KR20190090643A - Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same - Google Patents

Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same Download PDF

Info

Publication number
KR20190090643A
KR20190090643A KR1020180009597A KR20180009597A KR20190090643A KR 20190090643 A KR20190090643 A KR 20190090643A KR 1020180009597 A KR1020180009597 A KR 1020180009597A KR 20180009597 A KR20180009597 A KR 20180009597A KR 20190090643 A KR20190090643 A KR 20190090643A
Authority
KR
South Korea
Prior art keywords
mortar composition
eva
adiabatic
heat
condensation
Prior art date
Application number
KR1020180009597A
Other languages
Korean (ko)
Inventor
김은정
김종근
김재신
김성수
Original Assignee
(재)한국건설생활환경시험연구원
(유)도원그린산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (재)한국건설생활환경시험연구원, (유)도원그린산업 filed Critical (재)한국건설생활환경시험연구원
Priority to KR1020180009597A priority Critical patent/KR20190090643A/en
Publication of KR20190090643A publication Critical patent/KR20190090643A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • C04B18/082Cenospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2623Polyvinylalcohols; Polyvinylacetates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6801Fillings therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Acoustics & Sound (AREA)
  • Inorganic Chemistry (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to an adiabatic mortar composition and an adiabatic construction method with improved dew condensation resistance using the same. The adiabatic mortar composition comprises an inorganic binder unit in which chips of EVA insole scraps, volcanic ash and cenosphere are mixed to Portland cement, and an EVA resin unit by being mixed. The average particle size and the content of EVA chips ground from the EVA insole scraps are optimized so physical properties are satisfied as adiabatic mortar and dew condensation resistance is improved. As the adiabatic mortar composition adheres to the wall regardless of the wall shape of a building, a dew condensation problem is minimized. In addition, a heat bridge phenomenon of the adhesion surface of a major angle unit and an insulation material is prevented so problems of heat loss and adhesion strength are improved.

Description

단열모르타르 조성물 및 그를 이용한 결로저항성이 향상된 단열시공공법{ADIABATIC MORTAR COMPOSITION AND METHOD FOR ADIABATIC CONSTRUCTION WITH IMPROVED DEW CONDENSATION RESISTANCE USING THE SAME}Adiabatic mortar composition and insulation method using improved condensation resistance TECHNICAL FIELD

본 발명은 단열모르타르 조성물 및 그를 이용한 결로저항성이 향상된 단열시공공법에 관한 것으로서, 더욱 상세하게는, 포틀랜드 시멘트에 EVA 인솔 파지분의 분쇄물, 화산재 및 세노스피어를 혼합한 무기질 바인더부와 EVA 수지부를 배합하고, 특히, 상기 EVA 인솔 파지분(EVA Insole Scrap)로부터 분쇄된 분쇄물(EVA chip)의 평균입자크기 및 함량을 최적화하여 단열모르타르로서 물성과 특히 결로저항성이 우수한 조성물을 제공하고, 이를 이용하여, 건축물의 벽체 모양과 관계없이 벽체에 완전 밀착되도록 하여 내부결로 문제를 최소화하고, 우각부와 단열재의 접합면의 열교 현상을 방지하여 이음부분의 열 손실 및 부착강도의 문제점을 개선한, 단열모르타르 조성물 및 그를 이용한 결로저항성이 향상된 단열시공공법에 관한 것이다. The present invention relates to a heat insulation mortar composition and a method of heat insulation using improved condensation resistance using the same, and more particularly, an inorganic binder portion and an EVA resin portion in which a ground powder of EVA insole gripping powder, a volcanic ash, and a senosphere are mixed. In particular, by optimizing the average particle size and content of the EVA chip crushed from the EVA insole scrap (EVA Insole Scrap) to provide a composition having excellent physical properties and particularly condensation resistance as a thermal insulation mortar, By minimizing the internal condensation problem by preventing the condensation from being completely adhered to the wall irrespective of the shape of the wall of the building, and preventing the heat bridge phenomenon of the junction surface of the right angle part and the heat insulator, the problem of heat loss and adhesion strength of the joint part is improved. The present invention relates to an insulating mortar composition and a method for improving insulating condensation using the same.

우리나라 전체 에너지 사용량 중 건물부분이 차지하는 비율은 약 33%수준으로, 단열은 건축물에 있어 에너지소비에 가장 큰 영향을 미치는 중요한 요인으로 인식되고 있어, 과거부터 단열재의 단열성능과 설치 공법을 중심으로 많은 연구가 진행되어왔다. Buildings account for about 33% of Korea's total energy use, and insulation has been recognized as one of the most important factors influencing energy consumption in buildings. Research has been ongoing.

현재까지 이루어진 단열에 관련된 연구는 초기 단열의 위치에 관한 연구가 주를 이루어졌고, 이후 단열에 관한 새로운 대상으로 열 손실이 큰 창호와 관련하여 단열성능 향상을 위한 연구가 이루어지고 있다.The research on the insulation which has been made up to now has been mainly focused on the position of the initial insulation, and since then, the research on the improvement of the insulation performance has been carried out with respect to the windows with a large heat loss.

최근에는 에너지절약을 목표로 법적 단열 성능에 관한 규제가 강화되어 고단열 성능을 가지는 신재료 개발에 관한 연구가 활발하다.In recent years, research on the development of new materials having high insulation performance has been actively conducted due to the tightening of regulations on legal insulation performance for the purpose of energy conservation.

그러나 단열성능 부족에 의한 실내외의 온도 차이에 의하여 공기 중의 수증기 일부가 응축되어 물로 변하는 결로현상은 건축물에서 가장 빈번한 하자원인으로 지목되고 있다. However, the condensation phenomenon of condensation of water vapor in the air into water due to the difference of indoor and outdoor temperature due to lack of insulation performance is regarded as the most frequent source of sewage in buildings.

결로에 의한 피해는 곰팡이, 진드기 발생등과 같은 세균증식 촉진에 의한 거주환경의 악화되고, 결로수에 의한 건축부재 함수율 증가에 따라, 마감재 박리 또는 오염, 석고보드 붕괴, 바닥재 젖음에 따른 들뜸 현상이 발생하고, 급기야 콘크리트 구조체의 내구성 저하를 초래한다. 이와 같은 결로로 인한 피해발생은 쾌적한 주거환경을 저해하고, 건축물의 성능을 저하하는 요인으로 작용한다. The condensation damage is deteriorated in the living environment by promoting bacterial growth such as mold and mites, and as the moisture content of building materials increases due to the condensation water, the peeling or contamination of the finishing material, the collapse of plasterboard, and the wetness of the flooring material are caused. Occurs, and air supply causes a decrease in durability of the concrete structure. The damage caused by condensation is a factor that hinders the pleasant living environment and reduces the performance of the building.

상기와 같은 결로는 실내 수증기 발생, 건물의 기밀시공, 단열부실시공, 열교(Heat bridge) 부위 발생으로 인한 구조체의 온도를 낮추는 차가운 표면 요인 등에 의해 발생되는 것으로 알려져 있다.Such dew condensation is known to be caused by cold surface factors that lower the temperature of the structure due to the generation of indoor water vapor, airtight construction of the building, heat insulation, construction of the heat bridge.

이에, 결로 방지를 위하여, 열교 발생 최소화 및 단열보강을 통한 구조체 벽면 온도를 높이고, 방습층 설치, 환기 실시 등을 통한 공기 중 습기를 낮추는 방법이 활용되고 있다.Therefore, in order to prevent condensation, a method of increasing the temperature of the wall surface of the structure by minimizing the occurrence of thermal bridges and reinforcing the insulation, and lowering moisture in the air through the installation of a moisture barrier layer and ventilation is used.

따라서, 단열성능 향상을 통한 결로방지 성능 향상 기술개발동향은 결로 방지부를 구비한 창호, 상변화 물질을 구비하는 결로방지장치, 창호 및 커튼월, 결로방지형 문틀, 지하공간의 환기 및 결로방지 장치 및 방법 등 주로 창호 및 문틀/프레임 등의 기술이 다수이다. Therefore, the trend of technology development to improve the dew condensation performance through the improvement of insulation performance is the window condensation prevention unit, the condensation prevention device having a phase change material, the window and curtain wall, the condensation prevention door frame, ventilation and condensation prevention device of underground space And a large number of technologies such as windows and door frames / frames.

또한, 결로 방지 기술에 대해서는 여러 제품이 개발되어 있으나, 아직까지 표준적인 설계 기술 또는 시공기술의 구축이 미비하며, 현장에서 결로를 측정하고 진단하는 기술에 있어서는 표준적인 방법이 마련되어 있지 않으며, 진단 장비 및 방법과 개발이 미흡한 실정이다. In addition, many products have been developed for the anti-condensation technology, but the standard design or construction technology has not been established until now, and there is no standard method for measuring and diagnosing the dew condensation in the field. And the method and development is insufficient.

최근 들어, 공동주택 세대내의 결로저감을 유도하고 쾌적한 주거환경을 확보하기 위하여 국토교통부의 “공동주택 결로방지를 위한 설계기준”(국토교통부고시 제2013-845호)에 제시된 결로방지성능기준은 온도차이비율(TDR: Temperature Difference Ratio)를 활용하여 각 부재 및 요소에 대하여 규정함으로써, 결로방지 설계기준을 현실화하려는 시도가 진행되고 있다.Recently, in order to induce condensation reduction in apartment households and to secure a comfortable living environment, the condensation prevention performance standard proposed in the Ministry of Land, Infrastructure and Transport's "Design Criteria for Preventing Condensation of Apartment Housing" (Ministry of Land, Infrastructure and Transport Notice No. 2013-845) Attempts have been made to realize the design criteria for condensation prevention by defining each member and element using a temperature difference ratio (TDR).

그러나 결로 방지를 위해 보편적으로 이용하고 있는 단열공법은 벽체에 이용하기 편한 장점이 있는 반면, 건축물의 우각부 등에는 적용이 어렵고, 통상의 EPS 적용 내단열 공법의 경우, 법적 단열성능을 맞추기 위한 단열재 두께증가에 의해 벽체 두께가 두꺼워지고, 이로 인하여 건축물 사용면적의 감소, 건축비용의 증가 등의 문제가 발생된다. However, while the insulation method commonly used to prevent condensation has an advantage of being easy to use for walls, it is difficult to be applied to the corner parts of buildings, and in the case of ordinary EPS-resistant insulation methods, insulation materials to meet legal insulation performance As the thickness increases, the thickness of the wall becomes thick, which causes problems such as a decrease in the building use area and an increase in building cost.

또한, 에너지 절약을 목적으로 단열성능 강화가 일반화됨에 따라 벽체 등 일반 건축부위의 결로 문제는 줄었지만, 여전히 건축물 단열재의 시공이 어려운 우각부나 단열재의 불연속에 의한 열교(Heat bridge) 부위, 최상층 지붕면, 지하실의 바닥과 외벽, 베란다와 창고 등에서 결로가 빈번하게 발생한다. In addition, condensation problems of general building parts such as walls have been reduced due to the generalization of thermal insulation performance for the purpose of energy saving, but the heat bridge part and the top floor roof surface due to the discontinuity of the insulated part or the insulation which is still difficult to construct the building insulation material Condensation occurs frequently in the basement floors, exterior walls, verandas and warehouses.

따라서, 열교현상 발생으로 단열성능이 저하되어 표면결로가 발생될 수 있으므로, 열교현상을 방지하기 위해서는 구조체 접합부위의 올바른 단열설계와 단열재가 불연속되지 않도록 철저한 단열시공이 필요하다.Therefore, thermal condensation may result in deterioration of thermal insulation performance, resulting in surface condensation. Therefore, in order to prevent thermal confinement, a proper thermal insulation construction and a thorough thermal insulation construction are required to prevent discontinuity of the insulation.

그 일례로, 폐 보온단열재로부터 얻어진 재생 발포 폴리스티렌 입자와 시멘트 페이스트를 혼합한 단열모르타르 제품이 제시되고 있으나, 상기 해당제품은 재료간의 비중차이로 인해 현장배합 또는 시공 시에 재료분리 현상이 발생하여, 제품 품질저하에 따른 성능이 저하된다. As an example, an insulation mortar product in which recycled expanded polystyrene particles obtained from waste thermal insulation materials and cement paste are mixed has been proposed. However, due to the specific gravity difference between the materials, the material separation phenomenon occurs during field mixing or construction. Performance decreases due to product quality deterioration.

또한, 펄라이트, 질석, 발포스티렌, 유리중공체 등의 단열재료, 시멘트, 석고, 수지류 등의 바인더와, 분산제, 증점제, 열방지제, 급결제, 팽창제, 섬유 등의 혼화제를 용도에 따라 적절하게 건식 혼합한 프리믹스 형태로 제조되고 있으며, 현장에서 물과 혼합하여 타설되는 단열모르타르가 제품으로 제시되고 있다. Insulating materials such as pearlite, vermiculite, expanded styrene, glass hollow bodies, binders such as cement, gypsum and resins, and admixtures such as dispersants, thickeners, heat inhibitors, fasteners, swelling agents, and fibers may be appropriately used depending on the application. It is manufactured in a dry mixed premixed form, and a heat-insulated mortar which is poured by mixing with water is presented as a product.

그러나 상기 질석 또는 퍼라이트와 같은 무기질계 발포 경량석의 다공특성을 활용한 단열특성을 발현하는 제품들은 다공성 경량석이 모르타르의 경화반응에 참여하지 않고 단순 골재의 역할만을 하여 물-시멘트 비의 현저한 증가로 역학특성이 매우 취약하게 되는 특성을 지니고 있어, 경화 후에도 쉽게 부스러져 대기 중으로 비산하여 공기오염을 야기하고, 단열재로 사용하는 질석, 퍼라이트의 과도한 흡습 특성에 의한 곰팡이 서식하는 등의 환경오염 발생의 문제점이 있다. However, the products expressing the thermal insulation properties utilizing the porous properties of the inorganic foamed lightweight stone such as vermiculite or perlite, the porous lightweight stone does not participate in the hardening reaction of the mortar, but acts as a simple aggregate, which leads to a significant increase in the water-cement ratio. Its characteristics are very fragile, and it is easily broken after hardening and scatters into the air, causing air pollution, and the problem of environmental pollution such as mold habitat due to excessive moisture absorption characteristics of vermiculite and perlite used as insulation material. have.

이에, 본 발명자들은 종래 문제를 개선하고자 노력한 결과, 포틀랜드 시멘트에 EVA 인솔 파지분의 분쇄물, 화산재 및 세노스피어를 혼합한 무기질 바인더부와 EVA 수지부를 최적배합으로 이루어진 단열 모르타르를 제공함으로써, 건축물의 벽체 모양과 관계없이 벽체에 완전 밀착되도록 하여 내부결로 문제를 최소화하고, 종래 시공이 용이하지 못한 우각부와 단열재의 접합면의 열교현상을 방지하여 이음부분의 열 손실 및 부착강도의 문제점을 개선함으로써 본 발명을 완성하였다. Accordingly, the present inventors have tried to improve the conventional problem, by providing an insulating mortar made of an optimal combination of the inorganic binder portion and EVA resin portion mixed with the crushed powder of EVA insole, volcanic ash and senosphere in Portland cement, Regardless of the shape of the wall, it minimizes the internal condensation problem by preventing the internal condensation problem and prevents the thermal bridge phenomenon between the joint surface of the right angle part and the heat insulator, which is not easy to be installed, and improves the problem of heat loss and adhesive strength of the joint part. By this, the present invention was completed.

대한민국공개특허 제2016-0089597호 (2016.07.28 공개)Republic of Korea Patent Publication 2016-0089597 (Published on July 28, 2016) 대한민국공개특허 제2012-0125694호 (2012.11.19 공개)Republic of Korea Patent Publication No. 2012-0125694 (Published November 19, 2012) 대한민국특허 제1175710호 (2012.08.14 공고)Republic of Korea Patent No.1175710 (August 14, 2012 announcement)

본 발명의 목적은 포틀랜드 시멘트에 EVA 인솔 파지분의 분쇄물, 화산재 및 세노스피어를 혼합한 무기질 바인더부와 EVA 수지부가 배합된 단열모르타르 조성물을 제공하는 것이다.An object of the present invention is to provide a heat-insulated mortar composition in which the inorganic binder portion and EVA resin portion are mixed with the ground powder of the EVA insole phage powder, volcanic ash and senosphere.

본 발명의 다른 목적은 상기 단열모르타르 조성물을 이용하여 벽체뿐만 아니라, 우각부 또는 단열재의 접합면에 적용하여 결로저항성을 개선한 단열시공공법을 제공하는 것이다. Another object of the present invention is to provide a thermal insulation construction method using the insulation mortar composition to improve the dew condensation resistance by applying to not only the wall, but also the concave portion or the joint surface of the heat insulating material.

상기 목적을 달성하기 위하여, 본 발명은 무기질 바인더부와 EVA 수지부를 함유하되, 상기 무기질 바인더부가 포틀랜드 시멘트, 세노스피어, EVA 인솔 파지분의 분쇄물 및 화산재가 1: 1: 0.4: 0.4의 중량비율로 배합된 단열모르타르 조성물을 제공한다.In order to achieve the above object, the present invention contains an inorganic binder portion and an EVA resin portion, wherein the inorganic binder portion has a weight of 1: 1: 0.4: 0.4 It provides a thermal insulation mortar composition blended in proportions.

상기 단열모르타르 조성물에 있어서, EVA 인솔 파지분의 분쇄물은 3 내지 5㎜ 크기로 분쇄된 것이 바람직하다. In the thermal insulation mortar composition, the pulverized material of the EVA insole gripping powder is preferably pulverized to a size of 3 to 5 mm.

또한, 화산재는 SiO2와 Al2O3의 성분 60중량% 이상이 함유된 알루미노규산염이고 150 내지 300㎛ 입자크기를 가지며, 상기 세노스피어가 100 내지 150㎛ 평균입자크기를 가지는 입자인 것이다.In addition, the volcanic ash is an aluminosilicate containing 60 wt% or more of SiO 2 and Al 2 O 3 , and has a particle size of 150 to 300 μm, and the senosphere is a particle having an average particle size of 100 to 150 μm.

본 발명의 단열모르타르 조성물은 이상의 EVA 인솔 파지분의 분쇄물과 다공성 경량골재인 화산재를 포함하는 무기질 바인더부와 EVA 수지부를 활용함으로써, 종래 제품 대비 경화체의 분진에 의한 공기오염, 균열 발생에 의한 열전도율 저감 등과 같은 문제를 개선할 수 있다. Insulating mortar composition of the present invention by using the inorganic binder and the EVA resin containing a pulverized product of the above-mentioned EVA insole phage powder and a volcanic ash that is a porous lightweight aggregate, due to air pollution and cracks caused by the dust of the hardened body compared to conventional products Problems such as reducing the thermal conductivity can be improved.

상기 EVA 수지부는 (1) 고형분 함량 54 내지 56중량%, (2) 점도 2700 내지 3700cp, (3) pH 4.0 내지 6.0 및 (4) 초산비닐 함량 300 내지 500ppm를 충족하는 것이다. The EVA resin part satisfies (1) 54 to 56% by weight of solid content, (2) viscosity 2700 to 3700 cps, (3) pH 4.0 to 6.0, and (4) vinyl acetate content of 300 to 500 ppm.

본 발명은 이상의 단열모르타르 조성물을 벽체, 우각부 또는 단열재의 접합면에 적용하여 결로저항성을 개선한 단열시공공법을 제공한다. The present invention provides a thermal insulation construction method by improving the condensation resistance by applying the above insulation mortar composition to the joint surface of the wall, right angle portion or the heat insulating material.

본 발명의 단열모르타르 조성물은 EVA 인솔 파지분으로부터 분쇄된 분쇄물을 함유함으로써, EVA 소재 자체의 단열특성을 활용하여 폐자원의 활용가치를 높일 수 있다. Insulating mortar composition of the present invention by containing a pulverized powder from the EVA insole gripping powder, it is possible to increase the utilization value of waste resources by utilizing the thermal insulation properties of the EVA material itself.

또한, 본 발명의 단열모르타르 조성물은 건축물의 단열 공사에 벽체 모양과 관계없이 벽체에 완전 밀착되도록 하여 내부결로 문제를 최소화하고, 종래 시공이 용이하지 못한 우각부와 단열재의 접합면의 열교 현상을 방지하여 이음부분의 열 손실 및 부착강도를 개선할 수 있다. In addition, the insulating mortar composition of the present invention is to be in close contact with the wall regardless of the shape of the wall in the thermal insulation work of the building to minimize the problem of internal condensation, and prevent the thermal bridge phenomenon of the junction surface of the right angle portion and the heat insulating material which is not easy to conventional construction. This can improve the heat loss and adhesion strength of the joint.

따라서, 본 발명의 결로저항성이 우수한 단열모르타르를 적용함으로써 건축물의 사용연한을 증가시켜 불필요한 유지보수 비용 및 재 시공비용 절감할 수 있다. Therefore, by applying the insulating mortar excellent in the condensation resistance of the present invention can increase the service life of the building can reduce unnecessary maintenance cost and reconstruction cost.

도 1은 본 발명에서 사용되는 EVA 인솔 파지분의 분쇄 전후를 나타낸 것이고,
도 2는 (a)는 종래 결로 피해 사례이고, (b) 본 발명의 단열모르타르 조성물을 이용하여 시공한 벽체를 나타낸 것이다.
Figure 1 shows the before and after grinding of the EVA insole gripping powder used in the present invention,
Figure 2 (a) is a conventional case of condensation damage, (b) shows a wall constructed using the insulating mortar composition of the present invention.

이하, 본 발명을 상세히 설명하고자 한다. Hereinafter, the present invention will be described in detail.

본 발명은 무기질 바인더부와 EVA 수지부를 함유하되, 상기 무기질 바인더부가 포틀랜드 시멘트, 세노스피어, EVA 인솔 파지분의 분쇄물 및 화산재가 1: 1: 0.4: 0.4의 중량비율로 배합된 단열모르타르 조성물을 제공한다.The present invention comprises an inorganic binder portion and an EVA resin portion, wherein the inorganic binder portion is a mixture of Portland cement, senosphere, EVA insole phage powder and volcanic ash in a weight ratio of 1: 1: 0.4: 0.4 To provide.

상기에서 EVA 수지부 100 중량부에 대하여, 포틀랜드 시멘트에 EVA 인솔 파지분의 분쇄물, 화산재 및 세노스피어를 혼합한 무기질 바인더부 100 중량부 이하로 함유되는 것이 바람직하며, 상기 무기질 바인더부가 100 중량부를 초과하면, 성분간의 혼화성이 떨어져 제품 현장 적용시 어려움이 있다. In the above description, 100 parts by weight or less of the inorganic binder portion in which the ground powder of the EVA insole gripping powder, volcanic ash, and senosphere is mixed in 100 parts by weight of the EVA resin portion, and the inorganic binder portion is 100 parts by weight. If exceeded, miscibility between components is poor, which makes it difficult to apply the product on site.

또한, 상기 무기질 바인더부가 포틀랜드 시멘트, 세노스피어, EVA 인솔 파지분의 분쇄물 및 화산재가 1: 1: 0.4: 0.4 중량비율로 혼합될 때, 단열모르타르 조성물의 물성이 최적화된다[표 2]. In addition, when the inorganic binder portion is mixed with a pulverized material and a volcanic ash of Portland cement, senosphere, EVA insole gripping powder 1: 1: 0.4: 0.4 by weight ratio, the physical properties of the insulating mortar composition is optimized [Table 2].

본 발명의 단열모르타르 조성물에 함유된 EVA 인솔 파지분(EVA Insole Scrap)으로부터 분쇄된 분쇄물(EVA chip)은 신발산업의 인솔 제조 후 발생되는 폐기물로서, 단위용적 질량은 176㎏/㎥정도이고, 열전도율 값은 약 0.047W/mK 정도이며, 가볍고 충격흡수 성능과 탄성회복력이 우수하다. EVA chip crushed from the EVA insole scrap contained in the thermal insulation mortar composition of the present invention is a waste generated after insole manufacturing in the shoe industry, and the unit volume mass is about 176㎏ / ㎥, The thermal conductivity value is about 0.047W / mK, and it is light and has excellent shock absorption performance and elastic recovery ability.

특히, EVA 소재 자체의 단열특성을 활용할 수 있으며, 표면에 연속된 섬유가 부착되어 있어 모르타르에 인성을 부여함으로써, 시멘트 모르타르를 얇게 시공한 후 초기에 발생되는 건조수축에 의한 균열문제를 개선하여 단열성을 향상시킬 수 있다. In particular, it is possible to utilize the thermal insulation properties of the EVA material itself, and the continuous fiber is attached to the surface to give toughness to the mortar, thereby improving the problem of cracking due to dry shrinkage that occurs early after the cement mortar is thinly constructed. Can improve.

EVA 인솔 파지분은 2010년 기준 연간 약 15,000톤 정도 발생하고 있으나 적정 재활용방안의 미확보로 전량 소각 또는 매립 처리되고 있어 이에 대한 친환경 처리방안이 요구되어 왔다. As of 2010, 15,000 tons of EVA insole waste is generated annually, but all materials are incinerated or landfilled due to the lack of proper recycling methods.

따라서, 본 발명은 도 1에서 제시된 바와 같이, EVA 인솔 파지분을 분쇄하여 얻은 분쇄물은 EVA 소재 자체의 단열특성을 고려하여 이를 단열성분으로 사용함으로써, 폐자원의 재활용 가치가 높다. Therefore, the present invention, as shown in Figure 1 , by crushing the EVA insole gripping powder is used as a heat insulating component in consideration of the heat insulating properties of the EVA material itself, high recycling value of waste resources.

이때, 본 발명의 EVA 인솔 파지분의 분쇄물의 함량이 많을수록 해당제품의 열전도율은 향상되고 건조 수축율은 감소되는 장점을 지니고 있지만, 플로우 감소에 따른 시공성 저하, 칩 볼링(Chip Balling) 현상의 발생 가능성이 높아지게 된다. At this time, the higher the amount of the pulverized product of the EVA insole phage powder of the present invention has the advantage that the thermal conductivity of the product is improved and the shrinkage of the dry shrinkage is reduced, but it is possible to reduce the workability and chip bowling phenomenon due to the flow decrease. Will be higher.

따라서, 본 발명의 EVA 인솔 파지분의 분쇄물에 대한 EVA 칩의 크기 및 입도 특성은 시공성 및 단열성능에 영향을 미치고 있어, 단열모르타르 혼입을 위한 EVA 인솔 파지분의 분쇄물의 바람직한 평균입자크기는 3 내지 5㎜ 크기로 분쇄화되는 것이다. Therefore, the size and particle size characteristics of the EVA chip with respect to the crushed EVA insole phage powder of the present invention affects the workability and thermal insulation performance, the preferred average particle size of the crushed EVA insole phage powder for insulated mortar mixing To 5 mm in size.

본 발명은 EVA 인솔 파지분의 분쇄물의 바람직한 평균입자크기로 수득하기 위하여, 다수 회 차의 컷팅 공정을 통해 수행할 수 있다. The present invention can be carried out through a plurality of cutting processes in order to obtain the desired average particle size of the crushed EVA insole phage.

구체적으로는, 컨베어를 이용하여 1차 조분쇄 설비(슈레드)로 이송하여 1차 컷팅 후 톤백을 이용하여 회수하여, 불규칙하나 대략 10 내지 15 cm 크기 형상으로 준비하고, 상기 1차 컷팅한 제품을 재 투입하여 2차 내지 4차 컷팅 공정을 반복하여 40 내지 50mm 이하 크기로 컷팅한다. 이후, 고속으로 회전하는 분쇄기에 상기 컷팅된 원료를 투입하여 3 내지 5mm의 망을 통과하도록 함으로써, 3 내지 5㎜ 크기로 분쇄된 EVA 인솔 파지분의 분쇄물을 수득한다. 이때, 상기 EVA 인솔 파지분의 분쇄물의 평균입자크기를 초과하면, 압축강도 및 부착강도가 떨어지는 물성을 확인할 수 있다.Specifically, the product is conveyed to a primary coarse crushing facility (shred) by using a conveyor, and then recovered using a tone bag after the first cut, irregularly prepared in a shape of about 10 to 15 cm, and the first cut product. After re-inserting the second to fourth cutting process to cut to 40 to 50mm or less size. Thereafter, the cut raw material is introduced into a grinder rotating at a high speed to pass through a 3 to 5 mm mesh to obtain a pulverized product of the EVA insole phage powder ground to a size of 3 to 5 mm. At this time, when the average particle size of the pulverized powder of the EVA insole gripping powder, it can be confirmed that the physical properties of the compressive strength and the adhesion strength falls.

본 발명의 단열모르타르 조성물에 다공성 경량골재로 함유된 화산재는 지역별로 약간의 차이는 있지만 SiO2와 Al2O3의 성분이 60% 이상을 차지하고, 알루미노규산염 조성의 물질들이다.Volcanic ash contained as a porous lightweight aggregate in the heat-insulating mortar composition of the present invention is slightly different by region, but the components of SiO 2 and Al 2 O 3 account for 60% or more, and are aluminosilicate composition materials.

본 발명에서 사용하는 화산재의 바람직한 평균입자크기는 150 내지 300㎛의 미립자이고, 밀도 0.7724 g/㎤ 및 비중 0.77인 것을 사용한다. The preferred average particle size of the volcanic ash used in the present invention is 150 to 300 µm of fine particles, with a density of 0.7724 g / cm 3 and a specific gravity of 0.77.

상기 화산재가 많아질수록 열전도율은 향상되나, 압축강도 및 시공성 저하가 예상되므로, 화산재의 바람직한 함량으로 함유되는 것이 바람직할 것이다. 이에, 무기질 바인더부에 대하여, 포틀랜드 시멘트, 세노스피어, EVA 인솔 파지분의 분쇄물 및 화산재가 1: 1: 0.4: 0.4 중량비율로 혼합되는 것이 바람직하다. 상기에서 EVA 인솔 파지분의 분쇄물과 다공성 경량골재인 화산재는 동량의 중량비율로 함유하는 것으로서 상기 중량비율을 벗어나면, 열전도율 저하나, 압축강도 감소와 발림성 저하의 문제점이 확인된다. As the volcanic ash increases, the thermal conductivity is improved, but since compressive strength and workability are expected to decrease, it may be preferable to contain the volcanic ash in a preferable content. Thus, the inorganic binder portion, it is preferable that the pulverized material and the volcanic ash of the portland cement, senosphere, EVA insole gripping powder is mixed in a weight ratio of 1: 1: 0.4: 0.4. In the above, the crushed product of EVA insole powder and the volcanic ash of porous lightweight aggregate are contained in the same amount by weight ratio. If the weight ratio is out of the weight ratio, thermal conductivity decreases, compressive strength decreases, and a decrease in application property is confirmed.

본 발명의 단열모르타르 조성물에 있어서, 무기질 바인더부에 함유되는 세노스피어 성분은 석탄화력발전소에서 석탄 연소 후 발생하는 플라이애쉬(Fly ash) 중에서 표면에 부유되어있는 물질을 수집하여 가공한 것으로서, 연소과정에서 생성되는 구형의 실리카·알루미나 화합물로 내부에 공기나 불활성 기체가 채워진 경량의 미립자이다. In the adiabatic mortar composition of the present invention, the senosphere component contained in the inorganic binder part is a process of collecting and processing a substance suspended in a surface of fly ash generated after coal combustion in a coal-fired power plant. It is a spherical silica-alumina compound produced in the form of lightweight fine particles filled with air or an inert gas.

즉, 세노스피어 미립자는 내부에 N2 또는 CO2가 충진되어 있어 매우 가볍고 절연성, 전연성, 방음성의 특성을 가지고 있다. In other words, the xenosphere fine particles are filled with N 2 or CO 2 inside, and are very light and have characteristics of insulation, malleability, and sound insulation.

세노스피어를 구성하는 화학적 조성은 살피면, SiO2 56중량%, Al2O3 28중량%, Fe 3중량% 및 기타성분 13중량%로 구성되며, 세노스피어 미립자의 평균입자크기는 100㎛이고, 밀도 0.7761 g/㎤ 및 비중 0.78을 충족하는 것을 사용한다. The chemical composition of Cenosphere consists of 56% by weight of SiO2, 28% by weight of Al2O3, 3% by weight of Fe, and 13% by weight of other components. The average particle size of Cenosphere fine particles is 100 µm, and the density is 0.7761 g /. It is used to satisfy the cm 3 and specific gravity 0.78.

이때, 세노스피어 성분은 포틀랜드 시멘트와 동량의 중량비율로 함유되며, 이는 EVA 수지 사용량 증가에 따른 열전도율 저하와 EVA 수지 사용량 감소로 인한, 압축강도 저하 문제점을 고려하여 결정된다. At this time, the senosphere component is contained in the same weight ratio as the Portland cement, which is determined in consideration of the problem of lowering the compressive strength due to the decrease in the thermal conductivity and the decrease in the EVA resin usage in accordance with the increased EVA resin usage.

본 발명의 단열모르타르 조성물에 있어서, EVA 수지부는 55 내지 60% 함유 EVA 수지 원액에 물을 혼합하여 EVA 수지부를 제조할 수 있으며, 즉, 55 내지 60% 함유 EVA 수지 13 내지 15중량%와 물 85 내지 87중량%를 혼합하여 제조할 수 있다. In the heat-insulating mortar composition of the present invention, the EVA resin portion may be prepared by mixing water with 55 to 60% containing EVA resin stock solution, that is, 13 to 15 wt% with 55 to 60% containing EVA resin. It can be prepared by mixing 85 to 87% by weight of water.

상기 EVA 수지부는 고형분 함량 54 내지 56중량%, 점도 2700 내지 3700cp이고, pH 4.0 내지 6.0 및 초산비닐 함량 300 내지 500ppm의 요건을 충족한다. The EVA resin portion has a solids content of 54 to 56% by weight, a viscosity of 2700 to 3700 cps, and satisfies the requirements of pH 4.0 to 6.0 and vinyl acetate content of 300 to 500 ppm.

이상으로부터, 본 발명의 단열모르타르 조성물은 열전도율 특성이 우수한 섬유가 부착된 EVA 인솔 파지분의 분쇄물, 다공성 경량골재인 화산재, 세노스피어와 포틀랜드 시멘트를 혼합한 무기질 바인더부와 EVA 수지부를 활용한 폴리머시멘트 모르타르의 일종으로서, 종래 제품 대비 경화체의 분진에 의한 공기오염, 균열 발생에 의한 열전도율 저감 등과 같은 문제를 개선할 수 있다. From the above, the heat-insulating mortar composition of the present invention utilizes the inorganic binder portion and EVA resin portion mixed with the fiber of EVA insole phage powder with excellent thermal conductivity characteristics, volcanic ash which is a porous lightweight aggregate, and mixed with cenosphere and portland cement. As a kind of polymer cement mortar, problems such as air pollution due to dust of the cured body and reduction of thermal conductivity due to cracks can be improved as compared with conventional products.

이상의 단열모르타르 조성물은 단열성, 강도 및 내구성, 내수성 및 보수성이 우수하여 건축 구조물이나 토목구조물의 내·외벽에 발생되는 결로를 방지하여 건축 구조물이나 토목구조물의 부식 및 파손을 저하하고, 곰팡이 등의 세균이 번식하는 조건을 억제할 수 있어, 구조물의 결로에 의한 유지관리 비용을 현저히 절감할 수 있다. The above insulation mortar composition is excellent in heat insulation, strength and durability, water resistance and water retention to prevent condensation on the inner and outer walls of building structures and civil structures, reducing corrosion and breakage of building structures and civil structures, This propagation condition can be suppressed, and the maintenance cost by condensation of a structure can be reduced significantly.

나아가, 본 발명은 이상의 단열모르타르 조성물을 벽체, 우각부 또는 단열재의 접합면에 적용하여 결로저항성을 개선한 단열시공공법을 제공한다. Furthermore, the present invention provides a thermal insulation construction method by improving the condensation resistance by applying the above insulation mortar composition to the joint surface of the wall, right angle portion or the heat insulating material.

본 발명의 단열모르타르 조성물은 열전도율 특성이 우수한 섬유가 부착된 EVA 인솔 파지분의 분쇄물, 다공성 경량골재인 화산재, 세노스피어 미립자와 포틀랜드 시멘트를 혼합한 무기질 바인더부와 EVA 수지부를 함유한 것으로, 단열성능 향상을 통해 결로방지를 위한 건축물의 단열 공사에 흙손질 등으로 시공되는 제품으로 제공된다. The thermal insulation mortar composition of the present invention contains an inorganic binder portion and EVA resin portion mixed with a fiber of EVA insole phage powder with excellent thermal conductivity properties, a volcanic ash, a porous lightweight aggregate, senosphere fine particles and portland cement, It is provided as a product that is constructed by troweling in the insulation work of buildings to prevent dew condensation through improving the insulation performance.

특히, 본 발명의 단열모르타르 조성물을 이용하여 벽체, 우각부 또는 단열재의 접합면에 적용한 단열시공공법은 종래 단열성능이 인정된 스티로폼 사용시 발생하는 이음부분의 열 손실 및 부착강도의 문제점을 개선할 수 있으며, EPS 단열재보다 얇은 두께로도 전체 보온, 결로를 방지할 수 있다.In particular, the heat insulation construction method applied to the joint surface of the wall, right angle portion or heat insulating material by using the heat insulation mortar composition of the present invention can improve the problems of heat loss and adhesion strength of the joint portion generated when using styrofoam in which the heat insulation performance is recognized. In addition, even thinner than EPS insulation can prevent the overall insulation, condensation.

따라서, 본 발명의 단열시공공법은 종래 건축물의 우각부 또는 단열재의 접합면에 적용이 어렵고, 법적 단열성능을 맞추기 위한 단열재 두께증가에 의해 벽체 두께가 두꺼워지고, 이로 인하여 건축물 사용면적의 감소, 건축비용의 증가 등의 문제를 해소할 수 있다. Therefore, the heat insulation construction method of the present invention is difficult to apply to the concave surface of the right corner portion or the heat insulating material of the conventional building, the thickness of the wall is thickened by increasing the thickness of the heat insulating material to meet the legal heat insulating performance, thereby reducing the building use area, construction Problems such as an increase in costs can be solved.

도 2는 (a)는 종래 결로 피해 사례이고, (b) 본 발명의 단열모르타르 조성물을 이용하여 시공한 벽체를 나타낸 것으로서, 본 발명의 단열시공공법은 벽체에 완전 밀착되도록 하여 내부결로 문제를 최소화하고, 우각부와 단열재의 접합면의 열교 현상을 방지하여 이음부분의 열 손실 및 부착강도의 문제점을 개선할 수 있다. Figure 2 (a) is a case of damage to the conventional condensation, (b) showing the wall constructed using the insulating mortar composition of the present invention, the thermal insulation construction method of the present invention is to be in close contact with the wall to minimize the problem of internal condensation. In addition, it is possible to improve the problems of heat loss and adhesive strength of the joint by preventing the thermal bridge phenomenon of the joint surface of the right angle portion and the heat insulating material.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. This embodiment is intended to illustrate the present invention in more detail, and the scope of the present invention is not limited to these examples.

<제조예 1> EVA 인솔 파지분의 분쇄물 제조Preparation Example 1 Preparation of Crushed Powder of EVA Insole

신발 인솔 제조 후 회수된 파지분을 수득하고, 컨베어를 이용하여 1차 조분쇄 설비(슈레드)로 이송하여 1차 컷팅 후 톤백을 이용하여 회수하여, 불규칙하나 대략 10 내지 15 cm 크기 형상으로 준비하고(제조예 3), 상기 1차 컷팅한 제품을 재 투입하여 2차 내지 4차 컷팅 공정을 반복하여 40 내지 50mm 이하 크기로 컷팅하여 준비하였다. 이후, 고속으로 회전하는 분쇄기에 상기 컷팅된 원료를 투입하여 3 내지 5mm의 망을 통과하도록 함으로써, 평균입자크기 3 내지 5㎜로 분쇄된 EVA 인솔 파지분의 미분쇄물을 수득하였다. After the shoe insole is manufactured, the recovered phages are collected, transferred to a primary coarse grinding facility (shred) using a conveyor, and then recovered using a tone bag after the first cut, which is irregular but prepared in a shape of about 10 to 15 cm. (Production Example 3), the first cut product was re-inserted, and the second to fourth cutting processes were repeated to cut to a size of 40 to 50 mm or less. Thereafter, the cut raw material was put in a high speed rotating grinder to pass through a network of 3 to 5 mm, thereby obtaining a finely divided product of EVA insole phage powder ground to an average particle size of 3 to 5 mm.

<제조예 2> EVA 인솔 파지분의 분쇄물 제조Preparation Example 2 Preparation of Crushed Powder of EVA Insole

최종 EVA 인솔 파지분의 분쇄물의 평균입자크기를 6 내지 8㎜로 분쇄하여 준비하였다. The average particle size of the pulverized powder of the final EVA insole phage was prepared by grinding to 6-8 mm.

<실시예 1> 단열 모르타르 조성물 제조Example 1 Preparation of Insulating Mortar Composition

상기 제조예 1 및 2에서 제조된 EVA 인솔 파지분의 분쇄물을 이용하고, 하기 표 1에 기재된 혼합비율로 배합한 단열 모르타르 조성물을 제조하였다. Using the pulverized product of EVA insole phage powder prepared in Preparation Examples 1 and 2, to prepare a heat-insulating mortar composition blended in the mixing ratio shown in Table 1 below.

Figure pat00001
Figure pat00001

<실험예 1> 물성평가Experimental Example 1 Property Evaluation

상기 실시예 1 및 비교예 1∼4에서 제조된 조성물을 이용하여 시제품을 제작하여 하기 제시된 물성을 각 평가방법에 따라 측정하였다. 그 결과를 표 2에 기재하였다. Using the compositions prepared in Example 1 and Comparative Examples 1 to 4 to prepare a prototype to measure the physical properties shown below according to each evaluation method. The results are shown in Table 2 .

Figure pat00002
Figure pat00002

이상의 결과로부터, 본 발명의 조성 및 그의 혼합비율로 최적화하여 배합한 조성물의 경우, 단열 모르타르로서의 유용한 물성을 충족하였다. From the above results, in the case of a composition formulated by optimizing the composition of the present invention and its mixing ratio, the useful physical properties as adiabatic mortar were satisfied.

<실험예 2> <Experimental Example 2>

상기에서 우수한 물성으로 평가된 실시예 1에서 제조된 단열모르타르 조성물을 이용하여 시제품에 대하여, 환경안정성 평가를 총 3회 실시하고 그 결과를 표 3에 기재하였다. Using the thermal insulation mortar composition prepared in Example 1, which was evaluated for excellent physical properties, the prototype was subjected to environmental stability evaluation three times and the results are shown in Table 3 .

Figure pat00003
Figure pat00003

상기 표 3의 결과로부터, 실시예 1에서 제조된 단열모르타르 조성물이 EVA 인솔 파지분으로부터 분쇄된 분쇄물을 함유한 것으로서, 즉, 폐자원을 사용함에도 불구하고, 폐기물공정시험방법에 의해 중금속 및 유해유기원소 검출이 기준치 이하의 환경안정성 결과를 확인하였다. 이에 종래 폐EPS 분말에 의한 시공의 어려움, 폐타이어 분말 등에 의한 환경안정성 문제를 해소하였다. From the results of Table 3, the heat-insulated mortar composition prepared in Example 1 contains the pulverized powder from the EVA insole gripping powder, that is, despite the waste resources, heavy metals and harmful by the waste process test method Organic element detection confirmed environmental stability results below the reference value. This solves the problems of construction by the conventional waste EPS powder, environmental stability problems due to the waste tire powder.

이상에서 살펴본 바와 같이, 본 발명은 포틀랜드 시멘트에 EVA 인솔 파지분의 분쇄물, 화산재 및 세노스피어를 혼합한 무기질 바인더부와 EVA 수지부를 배합한 단열모르타르 조성물을 제공하였다. As described above, the present invention provides a heat-insulated mortar composition incorporating an EVA resin part and an inorganic binder part mixed with a ground product of EVA insole phage powder, volcanic ash, and senosphere.

본 발명의 단열모르타르 조성물은 EVA 소재 자체의 단열특성을 이용하기 위하여 EVA 인솔 파지분으로부터 분쇄된 분쇄물을 활용하고, 단열특성 향상을 통해 결로저항성이 우수한 조성물을 제공함으로써, 폐자원의 활용가치를 높여 모르타르의 단열성능향상에 따른 에너지 절감 효과를 기대할 수 있다. The heat-insulating mortar composition of the present invention utilizes a pulverized product ground from EVA insole grind powder in order to use the heat insulating properties of the EVA material itself, and provides a composition having excellent condensation resistance through improved heat insulating properties, thereby utilizing the useful value of waste resources. It can be expected to save energy due to the improvement of mortar's insulation performance.

또한, 본 발명의 단열모르타르 조성물은 건축물의 벽체 모양과 관계없이 벽체에 완전 밀착되도록 하여 내부결로 문제를 최소화하고, 종래 시공이 용이하지 못한 우각부와 단열재의 접합면의 열교 현상을 방지하여 이음부분의 열 손실 및 부착강도를 개선할 수 있다. In addition, the thermal insulation mortar composition of the present invention is to be in close contact with the wall regardless of the shape of the building to minimize the internal condensation problems, and prevent the thermal bridge phenomenon of the junction surface of the right angle portion and the heat insulating material that is not easy to conventional construction Can improve the heat loss and adhesion strength.

따라서, 본 발명의 결로저항성이 우수한 단열모르타르를 적용함으로써 건축물의 사용연한을 증가시켜 불필요한 유지보수 비용 및 재 시공비용 절감할 수 있다. Therefore, by applying the insulating mortar excellent in the condensation resistance of the present invention can increase the service life of the building can reduce unnecessary maintenance cost and reconstruction cost.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (6)

무기질 바인더부와 EVA 수지부를 함유하되,
상기 무기질 바인더부가 포틀랜드 시멘트, 세노스피어, EVA 인솔 파지분의 분쇄물 및 화산재가 1: 1: 0.4: 0.4의 중량비율로 배합된 단열모르타르 조성물.
Containing inorganic binder and EVA resin,
Insulating mortar composition in which the inorganic binder portion is a blend of Portland cement, senosphere, EVA insole phage powder and volcanic ash in a weight ratio of 1: 1: 0.4: 0.4.
제1항에 있어서, 상기 EVA 인솔 파지분의 분쇄물이 3 내지 5㎜ 크기로 분쇄된 것을 특징으로 하는 단열모르타르 조성물.The insulating mortar composition according to claim 1, wherein the crushed powder of the EVA insole phage is pulverized to a size of 3 to 5 mm. 제1항에 있어서, 상기 화산재가 SiO2와 Al2O3의 성분 60중량% 이상이 함유된 알루미노규산염이고, 150 내지 300㎛ 입자크기를 가지는 것을 특징으로 하는 단열모르타르 조성물.The insulating mortar composition according to claim 1, wherein the volcanic ash is aluminosilicate containing 60 wt% or more of SiO 2 and Al 2 O 3 , and has a particle size of 150 to 300 μm. 제1항에 있어서, 상기 세노스피어가 100 내지 150㎛ 평균입자크기를 가지는 입자인 것을 특징으로 하는 단열모르타르 조성물.[Claim 2] The heat insulating mortar composition according to claim 1, wherein the cenosphere is a particle having an average particle size of 100 to 150 mu m. 제1항에 있어서, 상기 EVA 수지부가 하기 (1) 내지 (4)를 충족하는 것을 특징으로 하는 단열모르타르 조성물.
(1) 고형분 함량 54 내지 56중량%,
(2) 점도 2700 내지 3700cp,
(3) pH 4.0 내지 6.0 및
(4) 초산비닐 함량 300 내지 500ppm
The heat insulation mortar composition according to claim 1, wherein the EVA resin part satisfies the following (1) to (4).
(1) 54 to 56% by weight of solids content,
(2) viscosity 2700-3700cp,
(3) pH 4.0 to 6.0 and
(4) vinyl acetate content 300 to 500 ppm
제1항 내지 제5항 중 어느 한 항의 단열모르타르 조성물을 벽체, 우각부 또는 단열재의 접합면에 적용하여 결로저항성을 개선한 단열시공공법.The heat insulation construction method which improved the dew condensation resistance by applying the heat insulation mortar composition of any one of Claims 1-5 to the joining surface of a wall, a hollow part, or a heat insulating material.
KR1020180009597A 2018-01-25 2018-01-25 Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same KR20190090643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180009597A KR20190090643A (en) 2018-01-25 2018-01-25 Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180009597A KR20190090643A (en) 2018-01-25 2018-01-25 Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same

Publications (1)

Publication Number Publication Date
KR20190090643A true KR20190090643A (en) 2019-08-02

Family

ID=67614297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180009597A KR20190090643A (en) 2018-01-25 2018-01-25 Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same

Country Status (1)

Country Link
KR (1) KR20190090643A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175710B1 (en) 2011-09-16 2012-08-21 선일공업 (주) Preparation method for adiabatic mortar using waste alc
KR20120125694A (en) 2011-05-09 2012-11-19 채민호 Heat insulating and waterproofing method of constructure using perlite and aerogel
KR20160089597A (en) 2015-01-19 2016-07-28 (주)비온디 Method of non-combustible refractory mortars and semi-non-combustible insulation outside the building using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120125694A (en) 2011-05-09 2012-11-19 채민호 Heat insulating and waterproofing method of constructure using perlite and aerogel
KR101175710B1 (en) 2011-09-16 2012-08-21 선일공업 (주) Preparation method for adiabatic mortar using waste alc
KR20160089597A (en) 2015-01-19 2016-07-28 (주)비온디 Method of non-combustible refractory mortars and semi-non-combustible insulation outside the building using the same

Similar Documents

Publication Publication Date Title
US6616752B1 (en) Lightweight concrete
D'Alessandro et al. Innovative concretes for low-carbon constructions: A review
KR101743042B1 (en) Mortar composition for restoring cross section of light weight and eco-friendly polymer cement
US20150240163A1 (en) Fire core compositions and methods
MXPA02008921A (en) Fiber cement building materials with low density additives.
CN102020449B (en) Composite silicate heat preservation mortar
CN108395276A (en) A method of preparing high-strength light cast-in-place concrete partition wall using building castoff
KR20080103135A (en) The dry mortar with soundproof and keeping warm and the noninflammable board therewith and light brick therewith
CN108675739B (en) Special binder for aerated concrete blocks
Mulgund et al. Light weight concrete
KR20040100202A (en) Concrete Composition for Lightweight and Sound Absorber and Method of Making The Same
CN104402343B (en) A kind of regeneration aggregate decorative mortar for insulation blocks wall
KR20190090643A (en) Adiabatic mortar composition and method for adiabatic construction with improved dew condensation resistance using the same
Ortega et al. Comparative effects of different real conditions in the microstructure and properties of ternary blended cement mortars for being used in rehabilitation works
KR100547953B1 (en) Non-combustible, heat insulation, heat insulation, absorption. Foamed concrete mortar composition with sound insulation function and method for producing same
CN114197773A (en) Vitrified micro bubble heat preservation and insulation building wall and construction process
CA2505081A1 (en) Method for the production of a plant-based construction material and construction material obtained by means of said method
KR100532540B1 (en) Bubble concrete mortar composition and its manufacturing process
KR100532541B1 (en) Bubble concrete mortar composition and its manufacturing process
KR100602041B1 (en) Light weight concrete mixture for insulation and vibration absorption
CN115259790B (en) Limestone powder calcined clay-based light high-strength mortar and preparation method thereof
CN109467372B (en) Sulphoaluminate cement foaming insulation board and preparation method thereof, and assembled integrated insulation wall and preparation method thereof
Jagtap et al. Embodied energy of building and alternative building materials
KR100547952B1 (en) Non-combustible, heat insulation, heat insulation, absorption. Foamed concrete mortar composition with sound insulation function and method for producing same
KR20110096002A (en) Constructing method of loess insulating composite floor for construction

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application