADAS(Advanced Driver Assistance System) 기능을 구현할 수 있다. ADAS는, 적응형 크루즈 컨트롤 시스템(ACC : Adaptive Cruise Control), 자동 비상 제동 시스템(AEB : Autonomous Emergency Braking), 전방 충돌 알림 시스템(FCW : Foward Collision Warning), 차선 유지 보조 시스템(LKA : Lane Keeping Assist), 차선 변경 보조 시스템(LCA : Lane Change Assist), 타겟 추종 보조 시스템(TFA : Target Following Assist), 사각 지대 감시 시스템(BSD : Blind Spot Detection), 적응형 하이빔 제어 시스템(HBA : High Beam Assist), 자동 주차 시스템(APS : Auto Parking System), 보행자 충돌 알림 시스템(PD collision warning system), 교통 신호 검출 시스템(TSR : Traffic Sign Recognition), 교통 신호 보조 시스템(TSA : Trafffic Sign Assist), 나이트 비전 시스템(NV : Night Vision), 운전자 상태 모니터링 시스템(DSM : Driver Status Monitoring) 및 교통 정체 지원 시스템(TJA : Traffic Jam Assist) 중 적어도 어느 하나를 구현할 수 있다.
자율 주행 장치(260)는, 자율 주행 모드에서 수동 주행 모드로의 전환 동작 또는 수동 주행 모드에서 자율 주행 모드로의 전환 동작을 수행할 수 있다. 예를 들면, 자율 주행 장치(260)는, 사용자 인터페이스 장치(200)로부터 수신되는 신호에 기초하여, 차량(10)의 모드를 자율 주행 모드에서 수동 주행 모드로 전환하거나 수동 주행 모드에서 자율 주행 모드로 전환할 수 있다.
8) 센싱부
센싱부(270)는, 차량의 상태를 센싱할 수 있다. 센싱부(270)는, IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 중 적어도 어느 하나를 포함할 수 있다. 한편, IMU(inertial measurement unit) 센서는, 가속도 센서, 자이로 센서, 자기 센서 중 하나 이상을 포함할 수 있다.
센싱부(270)는, 적어도 하나의 센서에서 생성되는 신호에 기초하여, 차량의 상태 데이터를 생성할 수 있다. 차량 상태 데이터는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다. 센싱부(270)는, 차량 자세 데이터, 차량 모션 데이터, 차량 요(yaw) 데이터, 차량 롤(roll) 데이터, 차량 피치(pitch) 데이터, 차량 충돌 데이터, 차량 방향 데이터, 차량 각도 데이터, 차량 속도 데이터, 차량 가속도 데이터, 차량 기울기 데이터, 차량 전진/후진 데이터, 차량의 중량 데이터, 배터리 데이터, 연료 데이터, 타이어 공기압 데이터, 차량 내부 온도 데이터, 차량 내부 습도 데이터, 스티어링 휠 회전 각도 데이터, 차량 외부 조도 데이터, 가속 페달에 가해지는 압력 데이터, 브레이크 페달에 가해지는 압력 데이터 등을 생성할 수 있다.
9) 위치 데이터 생성 장치
위치 데이터 생성 장치(280)는, 차량(10)의 위치 데이터를 생성할 수 있다. 위치 데이터 생성 장치(280)는, GPS(Global Positioning System) 및 DGPS(Differential Global Positioning System) 중 적어도 어느 하나를 포함할 수 있다. 위치 데이터 생성 장치(280)는, GPS 및 DGPS 중 적어도 어느 하나에서 생성되는 신호에 기초하여 차량(10)의 위치 데이터를 생성할 수 있다. 실시예에 따라, 위치 데이터 생성 장치(280)는, 센싱부(270)의 IMU(Inertial Measurement Unit) 및 오브젝트 검출 장치(210)의 카메라 중 적어도 어느 하나에 기초하여 위치 데이터를 보정할 수 있다. 위치 데이터 생성 장치(280)는, GNSS(Global Navigation Satellite System)로 명명될 수 있다.
차량(10)은, 내부 통신 시스템(50)을 포함할 수 있다. 차량(10)에 포함되는 복수의 전자 장치는 내부 통신 시스템(50)을 매개로 신호를 교환할 수 있다. 신호에는 데이터가 포함될 수 있다. 내부 통신 시스템(50)은, 적어도 하나의 통신 프로토콜(예를 들면, CAN, LIN, FlexRay, MOST, 이더넷)을 이용할 수 있다.
(3) 자율 주행 장치의 구성 요소
도 17은 본 발명의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 17을 참조하면, 자율 주행 장치(260)는, 메모리(140), 프로세서(170), 인터페이스부(180) 및 전원 공급부(190)를 포함할 수 있다.
메모리(140)는, 프로세서(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)에서 처리된 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(140)는 프로세서(170)의 처리 또는 제어를 위한 프로그램 등, 자율 주행 장치(260) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)와 일체형으로 구현될 수 있다. 실시예에 따라, 메모리(140)는, 프로세서(170)의 하위 구성으로 분류될 수 있다.
인터페이스부(180)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(280)는, 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(280)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(190)는, 자율 주행 장치(260)에 전원을 공급할 수 있다. 전원 공급부(190)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 자율 주행 장치(260)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(190)는, 메인 ECU(240)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 전원 공급부(190)는, SMPS(switched-mode power supply)를 포함할 수 있다.
프로세서(170)는, 메모리(140), 인터페이스부(280), 전원 공급부(190)와 전기적으로 연결되어 신호를 교환할 수 있다. 프로세서(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
프로세서(170)는, 전원 공급부(190)로부터 제공되는 전원에 의해 구동될 수 있다. 프로세서(170)는, 전원 공급부(190)에 의해 전원이 공급되는 상태에서 데이터를 수신하고, 데이터를 처리하고, 신호를 생성하고, 신호를 제공할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로부터 정보를 수신할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로 제어 신호를 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메모리(140), 인터페이스부(180), 전원 공급부(190) 및 프로세서(170)는, 인쇄 회로 기판에 전기적으로 연결될 수 있다.
(4) 자율 주행 장치의 동작
도 8은 본 발명의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
1) 수신 동작
도 18을 참조하면, 프로세서(170)는, 수신 동작을 수행할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 오브젝트 검출 장치(210), 통신 장치(220), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나로부터, 데이터를 수신할 수 있다. 프로세서(170)는, 오브젝트 검출 장치(210)로부터, 오브젝트 데이터를 수신할 수 있다. 프로세서(170)는, 통신 장치(220)로부터, HD 맵 데이터를 수신할 수 있다. 프로세서(170)는, 센싱부(270)로부터, 차량 상태 데이터를 수신할 수 있다. 프로세서(170)는, 위치 데이터 생성 장치(280)로부터 위치 데이터를 수신할 수 있다.
2) 처리/판단 동작
프로세서(170)는, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 주행 상황 정보에 기초하여, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 오브젝트 데이터, HD 맵 데이터, 차량 상태 데이터 및 위치 데이터 중 적어도 어느 하나에 기초하여, 처리/판단 동작을 수행할 수 있다.
2.1) 드라이빙 플랜 데이터 생성 동작
프로세서(170)는, 드라이빙 플랜 데이터(driving plan data)를 생성할 수 있다. 예를 들면, 프로세서(1700는, 일렉트로닉 호라이즌 데이터(Electronic Horizon Data)를 생성할 수 있다. 일렉트로닉 호라이즌 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌(horizon)까지 범위 내에서의 드라이빙 플랜 데이터로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 기준으로, 차량(10)이 위치한 지점에서 기설정된 거리 앞의 지점으로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 따라 차량(10)이 위치한 지점에서부터 차량(10)이 소정 시간 이후에 도달할 수 있는 지점을 의미할 수 있다.
일렉트로닉 호라이즌 데이터는, 호라이즌 맵 데이터 및 호라이즌 패스 데이터를 포함할 수 있다.
2.1.1) 호라이즌 맵 데이터
호라이즌 맵 데이터는, 토폴로지 데이터(topology data), 도로 데이터, HD 맵 데이터 및 다이나믹 데이터(dynamic data) 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 호라이즌 맵 데이터는, 복수의 레이어를 포함할 수 있다. 예를 들면, 호라이즌 맵 데이터는, 토폴로지 데이터에 매칭되는 1 레이어, 도로 데이터에 매칭되는 제2 레이어, HD 맵 데이터에 매칭되는 제3 레이어 및 다이나믹 데이터에 매칭되는 제4 레이어를 포함할 수 있다. 호라이즌 맵 데이터는, 스태이틱 오브젝트(static object) 데이터를 더 포함할 수 있다.
토폴로지 데이터는, 도로 중심을 연결해 만든 지도로 설명될 수 있다. 토폴로지 데이터는, 차량의 위치를 대략적으로 표시하기에 알맞으며, 주로 운전자를 위한 내비게이션에서 사용하는 데이터의 형태일 수 있다. 토폴로지 데이터는, 차로에 대한 정보가 제외된 도로 정보에 대한 데이터로 이해될 수 있다. 토폴로지 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초하여 생성될 수 있다. 토폴로지 데이터는, 차량(10)에 구비된 적어도 하나의 메모리에 저장된 데이터에 기초할 수 있다.
도로 데이터는, 도로의 경사 데이터, 도로의 곡률 데이터, 도로의 제한 속도 데이터 중 적어도 어느 하나를 포함할 수 있다. 도로 데이터는, 추월 금지 구간 데이터를 더 포함할 수 있다. 도로 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 도로 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
HD 맵 데이터는, 도로의 상세한 차선 단위의 토폴로지 정보, 각 차선의 연결 정보, 차량의 로컬라이제이션(localization)을 위한 특징 정보(예를 들면, 교통 표지판, Lane Marking/속성, Road furniture 등)를 포함할 수 있다. HD 맵 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다.
다이나믹 데이터는, 도로상에서 발생될 수 있는 다양한 동적 정보를 포함할 수 있다. 예를 들면, 다이나믹 데이터는, 공사 정보, 가변 속도 차로 정보, 노면 상태 정보, 트래픽 정보, 무빙 오브젝트 정보 등을 포함할 수 있다. 다이나믹 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 다이나믹 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
프로세서(170)는, 차량(10)이 위치한 지점에서부터 호라이즌까지 범위 내에서의 맵 데이터를 제공할 수 있다.
2.1.2) 호라이즌 패스 데이터
호라이즌 패스 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌까지의 범위 내에서 차량(10)이 취할 수 있는 궤도로 설명될 수 있다. 호라이즌 패스 데이터는, 디시전 포인트(decision point)(예를 들면, 갈림길, 분기점, 교차로 등)에서 어느 하나의 도로를 선택할 상대 확률을 나타내는 데이터를 포함할 수 있다. 상대 확률은, 최종 목적지까지 도착하는데 걸리는 시간에 기초하여 계산될 수 있다. 예를 들면, 디시전 포인트에서, 제1 도로를 선택하는 경우 제2 도로를 선택하는 경우보다 최종 목적지에 도착하는데 걸리는 시간이 더 작은 경우, 제1 도로를 선택할 확률은 제2 도로를 선택할 확률보다 더 높게 계산될 수 있다.
호라이즌 패스 데이터는, 메인 패스와 서브 패스를 포함할 수 있다. 메인 패스는, 선택될 상대적 확률이 높은 도로들을 연결한 궤도로 이해될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 분기될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 선택될 상대적 확률이 낮은 적어도 어느 하나의 도로를 연결한 궤도로 이해될 수 있다.
3) 제어 신호 생성 동작
프로세서(170)는, 제어 신호 생성 동작을 수행할 수 있다. 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 제어 신호를 생성할 수 있다. 예를 들면, 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 파워트레인 제어 신호, 브라이크 장치 제어 신호 및 스티어링 장치 제어 신호 중 적어도 어느 하나를 생성할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 생성된 제어 신호를 구동 제어 장치(250)에 전송할 수 있다. 구동 제어 장치(250)는, 파워 트레인(251), 브레이크 장치(252) 및 스티어링 장치(253) 중 적어도 어느 하나에 제어 신호를 전송할 수 있다.
도 19는 본 발명의 일 실시예에 따른 V2X 통신 장치의 블럭 구성도의 예이다.
도 19를 참조하면, 본 발명의 일 실시예에 따른 V2X 통신 장치는 V2X 장치(1900)를 포함한다. 상기 V2X 장치(1900)는 차량 내부 센서(1960)로부터 센서 데이터를 수신할 수 있다. 또한, 상기 V2X 장치(1900)는 차량 외부(1970)로부터 GPS 데이터를 수신할 수 있다. 상기 GPS 데이터는 차량 내부의 GPS 수신기를 통해 수신될 수 있다.
V2X 장치(1900)는 상기 차량 내부 센서에 의해 수집되는 센서 데이터와 차량 외부의 GPS 데이터를 각각 수신하여 다중화 처리를 수행하는 데이터 다중 입력 처리 모듈(1910)을 포함한다. 상기 데이터 다중 입력 처리 모듈(1910)은 차량 내부의 복수의 센서로부터 각각의 센서 데이터 및 GPS 데이터를 다중화 처리할 수 있다. 서로 다른 복수의 센서 데이터를 다중화하여 처리함으로써, 센서 데이터에 오류가 검출되는 경우, 다중화 처리된 데이터를 이용하여 센서의 오류를 복구하는 역할을 수행할 수 있다.
미수신 데이터 추정 연산 모듈(1910)은, BSM 메시지의 코어 데이터(coreData)를 구성하는 필수적인 데이터 엘리먼트에서 특정 데이터 엘리먼트에 대응하는 센서 데이터가 수신되지 못한 경우, 상기 다중화된 센서 데이터를 참조하여 상기 미수신 데이터를 추정할 수 있다.
악성 데이터 추정 및 악성 데이터 대체 모듈(1930)은 상기 데이터 다중입력 처리모듈(1910)로 입력된 센서 데이터들 중 악성 데이터가 존재하는지 판단하고, 상기 악성 데이터를 정상 데이터로 대체할 수 있다. 여기서 상기 악성 데이터라 함은, 차량 내부의 센서에 의해 센서 데이터가 전달되지만 상기 전달된 데이터가 정상 범위 내에 존재하지 않는 데이터일 수 있다. 또한, 상기 악성 데이터는 상기 차량 내부의 센서에 의해 센서 데이터가 전달되지만 상기 전달된 데이터가 나타내는 차량의 상태와 현재 차량의 상태가 서로 상이한 데이터를 의미할 수 있다.
V2X Data Handler(1940)는 상기 미수신 데이터 추정 연산 모듈(1910)을 통해 추정된 데이터 및 악성 데이터 추정 및 악성 데이터 대체 모듈(1930)을 통해 대체된 데이터에 기초하여 V2X 통신을 위한 BSM 메시지 세트를 구성할 수 있다. 메세지 세트는 V2X 동작과 관련된 메세지의 모음으로, 상위 어플리케이션의 상황에 맞는 메세지 세트가 존재한다. 메세지 세트는 데이터 프레임의 형식으로 표현되며, 적어도 하나의 엘레먼트를 포함할 수 있다. 각 엘레먼트는 데이터 프레임 또는 데이터 엘레먼트를 포함할 수 있다.
베이직 안전 메세지(BasicSafetyMessage)는 메세지 세트 중 가장 기본적이고 중요한 메세지로서, 차량의 기본 정보를 주기적으로 전송하는데 사용된다. 해당 메시지는 BSMcoreData로 정의된 coreData 와 Optional 인 PartII 와 regional 데이터를 포함할 수 있다. coreData는 msgCnt, id, lat, long, elev, speed, deading, break, size 등과 같은 데이터 엘레먼트를 포함할 수 있다. coreData는 데이터 엘레먼트들을 사용함으로써, 메시지 카운트, ID, 위도, 경도, 고도, 속도, 방향, 브레이크, 차량 사이즈 등을 표시하게 된다. 해당 BSM 은 coreData에 해당하는 정보를 일반적으로 100msec(1초에 10번) 주기로 전송할 수 있다.
V2X Core Stack & Application Layer(1950)는 V2X Data Handler(1940)를 통해 구성된 V2X 메시지에 대하여 차량 간 메세지를 송수신하기 위해 계층적 레이어를 통과하여 타 차량으로 전달할 수 있다. 어플리케이션 레이어는 다양한 사용예(use case)를 구현 및 지원할 수 있다. 예를 들면, 어플리케이션은 도로 안전(Road Safety), 효율적 교통 정보(Efficient Traffic Information), 기타 애플리케이션 정보(Other application)를 제공할 수 있다.
어플리케이션 레이어는 ITS 어플리케이션을 분류 및 정의하고, 하위 레이어들을 통해 종단 차량/이용자/인프라에게 서비스를 제공할 수 있다. 어플리케이션은 사용-케이스(use-case) 별로 정의/적용될 수 있고, 또는 사용-케이스를 도로-안전(road-safety), 트래픽 효율(traffic efficiency), 로컬 서비스, 인포테인먼트와 같이 그루핑되어 정의/적용될 수도 있다. 실시예로서, 어플리케이션 분류(classification), 사용-케이스 등은 새로운 어플리케이션 시나리오가 발생되면 업데이트될 수 있다.
레이어 매니지먼트는 어플리케이션 레이어의 운영 및 보안과 관련된 정보를 관리 및 서비스해줄 수 있다. 정보 및 서비스는 MAMA (interface between management entity and application 계층) 와 SA (interface between security entity and ITS-S applications) 또는 SAP(Service Access Point, 예 MA-SAP, SA-SAP)를 통해 양방향으로 전달 및 공유될 수 있다. 어플리케이션 레이어에서 퍼실리티 레이어로의 요청 또는 퍼실리티 레이어에서 어플리케이션 레이어로의 정보 전달은 FA((interface between facilities layer and ITS-S applications) (또는 FA-SAP)를 통해 수행될 수 있다.
상기 어플리케이션 레이어 외에 퍼실리티 레이어. 트랜스포트 레이어, 네트워크 레이어 등이 추가적으로 존재할 수 있다.
도 20은 본 발명의 일 실시예에 따른 V2X 통신 장치에서 전송하는 BSM 메시지의 데이터 엘리먼트의 예시이다.
도 20을 참조하면, BSM 코어 데이터는 msgCnt, id, secMak, lat, long, elev, accuracy, transmission, speed, haeding, angle, accelSet, brakes, size 의 데이터 엘리먼트들을 포함할 수 있다. 상기 데이터 엘리먼트들 중에서 차량 내부의 센서가 센싱한 센서 데이터로부터 구성되는 데이터들이 있을 수 있다.
예를 들어, 상기 BSM 메시지는 센서 기반 이외의 다양한 데이터를 포함할 수 있다. 그 중에서 위도, 경도, 고도, 속도, 방향, 브레이크 등에 관한 정보는 차량이 자체적으로 센싱한 데이터에 기초할 수 있다. 따라서, 차량에 구비된 복수의 센서 중 적어도 하나가 고장이 난 경우, 상기 BSM 코어 데이터를 구성하는 필수 데이터 엘리먼트에 있어서 누락이 발생될 수 있다. 즉, 센서 데이터가 미수신되거나, 센서 데이터가 수신되었지만 수신된 센서 데이터의 신뢰성에 문제가 있는 경우, V2X 통신을 수행하기 위한 BSM 메시지를 구성할 수 없게 된다.
이하, 본 발명의 일 실시예에 따라 자율주행시스템(Autounomous Driving System)에서 차량에 구비된 V2X(Vehicle to everything) 통신 장치의 BSM(BasicSafetyMessage) 메시지 전송 방법을 보다 구체적으로 설명한다.
도 21은 본 발명의 일 실시예에 따른 V2X 통신 장치의 BSM 메시지 전송 방법의 흐름도이다. 본 발명의 일 실시예에 따른 V2X 통신 장치의 BSM 메시지 전송 방법은 V2X 통신 장치의 프로세서에 의해 제어될 수 있다.
도 21을 참조하면, 프로세서는,차량에 구비된 복수의 센서로부터 센서 데이터를 수신할 수 있다(S2100).
상기 프로세서는, 상기 복수의 센서로부터 각각 수신된 상기 센서 데이터를 다중화 처리할 수 있다(S2110).
상기 다중화 처리는 전술한 바와 같이 서로 다른 복수의 센서로부터 각각 센서 데이터를 수신하여 다중화된 센서 데이터를 구성하는 것으로 이해될 수 있다. 또한 상기 다중화 처리에는 차량 내부의 센서로부터 획득되는 센서 데이터 외에 차량 외부 데이터를 포함할 수 있다. 예를 들어, 차량 내부의 GPS 수신기를 통해 수신된 GPS 데이터가 다중화 처리에 이용될 수 있다.
상기 프로세서는 상기 수신된 센서 데이터에 기초하여 상기 BSM 메시지를 생성할 수 없는 경우, 상기 다중화 처리된 센서 데이터 중 적어도 하나를 이용하여 상기 BSM 메시지를 생성할 수 있다(S2120).
여기서 상기 수신된 센서 데이터에 기초하여 BSM 메시지를 생성할 수 없는 경우라 함은, 수신된 센서 데이터 자체가 존재하지 않는 경우, 수신된 센서 데이터는 존재하지만 악성 데이터인 경우, 상기 악성 데이터가 정상 센서에 의해 획득되는 센서 데이터와 비교하여 허용 오차 범위를 벗어 나는 경우 등을 의미할 수 있다.
본 발명의 일 실시예에 의하면, 상기 수신된 센서 데이터에 기초하여 BSM 메시지를 생성할 수 없는 경우, 센서가 고장난 것으로 판단할 수도 있으며, 고장난 센서를 대체할 수 있는 센서 데이터를 다중화 처리된 센서 데이터에 기초할 수 있다.
도 22는 본 발명의 일 실시예에 따른 V2X 통신 장치에서 BSM 메시지를 생성하는 일 예를 설명하기 위한 도면이다.
도 22를 참조하면, 상기 BSM 메시지를 생성하는 과정에서 프로세서는, 상기 복수의 센서 중 적어도 하나의 오류가 검출되어 상기 BSM 메시지를 생성할 수 없는 상태인지 판단할 수 있다(S2200).
프로세서는 상기 오류가 검출된 것으로 판단된 경우, 상기 다중화 처리된 센서 데이터 중 적어도 하나가, 상기 BSM 메시지의 코어 데이터(coreData)를 구성하는 적어도 하나의 데이터 엘리먼트를 대체할 수 있는지 여부를 판단할 수 있다(S2210).
또한, 프로세서는 상기 대체가 가능한 경우, 상기 다중화 처리된 센서 데이터 중 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성할 수 있다(S2220).
예를 들어, 프로세서는 차량 내부의 휠스피드 속도 센서가 고장으로 인하여BSM 메시지의 코어 데이터들 중에 차량 속도 데이터를 획득하지 못할 수 있다. 이 경우, 프로세서는 다중 처리된 데이터에 GPS와 GPS를 기반으로 작성되는 경로 히스토리(path History)를 이용하여 차량의 속도 정보를 대체할 수 있다.
또한 예를 들어, TransmissionState 센서의 고장으로 인하여, BSM 메시지의 코어 데이터들 중에 차량의 기어 상태를 획득하지 못할 수 있다. 이 경우, 프로세서는, 현재 차량의 경로정보와 GPS 좌표가 전진하고 있으면 D(Drive), 멈춰있으면P(Parking), 후진중이면(R) 등으로 BSM 메시지의 데이터 엘리먼트를 대체할 수 있다.
도 23은 본 발명의 일 실시예에 따른 V2X 통신 장치에서 BSM 메시지를 생성하는 다른 예를 설명하기 위한 도면이다.
도 23을 참조하면, 프로세서는 상기 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 과정에서(S2300), 상기 특정 센서 데이터 자체를 상기 코어 데이터의 데이터 엘리먼트로 대체함으로써, BSM 메시지를 생성할 수 있다(S2310)
또한, 프로세서는 상기 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 경우, 상기 다중화 처리된 복수의 센서 데이터 중 적어도 하나의 센서 데이터를 이용하여 상기 코어 데이터 중 누락된 데이터 엘리먼트를 추정할 수 있다(S2320). 그리고 프로세서는 상기 추정된 데이터 엘리먼트에 기초하여 상기 BSM 메시지를 생성할 수 있다(S2230)
도 24는 본 발명의 일 실시예에 따른 V2X 통신 장치에서 BSM 메시지를 생성하는 다른 예를 설명하기 위한 도면이다.
도 24를 참조하면, 프로세서는 상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하는지 여부를 판단할 수 있다(S2400).
BSM 메시지에서 특정 센서에 대응하는 데이터 엘리먼트가 존재하지 않은 경우, 미수신으로 인한 센서 고장 상태로 판단할 수 있다. 또한, 특정 센서에 대응하는 데이터 엘리먼트가 존재하지 않은 경우, 상기 복수의 센서 중 특정 센서의 고장으로 인해 상기 오류가 검출된 것으로 판단할 수 있다(S2410)
이 경우, 프로세서는 센서의 고장으로 인하여 V2X 통신 장치가 센서 데이터 자체를 수신하지 못하는 경우일 수 있다.
한편, 프로세서의 판단 결과, BSM 메시지에서 특정 센서에 대응하는 데이터 엘리먼트가 존재하는 경우(S2400:YES) 상기 특정 데이어 엘리먼트에 대응되는 센서 데이터가 정상 범위 내의 데이터인지 추가적으로 판단할 수 있다(S2420). 만약 상기 센서 데이터가 정상 범위가 아닌 것으로 판단한 경우, 프로세서는 센서 고장에 따른 오류 검출로 판단할 수 있다(S2410).
한편, 상기 센서 데이터가 정상 범위 내에 존재하는 것으로 판단한 경우, 프로세서는 특정 데이터 엘리먼트에 대응되는 센서데이터가 차량의 현재 상태에 부합하는지 여부를 판단할 수 있다(S2430).
만약 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터가 차량의 현재 상태에 부합하지 않는 것으로 판단한 경우, 프로세서는 다중화 처리된 데이터와 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터를 비교함으로써, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터의 값이 오차 범위 내에 존재하는지 여부를 판단할 수 있다(S2440). 만약 오차 범위 내에 존재하는 것으로 판단한 경우, 프로세서는 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터가 정상 데이터로 간주하고 상기 특정 데이터 엘리먼트에 기초하여 BSM 데이터를 생성할 수 있다(S2450).
한편, 프로세서는 상기 다중화 처리된 데이터와 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터를 비교한 결과, 오차 범위를 벗어나는 경우, 상기 센서 데이터는 이용할 수 없는 악성 데이터로 판단하고 센서 고장에 따른 오류 검출로 판단할 수도 있다(S2440:No).
한편, 프로세서는 특정 데이터 엘리먼트에 대응되는 센서 데이터가 차량의 현재 상태에 부합하는 것으로 판단한 경우, 프로세서는 특정 데이터 엘리먼트에 기초하여 BSM 데이터를 생성할 수 있다.
예를 들어, 차량의 heading 범위가 0~360도 범위를 갖는데, 400 값이 수신된 경우 정상적인 헤딩 센서에 의한 센서 데이터와 비교할 때 오차 범위를 벗어나는 데이터로 판단할 수 있다.
또한, 예를 들어, 차량 heading 범위가 0~360도 범위를 갖는데, 실제 heading은 100도 인데, 센싱 데이터가 200도로 수신된 경우, 프로세서는 센서 데이터가 현재 차량의 상태를 정상적으로 반영하지 못하는 것으로 판단할 수 있다.
한편, 본 발명의 일 실시예에 의하면 프로세서는 steeringWheelAngle 센서가 고장난 것으로 판단한 경우, 차량의 GPS 기반 Path History 경로 정보를 바탕으로 차량 바퀴의 각도를 추정할 수 있다.
또한, 본 발명의 일 실시예에 의하면 프로세서는, AccelerationSet4Way 센서가 고장났을 때, AccelerationSet4Way 즉 4 측 방향에 대한 가속도와, GPS 및 이동 정보로 추측 연산을 통해 AccelerationSet4Way에 대응되는 BSM 데이터 엘리먼트를 대체할 수 있다.
한편, 본 발명이 일 실시예에 의하면, 프로세서는 Brake 센서가 고장났을 때, AccelerationSet4Way, wheel Speed, GPS 등을 활용하여 브레이크 정보를 계산함으로써, BSM 데이터 엘리먼트를 대체할 수 있다.
즉, 본 발명의 일 실시예에 의하면, 하나의 V2X 활용 센서가 고장나더라도 차량 내부의 다른 센서를 활용하여 V2X 통신을 위한 BSM 메시지를 보완함으로써, 더 견고한 V2X 통신을 수행할 수 있다.
한편 본 발명의 일 실시예에 따라 상기 BSM 메시지를 생성하는 단계는, 상기 GPS 데이터에 기초하여 상기 차량의 GPS 좌표, 상기 GPS 좌표의 변동 추이, 상기 차량의 이동 경로에 기초하여 상기 BSM 메시지를 생성할 수 있다.
한편, 본 발명의 일 실시예에 따른 V2X 통신 장치는 V2X 통신을 위해 네트워크와 초기 접속 절차를 수행할 수 있다. 즉, 프로세서는, 상기 BSM 메시지의 전송을 스케쥴링하기 위해 사용되는 DCI(Downlink Control Information)를 네트워크로부터 수신할 수 있다. 상기 BSM 메시지의 전송은 상기 DCI에 기초하여 상기 네트워크로 전송될 수 있다.
또한, 프로세서는, SSB(synchronization signal block)에 기초하여 네트워크와 초기 접속 절차를 수행하고, 상기 BSM 메시지는 PUSCH를 통해 전송되며, 상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있을 수 있다.
본 발명의 일 실시예에 따른 V2X 통신 장치의 BSM 데이터 전송 방법은, 모드 3에서 구현될 수 있다. 상기 BSM 전송 방법은 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 네트워크로부터 수신하고, 상기 BMS 메시지 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 다른 차량으로 전송한다. 또한, 프로세서는 상기 BMS 메시지를 PSSCH 상에서 상기 다른 차량으로 전송할 수 있다.
본 발명의 일 실시예에 따른 V2X 통신 장치의 BSM 데이터 전송 방법은, 모드 4에서 구현될 수 있다. 프로세서는 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱하고, 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택하고, 상기 선택된 자원을 기초로 상기 BSM 메시지 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 다른 차량으로 전송한다. 또한, 프로세서는 상기 BMS 메시지를 PSSCH 상에서 상기 다른 차량으로 전송할 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (14)

  1. 자율주행시스템(Autounomous Driving System)에서 차량에 구비된 V2X(Vehicle to everything) 통신 장치의 BSM(BasicSafetyMessage) 메시지 전송 방법에 있어서,
    상기 차량에 구비된 복수의 센서로부터 센서 데이터를 수신하는 단계;
    상기 복수의 센서로부터 각각 수신된 상기 센서 데이터를 다중화 처리하는 단계; 및
    상기 수신된 센서 데이터에 기초하여 상기 BSM 메시지를 생성할 수 없는 경우, 상기 다중화 처리된 센서 데이터 중 적어도 하나를 이용하여 상기 BSM 메시지를 생성하는 단계; 및
    상기 BSM 메시지를 전송하는 단계;
    를 포함하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  2. 제 1 항에 있어서,
    상기 BSM 메시지를 생성하는 단계는,
    상기 복수의 센서 중 적어도 하나의 오류가 검출되어 상기 BSM 메시지를 생성할 수 없는 상태인지 판단하는 단계; 및
    상기 오류가 검출된 것으로 판단된 경우, 상기 다중화 처리된 센서 데이터 중 적어도 하나가, 상기 BSM 메시지의 코어 데이터(coreData)를 구성하는 적어도 하나의 데이터 엘리먼트를 대체할 수 있는지 여부를 판단하는 단계;
    상기 대체가 가능한 경우, 상기 다중화 처리된 센서 데이터 중 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  3. 제 2 항에 있어서,
    상기 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 단계는,
    상기 특정 센서 데이터 자체를 상기 코어 데이터의 데이터 엘리먼트로 대체하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  4. 제 2 항에 있어서,
    상기 특정 센서 데이터에 기초하여 상기 BSM 메시지를 생성하는 단계는,
    상기 다중화 처리된 복수의 센서 데이터 중 적어도 하나의 센서 데이터를 이용하여 상기 코어 데이터 중 누락된 데이터 엘리먼트를 추정하는 단계; 및
    상기 추정된 데이터 엘리먼트에 기초하여 상기 BSM 메시지를 생성하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  5. 제 2 항에 있어서,
    상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하지 않는 경우, 상기 복수의 센서 중 특정 센서의 고장으로 인해 상기 오류가 검출된 것으로 판단하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  6. 제 5 항에 있어서,
    상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하되, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터가 정상 범위 내의 데이터인지 판단하는 단계; 및
    상기 센서 데이터가 상기 정상 범위를 벗어난 것으로 판단한 경우, 상기 특정 센서의 고장으로 인해 상기 오류가 검출된 것으로 판단하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  7. 제 5 항에 있어서,
    상기 코어 데이터 중 특정 데이터 엘리먼트가 존재하되, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터가 상기 차량의 현재 상태를 잘못 반영한 경우, 상기 오류가 검출된 것으로 판단하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  8. 제 7 항에 있어서,
    상기 다중화 처리된 센서 데이터와 비교하여, 상기 특정 데이터 엘리먼트에 대응되는 센서 데이터의 값이 미리 설정된 오차 범위 내에 포함되는 경우,
    상기 센서 데이터의 값을 이용하여 상기 BSM 메시지를 생성하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  9. 제 1 항에 있어서,
    상기 다중화 처리되는 데이터는,
    외부 기기로부터 수신된 GPS 데이터를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  10. 제 9 항에 있어서,
    상기 BSM 메시지를 생성하는 단계는,
    상기 GPS 데이터에 기초하여 상기 차량의 GPS 좌표, 상기 GPS 좌표의 변동 추이, 상기 차량의 이동 경로에 기초하여 상기 BSM 메시지를 생성하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  11. 제 1 항에 있어서,
    상기 BSM 메시지의 전송을 스케쥴링하기 위해 사용되는 DCI(Downlink Control Information)를 네트워크로부터 수신하는 단계;를 더 포함하며,
    상기 BSM 메시지의 전송은 상기 DCI에 기초하여 상기 네트워크로 전송되는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  12. 제 1 항에 있어서,
    SSB(synchronization signal block)에 기초하여 네트워크와 초기 접속 절차를 수행하는 단계;를 더 포함하며,
    상기 BSM 메시지는 PUSCH를 통해 전송되며,
    상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  13. 제 1 항에 있어서,
    모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 네트워크로부터 수신하는 단계;
    상기 BMS 메시지 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 다른 차량으로 전송하는 단계; 및
    상기 BMS 메시지를 PSSCH 상에서 상기 다른 차량으로 전송하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
  14. 제 1 항에 있어서,
    모드 4 전송을 위한 자원을 제1 윈도우에서 센싱하는 단계;
    상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택하는 단계;
    상기 선택된 자원을 기초로 상기 BSM 메시지 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 다른 차량으로 전송하는 단계; 및
    상기 BMS 메시지를 PSSCH 상에서 상기 다른 차량으로 전송하는 단계;
    를 더 포함하는 것을 특징으로 하는 V2X 통신 장치의 BSM 메시지 전송 방법.
KR1020190097017A 2019-07-31 2019-08-08 자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법 KR20190100104A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KRPCT/KR2019/009539 2019-07-31
PCT/KR2019/009539 WO2021020623A1 (ko) 2019-07-31 2019-07-31 자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법

Publications (1)

Publication Number Publication Date
KR20190100104A true KR20190100104A (ko) 2019-08-28

Family

ID=67775173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190097017A KR20190100104A (ko) 2019-07-31 2019-08-08 자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법

Country Status (2)

Country Link
KR (1) KR20190100104A (ko)
WO (1) WO2021020623A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123866B1 (ko) * 2020-02-27 2020-06-17 (유)동아하이테크 상용 자율 주행차 시험장의 mec 지원 시스템
KR20210063497A (ko) 2019-11-22 2021-06-02 인포뱅크 주식회사 자율주행차량의 운행 제어 방법
KR20210069803A (ko) 2019-12-04 2021-06-14 현대자동차주식회사 차량의 차속 제한 방법
KR20210071865A (ko) 2019-12-06 2021-06-16 고려대학교 산학협력단 자율주행의 물리계층보안을 위한 차량 통신 방법 및 장치
WO2021215553A1 (ko) * 2020-04-22 2021-10-28 엘지전자 주식회사 자율주행시스템에서 차량의 데이터 전송방법
US11172492B2 (en) 2018-12-12 2021-11-09 Apple Inc. Power saving for pedestrian user equipment in vehicular communications systems
KR20230075103A (ko) * 2021-11-22 2023-05-31 (유)동아하이테크 5g mec을 활용한 vru 자율 주행 지원 시스템
WO2024058634A1 (ko) * 2022-09-16 2024-03-21 엘지전자 주식회사 무선 통신 시스템에서 데이터 파일을 전송하는 방법 및 이를 위한 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220239743A1 (en) * 2021-01-26 2022-07-28 Ford Global Technologies, Llc Information aware v2x messaging
CN113433975B (zh) * 2021-08-01 2022-08-23 陈军 一种无人机起降无人机机场的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10013877B2 (en) * 2016-06-20 2018-07-03 Toyota Jidosha Kabushiki Kaisha Traffic obstruction notification system based on wireless vehicle data
KR101934731B1 (ko) * 2016-11-22 2019-01-03 엘지전자 주식회사 차량용 통신 장치 및 차량
KR102452536B1 (ko) * 2016-12-01 2022-10-07 현대자동차주식회사 주변차량 정보 전송 장치 및 방법
KR102334318B1 (ko) * 2017-09-19 2021-12-03 삼성전자주식회사 외부 이동 수단으로 릴레이 메시지를 전송하는 전자 장치 및 그 동작 방법
KR101929681B1 (ko) * 2017-11-14 2018-12-14 한양대학교 산학협력단 V2v와 자차 환경인식센서를 이용한 주변차량 위치 추정 방법 및 장치

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172492B2 (en) 2018-12-12 2021-11-09 Apple Inc. Power saving for pedestrian user equipment in vehicular communications systems
US11490397B2 (en) 2018-12-12 2022-11-01 Apple Inc. Power saving for pedestrian user equipment in vehicular communications systems
KR20210063497A (ko) 2019-11-22 2021-06-02 인포뱅크 주식회사 자율주행차량의 운행 제어 방법
KR20210069803A (ko) 2019-12-04 2021-06-14 현대자동차주식회사 차량의 차속 제한 방법
KR20210071865A (ko) 2019-12-06 2021-06-16 고려대학교 산학협력단 자율주행의 물리계층보안을 위한 차량 통신 방법 및 장치
KR102123866B1 (ko) * 2020-02-27 2020-06-17 (유)동아하이테크 상용 자율 주행차 시험장의 mec 지원 시스템
WO2021215553A1 (ko) * 2020-04-22 2021-10-28 엘지전자 주식회사 자율주행시스템에서 차량의 데이터 전송방법
KR20230075103A (ko) * 2021-11-22 2023-05-31 (유)동아하이테크 5g mec을 활용한 vru 자율 주행 지원 시스템
WO2024058634A1 (ko) * 2022-09-16 2024-03-21 엘지전자 주식회사 무선 통신 시스템에서 데이터 파일을 전송하는 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
WO2021020623A1 (ko) 2021-02-04

Similar Documents

Publication Publication Date Title
KR20190100104A (ko) 자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법
KR20190098094A (ko) 자율주행시스템에서 차량이 수신한 메시지의 유효성을 판단하는 방법 및 이를 위한 장치
KR102221559B1 (ko) 자율주행시스템에서 군집 주행 차량 제어 방법 및 장치
KR102135259B1 (ko) 자율주행시스템에서 응급차량을 위한 주차차량을 이동시키는 방법 및 이를 위한 장치
KR102195939B1 (ko) 자율주행 차량의 배터리 충전 방법 및 이를 위한 장치
US20200033845A1 (en) Method and apparatus for controlling by emergency step in autonomous driving system
US20200028736A1 (en) Method and apparatus for determining an error of a vehicle in autonomous driving system
KR102237421B1 (ko) 자율 주행 시스템에서 데이터 기반의 어플레이케이션 갱신방법 및 이를 위한 장치
US20200033147A1 (en) Driving mode and path determination method and system of autonomous vehicle
KR102234224B1 (ko) 자율 주행 시스템에서 차량의 주행을 관리하기 위한 방법 및 장치
US20200094827A1 (en) Apparatus for controlling autonomous vehicle and control method thereof
US20210331712A1 (en) Method and apparatus for responding to hacking on autonomous vehicle
KR20190100107A (ko) 자율 주행 시스템에서 차량의 무선 통신을 위한 방법 및 장치
KR20190096873A (ko) 자율주행시스템에서 차량과 서버의 연결 설정방법 및 이를 위한 장치
KR20190098093A (ko) 자율주행시스템에서 가상 신호등 서비스 제공방법 및 이를 위한 장치
KR20190096864A (ko) 자율주행시스템에서 군집주행의 제어방법
US11364932B2 (en) Method for transmitting sensing information for remote driving in automated vehicle and highway system and apparatus therefor
KR20190107277A (ko) 자율 주행 시스템에서 차량을 제어하는 방법 및 장치
KR20210106688A (ko) 지능적인 빔 추적 방법 및 이를 위한 자율 주행 차량
KR20190098092A (ko) 자율주행 시스템에서 해킹 차량 관리 방법 및 그 장치
US20210150236A1 (en) Remote control method of the vehicle and a mixed reality device and a vehicle
US11403942B2 (en) Remote driving method using another autonomous vehicle in automated vehicle and high systems
US20210118293A1 (en) Method for controlling a vehicle in an autonoumous drving system
KR20210070701A (ko) 3차원 이미지 생성 방법 및 시스템
KR20190106928A (ko) 카메라와 그 제어 방법 및 카메라를 포함한 자율 주행 시스템