KR20190096182A - Continuous processing device using double scanner and continuous processing method - Google Patents

Continuous processing device using double scanner and continuous processing method Download PDF

Info

Publication number
KR20190096182A
KR20190096182A KR1020180015800A KR20180015800A KR20190096182A KR 20190096182 A KR20190096182 A KR 20190096182A KR 1020180015800 A KR1020180015800 A KR 1020180015800A KR 20180015800 A KR20180015800 A KR 20180015800A KR 20190096182 A KR20190096182 A KR 20190096182A
Authority
KR
South Korea
Prior art keywords
scanner
processing
beam spot
vector
processing vector
Prior art date
Application number
KR1020180015800A
Other languages
Korean (ko)
Other versions
KR102131685B1 (en
Inventor
이태경
김교석
Original Assignee
주식회사 이오테크닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이오테크닉스 filed Critical 주식회사 이오테크닉스
Priority to KR1020180015800A priority Critical patent/KR102131685B1/en
Publication of KR20190096182A publication Critical patent/KR20190096182A/en
Application granted granted Critical
Publication of KR102131685B1 publication Critical patent/KR102131685B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided are a continuous processing device and a continuous processing method. The continuous processing device comprises: a light source; a light modulator changing a light route of incident light to a first route and a second route; a scanner module including a first scanner moving incident light transferred to the first route from an object and a second scanner moving incident light transferred to the second route from the object; and a control unit controlling operation of the light source, the light modulator, and the scanner module.

Description

이중 스캐너를 이용한 연속 가공 장치 및 연속 가공 방법 {Continuous processing device using double scanner and continuous processing method}Continuous processing device using double scanner and continuous processing method

레이저 반복 가공에 있어서, 가공 간격을 최소화할 수 있는 이중 스캐너를 이용한 연속 가공 장치 및 연속 가공 방법이 개시된다.In laser repetitive machining, a continuous machining apparatus and a continuous machining method using a dual scanner capable of minimizing machining intervals are disclosed.

최근 여러 산업에서 대상물을 절단, 천공, 패터닝 하기 위한 가공 기술이 발전하고 있다. 이러한 가공 기술은 일반적으로 레이저 빔을 가공물의 표면에 주사하여 가공물의 표면의 형상이나 물리적 성질들을 가공한다. 가공 대상물에는 여러가지 예시가 있을 수 있으며, 예를 들어 실리콘 웨이퍼 등의 2차원 평면 대상물을 포함한다. 가공 대상물을 빠르게 가공하는 기술은 공정성을 향상시켜 비용 측면에서 많은 이득을 가져올 수 있으므로 이에 대한 기술 개발이 지속되고 있다. Recently, processing technology for cutting, drilling, and patterning objects has been developed in various industries. This processing technique generally scans the surface of the workpiece with a laser beam to process the shape or physical properties of the surface of the workpiece. There may be various examples of the object to be processed, and for example, include a two-dimensional planar object such as a silicon wafer. The technology for fast processing of the object to be processed can improve the fairness and bring a lot of cost in terms of technology development continues.

통상적으로 가공 대상물의 가공은 스캐너를 통해 레이저 빔의 조사위치를 이동하며 빔 에너지를 대상물에 조사함으로써 이루어진다. 가공 대상물의 가공은 일반적으로 수회에 걸쳐 반복적으로 이루어질 것을 요구한다. 종래의 대상물 가공 기술은 가공 벡터의 시작점에서 끝점까지 가공한 이후에, 레이저 스팟을 시작점으로 되돌려야 하고, 스캐너의 물리적 제어에 걸리는 시간이 크다는 점에서 시간 손실이 많고 공정성을 저하시키는 단점이 있었다.Typically, the processing of the object to be processed is performed by moving the irradiation position of the laser beam through the scanner and irradiating the beam energy to the object. The processing of the object to be processed generally requires to be repeated several times. Conventional object processing technology has a disadvantage in that the processing time from the start point to the end point of the processing vector, the laser spot must be returned to the start point, and the time taken for physical control of the scanner is large, resulting in much time loss and deterioration of fairness.

레이저 반복 가공에 있어서, 가공 간격을 최소화할 수 있는 이중 스캐너를 이용한 연속 가공 장치 및 연속 가공 방법을 제공하고자 한다.In the laser repeat processing, it is to provide a continuous processing apparatus and a continuous processing method using a double scanner that can minimize the processing interval.

일 개시에 따른 연속 가공 장치는, 광원; 상기 광원에서 전달된 광의 경로를 제1 경로 및 제2 경로로 변경하는 광변조기; 제1 경로로 전달되는 입사광을 대상물에서 이동시키는 제1 스캐너, 제2 경로로 전달되는 입사광을 대상물에서 이동시키는 제2 스캐너를 포함하는 스캐너 모듈; 및 상기 광원, 광변조기 및 스캐너 모듈의 작동을 제어하는 제어부;를 포함한다.Continuous processing apparatus according to one disclosure, the light source; An optical modulator for changing a path of light transmitted from the light source to a first path and a second path; A scanner module comprising a first scanner for moving incident light delivered to a first path from an object and a second scanner for moving incident light delivered to a second path from an object; And a controller for controlling the operation of the light source, the optical modulator, and the scanner module.

상기 스캐너 모듈과 대상물의 사이에 마련되는 렌즈 모듈;을 더 포함할 수 있다.It may further include a lens module provided between the scanner module and the object.

상기 렌즈 모듈은 광이 대상물에 수직하게 입사시키는 텔레센트릭 렌즈 또는 입사각에 따라 대상물의 가공 위치가 결정되는 f-세타 렌즈를 포함할 수 있다.The lens module may include a telecentric lens in which light is incident perpendicularly to the object, or an f-theta lens in which a processing position of the object is determined according to an angle of incidence.

상기 제1 경로 상에 마련되는 제1 직경 조절기;를 더 포함할 수 있다.A first diameter regulator provided on the first path; may further include.

상기 제2 경로 상에 마련되는 제2 직경 조절기;를 더 포함할 수 있다.A second diameter regulator provided on the second path; may further include.

상기 제어부는 대상물의 가공 벡터를 결정할 수 있다.The controller may determine the processing vector of the object.

상기 제어부는 제1 스캐너의 제1 가공 벡터와 제2 스캐너의 제2 가공 벡터를 결정하고, 상기 제1 가공 벡터와 상기 제2 가공 벡터는 서로 일치하지 않을 수 있다.The controller may determine the first processed vector of the first scanner and the second processed vector of the second scanner, and the first processed vector and the second processed vector may not coincide with each other.

상기 제어부는 상기 제1 스캐너의 빔 스팟이 제1 가공 벡터를 따라 가공하도록 제어하고, 상기 제2 스캐너의 빔 스팟이 상기 제2 가공 벡터를 따라 가공하도록 제어할 수 있다.The controller may control the beam spot of the first scanner to process along the first processing vector and control the beam spot of the second scanner to process along the second processing vector.

상기 제어부는 광을 제1 경로로 조사하도록 상기 광변조기를 제어하고, 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터의 시작 위치에서 종료 위치를 따라 가공하도록 상기 제1 스캐너를 제어하고, 상기 제2 스캐너의 빔 스팟은 상기 가공 벡터의 시작 위치에 위치하도록 제2 스캐너를 제어할 수 있다.The controller controls the optical modulator to irradiate light in a first path, and controls the first scanner so that the beam spot of the first scanner is processed along the end position from the start position of the processing vector, and the second The beam spot of the scanner may control the second scanner to be positioned at the start position of the processing vector.

상기 제어부는 상기 제1 스캐너의 빔 스팟이 종료 위치에 도착할 때 광이 제2 경로로 조사하도록 상기 광변조기를 제어하고, 상기 제2 스캐너의 빔 스팟이 상기 가공 벡터를 따라 가공하도록 상기 제2 스캐너를 제어할 수 있다.The controller controls the optical modulator to emit light in a second path when the beam spot of the first scanner arrives at an end position, and the second scanner to process the beam spot of the second scanner along the processing vector. Can be controlled.

상기 제어부는 상기 제2 스캐너가 상기 가공 벡터를 가공하는 동안, 상기 제1 스캐너의 빔 스팟을 상기 가공 벡터의 시작 위치로 위치시키도록 상기 제1 스캐너를 제어할 수 있다.The controller may control the first scanner to position the beam spot of the first scanner to the start position of the processed vector while the second scanner processes the processed vector.

상기 제어부는 제1 스캐너 트리거 펄스, 제2 스캐너 트리거 펄스, 광변조기 트리거 펄스를 통해 상기 제1 스캐너, 제2 스캐너 및 광변조기를 제어할 수 있다.The controller may control the first scanner, the second scanner, and the optical modulator through a first scanner trigger pulse, a second scanner trigger pulse, and an optical modulator trigger pulse.

일 개시에 따른 연속 가공 방법은, Continuous processing method according to one disclosure,

가공 벡터의 시작위치에 제1 스캐너의 빔 스팟과 제2 스캐너의 빔 스팟이 위치하는 단계;Positioning the beam spot of the first scanner and the beam spot of the second scanner at a starting position of the processing vector;

제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계;Processing the beam spot of the first scanner to move along the processing vector;

상기 제1 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착할 때, 상기 제2 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계; 및When the beam spot of the first scanner arrives at the end position of the processing vector, the beam spot of the second scanner moves along the processing vector and is processed; And

상기 제1 스캐너의 빔 스팟은 상기 가공 벡터의 시작위치로 이동하는 단계;를 포함한다.And moving the beam spot of the first scanner to a start position of the processing vector.

상기 제2 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착할 때, 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계; 및When the beam spot of the second scanner arrives at the end position of the processed vector, the beam spot of the first scanner moves along the processed vector and is processed; And

상기 제2 스캐너의 빔 스팟은 상기 가공 벡터의 시작위치로 이동하는 단계;를 더 포함할 수 있다.The beam spot of the second scanner may be moved to a start position of the processing vector.

상기 제1 스캐너의 빔 스팟이 가공 벡터의 시작위치에 도착하는 시점은 상기 제2 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착하는 시점보다 이른 시점일 수 있다.The time when the beam spot of the first scanner arrives at the start position of the processed vector may be a time earlier than the time when the beam spot of the second scanner arrives at the end position of the processed vector.

상기 제1 스캐너의 빔 스팟 직경과 상기 제2 스캐너의 빔 스팟 직경은 서로 상이할 수 있다.The beam spot diameter of the first scanner and the beam spot diameter of the second scanner may be different from each other.

상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 속도는 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터의 시작위치로 이동하는 속도보다 느릴 수 있다.The speed at which the beam spot of the first scanner moves along the processing vector may be slower than the speed at which the beam spot of the first scanner moves to the start position of the processing vector.

상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 속도는 등속도 일 수 있다.The speed at which the beam spot of the first scanner moves along the processing vector may be constant speed.

상기 제2 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계는, 제2 스캐너를 등속도로 구동하는 단계; 트리거 신호를 광변조기에 전달하여 입사광을 제2 스캐너에 전달하는 단계; 및 제2 스캐너가 상기 가공 벡터를 따라 이동하며 가공하는 단계;를 포함할 수 있다.The processing of the beam spot of the second scanner while moving along the processing vector may include: driving the second scanner at a constant speed; Delivering a trigger signal to an optical modulator to transmit incident light to a second scanner; And a second scanner moving along the processing vector and processing the second scanner.

상기 제2 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착할 때, 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계는, 제1 스캐너를 등속도로 구동하는 단계; 트리거 신호를 광변조기에 전달하여 입사광을 제1 스캐너에 전달하는 단계; 및 제1 스캐너가 상기 가공 벡터를 따라 이동하며 가공하는 단계;를 포함할 수 있다.When the beam spot of the second scanner arrives at the end position of the processing vector, the processing of the beam spot of the first scanner moving along the processing vector may include driving the first scanner at a constant speed; Delivering a trigger signal to the optical modulator to transmit incident light to the first scanner; And moving the first scanner along the processing vector to process the same.

일 개시에 따른 연속 가공 장치 및 연속 가공 방법은 제1 스캐너 및 제2 스캐너와 스위칭 시간이 1μm 이하인 광변조기를 이용하여 가공 벡터를 반복적으로 끊김없이 연속적으로 가공할 수 있다.In the continuous processing apparatus and the continuous processing method according to the present disclosure, the processing vector may be continuously and repeatedly processed continuously using a first modulator and a second scanner and an optical modulator having a switching time of 1 μm or less.

도 1은 일 개시에 따른 연속 가공 장치를 개략적으로 나타낸 도면이다.
도 2a 내지 2f는 도 1에 따른 연속 가공 장치의 작동 방식을 개략적으로 나타낸 도면이다.
도 3은 다른 개시에 따른 연속 가공 장치를 개략적으로 나타낸 도면이다.
도 4a 내지 4f는 도 3에 따른 연속 가공 장치의 작동 방식을 개략적으로 나타낸 도면이다.
도 5는 일 개시에 따른 연속 가공 방법을 나타낸 순서도이다.
도 6은 일 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태를 나타내는 속도-시간 그래프이다.
도 7은 일 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태 및 광변조기의 펄스 발생 시점을 도시하는 도면이다.
도 8은 다른 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태를 나타내는 속도-시간 그래프이다.
도 9는 다른 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태 및 광변조기의 펄스 발생 시점을 도시하는 도면이다.
1 is a view schematically showing a continuous machining apparatus according to one disclosure.
2a to 2f schematically show the manner of operation of the continuous machining apparatus according to FIG. 1.
3 is a view schematically showing a continuous machining apparatus according to another disclosure.
4a to 4f schematically show the manner of operation of the continuous machining apparatus according to FIG. 3.
5 is a flowchart illustrating a continuous machining method according to one disclosure.
6 is a speed-time graph illustrating a driving state of a first scanner and a second scanner according to one disclosure.
FIG. 7 is a diagram illustrating a driving state of a first scanner and a second scanner and a pulse generation time point of an optical modulator according to one disclosure.
8 is a speed-time graph showing the driving states of the first scanner and the second scanner according to another disclosure.
FIG. 9 is a diagram showing driving states of a first scanner and a second scanner and pulse generation points of an optical modulator according to another disclosure.

이하, 예시적인 실시예에 따른 연속 가공 장치 및 연속 가공 방법에 대해 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, a continuous machining apparatus and a continuous machining method according to an exemplary embodiment will be described in detail with reference to the accompanying drawings.

이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 한편, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다. In the drawings, like reference numerals refer to like elements, and the size of each element in the drawings may be exaggerated for clarity and convenience of description. Meanwhile, the embodiments described below are merely exemplary, and various modifications are possible from these embodiments.

이하에서, "상부" 나 "상"이라고 기재된 것은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다.Hereinafter, what is described as "upper" or "upper" may include not only directly over and in contact but also overlying.

제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Singular expressions include plural expressions unless the context clearly indicates otherwise. In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated.

도 1은 일 개시에 따른 연속 가공 장치(100)를 개략적으로 나타낸 도면이다. 도 2a 내지 2f는 도 1에 따른 연속 가공 장치의 작동 방식을 개략적으로 나타낸 도면이다. 1 is a view schematically showing a continuous machining apparatus 100 according to one disclosure. 2a to 2f schematically show the manner of operation of the continuous machining apparatus according to FIG. 1.

도 1을 참조하면, 연속 가공 장치(100)는 광원(110), 광변조기(120), 제어부(130), 스캐너 모듈(140), 렌즈 모듈(150)을 포함한다.Referring to FIG. 1, the continuous processing apparatus 100 includes a light source 110, an optical modulator 120, a controller 130, a scanner module 140, and a lens module 150.

광원(110)은 광을 광변조기(120)로 조사할 수 있다. 광원(110)은 대상물을 가공하기 위한 고출력 광을 조사할 수 있다. 예를 들어, 광원(110)은 레이저 광원일 수 있다. 예를 들어, 광원(110)은 탄산가스 레이저, 헬륨-네온 레이저, 아르곤-이온 레이저, 엑시머 레이저, 반도체 레이저, 고체 레이저, 액체 레이저 등 다양한 형태의 레이저 광원이 이용될 수 있으며 특정 실시예에 한정되지 않는다.The light source 110 may radiate light to the light modulator 120. The light source 110 may radiate high power light for processing an object. For example, the light source 110 may be a laser light source. For example, the light source 110 may use various types of laser light sources, such as a carbon dioxide laser, a helium-neon laser, an argon-ion laser, an excimer laser, a semiconductor laser, a solid state laser, a liquid laser, and the like. It doesn't work.

광변조기(120)는 광원(110)에서 전달된 광의 경로를 제1 경로 또는 제2 경로로 변경할 수 있다. 예를 들어, 광변조기(120)는 광 경로의 변환 시간이 1μm 이하인 고속 변조기일 수 있다. 예를 들어, 광변조기(120)는 광을 제1 경로에서 제2 경로로 또는 제2 경로에서 제1 경로로 스위칭을 1 μm 이내에 변경할 수 있다. 예를 들어, 광변조기(120)는 광음향 변조기(Accoustic Optical Modulator;AOM) 일 수 있다.The light modulator 120 may change the path of the light transmitted from the light source 110 to the first path or the second path. For example, the optical modulator 120 may be a high speed modulator having a conversion time of 1 μm or less. For example, the optical modulator 120 may change the switching of light from the first path to the second path or from the second path to the first path within 1 μm. For example, the optical modulator 120 may be an Acoustic Optical Modulator (AOM).

스캐너 모듈(140)은 제1 스캐너(141)와 제2 스캐너(142)를 포함한다. 제1 스캐너(141)는 제1 경로로 전달되는 광을 대상물(ob)에서 이동시킨다. 제2 스캐너(142)는 제2 경로로 전달되는 광을 대상물(ob)에서 이동시킨다. 광변조기(120)의 광경로 스위칭에 따라 제1 스캐너(141) 및 제2 스캐너(142)의 가공상태 또한 스위칭 된다.The scanner module 140 includes a first scanner 141 and a second scanner 142. The first scanner 141 moves the light transmitted through the first path in the object ob. The second scanner 142 moves the light transmitted to the second path in the object ob. According to the optical path switching of the optical modulator 120, the processing states of the first scanner 141 and the second scanner 142 are also switched.

제어부(130)는 광원(110), 광변조기(120), 및 스캐너 모듈(140)의 작동을 제어한다. 제어부(130)는 예를 들어, 프로세서(processor), 메모리(memory) 등의 전자 제어 장치로 구성될 수 있으며 특별한 실시예에 한정되지 않는다. 제어부(130)는 입력장치(미도시) 또는 출력장치(미도시)를 포함하여 사용자의 입력을 받아들이고, 제어 상태를 사용자에게 출력할 수 있다. 제어부(130)는 통신부(미도시)를 포함하여 외부 장치와 정보를 송수신할 수 있다. 예를 들어, 상기 정보는 광변조기(120)의 제어와 관련된 제어 데이터, 스캐너 모듈(140)의 제어와 관련된 제어 데이터, 광원(110)의 제어와 관련된 제어 데이터를 포함할 수 있다.The controller 130 controls the operation of the light source 110, the light modulator 120, and the scanner module 140. The controller 130 may be configured of, for example, an electronic control device such as a processor, a memory, and the like, and is not limited to a particular embodiment. The controller 130 may include an input device (not shown) or an output device (not shown) to receive a user input and output a control state to the user. The controller 130 may include a communication unit (not shown) to transmit and receive information with an external device. For example, the information may include control data related to the control of the optical modulator 120, control data related to the control of the scanner module 140, and control data related to the control of the light source 110.

제어부(130)는 대상물(ob)의 가공 벡터를 결정할 수 있다. 가공 벡터는 대상물(ob)을 어떤 형태로 가공하고, 어떤 길이, 두께로 가공할지를 나타내는 가상의 벡터를 의미할 수 있다. 예를 들어, 가공 벡터는 선형 벡터, 나선형 벡터, 곡선형 벡터 등 대상물(ob)의 가공 형태에 따라 다양하게 결정될 수 있다.The controller 130 may determine the processing vector of the object ob. The processing vector may mean a virtual vector indicating how to process the object ob, and to what length and thickness. For example, the processing vector may be variously determined according to the processing form of the object ob such as a linear vector, a spiral vector, and a curved vector.

제어부(130)는 스캐너 모듈(140) 및 광변조기(120)를 제어하여 가공 벡터를 연속적으로 반복 가공할 수 있다. 이하 상세히 설명한다.The controller 130 may control the scanner module 140 and the optical modulator 120 to continuously process the processed vector. It will be described in detail below.

제어부(130)는 광변조기(120)를 제어하여, 광원(110)에서 전달되는 광이 제1 경로를 통해 제1 스캐너(141)에 전달하거나 또는 제2 경로를 통해 제2 스캐너(142)에 전달할 수 있다. 제1 스캐너(141)와 제2 스캐너(142)는 대상물(ob)의 가공 벡터를 순차적으로 번갈아가며 가공할 수 있다. The controller 130 controls the optical modulator 120 to transmit the light transmitted from the light source 110 to the first scanner 141 through the first path or to the second scanner 142 through the second path. I can deliver it. The first scanner 141 and the second scanner 142 may sequentially process the processing vector of the object ob alternately.

도 2a를 참조하면, 제어부(130)는 제1 스캐너(141)의 빔 스팟(ℓ1)과 제2 스캐너(142)의 빔 스팟(ℓ2)이 가공 벡터의 시작 위치에 위치하도록 제1 스캐너(141)및 제2 스캐너(142)를 제어할 수 있다. Referring to FIG. 2A, the controller 130 controls the first scanner 141 so that the beam spot L1 of the first scanner 141 and the beam spot L2 of the second scanner 142 are positioned at the start position of the processing vector. And the second scanner 142.

도 2b를 참조하면, 제어부(130)는 광변조기(120)를 제어하여 제1 스캐너(141)에 제1 경로로 광이 전달되도록 제어하고, 제1 스캐너의 빔 스팟(ℓ1)이 가공 벡터를 따라 가공하도록 제1 스캐너(141)를 제어할 수 있다. 제1 스캐너의 빔 스팟(ℓ1)이 가공 벡터를 따라 가공하는 동안, 제2 스캐너(142)의 빔 스팟(ℓ2)은 가공 벡터의 시작 위치에서 대기할 수 있다. Referring to FIG. 2B, the controller 130 controls the optical modulator 120 to control the light to be transmitted to the first scanner 141 in the first path, and the beam spot L1 of the first scanner controls the processing vector. The first scanner 141 may be controlled to process accordingly. While the beam spot l1 of the first scanner is processing along the processing vector, the beam spot l2 of the second scanner 142 may wait at the start position of the processing vector.

도 2b 및 2c를 참조하면, 제어부(130)는 제1 스캐너(141)의 빔 스팟(ℓ1)이 가공 벡터의 종료 위치에 도착할 때, 제1 스캐너(141)의 가공을 중지하고 제2 스캐너(142)의 가공을 시작하도록 광을 제1 경로에서 제2 경로로 스위칭 하도록 광변조기(120)를 제어할 수 있다. 2B and 2C, when the beam spot L1 of the first scanner 141 arrives at the end position of the processing vector, the controller 130 stops the processing of the first scanner 141 and the second scanner ( The light modulator 120 may be controlled to switch light from the first path to the second path to start processing 142.

도 2c 및 2d를 참조하면, 제어부(130)는 제2 스캐너(142)의 빔 스팟(ℓ2)이 가공 벡터를 따라 가공하도록 제2 스캐너(142)를 제어하고, 제1 스캐너(141)는 가공 벡터의 시작 위치로 이동시키도록 제1 스캐너(141)를 제어할 수 있다.2C and 2D, the controller 130 controls the second scanner 142 so that the beam spot l2 of the second scanner 142 is processed along the processing vector, and the first scanner 141 is processed. The first scanner 141 may be controlled to move to the start position of the vector.

도 2d 및 2e를 참조하면, 제어부(130)는 제2 스캐너(142)의 빔 스팟(ℓ2)이 가공 벡터의 종료 위치에 도착할 때, 제2 스캐너(142)의 가공을 중지하고 제1 스캐너(141)의 가공을 시작하도록 광을 제2 경로에서 제1 경로로 스위칭 하도록 광변조기(120)를 제어할 수 있다. 제어부(130)는 제2 스캐너(142)의 빔 스팟(ℓ2)을 다시 가공 벡터의 시작 위치로 되돌리도록 제2 스캐너(142)를 제어할 수 있다.2D and 2E, the controller 130 stops processing of the second scanner 142 when the beam spot l2 of the second scanner 142 arrives at the end position of the processing vector, and the first scanner ( The light modulator 120 may be controlled to switch the light from the second path to the first path to start the processing of 141. The controller 130 may control the second scanner 142 to return the beam spot L2 of the second scanner 142 back to the start position of the processing vector.

도 2f를 참조하면, 제2 스캐너(142)의 빔 스팟(ℓ2)이 시작 위치에 대기하며, 제1 스캐너(141)의 빔 스팟(ℓ1)이 가공 벡터의 종료 위치에 도착할 때까지 가공 벡터를 따라 대상물을 가공할 수 있다.Referring to FIG. 2F, the beam spot ℓ2 of the second scanner 142 waits at the start position, and the process vector is moved until the beam spot ℓ1 of the first scanner 141 arrives at the end position of the process vector. The object can then be processed.

제어부(130)는 가공 벡터의 가공이 완료될 때까지 상기 단계들을 반복하며, 연속적으로 가공 벡터를 가공할 수 있다. 광변조기(120)의 광 경로 변경에 소요되는 시간이 1 μm 이하이므로 실질적으로 가공 벡터의 가공이 시간의 흐름에 따라 연속적일 수 있으며, 가공 시간의 효율적인 감소가 가능하다.The controller 130 may repeat the above steps until the processing of the processing vector is completed, and may process the processing vector continuously. Since the time required for changing the optical path of the optical modulator 120 is 1 μm or less, the processing of the processing vector may be substantially continuous with time, and the processing time may be effectively reduced.

제어부(130)는 제1 스캐너(141)의 가공 영역을 결정하는 제1 가공 벡터와 제2 스캐너(142)의 가공 영역을 결정하는 제2 가공 벡터를 별도로 결정할 수 있다. 제1 가공 벡터와 제2 가공 벡터는 서로 영역이 중첩되나 완벽히 일치하지 않을 수 있다. 이러한 경우에, 제어부(130)는 제1 스캐너(141)가 제1 가공 벡터를 따라 가공하도록 제어하고, 제2 스캐너(142)가 제2 가공 벡터를 따라 가공하도록 제어할 수 있다. The controller 130 may separately determine the first processing vector for determining the processing area of the first scanner 141 and the second processing vector for determining the processing area of the second scanner 142. The first processing vector and the second processing vector may overlap regions with each other but may not coincide completely. In this case, the controller 130 may control the first scanner 141 to process along the first processing vector, and control the second scanner 142 to process along the second processing vector.

본 개시에 따른 연속 가공 장치(100)는 스캐너 모듈(140)과 대상물(ob) 사이에 마련되는 렌즈 모듈(150)을 더 포함할 수 있다. 렌즈 모듈(150)은 제1 스캐너(141)의 빔 스팟과 제2 스캐너(142)의 빔 스팟이 가공 벡터 상에서 효과적으로 집광되도록 광의 경로를 변경하는 광학 부재를 포함할 수 있다. The continuous processing apparatus 100 according to the present disclosure may further include a lens module 150 provided between the scanner module 140 and the object ob. The lens module 150 may include an optical member that changes a path of light so that the beam spot of the first scanner 141 and the beam spot of the second scanner 142 are effectively focused on the processing vector.

예를 들어, 렌즈 모듈(150)은 텔레센트릭 렌즈(telecentric lens)를 포함할 수 있다. 렌즈 모듈(150)이 텔레센트릭 렌즈를 포함하는 경우에는 제1 스캐너(141)의 빔 스팟과 제2 스캐너(142)의 빔 스팟이 대상물(ob)의 가공 벡터에 수직하게 입사되도록 마련될 수 있어 광의 집광에 유리할 수 있다. 이 경우 텔레센트릭 렌즈의 면적은 제1 스캐너(141)의 스윙 면적 및 제2 스캐너(142)의 스윙 면적과 유사할 수 있다. For example, the lens module 150 may include a telecentric lens. When the lens module 150 includes a telecentric lens, the beam spot of the first scanner 141 and the beam spot of the second scanner 142 may be provided to be incident perpendicularly to the processing vector of the object ob. It can be advantageous to condensing light. In this case, the area of the telecentric lens may be similar to the swing area of the first scanner 141 and the swing area of the second scanner 142.

예를 들어, 렌즈 모듈(150)은 f-세타 렌즈(f-theta lens)를 포함할 수 있다. . 렌즈 모듈(150)이 f-세타 렌즈를 포함하는 경우에는 1 스캐너(141)의 빔 스팟과 제2 스캐너(142)의 빔 스팟이 렌즈 모듈(150)에 입사하는 각도에 따라 가공 벡터의 조사 위치가 결정될 수 있어 정교한 가공이 가능할 수 있다.For example, the lens module 150 may include an f-theta lens. . When the lens module 150 includes the f-theta lens, the irradiation position of the processing vector depends on the angle at which the beam spot of the first scanner 141 and the beam spot of the second scanner 142 enter the lens module 150. Can be determined so that sophisticated processing is possible.

도 3은 다른 개시에 따른 연속 가공 장치(200)를 개략적으로 나타낸 도면이다. 도 4a 내지 4f는 도 3에 따른 연속 가공 장치의 작동 방식을 개략적으로 나타낸 도면이다. 3 is a schematic view of a continuous machining apparatus 200 according to another disclosure. 4a to 4f schematically show the manner of operation of the continuous machining apparatus according to FIG. 3.

도 3을 참조하면, 연속 가공 장치(200)는 제1 경로 상에 마련되는 제1 직경 조절기(261)와 제2 경로 상에 마련되는 제2 직경 조절기(262)를 더 포함한다. 나머지 구성요소는 도1에 따른 연속 가공 장치(100)에서 기술된 바와 같으므로 중복되는 설명은 생략한다.Referring to FIG. 3, the continuous processing apparatus 200 further includes a first diameter regulator 261 provided on the first path and a second diameter regulator 262 provided on the second path. Since the remaining components are as described in the continuous processing apparatus 100 according to FIG. 1, redundant descriptions are omitted.

연속 가공 장치(200)는 가공 벡터의 효율적인 가공을 위해 제1 스캐너(141)의 빔 스팟(ℓ1) 및 제2 스캐너(142)의 빔 스팟(ℓ2)의 크기를 다르게 조절할 수 있다.The continuous processing apparatus 200 may adjust the size of the beam spot L1 of the first scanner 141 and the beam spot L2 of the second scanner 142 differently for efficient processing of the processing vector.

제1 직경 조절기(261)는 광변조기(120)와 제1 스캐너(141)의 사이에 마련되며, 원 입사광 lin 의 직경을 입사광 l'in 으로 변경할 수 있다. 입사광 l'in 의 직경은 원 입사광의 lin 의 직경보다 작거나 클 수 있으며, 이러한 직경은 제어부(130)의 조절에 의해 변경될 수 있다.The first diameter adjuster 261 is provided between the optical modulator 120 and the first scanner 141, the circular incident light l in The diameter of can be changed to the incident light l ' in . Incident light l 'in the diameter of the circle of the incident light l in It may be smaller than or larger than the diameter, and this diameter may be changed by the control of the controller 130.

제2 직경 조절기(262)는 광변조기(120)와 제1 스캐너(141)의 사이에 마련되며, 원 입사광 lin 의 직경을 입사광 l''in 으로 변경할 수 있다. 입사광 l''in 의 직경은 원 입사광의 lin 의 직경보다 작거나 클 수 있으며, 이러한 직경은 제어부(130)의 조절에 의해 변경될 수 있다. 결과적으로 제1 직경 조절기(261) 및/또는 제2 직경 조절기(262)의 도입을 통해 제1 스캐너(141)의 빔 스팟(ℓ1) 및 제2 스캐너(142)의 빔 스팟(ℓ2)의 직경이 서로 상이할 수 있다. The second diameter controller 262 is provided between the optical modulator 120 and the first scanner 141, the circular incident light l in The diameter of can be changed to the incident light l '' in . The diameter of incident light l '' in is l in of incident light It may be smaller than or larger than the diameter, and this diameter may be changed by the control of the controller 130. As a result, the diameter of the beam spot l1 of the first scanner 141 and the beam spot l2 of the second scanner 142 through the introduction of the first diameter adjuster 261 and / or the second diameter adjuster 262. These may be different from each other.

도 4a를 참조하면, 제어부(130)는 제1 스캐너(141)의 빔 스팟(ℓ1)과 제2 스캐너(142)의 빔 스팟(ℓ2)이 가공 벡터의 시작 위치에 위치하도록 제1 스캐너(141)및 제2 스캐너(142)를 제어할 수 있다. 이때, 제1 직경 조절기(261)는 입사광의 직경을 확장하여 제1 스캐너(141)의 빔 스팟(ℓ1)의 직경을 확장시킬 수 있다.Referring to FIG. 4A, the controller 130 controls the first scanner 141 so that the beam spot L1 of the first scanner 141 and the beam spot L2 of the second scanner 142 are positioned at the start position of the processing vector. And the second scanner 142. In this case, the first diameter controller 261 may expand the diameter of the incident light to expand the diameter of the beam spot ℓ 1 of the first scanner 141.

도 4b를 참조하면, 제어부(130)는 광변조기(120)를 제어하여 제1 스캐너(141)에 제1 경로로 광이 전달되도록 제어하고, 제1 스캐너의 빔 스팟(ℓ1)이 가공 벡터를 따라 가공하도록 제1 스캐너(141)를 제어할 수 있다. 제1 스캐너의 빔 스팟(ℓ1)이 가공 벡터를 따라 가공하는 동안, 제2 스캐너(142)의 빔 스팟(ℓ2)은 가공 벡터의 시작 위치에서 대기할 수 있다. Referring to FIG. 4B, the controller 130 controls the optical modulator 120 to control the light to be transmitted to the first scanner 141 in the first path, and the beam spot L1 of the first scanner controls the processing vector. The first scanner 141 may be controlled to process accordingly. While the beam spot l1 of the first scanner is processing along the processing vector, the beam spot l2 of the second scanner 142 may wait at the start position of the processing vector.

도 4b 및 4c를 참조하면, 제어부(130)는 제1 스캐너(141)의 빔 스팟(ℓ1)이 가공 벡터의 종료 위치에 도착할 때, 제1 스캐너(141)의 가공을 중지하고 제2 스캐너(142)의 가공을 시작하도록 광을 제1 경로에서 제2 경로로 스위칭 하도록 광변조기(120)를 제어할 수 있다. 이때, 제2 직경 조절기(262)는 입사광의 직경을 확대하여 제2 스캐너(142)의 빔 스팟(ℓ2)의 직경을 축소시킬 수 있다. 따라서, 제2 스캐너(142)의 빔 스팟(ℓ2)의 직경은 제1 스캐너(141)의 빔 스팟(ℓ1)의 직경보다 작을 수 있다.4B and 4C, when the beam spot L1 of the first scanner 141 arrives at the end position of the processing vector, the controller 130 stops the processing of the first scanner 141 and the second scanner ( The light modulator 120 may be controlled to switch light from the first path to the second path to start processing 142. In this case, the second diameter controller 262 may reduce the diameter of the beam spot ℓ2 of the second scanner 142 by enlarging the diameter of the incident light. Therefore, the diameter of the beam spot L2 of the second scanner 142 may be smaller than the diameter of the beam spot L1 of the first scanner 141.

도 4c 및 4d를 참조하면, 제어부(130)는 제2 스캐너(142)의 빔 스팟(ℓ2)이 가공 벡터를 따라 가공하도록 제2 스캐너(142)를 제어하고, 제1 스캐너(141)는 가공 벡터의 시작 위치로 이동시키도록 제1 스캐너(141)를 제어할 수 있다. 제2 스캐너(142)의 빔 스팟(ℓ2)의 직경이 제1 스캐너(141)의 빔 스팟(ℓ1)의 직경보다 작음으로써, 가공 벡터의 효율적인 가공이 가능하다. 4C and 4D, the controller 130 controls the second scanner 142 so that the beam spot l2 of the second scanner 142 is processed along the processing vector, and the first scanner 141 is processed. The first scanner 141 may be controlled to move to the start position of the vector. Since the diameter of the beam spot L2 of the second scanner 142 is smaller than the diameter of the beam spot L1 of the first scanner 141, efficient processing of the processing vector is possible.

도 4d 및 4e를 참조하면, 제어부(130)는 제2 스캐너(142)의 빔 스팟(ℓ2)이 가공 벡터의 종료 위치에 도착할 때, 제2 스캐너(142)의 가공을 중지하고 제1 스캐너(141)의 가공을 시작하도록 광을 제2 경로에서 제1 경로로 스위칭 하도록 광변조기(120)를 제어할 수 있다. 제어부(130)는 제2 스캐너(142)의 빔 스팟(ℓ2)을 다시 가공 벡터의 시작 위치로 되돌리도록 제2 스캐너(142)를 제어할 수 있다.4D and 4E, the controller 130 stops processing of the second scanner 142 when the beam spot ℓ2 of the second scanner 142 arrives at the end position of the processing vector, and the first scanner ( The light modulator 120 may be controlled to switch the light from the second path to the first path to start the processing of 141. The controller 130 may control the second scanner 142 to return the beam spot L2 of the second scanner 142 back to the start position of the processing vector.

도 4f를 참조하면, 제2 스캐너(142)의 빔 스팟(ℓ2)이 시작 위치에 대기하며, 제1 스캐너(141)의 빔 스팟(ℓ1)이 가공 벡터의 종료 위치에 도착할 때까지 가공 벡터를 따라 대상물을 가공할 수 있다.Referring to FIG. 4F, the beam spot ℓ2 of the second scanner 142 waits at the start position, and the process vector is moved until the beam spot ℓ1 of the first scanner 141 arrives at the end position of the process vector. The object can then be processed.

제어부(130)는 가공 벡터의 가공이 완료될 때까지 상기 단계들을 반복하며, 연속적으로 가공 벡터를 가공할 수 있다. 광변조기(120)의 광 경로 변경에 소요되는 시간이 1 μm 이하이므로 실질적으로 가공 벡터의 가공이 시간의 흐름에 따라 연속적일 수 있으며, 가공 시간의 효율적인 감소가 가능하다. 또한, 제1 직경 조절기(261) 및/또는 제2 직경 조절기(262)의 도입으로 인해 가공 벡터의 보다 효율적인 가공이 가능하다.The controller 130 may repeat the above steps until the processing of the processing vector is completed, and may process the processing vector continuously. Since the time required for changing the optical path of the optical modulator 120 is 1 μm or less, the processing of the processing vector may be substantially continuous with time, and the processing time may be effectively reduced. In addition, the introduction of the first diameter regulator 261 and / or the second diameter regulator 262 allows for more efficient processing of the processing vector.

도 5는 일 개시에 따른 연속 가공 방법을 나타낸 순서도이다. 도 5를 참조하면, 본 개시에 따른 연속 가공 방법은, 시작 위치에 제1 스캐너와 제2 스캐너의 빔 스팟이 대기하는 단계(S101), 레이저 빔을 제1 스캐너에 조사하여, 제1 스캐너가 가공 벡터를 가공하는 단계(S102), 제1 스캐너의 가공이 끝나는 시점에 레이저 빔을 제2 스캐너에 조사하여 제2 스캐너가 가공 벡터를 가공하는 단계(S103), 제2 스캐너가 가공벡터를 가공하는 동안, 제1 스캐너의 스팟을 가공 벡터의 시작 위치로 움직이는 단계(S104), 가공 완료 여부에 따라 S102, S103, S104의 과정을 반복하는 단계(S105)를 포함한다.5 is a flowchart illustrating a continuous machining method according to one disclosure. Referring to FIG. 5, in the continuous machining method according to the present disclosure, in step S101 in which beam spots of the first scanner and the second scanner are waiting at a starting position, the laser beam is irradiated to the first scanner so that the first scanner is provided. Processing the processed vector (S102), irradiating the laser beam to the second scanner at the end of the processing of the first scanner, and processing the processed vector by the second scanner (S103), and processing the processed vector by the second scanner; In the meantime, the step of moving the spot of the first scanner to the start position of the processing vector (S104), and the process of repeating the process of S102, S103, S104 according to whether the processing is completed (S105).

도 6은 일 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태를 나타내는 속도-시간 그래프이다.6 is a speed-time graph illustrating a driving state of a first scanner and a second scanner according to one disclosure.

도 6을 참조하면, 제1 스캐너는 등속도로 움직이는 구간에 가공 벡터를 가공할 수 있다. 마찬가지로, 제2 스캐너는 등속도로 움직이는 구간에 가공 벡터를 가공할 수 있다. 제1 스캐너가 등속도로 움직이는 구간이 종료하는 시점과 제2 스캐너가 등속도로 움직이는 구간이 시작하는 시점은 실질적으로 동일할 수 있다. 또는, 제1 스캐너가 등속도로 움직이는 구간이 종료하는 시점보다 제2 스캐너가 등속도로 움직이는 구간이 시작하는 시점이 다소 우선할 수 있다. 이러한 구간 조건으로 인해, 가공 벡터의 연속적인 가공이 가능할 수 있다.Referring to FIG. 6, the first scanner may process a processing vector in a section moving at a constant speed. Similarly, the second scanner can process the processing vector in the section moving at constant speed. The time point at which the section at which the first scanner moves at the constant speed ends and the time point at which the second scanner moves at the constant speed start may be substantially the same. Alternatively, the time point at which the second scanner moves at the constant speed may start to take precedence over the time point at which the first scanner moves at the constant speed. Due to such interval conditions, continuous machining of the machining vector may be possible.

제1 스캐너는 가공구간이 종료된 이후에 시작 위치로 복귀하기 위해 반대 방향으로 움직일 수 있다. 예를 들어, 제1 스캐너의 가공구간에서의 속도는 제1 스캐너의 복귀구간에서의 속도보다 느릴 수 있다. 제1 스캐너는 시작 위치에 도착하면 정지할 수 있다.The first scanner may move in the opposite direction to return to the starting position after the machining section is finished. For example, the speed in the processing section of the first scanner may be slower than the speed in the return section of the first scanner. The first scanner may stop upon reaching the start position.

제2 스캐너는 가공구간이 종료된 이후에 시작 위치로 복귀하기 위해 반대 방향으로 움직일 수 있다. 예를 들어, 제2 스캐너의 가공구간에서의 속도는 제2 스캐너의 복귀구간에서의 속도보다 느릴 수 있다. 제2 스캐너는 시작 위치에 도착하면 정지할 수 있다.The second scanner may move in the opposite direction to return to the starting position after the machining section is finished. For example, the speed in the processing section of the second scanner may be slower than the speed in the return section of the second scanner. The second scanner may stop upon reaching the start position.

제1 스캐너의 가공구간의 속도와 제2 스캐너의 가공구간의 속도는 서로 동일할 수 있으나 이에 한정되는 것은 아니다. 제1 스캐너의 복귀구간의 속도와 제2 스캐너의 복귀구간의 속도는 서로 동일할 수 있으나 이에 한정되는 것은 아니다. The speed of the processing section of the first scanner and the speed of the processing section of the second scanner may be the same but are not limited thereto. The speed of the return section of the first scanner and the speed of the return section of the second scanner may be the same but are not limited thereto.

도 7은 일 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태 및 광변조기의 펄스 발생 시점을 도시하는 도면이다. FIG. 7 is a diagram illustrating a driving state of a first scanner and a second scanner and a pulse generation time point of an optical modulator according to one disclosure.

도 7을 참조하면, 레이저 펄스는 지속적으로 가공 벡터를 가공한다(LM 참조). 제1 스캐너는 가공 구간과 시작 위치 대기 구간을 번갈아가면서 구동되며, 제2 스캐너는 가공 구간과 시작 위치 대기 구간을 번갈아가면서 구동된다. 레이저 펄스의 지속 가공을 위해, 제1 스캐너와 제2 스캐너의 가공 구간은 서로 교차적으로 위치한다. 제1 스캐너에서 제2 스캐너의 가공 구간으로 넘어가기 위해, 제어부(미도시)는 입사광의 광경로가 제1 스캐너에서 제2 스캐너로 변경되도록 광변조기에 트리거 펄스 신호를 조사할 수 있다. 트리거 펄스 신호가 도착하여 제1 스캐너 및 제2 스캐너의 구동 상태가 변화하기 까지 TAOM 의 시간이 소요될 수 있다. 제어부는 TAOM 의 시간을 고려하여 제1 스캐너 및 제2 스캐너의 구동 상태 및 구동 속도를 적정하게 제어할 수 있다.Referring to Fig. 7, the laser pulse continuously processes the processing vector (see LM). The first scanner is alternately driven between the machining section and the starting position waiting section, and the second scanner is alternately driven between the machining section and the starting position waiting section. For continuous processing of the laser pulses, the processing sections of the first scanner and the second scanner are located cross each other. In order to move from the first scanner to the processing section of the second scanner, the controller (not shown) may irradiate the trigger pulse signal to the optical modulator so that the optical path of the incident light is changed from the first scanner to the second scanner. It may take a time of T AOM until the trigger pulse signal arrives to change the driving state of the first scanner and the second scanner. The controller may appropriately control the driving state and the driving speed of the first scanner and the second scanner in consideration of the time of the T AOM .

도 8은 다른 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태를 나타내는 속도-시간 그래프이다.8 is a speed-time graph showing the driving states of the first scanner and the second scanner according to another disclosure.

도 8을 참조하면, 제1 스캐너는 등속도로 움직이는 구간에 가공 벡터를 가공할 수 있다. 마찬가지로, 제2 스캐너는 등속도로 움직이는 구간에 가공 벡터를 가공할 수 있다. 제1 스캐너가 등속도로 움직이는 구간이 종료하는 시점과 제2 스캐너가 등속도로 움직이는 구간이 시작하는 시점은 실질적으로 동일할 수 있다. 또는, 제1 스캐너가 등속도로 움직이는 구간이 종료하는 시점보다 제2 스캐너가 등속도로 움직이는 구간이 시작하는 시점이 다소 우선할 수 있다. 이러한 구간 조건으로 인해, 가공 벡터의 연속적인 가공이 가능할 수 있다.Referring to FIG. 8, the first scanner may process a processing vector in a section moving at constant speed. Similarly, the second scanner can process the processing vector in the section moving at constant speed. The time point at which the section at which the first scanner moves at the constant speed ends and the time point at which the second scanner moves at the constant speed start may be substantially the same. Alternatively, the time point at which the second scanner moves at the constant speed may start to take precedence over the time point at which the first scanner moves at the constant speed. Due to such interval conditions, continuous machining of the machining vector may be possible.

제1 스캐너는 가공구간이 종료된 이후에 시작 위치로 복귀하기 위해 반대 방향으로 움직일 수 있다. 예를 들어, 제1 스캐너의 가공구간에서의 속도는 제1 스캐너의 복귀구간에서의 속도보다 느릴 수 있다. 제1 스캐너는 시작 위치에 도착하면 정지할 수 있다. 제1 스캐너의 복귀구간의 속도는 제1 스캐너가 시작 위치에 도착하고 소정의 대기 시간을 가지도록 충분히 빠를 수 있다. 이러한 대기 시간을 가짐으로써 제1 스캐너의 관성 제어와 관련된 적절한 레버리지(leverage)를 확보할 수 있다. The first scanner may move in the opposite direction to return to the starting position after the machining section is finished. For example, the speed in the processing section of the first scanner may be slower than the speed in the return section of the first scanner. The first scanner may stop upon reaching the start position. The speed of the return section of the first scanner may be fast enough for the first scanner to arrive at the start position and have a predetermined waiting time. By having this waiting time, it is possible to ensure appropriate leverage associated with the inertia control of the first scanner.

제2 스캐너는 가공구간이 종료된 이후에 시작 위치로 복귀하기 위해 반대 방향으로 움직일 수 있다. 예를 들어, 제2 스캐너의 가공구간에서의 속도는 제2 스캐너의 복귀구간에서의 속도보다 느릴 수 있다. 제2 스캐너는 시작 위치에 도착하면 정지할 수 있다. 제2 스캐너의 복귀구간의 속도는 제2 스캐너가 시작 위치에 도착하고 소정의 대기 시간을 가지도록 충분히 빠를 수 있다. 이러한 대기 시간을 가짐으로써 제2 스캐너의 관성 제어와 관련된 적절한 레버리지를 확보할 수 있다. The second scanner may move in the opposite direction to return to the starting position after the machining section is finished. For example, the speed in the processing section of the second scanner may be slower than the speed in the return section of the second scanner. The second scanner may stop upon reaching the start position. The speed of the return section of the second scanner may be fast enough for the second scanner to arrive at the start position and have a predetermined waiting time. By having this waiting time, it is possible to secure appropriate leverage related to the inertia control of the second scanner.

제1 스캐너의 가공구간의 속도와 제2 스캐너의 가공구간의 속도는 서로 동일할 수 있으나 이에 한정되는 것은 아니다. 제1 스캐너의 복귀구간의 속도와 제2 스캐너의 복귀구간의 속도는 서로 동일할 수 있으나 이에 한정되는 것은 아니다. The speed of the processing section of the first scanner and the speed of the processing section of the second scanner may be the same but are not limited thereto. The speed of the return section of the first scanner and the speed of the return section of the second scanner may be the same but are not limited thereto.

도 9는 다른 개시에 따른 제1 스캐너 및 제2 스캐너의 구동 상태 및 광변조기의 펄스 발생 시점을 도시하는 도면이다.FIG. 9 is a diagram showing driving states of a first scanner and a second scanner and pulse generation points of an optical modulator according to another disclosure.

도 9를 참조하면, 레이저 펄스는 지속적으로 가공 벡터를 가공한다(LM 참조). 제1 스캐너는 가속 구간, 가공 구간, 감속 구간, 시작 위치 대기 구간을 번갈아가면서 구동되며, 제2 스캐너는 가속 구간, 가공 구간, 감속 구간, 시작 위치 대기 구간을 번갈아가면서 구동된다. 레이저 펄스의 지속 가공을 위해, 제1 스캐너와 제2 스캐너의 가공 구간은 서로 시간 축을 빈틈없이 매꾸도록 교차적으로 위치한다. Referring to Figure 9, the laser pulse continuously processes the processing vector (see LM). The first scanner is alternately driven during the acceleration section, the machining section, the deceleration section, and the start position waiting section. The second scanner is alternately driven during the acceleration section, the processing section, the deceleration section, and the start position waiting section. For continuous processing of the laser pulses, the processing sections of the first scanner and the second scanner are intersected so as to fill the time axis tightly with each other.

제1 스캐너에서 제2 스캐너의 가공 구간으로 넘어가기 위해, 제어부(미도시)는 입사광의 광경로가 제1 스캐너에서 제2 스캐너로 변경되도록 광변조기에 트리거 펄스 신호를 조사할 수 있다. 트리거 펄스 신호가 도착하여 제1 스캐너 및 제2 스캐너의 구동 상태가 변화하기 까지 TAOM 의 시간이 소요될 수 있다. 제어부는 TAOM 의 시간을 고려하여 제1 스캐너 및 제2 스캐너의 구동 상태 및 구동 속도를 적정하게 제어할 수 있다.In order to move from the first scanner to the processing section of the second scanner, the controller (not shown) may irradiate the trigger pulse signal to the optical modulator so that the optical path of the incident light is changed from the first scanner to the second scanner. It may take a time of T AOM until the trigger pulse signal arrives to change the driving state of the first scanner and the second scanner. The controller may appropriately control the driving state and the driving speed of the first scanner and the second scanner in consideration of the time of the T AOM .

제1 스캐너에서 제2 스캐너로 가공 구간이 변경되는 시점에 제2 스캐너가 등속 운동 상태를 유지할 수 있도록 제어부는 그 보다 이른 시점에 제2 스캐너의 운동을 트리거하는 트리거 펄스 신호를 제2 스캐너에 조사할 수 있다. 제2 스캐너는 일정 구간동안 가속된 후, 제2 스캐너에 광이 입사되며 가공 구간에 도입하게 되면 등속운동을 유지한다. The control unit irradiates the second scanner with a trigger pulse signal that triggers the movement of the second scanner at an earlier point in time so that the second scanner can maintain a constant velocity state when the machining section is changed from the first scanner to the second scanner. can do. After the second scanner is accelerated for a certain period, light is incident on the second scanner and maintains constant velocity when introduced into the processing section.

제2 스캐너에서 제1 스캐너의 가공 구간으로 넘어가기 위해, 제어부(미도시)는 입사광의 광경로가 제2 스캐너에서 제1 스캐너로 변경되도록 광변조기에 트리거 펄스 신호를 조사할 수 있다. 제2 스캐너에서 입사광이 제거되면, 제2 스캐너는 감속 한 후 시작 위치로 이동하여 대기할 수 있다.In order to move from the second scanner to the processing section of the first scanner, the controller (not shown) may irradiate the trigger pulse signal to the optical modulator so that the optical path of the incident light is changed from the second scanner to the first scanner. When the incident light is removed from the second scanner, the second scanner may move to the start position and wait after decelerating.

제1 스캐너와 제2 스캐너의 구동은 제어부의 제1 스캐너 트리거 펄스, 제2 스캐너 트리거 펄스, 광변조기 트리거 펄스의 3가지 신호를 통해 적절히 제어될 수 있다. 이러한 펄스를 이용한 구동 방식을 통해 제1 스캐너와 제2 스캐너의 가동 구간이 서로 시간 축을 빈틈없이 매꾸도록 교차적으로 위치할 수 있으며, 연속 가공 장치의 구성이 효율적으로 이루어질 수 있다. The driving of the first scanner and the second scanner may be appropriately controlled through three signals of the first scanner trigger pulse, the second scanner trigger pulse, and the optical modulator trigger pulse of the controller. Through the driving method using the pulse, the operating sections of the first scanner and the second scanner may be alternately positioned to fill the time axis with each other, and the configuration of the continuous processing apparatus may be efficiently performed.

이상의 설명에서 많은 사항들이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 때문에 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.While many details are set forth in the foregoing description, they should be construed as illustrative of preferred embodiments rather than to limit the scope of the invention. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the technical spirit described in the claims.

100 : 연속 가공 장치
110 : 광원
120 : 광변조기
130 : 제어부
140 : 스캐너 모듈
141 : 제1 스캐너 142 : 제2 스캐너
150 : 렌즈 모듈
100: continuous processing device
110: light source
120: light modulator
130: control unit
140: scanner module
141: first scanner 142: second scanner
150: lens module

Claims (20)

광원;
상기 광원에서 전달된 광의 경로를 제1 경로 또는 제2 경로로 변경하는 광변조기;
제1 경로로 전달되는 입사광을 대상물에서 이동시키는 제1 스캐너, 제2 경로로 전달되는 입사광을 대상물에서 이동시키는 제2 스캐너를 포함하는 스캐너 모듈; 및
상기 광원, 광변조기 및 스캐너 모듈의 작동을 제어하는 제어부;를 포함하는 연속 가공 장치.
Light source;
An optical modulator for changing a path of light transmitted from the light source to a first path or a second path;
A scanner module comprising a first scanner for moving incident light delivered to a first path from an object and a second scanner for moving incident light delivered to a second path from an object; And
And a controller for controlling the operation of the light source, the optical modulator, and the scanner module.
제1 항에 있어서,
상기 스캐너 모듈과 대상물의 사이에 마련되는 렌즈 모듈;을 더 포함하는 연속 가공 장치.
According to claim 1,
And a lens module provided between the scanner module and the object.
제2 항에 있어서,
상기 렌즈 모듈은 광이 대상물에 수직하게 입사시키는 텔레센트릭 렌즈 또는 입사각에 따라 대상물의 가공 위치가 결정되는 f-세타 렌즈를 포함하는 연속 가공 장치.
The method of claim 2,
The lens module includes a telecentric lens or a f-theta lens in which the processing position of the object is determined according to the angle of incidence in which light is incident perpendicularly to the object.
제1 항에 있어서,
상기 제1 경로 상에 마련되는 제1 직경 조절기;를 더 포함하는 연속 가공 장치.
According to claim 1,
And a first diameter adjuster provided on the first path.
제4 항에 있어서,
상기 제2 경로 상에 마련되는 제2 직경 조절기;를 더 포함하는 연속 가공 장치.
The method of claim 4, wherein
And a second diameter adjuster provided on the second path.
제1 항에 있어서,
상기 제어부는 대상물의 가공 벡터를 결정하는 연속 가공장치.
According to claim 1,
The control unit is a continuous processing device for determining the processing vector of the object.
제6 항에 있어서,
상기 제어부는 제1 스캐너의 제1 가공 벡터와 제2 스캐너의 제2 가공 벡터를 결정하고, 상기 제1 가공 벡터와 상기 제2 가공 벡터는 서로 일치하지 않는 연속 가공 장치.
The method of claim 6,
The control unit determines the first processing vector of the first scanner and the second processing vector of the second scanner, and the first processing vector and the second processing vector do not coincide with each other.
제7 항에 있어서,
상기 제어부는 상기 제1 스캐너의 빔 스팟이 제1 가공 벡터를 따라 가공하도록 제어하고, 상기 제2 스캐너의 빔 스팟이 상기 제2 가공 벡터를 따라 가공하도록 제어하는 연속 가공 장치.
The method of claim 7, wherein
And the controller controls the beam spot of the first scanner to process along the first processing vector and controls the beam spot of the second scanner to process along the second processing vector.
제6 항에 있어서,
상기 제어부는 광을 제1 경로로 조사하도록 상기 광변조기를 제어하고, 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 가공하도록 상기 제1 스캐너를 제어하고, 상기 제2 스캐너의 빔 스팟은 상기 가공 벡터의 시작 위치에 위치하도록 제2 스캐너를 제어하는 연속 가공 장치.
The method of claim 6,
The control unit controls the light modulator to irradiate light in a first path, controls the first scanner to process the beam spot of the first scanner along the processing vector, and the beam spot of the second scanner Continuous processing device for controlling the second scanner to be located at the start position of the processing vector.
제9 항에 있어서,
상기 제어부는 상기 제1 스캐너의 빔 스팟이 종료 위치에 도착할 때 광이 제2 경로로 조사하도록 상기 광변조기를 제어하고, 상기 제2 스캐너의 빔 스팟이 상기 가공 벡터를 따라 가공하도록 상기 제2 스캐너를 제어하는 연속 가공 장치.
The method of claim 9,
The control unit controls the optical modulator to emit light in a second path when the beam spot of the first scanner arrives at an end position, and the second scanner to process the beam spot of the second scanner along the processing vector. Continuous processing device to control the.
제10 항에 있어서,
상기 제어부는 상기 제2 스캐너가 상기 가공 벡터를 가공하는 동안, 상기 제1 스캐너의 빔 스팟을 상기 가공 벡터의 시작 위치로 위치시키도록 상기 제1 스캐너를 제어하는 연속 가공 장치.
The method of claim 10,
And the control unit controls the first scanner to position the beam spot of the first scanner to the start position of the processed vector while the second scanner processes the processed vector.
제1 항에 있어서,
상기 제어부는 제1 스캐너 트리거 펄스, 제2 스캐너 트리거 펄스, 광변조기 트리거 펄스를 통해 상기 제1 스캐너, 제2 스캐너 및 광변조기를 제어하는 연속 가공 장치.
According to claim 1,
And the control unit controls the first scanner, the second scanner, and the optical modulator through a first scanner trigger pulse, a second scanner trigger pulse, and an optical modulator trigger pulse.
가공 벡터의 시작위치에 제1 스캐너의 빔 스팟과 제2 스캐너의 빔 스팟이 위치하는 단계;
제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계;
상기 제1 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착할 때, 상기 제2 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계; 및
상기 제1 스캐너의 빔 스팟은 상기 가공 벡터의 시작위치로 이동하는 단계;를 포함하는 연속 가공 방법.
Positioning the beam spot of the first scanner and the beam spot of the second scanner at a starting position of the processing vector;
Processing the beam spot of the first scanner to move along the processing vector;
When the beam spot of the first scanner arrives at the end position of the processing vector, the beam spot of the second scanner moves along the processing vector and is processed; And
And moving the beam spot of the first scanner to a starting position of the processing vector.
제13 항에 있어서,
상기 제2 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착할 때, 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계; 및
상기 제2 스캐너의 빔 스팟은 상기 가공 벡터의 시작위치로 이동하는 단계;를 더 포함하는 연속 가공 방법.
The method of claim 13,
When the beam spot of the second scanner arrives at the end position of the processed vector, the beam spot of the first scanner moves along the processed vector and is processed; And
Moving the beam spot of the second scanner to a start position of the processing vector;
제13 항에 있어서,
상기 제1 스캐너의 빔 스팟이 가공 벡터의 시작위치에 도착하는 시점은 상기 제2 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착하는 시점보다 이른 시점인 연속 가공 방법.
The method of claim 13,
And the time point at which the beam spot of the first scanner arrives at the start position of the processing vector is earlier than the time point at which the beam spot of the second scanner reaches the end position of the processing vector.
제13 항에 있어서,
상기 제1 스캐너의 빔 스팟 직경과 상기 제2 스캐너의 빔 스팟 직경은 서로 상이한 연속 가공 방법.
The method of claim 13,
And a beam spot diameter of the first scanner and a beam spot diameter of the second scanner are different from each other.
제13 항에 있어서,
상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 속도는 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터의 시작위치로 이동하는 속도보다 느린 연속 가공 방법.
The method of claim 13,
And a speed at which the beam spot of the first scanner moves along the processing vector and is slower than a speed at which the beam spot of the first scanner moves to a start position of the processing vector.
제13 항에 있어서,
상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 속도는 등속도인 연속 가공 방법.
The method of claim 13,
And the speed at which the beam spot of the first scanner moves along the processing vector is a constant velocity.
제13 항에 있어서,
상기 제2 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계는,
제2 스캐너를 등속도로 구동하는 단계;
트리거 신호를 광변조기에 전달하여 입사광을 제2 스캐너에 전달하는 단계; 및
제2 스캐너가 상기 가공 벡터를 따라 이동하며 가공하는 단계;를 포함하는 연속 가공 방법.
The method of claim 13,
The processing of the beam spot of the second scanner while moving along the processing vector may include:
Driving the second scanner at a constant speed;
Delivering a trigger signal to an optical modulator to transmit incident light to a second scanner; And
And moving a second scanner along the processing vector to process the second scanner.
제14 항에 있어서,
상기 제2 스캐너의 빔 스팟이 상기 가공 벡터의 종료 위치에 도착할 때, 상기 제1 스캐너의 빔 스팟이 상기 가공 벡터를 따라 이동하며 가공하는 단계는,
제1 스캐너를 등속도로 구동하는 단계;
트리거 신호를 광변조기에 전달하여 입사광을 제1 스캐너에 전달하는 단계; 및
제1 스캐너가 상기 가공 벡터를 따라 이동하며 가공하는 단계;를 포함하는 연속 가공 방법.
The method of claim 14,
When the beam spot of the second scanner arrives at the end position of the processing vector, the processing of the beam spot of the first scanner moving along the processing vector may include:
Driving the first scanner at a constant speed;
Delivering a trigger signal to the optical modulator to transmit incident light to the first scanner; And
And moving a first scanner along the processing vector and processing the first scanner.
KR1020180015800A 2018-02-08 2018-02-08 Continuous processing device using double scanner and continuous processing method KR102131685B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180015800A KR102131685B1 (en) 2018-02-08 2018-02-08 Continuous processing device using double scanner and continuous processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180015800A KR102131685B1 (en) 2018-02-08 2018-02-08 Continuous processing device using double scanner and continuous processing method

Publications (2)

Publication Number Publication Date
KR20190096182A true KR20190096182A (en) 2019-08-19
KR102131685B1 KR102131685B1 (en) 2020-07-08

Family

ID=67807266

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180015800A KR102131685B1 (en) 2018-02-08 2018-02-08 Continuous processing device using double scanner and continuous processing method

Country Status (1)

Country Link
KR (1) KR102131685B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083586A1 (en) * 2021-11-10 2023-05-19 Nanoscribe Holding Gmbh Beam-shaping device and lithography apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048088A (en) * 2001-07-31 2003-02-18 Mitsubishi Electric Corp Laser beam machining method and laser beam machine
JP2007118079A (en) * 2005-09-30 2007-05-17 Hitachi Via Mechanics Ltd Method and apparatus for laser beam machining
KR100817825B1 (en) * 2007-05-02 2008-03-31 주식회사 이오테크닉스 Laser machining apparatus
JP2009166068A (en) * 2008-01-15 2009-07-30 Olympus Corp Laser beam processing apparatus
KR20110133806A (en) * 2010-06-07 2011-12-14 엘지디스플레이 주식회사 Apparatus marking pattern by using laser and method for marking pattern by using laser thereof
KR20120004794A (en) * 2010-07-07 2012-01-13 주식회사 이오테크닉스 Laser cutting apparatus and method capable of cutting workpiece having multi layer
KR20120034363A (en) * 2010-10-01 2012-04-12 주식회사 엘티에스 Laser processing system
KR20160140212A (en) * 2015-05-29 2016-12-07 주식회사 이오테크닉스 Laser processing apparatus and laser processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048088A (en) * 2001-07-31 2003-02-18 Mitsubishi Electric Corp Laser beam machining method and laser beam machine
JP2007118079A (en) * 2005-09-30 2007-05-17 Hitachi Via Mechanics Ltd Method and apparatus for laser beam machining
KR100817825B1 (en) * 2007-05-02 2008-03-31 주식회사 이오테크닉스 Laser machining apparatus
JP2009166068A (en) * 2008-01-15 2009-07-30 Olympus Corp Laser beam processing apparatus
KR20110133806A (en) * 2010-06-07 2011-12-14 엘지디스플레이 주식회사 Apparatus marking pattern by using laser and method for marking pattern by using laser thereof
KR20120004794A (en) * 2010-07-07 2012-01-13 주식회사 이오테크닉스 Laser cutting apparatus and method capable of cutting workpiece having multi layer
KR20120034363A (en) * 2010-10-01 2012-04-12 주식회사 엘티에스 Laser processing system
KR20160140212A (en) * 2015-05-29 2016-12-07 주식회사 이오테크닉스 Laser processing apparatus and laser processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083586A1 (en) * 2021-11-10 2023-05-19 Nanoscribe Holding Gmbh Beam-shaping device and lithography apparatus

Also Published As

Publication number Publication date
KR102131685B1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP5114874B2 (en) Laser welding method and laser welding apparatus
JP4014498B2 (en) Multi-axis laser processing machine
KR100462358B1 (en) Laser Processing Apparatus with Polygon Mirror
JP4800939B2 (en) Laser processing apparatus, program creation apparatus, and laser processing method
US7807944B2 (en) Laser processing device, processing method, and method of producing circuit substrate using the method
JP2009517219A (en) Apparatus and method for X & Y two-dimensional cutting direction machining with set beam splitting using 45 degree beam splitting orientation
US20190275609A1 (en) Laser Machining Systems and Methods
KR102131685B1 (en) Continuous processing device using double scanner and continuous processing method
WO2018110415A1 (en) Laser machining device and laser machining method
KR101367481B1 (en) Cutting apparatus for film and method of film cutting
KR20060012396A (en) Multi laser processing apparatus
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
JPH11347766A (en) Laser drilling equipment and its method
JP2005262219A (en) Laser beam machining apparatus and laser beam drawing method
KR20060012395A (en) Multi laser processing apparatus with polygon mirror
KR102062164B1 (en) Continuous Processing Device using polygon mirror and multiple incident beam
JP2007054853A (en) Laser beam machining device and machining method
KR20180094481A (en) Laser machining apparatus
KR100498582B1 (en) Laser cleaning apparatus using laser scanning process
JP2002346775A (en) Device and method for laser beam machining
TW202132035A (en) Laser processing apparatus, methods of operating the same, and methods of processing workpieces using the same
JPH11314188A (en) Laser beam machining device and laser drilling method
JPH0970679A (en) Method for controlling laser beam machine
JP2003117676A (en) Laser beam machining method and laser beam machining device
CN218964364U (en) Multi-head light splitting wire stripper and wire stripping machine set

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant