KR20190083041A - Manufacturing Method of mixed metal oxide electrode for PCB - Google Patents

Manufacturing Method of mixed metal oxide electrode for PCB Download PDF

Info

Publication number
KR20190083041A
KR20190083041A KR1020180000505A KR20180000505A KR20190083041A KR 20190083041 A KR20190083041 A KR 20190083041A KR 1020180000505 A KR1020180000505 A KR 1020180000505A KR 20180000505 A KR20180000505 A KR 20180000505A KR 20190083041 A KR20190083041 A KR 20190083041A
Authority
KR
South Korea
Prior art keywords
metal oxide
anode
coating
base material
titanium base
Prior art date
Application number
KR1020180000505A
Other languages
Korean (ko)
Other versions
KR102064983B1 (en
Inventor
남궁철
Original Assignee
주식회사 한경티엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한경티엔씨 filed Critical 주식회사 한경티엔씨
Priority to KR1020180000505A priority Critical patent/KR102064983B1/en
Publication of KR20190083041A publication Critical patent/KR20190083041A/en
Application granted granted Critical
Publication of KR102064983B1 publication Critical patent/KR102064983B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention relates to a manufacturing method of a metal oxide anode for PCB electrolytic copper plating to reduce the consumption of organic additives in an electroplating process and to extend the life and improve the performance. The manufacturing method of a metal oxide anode for PCB electrolytic copper plating, in manufacturing the anode of an electrolysis device, comprises a pre-treatment step of subjecting the surface of a titanium base material to multiple blasting but changing a blasting ball size to form a surface with varying degrees of roughness, and a step of forming a mixed metal oxide coating layer (MMO) having a different mixed composition ratio of a catalyst coating layer on the pretreated titanium base material, wherein a heat treatment temperature is changed when the mixed metal oxide coating layer is formed.

Description

PCB 전해 동도금용 금속산화물 양극의 제조방법 {Manufacturing Method of mixed metal oxide electrode for PCB}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal oxide anode for PCB electrolytic copper plating,

본 발명은 전해도금 공정에서 유기첨가제의 소모를 저감하고 수명연장 및 성능개선이 이루어지도록 한 PCB 전해 동도금용 금속산화물 양극의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a metal oxide anode for PCB electrolytic copper plating in which consumption of an organic additive in an electrolytic plating process is reduced, life is extended and performance is improved.

일반적으로 스마트폰, 테블릿 PC 등 전자 산업의 성장 고속화 및 소형화 등으로 인해 PCB 다층화를 통해 고기능성 및 휴대성을 갖는 제품개발이 활발히 진행되어지고 있다. PCB 다층화 실행을 위해 각 층간 비아 홀(Via-hole)을 가공 후 Via-filiing 도금을 통해 홀 내부를 채워 전기적 통로를 형성하는 방법이 중요한 기술 중 하나가 되었다. 다층화를 위해 전기적 통로 역할을 하는 비아 홀 공법은 기존 공법인 Wire Bonding 공법과 비교할 때, 신호의 유실 및 단락(Short)이 감소될 뿐만 아니라 부피까지 감소시킬 수 있다는 이점이 있다.In general, development of products with high functionality and portability is proceeding actively through PCB multi-layering due to growth and speeding up and miniaturization of electronic industry such as smart phones and tablet PCs. One of the important techniques is to process each layer of via-hole for PCB multi-layering and to fill the hole by via-filing plating to form electrical path. The via hole method, which serves as an electrical pathway for multilayering, has the advantage that the loss and short of signals can be reduced as well as the volume when compared with the conventional wire bonding method.

그리고 전해도금을 통한 구리 충전은 PCB 비아 홀 내부에 전도성 물질을 충진해야 다층기판에서 전기적 통로 역할이 가능하다. 이 때 전도성 물질로는 과거 알루미늄(Al)을 사용되어 왔으나 현재는 구리(Cu)가 주로 사용되고 있다. 구리는 상대적으로 우수한 전기적 특성과 일렉트로마이그레이션(Electro-migration)에 대한 높은 저항성으로 인해 3차원 고밀도 패키징용 충전 금속으로 많은 연구가 이루어지고 있다. 구리 충진을 위한 방법으로는 물리 기상 증착법(PVD), 무전해 도금법 및 전해도금법 등 있다. And the copper filling through electrolytic plating is required to fill conductive material inside the via hole of PCB, so that it can serve as an electrical path in the multilayer substrate. At this time, aluminum (Al) has been used as a conductive material in the past, but copper (Cu) is mainly used now. Copper has been studied as a fill metal for three-dimensional high-density packaging due to its relatively good electrical properties and high resistance to electromigration. Methods for filling copper include physical vapor deposition (PVD), electroless plating, and electrolytic plating.

싱기 PVD 공정은 조건이 단순하고 고순도의 막을 얻을 수 있는 장점이 있지만 증착시 고진공으로 인하여 금속 원자나 클러스터의 평균 자유 행로(Mean free path)가 길어지고, 원자 이온이 직접 기판에 흡착되므로 부착계수가(Sticking coefficient)가 높다. 또한 증착온도가 낮아 증착된 원자의 이동속도가 느려 증착물이 입사각으로부터 가려져 있거나 입사각과 평행한 면에는 막이 거의 증착되지 않는 직사형(Line-of-sight) 증착이 되므로 서브마이크론 규모의 구조에서 우수한 평탄도를 얻기 어렵고 이로 인해 층덮힘이 나빠 적용에 한계가 있다.Although the Singi PVD process has the merit of obtaining a simple and high purity film, the mean free path of metal atoms or clusters becomes longer due to the high vacuum during deposition, and atomic ions are adsorbed directly on the substrate, The sticking coefficient is high. In addition, because the deposition temperature is low, the moving speed of the deposited atoms is slow, and the deposits are obscured from the incident angle, or the film is hardly deposited on the plane parallel to the incident angle. Thus, It is difficult to obtain a degree of coverage, which results in poor coverage of the layer.

상기 무전해 도금법은 용액에 투여한 환원제와 구리 이온간의 산화-환원 반응을 통해 기판 표면에 구리를 충진하는 방법이다. 이 방법은 외부 전이 필요하지 않으며 기판의 종류와 상관없이 균일한 구리층을 형성할 수 있어 전해 도금을 위한 씨앗층(Seed layer) 형성에 널리 쓰이고 있으나 상대적으로 느린 증착 속도로 인한 낮은 생산성으로 씨앗층 형성 이후 공정에는 적용되지 못하고 있다.The electroless plating method is a method of filling copper on the surface of the substrate through an oxidation-reduction reaction between a reducing agent and a copper ion applied to a solution. This method does not require external transfer and can form a uniform copper layer irrespective of the type of the substrate, which is widely used for forming a seed layer for electroplating, but with a low productivity due to a relatively low deposition rate, But is not applied to the post-formation process.

상기 전해도금법은 우수한 특성을 가진 박막을 빠르고 균일하게 생성할 수 있기 때문에 신뢰도가 높고 공정비용이 낮아 양산에 용이하여 보편적으로 사용되고 있다. 전해도금법은 금속이온이 포함된 용액에 양극(양극, 음극)을 넣고 전류를 인가하여 금속이온을 음극에서 환원시켜 석출이 일어나게 함으로써 음극 표면에 얇은 금속막을 형성시키는 공정으로 전해도금액 내 구리 이온의 전기화학적 환원은 아래와 같은 반응을 통해 이루어 진다.Since the electrolytic plating method can quickly and uniformly produce a thin film having excellent characteristics, it is highly reliable and low in process cost, and is easily used in mass production, and thus is widely used. The electrolytic plating method is a process for forming a thin metal film on the surface of a negative electrode by causing positive ions (positive electrode and negative electrode) to be inserted into a solution containing metal ions and reducing the metal ions at the negative electrode by applying current, Electrochemical reduction is accomplished through the following reaction.

Cu2+(aq) + 2e- → Cu(s)Cu 2+ (aq) + 2e - ? Cu (s)

그리고 도금성능 향상을 위한 방법이 요구되고 있는바, PCB의 고사양화로 인해 비아 홀 직경이 점차 작아지고 종횡비 역시 증가하고 있어 비아 내부로 구리 이온의 확산이 어려워지면서 비아 내부가 비아 입구보다 천천히 도금이 일어나게 된다. 그 결과 기공(Void) 또는 시임(Seam) 등과 같은 결함이 발생되는 단점이 있다. In order to improve the plating performance, it is required to increase the diameter of the via hole gradually and the aspect ratio to increase due to the high-leveling of the PCB, so that the diffusion of copper ions into the via becomes difficult and the inside of the via is slowly plated do. As a result, defects such as voids or seams are generated.

그래서 결함 없는 Via-filling을 위해서는 전해 도금시 비아 홀 내의 바닥부터 구리가 충전되어 입구쪽으로 차오르는 Bottom-up 충전이 이루어져야 하고, Bottom-up 충전을 위해서는 전해도금액 중 함유된 유기첨가제(억제제(Suppressor), 광택제(Brightener), 레벨러(Leveller))들의 역할이 중요하다. 이들이 주목받는 이유는 그레인(Grain) 성장 메커니즘과 결정성(Crystlline structure), 표면거칠기(Roughness) 등의 미세구조 변화를 개선시킬 수 있고, 첨가제 조성 및 농도에 따라 도금된 금속의 물리적 성질 변화/조절이 가능하기 때문이다. Therefore, for defect-free via-filling, bottom-up charging must be performed from the bottom of the via-hole to the entrance side of the via hole when the electrolytic plating is performed. For the bottom-up charging, the organic additive (inhibitor) Brighteners, Levelers) are important. The reason why they are noticed is that they can improve the microstructure change such as grain growth mechanism, crystallinity structure and surface roughness, and can change physical properties of the plated metal depending on additive composition and concentration This is possible.

상기 광택제는 기판 표면에 흡착되어 구리이온이 환원되는 동안 구리의 핵생성수를 늘려주는 촉매 역할을 하여 구리 도금속도를 빠르게 한다. 따라서 광택제가 비아 홀 바닥에 흡착되면 결함 없는 구리 충전이 일어날 수 있고 이러한 현상은 광택제의 농도와 교반속도 등에 따라 좌우된다. The brightener is adsorbed on the surface of the substrate and serves as a catalyst for increasing the nucleation water of copper during the reduction of copper ions, thereby accelerating the copper plating rate. Therefore, when the polishing agent is adsorbed on the bottom of the via hole, defect-free copper charging can occur, which depends on the concentration of the polishing agent and the stirring speed.

상기 억제제는 전해도금시 도금속도를 낮추기 위해 사용되는 유기물질로 기판에 흡착되어 부동태층을 형성하여 도금을 억제시키는 역할을 한다. The inhibitor is an organic material used for lowering a plating rate at the time of electroplating, and is adsorbed on a substrate to form a passivation layer to suppress plating.

상기 레벨러는 기판 도금층 표면의 돌출된 부분이나 모서리 부분에 존재하면서 부분적으로 도금을 억제하여 도금하고자 하는 표면의 구조와 무관하게 도금두께를 균일하게 만드는 첨가제이다.The leveler is an additive which is present in the protruding part or corner part of the surface of the substrate plating layer and partially suppresses the plating, thereby making the thickness of the plating uniform regardless of the structure of the surface to be plated.

따라서 결함 없는 Via-filling 뿐 아니라 도금공정시간을 줄이기 위해 높은 채움 성능을 달성하는 것 또한 중요하다. 높은 채움 성능을 이루기 위해서는 첨가제의 교반 의존 흡착현상을 강하게 해야 한다. 교반 의존 흡착현상은 첨가제의 흡착이 교반의 세기의 영향을 받는다는 의미로 교반속도가 빠를수록 비아 입구에서 구리의 환원을 억제하는 첨가제의 흡착이 증가하여 도금속도가 감소하고, 교반의 세기가 상대적으로 약한 비아 바닥 부분은 구리의 환원 억제정도가 약해 도금속도가 더 빠르게 일어난다. Therefore, it is also important to achieve high filling performance in order to reduce plating time as well as defect-free via-filling. In order to achieve a high filling performance, the stirring-dependent adsorption of the additive should be strengthened. The stirring-dependent adsorption phenomenon means that the adsorption of the additive is affected by the intensity of the stirring. As the stirring speed is higher, the adsorption of the additive that suppresses the reduction of copper at the inlet of the via is increased and the plating rate is decreased. The weak via bottoms are less susceptible to copper reduction, resulting in faster plating rates.

그러나 전해도금시 발생하는 문제점은, 일반적으로 전해도금시 가해지는 전류로 인해 전해도금액 내 금속이온이 음극으로 이동하여 석출되는 도금이 이루어지고 OH- 또는 SO4 2- 와 같은 음이온들은 양극에서 산화되어 산소가 발생하게 된다. 하지만 산화에 취약한 유기첨가제 역시 전해도금액에 함유되어 있어 양극 산화반응시 유기첨가제의 특성이 약화되거나 변질됨에 따라 도금액 교체 또는 첨가제 추가하는 등 공정비용이 증가하고 비아 홀 내부에 결함 발생 가능성 또한 높아져 공정 신뢰도가 떨어지는 문제를 야기하게 된다. However, the problem that arises when electrolytic plating occurs is that the metal ions in the electrolytic solution migrate to the cathode due to the current applied during the electrolytic plating, and the anions such as OH - or SO 4 2- are oxidized Oxygen is generated. However, the organic additives which are vulnerable to oxidation are also contained in the electrolytic solution, and as the characteristics of the organic additives are weakened or deteriorated during the anodic oxidation reaction, the cost of the plating solution is increased and the possibility of defects in the via- Resulting in a problem of low reliability.

상기와 같은 문제를 해결하기 위해 여러 방안들이 제시되었다. 예를 들어, 대한민국 특허공개 제2001-0069918호에는 첨가제와 양극의 접촉 차단을 위해 멤브레인이 양극 부근에 설치한 장치를 발명하였다. 하지만 고가의 멤브레인 사용시 추가적인 비용이 발생하고 지속적인 관리가 필요하다는 단점이 있다.Several solutions have been proposed to solve the above problems. For example, Korean Patent Laid-Open Publication No. 2001-0069918 discloses an apparatus in which a membrane is provided in the vicinity of an anode for blocking contact between an additive and an anode. However, there is a disadvantage in that additional cost is incurred when using an expensive membrane and maintenance is required.

또, PCT/EP2003/014785호에서는 물질 전달을 감소시키기 위해 메쉬 형태의 쉴드(Shield)를 부착시킨 양극을 발명하였다. 하지만 이 또한 도금 슬러지가 메쉬에 부착됨에 따라 지속적인 관리가 필요하다는 한계가 있다.In addition, PCT / EP2003 / 014785 invented a cathode having a mesh-type shield attached to reduce mass transfer. However, this also limits the need for continuous management as the plating sludge is attached to the mesh.

이와 같이 장치 추가/변형으로 인한 전해도금액 내 첨가제 소모 저감에는 한계가 있기 때문에 보다 근본적으로 해결할 수 있는 대안이 필요하다.There is a limit to reducing the consumption of additives in the electrolytic solution due to the addition / modification of the device, and therefore, a solution that can be fundamentally solved is needed.

또한, 양극 제조시 과정 및 발생하는 문제점을 살펴 보면, 일반적인 양극 제조과정은 4단계 전처리를 통해 금속산화물을 담지시킬 수 있는 티타늄 모재를 형성하고, 각 종 금속산화물들을 티타늄 모재 상부에 도포하고 건조 및 열처리과정을 반복함으로써 전기적 활성을 띄는 촉매역할을 수행하게 한다. 여기서 4단계 전처리 공정은 일반적으로 탈지 - 블라스팅 - 산에칭 - 물세척 과정을 의미하며, 탈지와 산에칭 공정에는 아세톤, IPA 등의 유기용매와 염산, 황산, 옥살산 등의 산성용액이 사용하게 된다. 탈지를 통한 유분 제거와 에칭을 통한 티타늄 모재의 불순물 제거 및 표면 안정성을 높이는 과정이 필요하지만 양산 과정에서 많은 양의 화학제품들이 필요하며 이로 인한 작업 소요시간 증가, 작업 중 발생하는 유독가스, 처리 후 발생한 폐액으로 인하여 시간적, 경제적 손실이 발생한다는 단점이 있다. In general, the anode manufacturing process includes four steps of pretreatment to form a titanium base material capable of supporting a metal oxide, applying each kind of metal oxide to the upper portion of the titanium base material, By repeating the heat treatment process, it is possible to perform a function as an electrically active catalyst. Here, the four-step pretreatment process generally refers to a degreasing-blasting-acid etching-water washing process. In the degreasing and acid etching processes, organic solvents such as acetone and IPA and acidic solutions such as hydrochloric acid, sulfuric acid and oxalic acid are used. Removal of oil through degreasing and etching to remove impurities from the base metal and increase the surface stability are required. However, a large amount of chemical products are required in the mass production process, thereby increasing the time required for the operation, toxic gases generated during the operation, There is a disadvantage in that time and economic losses are caused due to the generated waste liquid.

KR 제10-1008899호KR 10-1008899 KR 제10-1595625호KR 10-1595625 KR 제10-1665754호KR 10-1665754 KR 제10-0931095호KR 10-0931095 (특허공개문헌 0005) KR 제10-2001-0069918호(Patent Publication No. 0005) KR 10-2001-0069918 PCT/EP2003/014785호PCT / EP2003 / 014785

본 발명은 이러한 문제점을 해결하기 위하여 안출한 것으로, 티타늄 모재의 전처리 과정을 기존 4단계에서 탈지 및 산에칭 공정을 제외한 2단계로 축소 진행하되 미진행되는 화학적 처리 공정을 개선, 보완하기 위해 서로 다른 블라스팅 볼 크기의 샌드 블라스팅 처리를 다중으로 진행함으로써 티타늄 모재에 잔존할 수 있는 유분 성분을 완전히 제거하고 산에칭 과정을 통하여 형성되는 미세한 조도를 이중 샌드 블라스팅으로 대체함으로써 일반적으로 진행하는 단일 샌드 블라스팅에서 형성시킬 수 없는 미세조도를 미세 블라스팅 볼을 통해 이루고 표면조도 또한 높여 화학적 처리를 미진행함에도 불구하고 전해도금 공정에서 유기첨가제의 소모 저감, 사용수명 연장, 성능개선과 함께 친환경적인 PCB 전해 동도금용 금속산화물 양극을 제공함에 있다.The present invention has been devised in order to solve these problems, and it is an object of the present invention to provide a method and apparatus for pretreating a titanium base material in two stages except for the degreasing and acid etching processes in the existing four stages, Sandblasting of blast ball size is carried out in multiple stages to completely remove oil components that may remain in the titanium base material and replace the fine roughness formed by the acid etching process with double sand blasting, Although the microstructures that can not be formed are formed through the microblasting ball and the surface roughness is increased, the organic electrolytic plating process reduces the consumption of organic additives, prolongs the service life and improves the performance of the electrolytic plating process, To provide a positive electrode.

즉, 본 발명은 티타늄 모재의 전처리를 위해 기존의 화학적 처리 화합물인 에탄올(Ethanol), 이소프로필알코올(Isopropyl alcohol), 아세톤(Acetone) 등 유기용매 및 염산(Hydrochloric acid), 황산(Sulfuric acid), 옥살산(Oxalic acid) 등 산성 에칭액을 전혀 사용하지 않고 친환경적인 PCB 전해 동도금용 금속산화물 양극을 제조한다.That is, the present invention relates to an organic solvent such as ethanol, isopropyl alcohol, and acetone, which is a conventional chemical treatment compound, and an organic solvent such as hydrochloric acid, sulfuric acid, A metal oxide anode for PCB electrolytic copper plating is produced without any acid etching solution such as oxalic acid.

본 발명은 전기분해장치의 양극 제조에 있어서, 티타늄 모재 표면에 다중 블라스팅 처리를 하되 블라스팅 볼 크기를 변화하여 서로 다른 거칠기를 가진 표면조도가 형성되도록 하는 전처리 단계와, 상기 전처리된 티타늄 모재에 촉매 코팅층의 혼합 조성비를 다르게 한 복합 금속산화물 코팅층(Mixed Metal Oxide, MMO)을 형성하는 단계와, 상기 복합 금속산화물 코팅층 형성시에 열처리온도를 다르게 한 것을 포함하는 PCB 전해 동도금용 금속산화물 양극의 제조방법을 특징으로 한다.The present invention relates to a method of manufacturing an anode of an electrolytic apparatus, comprising: a pretreatment step of performing multiple blast treatment on the surface of a titanium base material to form a surface roughness having different roughness by varying a blast ball size; Forming a mixed metal oxide (MMO) layer having different mixed composition ratios; and forming a composite metal oxide coating layer on the metal oxide layer by a heat treatment at a different temperature. .

상기 양극 코팅 물질의 기본 몰조성이 AxByCz이고, x+y+z=100 이며, 여기에서 A, B는 백금족금속, C는 밸브메탈이고, 각각의 코팅층의 함량을 달리한 용액으로 도포하여 형성된 다층 구조의 코팅층으로 된 것을 특징으로 한다.Wherein the anode coating material has a basic molar composition of AxByCz and x + y + z = 100, wherein A and B are platinum group metals, and C is a valve metal, and each of the coating layers is coated with a solution having different contents, Structure of the present invention.

상기 샌드 블라스팅 볼 크기 변화를 적게는 2회에서 많게는 5회로 변화시키며 다중 전처리하여 블라스팅 조도 증가 및 표면적을 확장시키는 것을 특징으로 한다.The sandblasting ball size change is changed little by little to five times and is subjected to multiple pretreatment to increase the blasting roughness and to enlarge the surface area.

상기 블라스팅 볼 크기는 1차 샌드 블라스팅 처리단계에서는 16메쉬 이상 46메쉬 미만으로 처리하고, 점차적으로 블라스팅 볼 크기를 20% 내지 80%인 메쉬를 사용하여 전처리하는 것을 특징으로 한다.The blasting ball size is characterized in that it is treated in the first stage of sandblasting to less than 16 meshes and less than 46 meshes and is preliminarily treated with a mesh having a blast ball size of 20% to 80%.

상기 금속산화물의 코팅시에 코팅 횟수는 4회 내지 25회 코팅하고, 열처리 온도는 350℃ 내지 600℃ 범위내에서 소성시키며, 소성시간은 10분 내지 60분 범위내에서 소성시키는 것을 특징으로 한다.The coating of the metal oxide is performed four to 25 times, the heat treatment is performed at a temperature of 350 to 600 ° C., and the sintering is performed at a temperature of 10 to 60 minutes.

본 발명은 PCB 전해 동도금용 금속산화물 양극 제조시에 화학적 처리를 적용하지 않고 다중 샌드 블라스팅 및 물세척만으로 전처리하여 친환경적이면서도 넓은 표면조도가 형성되어 복합 금속산화물의 1차적인 성능 향상을 이루었고, 촉매 코팅층의 조성 및 열처리온도 변화시킨 다중 코팅층을 적용함으로써 2차적인 양극 성능 향상을 이루어 수명연장 및 유기첨가제 소모를 저감시킨 복합 금속산화물(MMO) 양극을 제공할 수 있게 됨에 따라 양극 교체주기 및 유기첨가제의 및 추가 주입을 연장함으로 인해 전해도금 산업에 크게 기여할 수 있는 발명이다. In the present invention, a metal oxide anode for PCB electrolytic copper plating is pretreated with multiple sand blasting and water washing only without chemical treatment, thereby forming an environmentally-friendly and wide surface roughness, thereby improving the primary performance of the composite metal oxide. (MMO) anode with improved lifetime and reduced consumption of organic additives by applying a multi-coating layer having different composition and heat treatment temperature, the anode replacement cycle and the organic additive And prolonging further injection, thereby contributing greatly to the electrolytic plating industry.

도 1은 본 발명에 따른 PCB 전해 동도금용 금속산화물 양극의 구조를 나타낸 예시적인 모식도BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exemplary schematic diagram showing the structure of a metal oxide anode for PCB electroplating copper plating according to the present invention;

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 그리고 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명은 티타늄 모재에 다중 샌드 블라스팅 처리를 통한 표면적 확대와 각 종 유기용매 및 산성용액을 사용하지 않은 고효율 및 친환경 전처리 공정을 진행하여 성능이 개선된 PCB 전해 동도금용 금속산화물 양극을 제공한다.The present invention provides a metal oxide anode for PCB electrolytic copper plating with enhanced surface area by performing multiple sandblasting treatment on a titanium base material and a high efficiency and eco-friendly pretreatment process which does not use organic solvents and acidic solutions.

본 발명에 따른 티타늄 모재의 전처리 공정은, 티타늄 모재와 코팅물질간의 견고한 결합을 이루기 위해 티타늄 모재 금속표면에 블라스팅 볼 크기를 변화하여 다중 블라스팅 처리를 하되 알루미나, 세라믹 미세 입자들을 고압에서 물리적으로 분사하여 모재 표면을 거칠게 하는 샌드 블라스팅을 다중 처리하여 서로 다른 거칠기(Roughness)의 표면조도가 형성될 수 있도록 한 것을 특징으로 한다.The pretreatment of the titanium base material according to the present invention is performed by varying the blast ball size on the surface of the titanium base metal material to effect solid blending between the titanium base material and the coating material and physically injecting the alumina and ceramic fine particles at high pressure And sandblasting for roughening the surface of the base material is multi-processed so that surface roughness of different roughness can be formed.

상기 다중 샌드 블라스팅은 2차 내지 5차 블라스팅 처리를 함이 바람직하며, 1차 샌드 블라스팅 처리단계에서 볼 크기는 적게는 16메쉬 이상이고 크게는 46메쉬 미만의 금강사를 티타늄 모재 금속표면에 고압 분사하여 표면조도를 부여한 다음 점차적으로 블라스팅 볼 크기를 20% 내지 80%인 메쉬를 사용하여 블라스팅을 하며, 최종 샌드 블라스팅 처리시에는 티타늄 모재 표면 위에 적게는 46메쉬 이상이고 크게는 120메쉬 미만의 금강사를 고압 분사하여 추가적인 조도를 부여하는 수단으로 티타늄 모재 상부에 서로 다른 거칠기를 가진 표면조도가 형성되도록 한다.Preferably, the multiple sandblasting is performed by a secondary to a fifth blasting. In the primary sandblasting step, a ball of a size of 16 mesh or less and a size of less than 46 mesh is sprayed at high pressure onto the metal surface of the base metal And then gradually blasted using a mesh having a blast ball size of 20% to 80%. In the final sand blasting treatment, a goldsmelt having a size of 46 mesh or more and a size of less than 120 mesh on the surface of the titanium base material is subjected to high- So that surface roughness having different roughness is formed on the titanium base material by means of spraying and giving additional roughness.

이러한 본 발명의 PCB 전해 동도금용 금속산화물 양극은 도 1과 같이 기질(1)의 상면에 하부 코팅층(2)과 상부 코팅층(3)을 구성하게 된다.The metal oxide anode for PCB electrolytic copper plating according to the present invention comprises a lower coating layer 2 and an upper coating layer 3 on the upper surface of the substrate 1 as shown in FIG.

상기와 같이 다중 샌드 블라스팅이 이루어진 티타늄 모재의 금속표면은 일반적으로 단일(單一) 블라스팅 처리한 티타늄 모재보다 넓은 표면적을 얻을 수 있어 산에칭을 통한 화학적 처리를 수행하지 않고 미세조도를 획득할 수 있다. 또한 화학적 처리를 거치지 않음으로 인해 폐액이 발생하지 않는 친환경 제조가 가능하다. As described above, the metal surface of the titanium base material subjected to the multiple sandblasting generally has a larger surface area than that of the titanium base material subjected to the single blasting, so that micro-roughness can be obtained without performing chemical treatment through acid etching. In addition, it is possible to produce environmentally friendly products that do not generate waste solutions due to no chemical treatment.

또, 복합 금속산화물(MMO) 양극 코팅에 있어서 상기 다중 샌드 블라스팅으로 전처리를 진행하여 서로 다른 거칠기를 가진 표면조도로 이루어진 티타늄 모재 상부에 담지되는 복합 금속산화물은 높은 전기전도도와 전기촉매적 활성을 통해 전해반응을 지속 가능하도록 하는 촉매 코팅층을 적용하되 유기첨가제 소모를 저감할 수 있도록 혼합 금속물질의 조성비 및 열처리온도를 변화한 다중 코팅을 실시하여 양극의 내구성 및 광택제 소모를 저감하고 양극의 성능이 향상될 수 있도록 하였다.In addition, in the anode coating of the composite metal oxide (MMO), the composite metal oxide supported on the titanium base material having the surface roughness of different roughness by being pretreated by the above-mentioned multiple sandblasting has high electric conductivity and electrocatalytic activity Applying a catalyst coating layer which makes the electrolytic reaction sustainable, it is possible to reduce the durability of the anode and reduce the consumption of the polish, and improve the performance of the anode by applying multiple coatings in which the composition ratio of the mixed metal material and the heat treatment temperature are changed so as to reduce the consumption of the organic additives. .

상기 금속산화물의 코팅시에 코팅 횟수가 적게는 4회에서 많게는 최대 25회 이하로 함이 바람직하며, 이는 4회 미만으로 코팅하는 경우에 내구성이 떨어지고 25회 이상으로 많은 코팅을 하는 경우에 내구성에 비해 경제성이 떨어지기 때문이다.When the metal oxide is coated, the number of times of coating is preferably from 4 times to at most 25 times or less. This is because when the coating is performed less than 4 times, the durability is poor and when the coating is carried out more than 25 times, This is because the economy is less competitive.

그리고, 금속산화물의 코팅시에 코팅용액의 화합물 조성에 따라 열처리 온도는 전기로의 온도를 낮게는 350℃에서 높게는 600℃ 범위에서 소성시키도록 함이 바람한 것으로, 이는 350℃ 미만으로 소성하는 경우에는 산화물 형태로 미전환되는 금속이 존재할 수 있는 반면 600℃ 이상으로 소성하게 되면 금속산화물의 물성변화가 발생할 수 있고 양극 제작비용도 상승하게 된다.When the metal oxide is coated, the heat treatment temperature is preferably in the range of 350 ° C. to 600 ° C., which is lower than the temperature of the electric furnace, depending on the composition of the coating solution. May be present in the form of oxides, whereas if calcined above 600 ° C, changes in the physical properties of the metal oxides may occur and the cost of the anode production may increase.

또한, 금속산화물의 코팅시에 코팅용액의 화합물 조성에 따라 소성시간을 적게는 10분에서 길게는 60분을 소성시키는 것이 바람직한 것으로, 이는 상기 소성시간은 경제성을 가지면서 양극의 내구성 및 양극의 성능을 최적화할 수 있게 된다.It is preferable that the calcination time is less than 10 minutes and longer than 60 minutes according to the composition of the coating solution when the metal oxide is coated. This is because the calcination time is economical and the durability of the cathode and the performance . ≪ / RTI >

그리고 상기 양극 코팅 물질의 기본 몰조성이 AxByCz이고, x+y+z=100 이며, 여기에서 A, B는 백금족금속, C는 밸브메탈이고, 각각의 코팅층의 함량을 달리한 용액으로 도포하여 형성된 다층 구조의 코팅층에 의해 양극의 성능이 향상될 수 있도록 하였다.Wherein the anode coating material has a basic molar composition of AxByCz and x + y + z = 100, wherein A and B are platinum group metals, and C is a valve metal and is coated with a solution having a different content of each coating layer So that the performance of the anode can be improved by the multi-layered coating layer.

(1) 1차 샌드 블라스팅 처리(1) Primary sandblasting treatment

50mm X 100mmX 1t 크기의 Gr.1 티타늄 모재의 표면에 24메쉬 금강사를 고압 분사하여 티타늄 모재 표면에 거칠기를 가진 표면조도를 부여하였다.50 mm x 100 mm x 1 t Gr.1 Titanium base material was sprayed with high pressure at 24 mesh meshes to give surface roughness to the surface of titanium base material.

(2) 2차 샌드 블라스팅 처리(2) Secondary sandblasting treatment

상기 1차 샌드 블라스팅 처리된 티타늄 모재 표면은 에어 콤프레셔를 통해 불순물을 제거한 다음 티타늄 모재 표면에 80메쉬 금강사를 고압 분사하는 2차 샌드 블라스팅 처리를 하는 과정으로 미세한 조도를 한차례 더 부여하여 최종 Ra=5±1.0㎛ 수준의 거칠기를 가진 표면조도가 생성되도록 하였다. The surface of the primary sandblasted titanium base material is subjected to a secondary sandblasting process in which impurities are removed through an air compressor and then sprayed with 80 mesh meshes on the surface of the titanium base material. And a surface roughness having a roughness level of +/- 1.0 mu m was generated.

이와 같이 2차 샌드 블라스팅 처리된 티타늄 모재를 물로 세척하고 상온에서 10분, 80℃ 건조로에 30분 동안 건조하여 수분을 모두 제거하였다.The secondary sandblasted titanium base material was washed with water and dried at room temperature for 10 minutes and then at 80 占 폚 for 30 minutes to remove water.

(3) 촉매 제조 및 코팅과정(3) catalyst preparation and coating process

상기 샌드 블라스팅으로 전처리된 티타늄 모재에 활성 촉매층 구성을 위해 아래와 같은 촉매 제조 및 코팅과정을 진행하였다. The following catalyst preparation and coating processes were performed on the titanium base material pretreated with the sandblasting to form an active catalyst layer.

이리듐 클로라이드(IrCl4)와 탄탈륨 클로라이드(TaCl5)를 에탄올과 소량의 염산을 통해 하루 동안 용해하여 단일 금속용액을 각각 제조하였고, 탄탈륨 금속용액을 이리듐 금속용액에 소량씩 주입하여 최종 Ir:Ta 혼합 금속용액을 제조한 후 다시 하루 동안 교반하였다. 이때, Ir:Ta의 혼합 조성비는 몰 비로 85:15, 혼합 금속농도는 순수 금속 기준은 50g/L 이었다.A single metal solution was prepared by dissolving iridium chloride (IrCl 4 ) and tantalum chloride (TaCl 5 ) in ethanol and a small amount of hydrochloric acid for one day. A small amount of a tantalum metal solution was injected into the iridium metal solution, After the metal solution was prepared, it was stirred again for one day. At this time, the molar ratio of Ir: Ta was 85:15, and the mixed metal concentration was 50 g / L based on pure metal.

상기 샌드 블라스팅으로 전처리된 티타늄 모재 상부에 브러쉬 코팅을 통해 Ir:Ta=85:15을 1회 도포하고, 상온에서 10분, 80℃ 건조로에서 10분간 건조한 후 420℃에서 30분 동안 열처리하였다. 상기 코팅 과정을 8회 반복하여 혼합금속산화물 MMO 양극을 제조하였다.Ir: Ta = 85: 15 was applied once to the top of the titanium base material pretreated with the sandblasting by brush coating, dried at room temperature for 10 minutes, dried at 80 ° C for 10 minutes, and then heat treated at 420 ° C for 30 minutes. The coating process was repeated 8 times to prepare a mixed metal oxide MMO anode.

(1) 1차 샌드 블라스팅 처리(1) Primary sandblasting treatment

50mm X 100mmX 1t 크기의 Gr.1 티타늄 모재의 표면에 24메쉬 금강사를 고압 분사하여 티타늄 모재 표면에 거칠기를 가진 표면조도를 부여하였다50mm X 100mmX 1t Gr.1 Titanium base material was sprayed with high pressure at 24 mesh meshes to give surface roughness to the surface of titanium base material

(2) 2차 샌드 블라스팅 처리(2) Secondary sandblasting treatment

상기 1차 샌드 블라스팅된 티타늄 모재 표면은 에어 콤프레셔를 통해 불순물을 제거한 다음 티타늄 모재 표면에 80메쉬 금강사를 고압 분사하는 2차 샌드 블라스팅을 하는 과정으로 미세한 조도를 한차례 더 부여하여 최종 Ra=5±1.0㎛ 수준의 거칠기를 가진 표면조도가 생성되도록 하였다. The surface of the primary sandblasted titanium base material is subjected to secondary sand blasting in which impurities are removed through an air compressor and then sprayed with 80 mesh meshes on the surface of the titanium base material. Lt; RTI ID = 0.0 > um. ≪ / RTI >

이와 같이 2차 샌드 블라스팅 처리된 티타늄 모재를 물로 세척하고 상온에서 10분, 80℃ 건조로에 30분 동안 건조하여 수분을 모두 제거하였다.The secondary sandblasted titanium base material was washed with water and dried at room temperature for 10 minutes and then at 80 占 폚 for 30 minutes to remove water.

(3) 촉매 제조 및 코팅과정(3) catalyst preparation and coating process

상기 샌드 블라스팅으로 전처리된 티타늄 모재에 활성 촉매층 구성을 위해 아래와 같은 촉매 제조 및 코팅과정을 진행하였다. The following catalyst preparation and coating processes were performed on the titanium base material pretreated with the sandblasting to form an active catalyst layer.

이리듐 클로라이드(IrCl4)와 탄탈륨 클로라이드(TaCl5)를 에탄올과 소량의 염산을 통해 하루 동안 용해하여 단일 금속용액을 각각 제조하였고, 탄탈륨 금속용액을 이리듐 금속용액에 소량씩 주입하여 최종 Ir:Ta 혼합 금속용액을 제조한 후 다시 하루 동안 교반하였다. 이때, Ir:Ta의 혼합 조성비는 몰 비로 85:15, 혼합 금속농도는 순수 금속 기준은 50g/L 로 하였다. A single metal solution was prepared by dissolving iridium chloride (IrCl 4 ) and tantalum chloride (TaCl 5 ) in ethanol and a small amount of hydrochloric acid for one day. A small amount of a tantalum metal solution was injected into the iridium metal solution, After the metal solution was prepared, it was stirred again for one day. At this time, the molar ratio of Ir: Ta was 85:15, and the mixed metal concentration was 50 g / L based on pure metal.

샌드 블라스팅으로 전처리된 티타늄 모재 상부에 브러쉬 코팅을 통해 Ir:Ta=85:15을 1회 도포하고, 상온에서 10분, 80℃ 건조로에서 10분간 건조한 후 420℃에서 30분 동안 열처리하였다. 상기 코팅 과정을 7회 반복하여 1차 코팅된 혼합금속산화물 MMO 양극을 제조하였다.Ir: Ta = 85: 15 was applied once to the upper part of the titanium base material pretreated with the sandblasting by brush coating, dried at room temperature for 10 minutes, dried at 80 ° C for 10 minutes, and then heat treated at 420 ° C for 30 minutes. The coating process was repeated 7 times to prepare a primary coated mixed metal oxide MMO anode.

(4) 2차 촉매 제조 및 코팅과정(4) Secondary catalyst preparation and coating process

상기와 같이 티타늄 모재 상부에 1차 코팅된 코팅층(이하"내부 코팅층"이라 함)을 형성한 다음 상기 촉매와 동일한 금속 및 혼합금속농도를 사용하되 Ir:Ta의 혼합 조성비를 1:9로 한 혼합 금속용액을 내부 촉매층 상부에 3회 도포하고 실시예 1과 동일 건조 과정을 거친 후 열처리온도를 380℃에서 30분간 진행하여 표면 코팅층을 형성하여 최종 복합 금속산화물(MMO) 양극을 제조하였다.(Hereinafter referred to as " inner coating layer ") was formed on the upper surface of the titanium base material as described above, and a mixture of the same metal and mixed metal as that of the catalyst was used, The metal solution was applied to the upper portion of the inner catalyst layer three times, followed by drying in the same manner as in Example 1, followed by a heat treatment at 380 ° C for 30 minutes to form a surface coating layer to prepare a final composite metal oxide (MMO) anode.

[비교예][Comparative Example]

50mm X 100mmX 1t 크기의 Gr.1 티타늄 모재를 30℃의 아세톤 용액(50%)에 10분간 초음파 세정한 후 24메쉬 금강사로 샌드 블라스팅 처리하여 Ra=5±1.0㎛ 수준의 거칠기가 생성되도록 하였다. 에어 콤프레셔를 통해 불순물을 제거한 후 50℃의 염산 용액(10%)에 침지하여 10분간 초음파 세정하여 에칭 공정을 수행하였고, 물로 티타늄 모재를 세척한 다음 상온에서 10분, 80℃ 건조로에 30분 동안 건조하여 수분을 모두 제거하였다.The Gr.1 titanium base material having a size of 50 mm X 100 mm x 1 t was ultrasonically cleaned in an acetone solution (50%) at 30 ° C for 10 minutes, and then subjected to sandblasting with a 24 mesh armor to produce a roughness of Ra = 5 ± 1.0 μm. After removing the impurities through an air compressor, the substrate was immersed in a hydrochloric acid solution (10%) at 50 ° C. and ultrasonically cleaned for 10 minutes to perform an etching process. The titanium base material was washed with water and then dried for 10 minutes at room temperature, And dried to remove water.

상기 전처리된 티타늄 모재 표면에 활성 촉매층 구성을 위해 상기 실시예와 동일한 Ir:Ta=85:15(순수 금속 기준 50g/L) 혼합 금속용액을 8회 코팅하여 혼합금속산화물 MMO 양극을 제조하였다.On the surface of the pretreated titanium base material, a mixed metal oxide MMO anode was prepared by coating the same mixed metal solution of Ir: Ta = 85: 15 (50 g / L on pure metal) 8 times as in the above example for constituting the active catalyst layer.

상기와 같이 일련의 과정을 통해 제조된 복합 금속산화물 양극의 3종의 샘플(10mm X 10mm X 1t)을 각각 채취하여 60℃ 온도의 1.5M 황산에서 3A/cm2의 전류밀도로 가속수명(ALT, Accelerated Life Test)을 측정하였다. The three kinds of samples of the complex metal oxide cathode (10mm X 10mm X 1t) by taking the respective acceleration in 1.5M sulfuric acid at 60 ℃ temperature at a current density of 3A / cm 2 lifetime produced through a series of processes as described above (ALT , Accelerated Life Test).

수명 종료시점은 초기 형성전압에서 5V까지 상승한 시점으로 선정하였고 실시예 1, 실시예 2 샘플 및 비교예 샘플의 최종 내구수명이 620시간, 636시간, 546시간으로 나타났다. 상세한 실험조건은 아래 표 1 및 표 2 와 같다. The end of life was selected as the time point from the initial formation voltage to 5V, and the final durability life of the samples of Example 1, Example 2 and Comparative Example was 620 hours, 636 hours, and 546 hours. The detailed experimental conditions are shown in Table 1 and Table 2 below.

항목Item 양극크기Anode size 전해질 Electrolyte 전류밀도Current density 온도Temperature 가속수명평가  Accelerated Life Evaluation 10x10mm2x 1t10x10mm 2 x 1t 1.5M H2SO4 1.5 MH 2 SO 4 3A/cm2 3A / cm 2 60℃    60 ° C

Figure pat00001
Figure pat00001

또한, 상기 동일 금속산화물 3종을 이용하여 동도금 용액 광택제 소모량 평가 진행하였다. CVS 분석장비 (Metrohm, 797VA)를 통해 실시예 양극 2종 및 비교예 양극 1종을 각각의 양극으로 사용하여 전해 동도금 반응을 진행한 후 반응 전 동도금 용액 내 광택제 농도와 3종 양극의 전해 동도금 반응 후 동도금 용액 내 광택제 농도 총 4종류를 측정, 비교하였다. 실험에 사용된 광택제는 상용 광택제를 사용하였고 초기 농도(반응전 농도)는 1mL/L로 설정하였다. 상세한 실험조건 및 결과는 아래 표와 같다. In addition, consumption of the copper plating solution polishing agent was evaluated using the same metal oxide. Electrolytic copper plating reaction was carried out using two anode and one anode of Comparative Example through a CVS analyzing apparatus (Metrohm, 797 VA). The electrolytic copper plating reaction of the anode and the polish concentration in the pre-reaction copper plating solution The concentration of the polishing agent in the copper plating solution was measured and compared. The polishing agent used in the experiment was a commercial polishing agent and the initial concentration (pre-reaction concentration) was set at 1 mL / L. Detailed experimental conditions and results are shown in the table below.

실험결과 실시예 1,2의 양극 및 비교예 양극의 광택제 소모율이 각각 27.5%, 10%, 43.9%로 나타났다. 상세한 실험조건은 아래 표 3 및 표 4 와 같다. As a result, the consumption rates of the brighteners of the positive and negative electrodes of Examples 1 and 2 were 27.5%, 10% and 43.9%, respectively. The detailed experimental conditions are shown in Tables 3 and 4 below.

항목 Item 양극크기Anode size
(반응면적)    (Reaction area)
전류밀도 및 도금시간Current Density and Plating Time 온도Temperature
광택제 소모량 평가  Evaluation of Polish Consumption 50x100mm2
(50x50mm2)
50x100mm 2
(50 x 50 mm 2 )
1.5ASD 10min   1.5 ASD 10 min 22℃    22 ℃
광택제 소모량 계산식:
[반응 전 동도금용액 광택제 농도(mL/L)-반응 후 동도금용액 광택제 농도(mL/L)×100(%)
Polishing agent consumption formula:
[Concentration of the copper plating solution before the reaction (mL / L) - Concentration of the copper plating solution after the reaction (mL / L) × 100 (%)

항목   Item 광택제 농도(mL/L)Brightener concentration (mL / L) 광택제 소모율(%)Consumption of Brightener (%) 도금반응 전       Before plating reaction 0.998     0.998 -       - 실시예 1(반응후)       Example 1 (after reaction) 0.724     0.724 27.5       27.5 실시예 2(반응후)       Example 2 (after reaction) 0.898     0.898 10.0       10.0 비교예 (반응후)       Comparative Example (after the reaction) 0.559     0.559 43.9       43.9

상기 실시예 2를 통해서 제조된 금속산화물 양극은 각종 전해도금공정의 산소발생용 양극(Anode)으로 사용 가능하며, 특히 PCB 전해 동도금 공정에서 유기첨가제의 소모를 억제하고 성능이 개선된 금속산화물 양극으로 확인할 수 있다.The metal oxide anode prepared in Example 2 can be used as an anode for oxygen generation in various electrolytic plating processes. In particular, in the PCB electrolytic copper plating process, the consumption of organic additives is suppressed and the metal oxide anode Can be confirmed.

이상에서 본 발명은 상기 실시예를 참고하여 설명하였지만 본 발명의 기술사상 범위 내에서 다양한 변형실시가 가능함은 물론이다.While the present invention has been described with reference to the exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments.

1: 기질(substrate)
2: 하부 코팅층
3: 상부 코팅층
1: substrate
2: Lower coating layer
3: Upper coating layer

Claims (7)

전기분해장치의 양극 제조에 있어서,
티타늄 모재 표면에 다중 블라스팅 처리를 하되 블라스팅 볼 크기를 변화하여 서로 다른 거칠기를 가진 표면조도가 형성되도록 하는 전처리 단계와,
상기 전처리된 티타늄 모재에 촉매 코팅층의 혼합 조성비를 다르게 한 복합 금속산화물 코팅층(Mixed Metal Oxide, MMO)을 형성하는 단계와,
상기 복합 금속산화물 코팅층 형성시에 열처리온도를 다르게 한 것을 포함하여서 됨을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
In the production of the positive electrode of the electrolytic apparatus,
A pretreatment step of subjecting the surface of the titanium base material to multi-blasting to vary the blast ball size to form surface roughnesses having different roughnesses,
Forming a composite metal oxide (MMO) layer having a different composition ratio of the catalyst coating layer on the pretreated titanium base material;
Wherein the mixed metal oxide coating layer is formed at a different heat treatment temperature in forming the composite metal oxide coating layer.
제1항에 있어서,
상기 양극 코팅 물질의 기본 몰조성이 AxByCz이고, x+y+z=100 이며, 여기에서 A, B는 백금족금속, C는 밸브메탈이고, 각각의 코팅층의 함량을 달리한 용액으로 도포하여 형성된 다층 구조의 코팅층으로 된 것을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
The method according to claim 1,
Wherein the anode coating material has a basic molar composition of AxByCz and x + y + z = 100, wherein A and B are platinum group metals, and C is a valve metal, and each of the coating layers is coated with a solution having different contents, Wherein the metal oxide layer is formed of a coating layer of a structure of a metal oxide.
제1항에 있어서,
상기 샌드 블라스팅 볼 크기 변화를 적게는 2회에서 많게는 5회로 변화시키며 다중 전처리하여 블라스팅 조도 증가 및 표면적을 확장시키는 것을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
The method according to claim 1,
Wherein the sandblasting ball size change is changed from two times to five times at most, and multiple pretreatment is performed to increase the blast rugging and increase the surface area of the metal oxide anode for PCB electrolytic copper plating.
제3항에 있어서,
상기 블라스팅 볼 크기는 1차 샌드 블라스팅 처리단계에서는 16메쉬 이상 46메쉬 미만으로 처리하고, 점차적으로 블라스팅 볼 크기를 20% 내지 80%인 메쉬를 사용하여 전처리하는 것을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
The method of claim 3,
Wherein the blast ball size is pretreated by using a mesh having a blast ball size of 20 to 80% and a size of 16 to 46 meshes in the first stage of sandblasting, A method of manufacturing an anode.
제1항에 있어서,
상기 금속산화물의 코팅시에 코팅 횟수는 4회 내지 25회 코팅하게 됨을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
The method according to claim 1,
Wherein the metal oxide is coated four to 25 times during the coating of the metal oxide.
제 1항에 있어서,
상기 금속산화물의 코팅시에 열처리 온도는 350℃ 내지 600℃ 범위내에서 소성시키는 것을 됨을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
The method according to claim 1,
Wherein the metal oxide is baked at a temperature of 350 ° C to 600 ° C during the coating of the metal oxide.
제 1항에 있어서,
상기 금속산화물의 코팅시에 소성시간은 10분 내지 60분 범위내에서 소성시키는 것을 특징으로 하는 PCB 전해 동도금용 금속산화물 양극의 제조방법.
The method according to claim 1,
Wherein the firing is performed within a range of 10 minutes to 60 minutes during the coating of the metal oxide.
KR1020180000505A 2018-01-03 2018-01-03 Manufacturing Method of mixed metal oxide electrode for PCB KR102064983B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180000505A KR102064983B1 (en) 2018-01-03 2018-01-03 Manufacturing Method of mixed metal oxide electrode for PCB

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180000505A KR102064983B1 (en) 2018-01-03 2018-01-03 Manufacturing Method of mixed metal oxide electrode for PCB

Publications (2)

Publication Number Publication Date
KR20190083041A true KR20190083041A (en) 2019-07-11
KR102064983B1 KR102064983B1 (en) 2020-02-11

Family

ID=67254706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180000505A KR102064983B1 (en) 2018-01-03 2018-01-03 Manufacturing Method of mixed metal oxide electrode for PCB

Country Status (1)

Country Link
KR (1) KR102064983B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312095A (en) * 2020-03-18 2020-06-19 四川英创力电子科技股份有限公司 Blackening treatment process for side surface of printed board for LED transparent display screen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010069918A (en) 2001-05-18 2001-07-25 이수재 Plating apparatus
KR100931095B1 (en) 2008-03-06 2009-12-10 현대자동차주식회사 Asymmetric Hybrid Capacitor Applying Metal Oxide to Anode and Cathode
KR101008899B1 (en) 2008-10-24 2011-01-17 한국과학기술연구원 Cathode for secondary battery having porous positive active material layer comprising metal oxide nanoparticles and the fabrication method thereof
KR101199669B1 (en) * 2012-02-06 2012-11-08 주식회사 한경티엔씨 Method of Anode Coating for Electrolysis Equipments
KR101595625B1 (en) 2013-11-26 2016-02-18 지에스에너지 주식회사 Transition metal oxidegraphene composite microparticle and cathode for lithium secondary battery comprising the same
KR101665754B1 (en) 2013-09-30 2016-10-12 주식회사 엘지화학 Positive electrode active material comprising layered metal oxide and positive electrode for lithiium secondary battery comprising the same
KR20170075528A (en) * 2015-12-23 2017-07-03 희성금속 주식회사 Insoluble electrode for water treatment and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010069918A (en) 2001-05-18 2001-07-25 이수재 Plating apparatus
KR100931095B1 (en) 2008-03-06 2009-12-10 현대자동차주식회사 Asymmetric Hybrid Capacitor Applying Metal Oxide to Anode and Cathode
KR101008899B1 (en) 2008-10-24 2011-01-17 한국과학기술연구원 Cathode for secondary battery having porous positive active material layer comprising metal oxide nanoparticles and the fabrication method thereof
KR101199669B1 (en) * 2012-02-06 2012-11-08 주식회사 한경티엔씨 Method of Anode Coating for Electrolysis Equipments
KR101665754B1 (en) 2013-09-30 2016-10-12 주식회사 엘지화학 Positive electrode active material comprising layered metal oxide and positive electrode for lithiium secondary battery comprising the same
KR101595625B1 (en) 2013-11-26 2016-02-18 지에스에너지 주식회사 Transition metal oxidegraphene composite microparticle and cathode for lithium secondary battery comprising the same
KR20170075528A (en) * 2015-12-23 2017-07-03 희성금속 주식회사 Insoluble electrode for water treatment and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312095A (en) * 2020-03-18 2020-06-19 四川英创力电子科技股份有限公司 Blackening treatment process for side surface of printed board for LED transparent display screen

Also Published As

Publication number Publication date
KR102064983B1 (en) 2020-02-11

Similar Documents

Publication Publication Date Title
KR101185194B1 (en) Improved plating method
EP2518187A1 (en) Aqueous acidic bath for electrolytic deposition of copper
EP3431634B1 (en) Environmentally friendly nickel electroplating compositions and methods
US20060057420A1 (en) Copper foil provided with dielectric layer for forming capacitor layer, copper clad laminate for formation of capacitor layer using such such copper foil with dielectric layer, and method for producing such copper foil with dielectric layer for formation of capacitor layer
CN105189827A (en) Method for depositing thick copper layers onto sintered materials
KR20060032210A (en) Stacked ceramic electronic component and manufacturing method thereof
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
Buming et al. Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate
Zeng et al. Effects of additives in an electrodeposition bath on the surface morphologic evolution of electrodeposited copper
EP3431633B1 (en) Environmentally friendly nickel electroplating compositions and methods
KR20190083041A (en) Manufacturing Method of mixed metal oxide electrode for PCB
WO2004038070A2 (en) Pulse reverse electrolysis of acidic copper electroplating solutions
CN107385487B (en) Tetra- oxa- -3,9- of 2,4,8,10-, two phospha spiro-compound is in the application of HDI plate copper plating rapidly pretreatment solution and its pre-treating technology
CN105873352A (en) Substrate for high-frequency communication and manufacture method thereof
JP2008285732A (en) Nickel plating solution, electroplating method using the same, and chip component with nickel-plated film formed by the electroplating method
US2969295A (en) Chemical gold plating
US20030188974A1 (en) Homogeneous copper-tin alloy plating for enhancement of electro-migration resistance in interconnects
TW201432089A (en) A method for plating a substrate with a metal
Radanyi et al. Whisker formation on galvanic tin surface layer
JP4532385B2 (en) Electroless plating method
Zhou et al. Production of low-Sn Cu-Sn alloy coatings onto steel substrate using sodium citrate bath–part 1: the effect of current mode (DC or SPC) and applied current on the chemical, morphological, and anticorrosive properties of the coatings
CN115745666B (en) Microwave dielectric ceramic and surface metallization process thereof
Mohan et al. A comparative study of DC and pulse gold electrodeposits
JP2002302778A (en) Method of forming electroconductive part on anodic- oxidized film of aluminum alloy
US3428441A (en) Article coated with a composite particulate,microporous chromium coating and method of producing said article

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant