KR20190081103A - MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY - Google Patents

MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY Download PDF

Info

Publication number
KR20190081103A
KR20190081103A KR1020170183419A KR20170183419A KR20190081103A KR 20190081103 A KR20190081103 A KR 20190081103A KR 1020170183419 A KR1020170183419 A KR 1020170183419A KR 20170183419 A KR20170183419 A KR 20170183419A KR 20190081103 A KR20190081103 A KR 20190081103A
Authority
KR
South Korea
Prior art keywords
cralsin
layer
cralsion
coating film
pvd
Prior art date
Application number
KR1020170183419A
Other languages
Korean (ko)
Other versions
KR102036974B1 (en
Inventor
하태권
김동주
장경수
권세훈
이우재
김다영
Original Assignee
(주)서영
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)서영, 부산대학교 산학협력단 filed Critical (주)서영
Priority to KR1020170183419A priority Critical patent/KR102036974B1/en
Publication of KR20190081103A publication Critical patent/KR20190081103A/en
Application granted granted Critical
Publication of KR102036974B1 publication Critical patent/KR102036974B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Abstract

The present invention provides composition of a new coating layer, capable of maintaining a high hardness property and a corrosion resistance property despite of usage environment for a long term when a high hardness coating layer is formed, and a manufacturing method for the same. According to a purpose of the present invention, after a CrAlSiN layer is formed on a base material on which high hardness coating is performed, by a PVD method, a CrAlSiON layer is formed by oxygen injection in a same PVD chamber. Also, the CrAlSiN layer is formed by the PVD method. So, a multilayer coating film of a CrAlSiN/CrAlSiON/CrAlSiN structure can be provided. In other words, the present invention is to improve problems of pollution and time increase during an existing process of using a PVD and an ALD at the same time.

Description

산소 주입에 의한 CrAlSiON 층이 삽입된 고내식성 CrAlSiN 코팅막의 제조방법 및 그에 따른 다이캐스팅 금형{MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY}Technical Field [0001] The present invention relates to a method of manufacturing a high corrosion resistance CrAlSiN coating film in which a CrAlSiON layer is inserted by oxygen implantation, and a die casting mold using the same. [0002]

본 발명은 내부식을 향상시킬 수 있는 고경도 코팅막 제조방법에 관한 것으로, 좀 더 상세하게는 고경도 코팅막 공정 중 주기적인 산소 플라즈마 처리에 의하여 고경도 코팅막 내에 CrAlSiON 층이 삽입되어 고내식 특성을 가지는 코팅막을 제조하는 방법 및 그 응용에 관한 것이다.More particularly, the present invention relates to a method of manufacturing a high hardness coating film capable of improving internal corrosion, and more particularly, to a method of manufacturing a high hardness coating film having a high corrosion resistance by inserting a CrAlSiON layer into a hard coating layer by periodic oxygen plasma treatment To a method of manufacturing a coating film and its application.

산업사회의 기술의 고도화 및 고정밀화에 따라서, 다양한 제조방법이 제공되고 있으며, 가공산업 분야에서도 생산성을 높이기 위한 노력들이 계속되고 있다. 이에 따라서 절삭공구, 금형 및 기계부품 등에 표면처리를 통하여, 우수한 내마모성, 내산화성, 인성, 고온 안정성 및 내구성을 가지는 보호경질 코팅막의 개발이 요구되고 있다. 즉, 절삭공구, 금형, 자동차 부품 등 다양한 기계부품의 수명연장과 성능 향상을 위하여 고경도 코팅막이 적용되고 있다. 특히, 자동차 부품에 제작에 사용되는 다이캐스팅 공정 시 금형 수명 저하의 문제는 주로 금형의 마모, 소착, 부식, 및 열사이클 환경 노출에 따른 열균열에 의해 발생된다. 현재는 질화 및 탄화처리 (열처리)에 의해 이러한 문제점을 다소 개선하고는 있으나, 고온에서 사용되는 다이캐스팅 금형의 특성상 근본적인 해결책이 되기 어려우며, 특히 열처리에 따른 비용 증대, 그리고 제한적인 수명향상 특성이 문제점으로 지적되고 있다. As the technology of the industrial society becomes more sophisticated and high-precision, various manufacturing methods are being provided, and efforts are being made to increase productivity in the processing industry. Accordingly, development of protective hard coating films having excellent abrasion resistance, oxidation resistance, toughness, high temperature stability, and durability through surface treatment for cutting tools, molds, and machine parts is required. In other words, high hardness coating films have been applied to extend the life and performance of various mechanical parts such as cutting tools, molds, and automobile parts. Particularly, the problem of the die life degradation in the die casting process used for manufacturing automobile parts is mainly caused by the wear of the mold, the seizure, the corrosion, and the thermal cracking due to the exposure of the environment to the heat cycle. Currently, such problems are somewhat improved by nitriding and carbonization treatment (heat treatment), but it is difficult to provide a fundamental solution due to the characteristics of the die casting mold used at high temperature, and in particular, the cost due to the heat treatment is increased and the life- It is pointed out.

코팅 물질은 고경도, 내소착, 내부식 및 내열특성을 지녀야 하므로 주로 Ti을 베이스로 하는 다성분계 하드코팅막과, Cr을 베이스(base)로 하는 다성분계 하드코팅막이 존재하는데, Ti을 베이스로 하는 코팅막의 경우 낮은 내부식 특성과 고온에서의 내산화성 문제가 발생하기 쉬우므로 적용이 어렵다. 따라서 Cr을 base로 하는 CrAlN 코팅이 고경도, 내열성 측면에서는 유리하며, 수명연장특성 및 내열성 극대화, 및 내소착 특성 부여를 위해서는 Si를 첨가한 코팅막이 유리하다.Since the coating material has high hardness, resistance to seizure, corrosion resistance and heat resistance, there is a multi-component hard coating layer based on Ti and a multi-component hard coating layer based on Cr base. The coating film is difficult to apply because of its low corrosion resistance and oxidation resistance at high temperatures. Therefore, a CrAlN coating based on Cr is advantageous in terms of hardness and heat resistance, and a coating film containing Si is advantageous for maximizing life extension characteristics, heat resistance, and anti-seizure properties.

최근 고온에서의 내산화성, 다양한 부식환경에 대한 내부식성, 및 고경도 특성등의 다기능성을 가지는 고경도 코팅막에 대한 수요 증가에 따라, CrAlN, CrSiN, CrAlSiN, TiAlN, TiSiN, CrAlSiN, CrMoCN, TiAlSiN 등과 같은 3성분계 이상의 다성분계로 이루어진 고경도 코팅막에 대한 많은 연구가 이루어지고 있다. 이러한 다성분계 고경도 코팅막은 아크이온플레이팅, 스퍼터링, 하이핌스(HIPIMS; High-Power Impulse Magnetron Sputtering), 또는 이들 중 두가지 증착공정을 동시에 활용하는 하이브리드 코팅법과 같은 다양한 PVD (Physical Vapor Deposition) 공정에 의하여 형성되고 있다.CrAlN, CrSiN, CrAlSiN, TiAlN, TiSiN, CrAlSiN, CrMoCN, TiAlSiN, and the like have been increasing in recent years in response to the demand for high-hardness coating films having various functions such as oxidation resistance at high temperatures, corrosion resistance against various corrosive environments, And the like have been studied. The multi-component hard coating layer may be applied to various PVD (Physical Vapor Deposition) processes such as arc ion plating, sputtering, high-power impulse magnetron sputtering (HIPIMS), or hybrid coating .

특히, CrAlSiN 박막은 Thin Solid films지 519호, 1894-1900 page 등에 의해 보고된 바와 같이, CrN 결정립 내에 Al의 고용에 의한 고용 강화 효과와 Si 첨가에 따른 비정질 구조의 얇은 SiNx 층이 CrN 결정립을 둘러싸는 나노복합구조 (Nanocomposite structure) 효과에 의해 40GPa 이상의 높은 경도를 가질 수 있으며, 우수한 내산화성을 가져, 고속강에 적용되었을 때 우수한 특성을 나타낼 수 있다고 보고되고 있다.In particular, as reported by Thin Solid Films, No. 519, page 1894-1900, CrAlSiN thin films have a solubility enhancement effect by the solid solution of Al in CrN grains and a thin SiNx layer of amorphous structure surrounding the CrN grains Has a high hardness of 40 GPa or more due to the nanocomposite structure effect, and has excellent oxidation resistance, and it is reported that it can exhibit excellent characteristics when applied to high-speed steel.

그러나, 아크이온플레이팅, 스퍼터링, 하이핌스(HIPIMS; High-Power Impulse Magnetron Sputtering), 또는 이들 중 두 가지 증착 공정을 동시에 활용하는 하이브리드 코팅법과 같은 다양한 PVD법을 통하여 CrAlSiN 코팅막을 형성하는 경우, 코팅막 내에 Al과 Si이 국부적으로 불균일하게 분포되는 문제점과, PVD법의 한계상 기둥형 그레인(Columnar Growth), 핀홀(Pinhole), 공극(Void), 매크로파티클(Macroparticle)과 같은 구조상의 고유결함이 존재하여, 위치마다 국부적인 특성차이가 발생되게 된다. 특히, 경도차이에 의한 국부적인 코팅막의 파손과, 내산화성 및 내부식성의 차이에 의한 부분적 산화로 인해 코팅막이 파손이 일어날 수 있다.However, when a CrAlSiN coating film is formed by various PVD methods such as a hybrid coating method using arc ion plating, sputtering, high-power impulse magnetron sputtering (HIPIMS), or both of these deposition processes, There is a problem that the Al and Si are locally unevenly distributed in the PVD method and the inherent defects of the structure such as columnar growth, pinhole, void and macroparticle exist in the limit of the PVD method So that a local characteristic difference is generated for each position. Particularly, breakage of the coating film due to difference in hardness and partial oxidation due to difference in oxidation resistance and corrosion resistance can cause breakage of the coating film.

국내 특허 등록 제10-1659232호, 국내 특허 출원 제10-2016-0158900호에는 이러한 불균일한 특성을 개선하기 위한 방법에 기재되어 있다. 즉, 고경도 코팅막의 내부에 도포성이 우수한 원자층증착법(ALD; Atomic Layer Deposition)을 통해 수~수십 nm 두께의 매우 얇고, 결함이 없는 산화막을 삽입하여, 고경도 코팅막 내부에 산화층이 삽입된 구조를 게시하였다. ALD를 통해 삽입된 얇고, 결합이 없는 산화막 층은 앞서 언급한 PVD에 의한 코팅막에 존재하는 다양한 고유결함을 감싸 균일한 내부식성, 내산화성과 높은 경도를 구현할 수 있다. 그러나, 이러한 방법은 한 공정챔버에서 진행하는 경우 낮은 증착압력을 이용한 PVD법 도중에 높은 공정압력을 이용하는 ALD 공정 분위기로 바꾸어 주어야 하므로 번거롭고 ALD 공정에서 활용되는 프리커스로 인한 오염이 발생할 수 문제점을 가지고 있으며, PVD와 ALD를 연결한 장치를 활용하는 경우 비용과 공정시간이 크게 늘어나는 문제점을 가지고 있다.Korean Patent Registration No. 10-1659232, and Korean Patent Application No. 10-2016-0158900 describe a method for improving such uneven characteristics. That is, an extremely thin, defect-free oxide film having a thickness of several to several tens of nanometers is inserted into the hard coat film through atomic layer deposition (ALD), which has excellent applicability, and an oxide layer is inserted into the hard coat film Structure. The thin, unbonded oxide layer inserted through ALD can achieve uniform corrosion resistance, oxidation resistance and high hardness by wrapping various inherent defects existing in the coating layer by PVD mentioned above. However, this method is troublesome because it is necessary to change the ALD process atmosphere using a high process pressure during the PVD process using low deposition pressure in case of proceeding in one process chamber, and there is a problem that contamination due to precursor used in the ALD process may occur , There is a problem that cost and process time are greatly increased when a device connecting PVD and ALD is used.

따라서 본 발명의 목적은 CrAlSiN 코팅막을 형성함에 있어, 앞서 언급된 불균일한 경도, 내산화성 및 내부식성 문제를 해결할 수 있으면서도, 간단히 동일한 챔버내에서 구현이 가능한 새로운 CrAlSiN 고경도 코팅막 제조 방법을 제공하고자 하는 것이다. Accordingly, an object of the present invention is to provide a novel method of producing a CrAlSiN hardness coating film which can solve the above-mentioned problems of uneven hardness, oxidation resistance and corrosion resistance in forming a CrAlSiN coating film, will be.

또한, 본 발명은 자동차 부품인 피벗브라켓 등을 주조하여 성형하기 위한 주조 금형 제작에 상기 Cr-Al-Si-N계 경질코팅막을 적용하여 금형의 내구수명을 향상시켜 궁극적으로는 부품 제조의 생산성을 향상시키고자 한다. In addition, the present invention can improve the durability of a mold by applying the Cr-Al-Si-N hard coating film to the casting mold for casting and molding a pivot bracket or the like as an automobile part, .

상기 목적에 따라, 본 발명에서는 CrAlSiN 고경도 코팅막을 형성함에 있어, 하나의 공정챔버에서 PVD법으로 CrAlSiN 코팅막을 증착하는 경우, CrAlSiN 고경도 코팅막 공정중 일정량의 OXYGEN을 주입함으로서, 간단히 CrAlSiN 코팅막 내에 CrAlSiON 층이 삽입된 구조를 구현할 수 있는 새로운 코팅막 제조방법을 제공하고자 한다. According to the above-mentioned object, in the present invention, when a CrAlSiN coating film is deposited by a PVD method in a single process chamber in forming a CrAlSiN hard coat film, a certain amount of OXYGEN is injected in a CrAlSiN hard coat film process, Layer structure of the present invention.

즉, PVD법을 통해 연속적으로 진행되는 CrAlSiN 코팅공정 중, 산소(Oxygen gas)를 일정시간만 주입하여 이미 증착된 CrAlSiN 코팅층 표면부에 CrAlSiON 층을 일정두께로 형성하고, Oxygen gas 주입을 멈추고 다시 CrAlSiN 코팅층을 형성하여, CrAlSiN 코팅막 내부에 CrAlSiON 층이 삽입된 고경도 코팅막을 형성하는 방법을 활용하여, PVD와 ALD를 사용하여 경질코팅막 내부에 산화층을 삽입된 구조를 구현하는 방법의 단점을 개선한 새로운 다층 코팅막 제조 방법을 제공한다.That is, in the CrAlSiN coating process continuously performed through the PVD method, the CrAlSiON layer is formed to have a predetermined thickness on the surface portion of the CrAlSiN coating layer that has already been deposited by injecting the oxygen gas for a predetermined time, and the oxygene gas injection is stopped, A method of forming a hardened coating layer in which a CrAlSiON layer is inserted in a CrAlSiN coating layer by using a PVD and an ALD, A method for producing a multilayer coating film is provided.

상기에 있어서, CrAlSiN 박막내에 CrAlSiON 층이 삽입되어 있는 다층 코팅막 (즉 CrAlSiN/CrAlSiON/CrAlSiN 다층코팅막) 구조에서 CrAlSiON 코팅층의 두께는 10 내지 50nm로 삽입되며, CrAlSiN 층은 0.5 um 내지 1.5 um로 형성되는 것을 특징으로 하는 코팅 막 형성방법을 제공한다. In the above, the thickness of the CrAlSiON coating layer is inserted at 10 to 50 nm in the multilayered coating film (i.e., CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film) structure in which the CrAlSiON layer is inserted in the CrAlSiN thin film, and the CrAlSiN layer is formed at 0.5 to 1.5 Wherein the coating film forming method comprises the steps of:

또한, 본 발명은, 피벗브라켓과 같은 부품의 다이캐스팅 금형 제작에 상기 경질코팅막 증착하여 금형의 내구성과 수명을 향상시킨다. In addition, the present invention improves the durability and lifetime of the mold by depositing the hard coating on the die casting mold of a part such as a pivot bracket.

상기에서, NC 등의 기계가공으로 금형을 제작하고 금형으로 주물사를 사용하여 반대형상의 주형을 제작하며, 주형 내면에 상술한 CrAlSiN/CrAlSiON/CrAlSiN 다층코팅막을 형성한다. In the above, a mold is formed by machining such as NC, a mold having an opposite shape is manufactured using a molding sand with a mold, and the CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film is formed on the inner surface of the mold.

아크이온플레팅(Arc ion plating)법과 스퍼터(sputter)법을 이용하여 대상물의 표면에 Cr-Al-Si-N계 경질코팅막을 증착하며, 이를 위해, 증착 대상물을 챔버 내에 위치시키고, 상기 챔버의 내부를 소정의 진공 상태로 한 후, 소정 온도까지 가열하고; A Cr-Al-Si-N hard coating film is deposited on the surface of the object by using an arc ion plating method and a sputtering method. For this purpose, an object to be deposited is placed in the chamber, Heating the inside of the furnace to a predetermined temperature after setting the inside of the furnace to a predetermined vacuum state;

상기 챔버 내부에 Ar과 같은 불활성 가스를 유입시킨 후, 증착 대상물에 소정의 바이어스 전압을 인가하여 시편의 전처리를 수행하고; Introducing an inert gas such as Ar into the chamber, and then applying a predetermined bias voltage to the object to be vaporized to perform pretreatment of the specimen;

상기 챔버 내로의 불활성 가스의 유입을 차단하고, 상기 챔버내부를 다시 진공상태로 한 후, 소정 온도까지 가열하는 과정과; Blocking the flow of the inert gas into the chamber, heating the inside of the chamber to a vacuum state again, and then heating the chamber to a predetermined temperature;

상기 챔버 내부로 불활성 가스와 N2 가스를 유입시키고, 상기 시편에 바이어스 전압을 인가한 상태에서, An inert gas and N 2 gas are introduced into the chamber, and in a state where a bias voltage is applied to the specimen,

스퍼터건과 아크건에 각각 전원을 인가하여 대상물의 표면에 Cr-Al-Si-N계 경질 코팅막을 증착하되, 중간에 산소를 공급하여 다층막이 형성되게 한 것을 특징으로 하는 금형제작방법을 제공한다. The present invention provides a method of manufacturing a metal mold by depositing a Cr-Al-Si-N hard coating film on the surface of an object by applying power to each of the sputter gun and the arc gun, .

도 1과 같이 종래의 PVD법을 통해 첫 번째 CrAlSiN 코팅 증착 후 ALD법으로 삽입층(Interlayer)을 증착한 이후 다시 PVD법에 의한 두 번째 CrAlSiN 코팅을 형성한 고경도 코팅막의 경우, PVD 공정을 통해 CrAlSiN 코팅막 증착을 위해서는 통상적으로 1~100mTorr의 낮은 공정압력에서 진행된다. 반면, ALD를 이용하는 interlayer 공정은 0.5 ~ 3 Torr의 상대적으로 높은 공정압력에서 수행되므로, 압력을 높이기 위한 공정시간의 증가와, ALD interlayer 공정 이후, 다시 PVD 공정을 이용한 CrAlSiN 증착을 위하여 1~100mTorr로 낮춰주기 위한 공정시간의 증가가 소요되어 공정시간이 늘어나게 된다. 특히, ALD를 이용한 interlayer 공정은 흡착현상을 이용하여 증착이 이루어지므로, 프리커서의 주입 및 반응물의 주입에 따라, PVD를 위한 타겟부에 오염 및 산화물 증착이 일어나는 문제점을 나타내게 된다.As shown in FIG. 1, the first CrAlSiN coating layer is deposited on the interlayer by the ALD method and the second CrAlSiN coating layer is formed by the PVD method on the PVD layer. For CrAlSiN coating film deposition, it usually proceeds at a low process pressure of 1 to 100 mTorr. On the other hand, since the interlayer process using ALD is performed at a relatively high process pressure of 0.5 to 3 Torr, the process time for increasing the pressure is increased, and after the ALD interlayer process, for the CrAlSiN deposition using the PVD process, 1 to 100 mTorr It is necessary to increase the process time for lowering the process time. Particularly, since the interlayer process using ALD is performed using the adsorption phenomenon, contamination and oxide deposition occur in the target portion for PVD according to the injection of the precursor and the injection of the reactant.

본 발명에 따르면, PVD와 ALD를 번갈아 이용하며 형성하는 다층구조와 유사한 구조를 하나의 PVD 챔버(Chamber) 내에서 형성할 수 있으며, PVD법을 통해 연속적으로 진행되는 CrAlSiN 코팅공정 중, 산소(Oxygen gas)를 일정시간만 주입하여 이미 증착된 CrAlSiN 코팅층 표면부에 CrAlSiON 층을 일정두께로 형성하고, 산소 가스 주입을 멈추고 다시 CrAlSiN 코팅층을 형성하여, CrAlSiN 코팅막 내부에 CrAlSiON 층이 삽입된 고경도 코팅막을 형성할 수 있다. 산소 주입에 의해 형성된 CrAlSiON 층은 ALD를 통한 산화막 층과 유사하게 내부식성, 내산화성이 매우 우수하여, 유수한 내부식성, 내산화성 및 높은 경도를 구현할 수 있으며, 이와 같이 PVD와 ALD를 사용하여 경질코팅막 내부에 산화층을 삽입된 구조를 구현하는 방법의 단점을 개선한 새로운 다층 코팅막 제조 방법을 제공할 수 있다.According to the present invention, it is possible to form a structure similar to a multi-layer structure in which PVD and ALD are alternately formed in one PVD chamber. In the CrAlSiN coating process continuously performed through the PVD method, oxygen gas was injected for a certain period of time to form a CrAlSiON layer on the surface of the CrAlSiN coating layer having a predetermined thickness, stopping the injection of oxygen gas, forming a CrAlSiN coating layer on the CrAlSiN coating layer, . The CrAlSiON layer formed by the oxygen implantation is very similar to the oxide layer through ALD and has excellent corrosion resistance and oxidation resistance and can realize the excellent corrosion resistance, oxidation resistance and high hardness. Thus, by using PVD and ALD, It is possible to provide a novel multilayer coating film manufacturing method which improves disadvantages of the method of embodying a structure in which an oxide layer is inserted therein.

이로써 공정압력의 변화없이 중간에 산소 주입을 통해 CrAlSiN/CrAlSiON/CrAlSiN 다층코팅막을 형성하면, 우수한 고경도 및 내부식성을 구현할 수 있어, 각종 공구나 전극체, 금형 등의 교체 주기를 줄일 수 있다.Thus, when the CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film is formed through oxygen injection in the middle without changing the process pressure, it is possible to realize excellent hardness and corrosion resistance, thereby reducing replacement cycles of various tools, electrode bodies, and molds.

도 1은 종래의 PVD법을 통해 첫 번째 CrAlSiN 코팅 증착후 ALD법으로 산화물 삽입층(Interlayer)을 증착한 이후 다시 PVD법에 의한 두 번째 CrAlSiN 코팅을 형성하여 활용하는 고경도 코팅막의 구조 및 공정조건을 포함한 순서도를 나타낸다.
도 2는 본 발명에 따른 PVD법을 통한 CrAlSiN/CrAlSiON/CrAlSiN 다층 코팅막 구조 및 이를 형성하기 위한 공정 개요도를 나타낸다.
도 3은 금형의 내구성 수명에 문제를 일으키는 현상을 설명하는 모식도이다.
도 4는 피벗브라켓의 상하금형을 보여준다.
도 5는 본 발명에 따라 금형에 다층코팅막을 형성하기 위해 CrAlSiN 경질코팅막 형성 공정의 조건을 보여주는 표이다.
도 6은 본 발명에 따라 다층코팅막이 형성된 피벗브라켓 금형 사진이다.
FIG. 1 shows the structure and process conditions of a high-hardness coating layer used for forming a second CrAlSiN coating by PVD after depositing an oxide interlayer by an ALD method after first CrAlSiN coating deposition through a conventional PVD method . ≪ / RTI >
FIG. 2 shows a structure of a CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film by a PVD method according to the present invention and a schematic diagram of a process for forming the same.
Fig. 3 is a schematic diagram for explaining a phenomenon that causes problems in the durability life of the mold.
4 shows the upper and lower molds of the pivot bracket.
FIG. 5 is a table showing the conditions of a CrAlSiN hard coating film forming process for forming a multilayer coating film on a mold according to the present invention.
6 is a photograph of a pivot bracket mold in which a multilayer coating film is formed according to the present invention.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, CrAlSiN/CrAlSiON/CrAlSiN 다층 코팅막의 제조에 대해, 도 2를 이용하여 설명한다.First, the production of a CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film will be described with reference to FIG.

모재로서 SUS304 기판을 준비하고 초음파 세정한 다음, Cr 접착층을 형성하여 이후 형성될 다층코팅막의 점착성을 강화한다. 세정 방법은 초음파 외에 플라즈마 세정 등 다른 방법을 적용할 수 있다. CrAlSiN 층은 아크이온 플레이팅, 스퍼터링(Sputtering), HiPIMS와 같은 PVD법을 이용하여 증착하되, Cr, Al, Si을 포함하는 단수 혹은 복수의 타겟(Target)을 이용하여 증착할 수 있으며, 질소(nitrogen) 공급을 위하여 N2 가스를 주입하며 증착한다. CrAlSiN 박막이 0.3 내지 1 um의 두께로 증착이 될 수 있도록 일정시간 동안 증착한 후, CrAlSiON 증착을 위하여 기존의 증착조건에 5 ~ 10 sccm의 산소 가스(oxygen gas)를 30초 내지 3분, 바람직하게는, 1~ 2 분간 주입한 후, 공급을 멈춘다. 산고가 주입되는 시간 동안만 CrAlSiON이 증착되므로, 산소의 공급을 멈추면, 다시 상부에 CrAlSiN층이 증착된다. 상부의 CrAlSiN 박막의 두께가 0.3 내지 1 um 두께가 될 수 있도록 다시 일정시간 동안 증착하면, 본 발명에 의한 CrAlSiN/CrAlSiON/CrAlSiN 구조의 다층 코팅막이 형성된다. CrAlSiN 층의 공정조건에 따라 증착률은 달라질 수 있으나, 시간당 0.5 um의 박막이 형성되는 조건을 활용하여 CrAlSiN 층을 형성하는 경우, 위에 실시예에 따라 CrAlSiN (0.5um) / CrAlSiON (10~20nm) / CrAlSiN (0.5nm) 정도의 두께로 형성된다. CrAlSiN 층 형성 시간은, 30분 내지 1시간 정도로 할 수 있다. An SUS304 substrate is prepared as a base material and ultrasonically cleaned, and then a Cr adhesive layer is formed to enhance the adhesion of the multilayer coating film to be formed thereafter. As the cleaning method, other methods such as plasma cleaning can be applied besides ultrasonic waves. The CrAlSiN layer can be deposited using a PVD method such as arc ion plating, sputtering, and HiPIMS, using single or multiple targets including Cr, Al, and Si, N2 gas is injected and deposited for nitrogen supply. The CrAlSiN thin film is deposited for a predetermined time so that the CrAlSiN thin film can be deposited to a thickness of 0.3 to 1 um and then an oxygen gas of 5 to 10 sccm is deposited on the existing deposition conditions for 30 seconds to 3 minutes , It is injected for 1 to 2 minutes, and then the supply is stopped. Since the CrAlSiON is deposited only during the time when oxygen is injected, when the supply of oxygen is stopped, a CrAlSiN layer is again deposited on the top. The CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film according to the present invention is formed by further depositing the CrAlSiN thin film on the upper side so that the thickness of the upper CrAlSiN thin film becomes 0.3 to 1 μm. CrAlSiN (0.5 .mu.m) / CrAlSiON (10-20 nm) according to the embodiment of the present invention may be used in the case of forming the CrAlSiN layer by utilizing the condition that a thin film of 0.5 .mu.m is formed per hour, / CrAlSiN (0.5 nm). The time for forming the CrAlSiN layer may be about 30 minutes to 1 hour.

본 발명의 실시예는 하나의 챔버에서 연속적으로 코팅막 증착이 진행되며, 중간에 산소 가스의 1 ~ 2 분간의 주입에 의해 CrAlSiN/CrAlSiON/CrAlSiN 다층 코팅막을 형성할 수 있다. 이때 산소 가스 펄스(oxygen gas pulse) 주입 동안 형성된 CrAlSiON 층은 일반적인 산화막과 같이 절연성을 가져 부식이 일어날 때 전하 이동을 막아줄 수 있어 내부식성을 향상시킬 수 있으며, 내산화성 또한 우수한 특성을 가질 수 있다. 또한 지속적인 CrAlSiN 층이 형성되는 것이 아니라, CrAlSiON 층 삽입 효과에 의해 지속적인 결정성장이 일어나지 않게되고, 따라서 결정립이 미세화되는 효과를 주게되어 경도 또한 향상될 수 있다.In the embodiment of the present invention, the deposition of the coating film is continuously performed in one chamber, and the CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film can be formed by injecting oxygen gas for one to two minutes in the middle. At this time, the CrAlSiON layer formed during the oxygen gas pulse implantation has an insulating property like a general oxide film, thereby preventing the charge transfer when corrosion occurs, thereby improving the corrosion resistance and also the oxidation resistance. . Further, the continuous CrAlSiN layer is not formed, but the continuous crystal growth does not occur due to the effect of inserting the CrAlSiON layer, and therefore, the crystal grains are miniaturized and the hardness can also be improved.

기존 방식을 따르면, 모재위에 PVD로 CrAlSiN을 형성하고 그 위에 ALD로 형성한 산화물 interlayer 층을 형성한 후, 다시 PVD로 CrAlSiN을 형성한 CrAlSiN/Al2O3/CrAlSiN/모재의 구조로 만들어지며, PVD->ALD->PVD 공정 변화에 따른 압력을 맞춰주고, 장비간 이동을 위한 공정시간이 증대되는 문제점과, ALD 공정 동안 target위에 산화층이 증착되어 target이 오염되는 문제점을 가지고 있으나, 본 발명에 따르면, 공정 중간에 단순하게 oxygen gas를 주입함에 의해서, CrAlSiN/CrAlSiON/CrAlSiN 다층 구조막을 손쉽게 형성할 수 있으며, 만들어진 CrAlSiN코팅층 내부에 CrAlSiON층이 남게 되어 고경도 및 내부식 특성이 유지될 수 있다. 이러한 방법은 실제 코팅막을 형성하는 산업체에서 다층코팅막을 형성하는 데 매우 유리하다. According to the conventional method, a CrAlSiN / Al 2 O 3 / CrAlSiN / base material structure is formed by forming CrAlSiN on PVA as a base material, forming an oxide interlayer layer formed on the CrAlSiN layer by ALD and then forming CrAlSiN by PVD, There is a problem that the process time for moving the device is adjusted by adjusting the pressure according to the PVD->ALD-> PVD process change, and there is a problem that the target is contaminated due to deposition of the oxide layer on the target during the ALD process. CrAlSiN / CrAlSiON / CrAlSiN multi-layered film can be easily formed by simply injecting oxygen gas in the middle of the process, and the CrAlSiON layer is left inside the CrAlSiN coating layer so that hardness and corrosion resistance can be maintained. This method is very advantageous for forming a multi-layer coating film in an industry that forms an actual coating film.

상기의 코팅 방법을 도 3과 같은 금형의 내구성 수명에 문제를 일으키는 현상을 방지하기 위하여 금형에 응용할 수 있다. The above coating method can be applied to a mold to prevent the problem of durability life of the mold as shown in FIG.

먼저, NC 등의 기계가공으로 금형을 제작하고 금형으로 주물사를 사용하여 반대형상의 주형을 제작하며, 주형 내면에 상술한 CrAlSiN/CrAlSiON/CrAlSiN 다층코팅막을 형성한다. 본 실시예에서는 도 4와 같이 피벗브라켓 금형에 응용하였다. First, a mold is formed by machining such as NC, a mold having an opposite shape is formed by using a molding sand with a mold, and the CrAlSiN / CrAlSiON / CrAlSiN multilayer coating film is formed on the inner surface of the mold. In this embodiment, the present invention is applied to a pivot bracket mold as shown in FIG.

아크이온플레팅(Arc ion plating) 법과 스퍼터(sputter) 법을 이용하여 대상물의 표면에 Cr-Al-Si-N계 경질코팅막을 증착하며, 이를 위해, 증착 대상물을 챔버 내에 위치시키고, 상기 챔버의 내부를 소정의 진공 상태로 한 후, 소정의 온도까지 가열하고; 상기 챔버 내부에 Ar과 같은 불활성 가스를 유입시킨 후, 증착 대상물에 소정의 바이어스 전압을 인가하여 시편의 전처리를 수행하고; A Cr-Al-Si-N hard coating film is deposited on the surface of the object by using an arc ion plating method and a sputtering method. For this purpose, an object to be deposited is placed in the chamber, Heating the inside of the furnace to a predetermined temperature after the furnace is set in a predetermined vacuum state; Introducing an inert gas such as Ar into the chamber, and then applying a predetermined bias voltage to the object to be vaporized to perform pretreatment of the specimen;

상기 챔버 내로의 불활성 가스의 유입을 차단하고, 상기 챔버 내부를 다시 진공상태로 한 후, 소정 온도까지 가열하는 과정과; Blocking the flow of the inert gas into the chamber, heating the inside of the chamber to a vacuum state again, and then heating the chamber to a predetermined temperature;

상기 챔버 내부로 불활성 가스와 N2 가스를 유입시키고, 상기 시편에 바이어스 전압을 인가한 상태에서, 스퍼터건과 아크건에 각각 전원을 인가하여 대상물의 표면에 Cr-Al-Si-N계 경질 코팅막을 증착하되, 중간에 산소를 공급하여 다층막이 형성되게 한 것을 특징으로 하는 금형제작방법을 제공한다. The inert gas and the N 2 gas are introduced into the chamber, and a bias voltage is applied to the specimen. Power is applied to each of the sputter gun and the arc gun to form a Cr-Al-Si-N hard coating layer And a multilayer film is formed by supplying oxygen in the middle.

상기에서 기저 압력은 10-8~10-7 Pa로 진공화하고, 증착 시 운전압력은 10-1~5×10-1 Pa로 하며, 증착 시 온도는 250~400 ℃ 정도로 유지한다. 대상물은 회전시켜 코팅 균일도를 높인다. 그외 본 실시예에서의 증착 공정조건은 도 5의 표에 수록하였으며, 제시된 수치들은 허용 오차를 지닐 수 있고, 다소 변경되어 적용될 수도 있다. In this case, the base pressure is evacuated to 10 -8 to 10 -7 Pa, the operating pressure during deposition is 10 -1 to 5 × 10 -1 Pa, and the deposition temperature is maintained at 250 to 400 ° C. The object is rotated to increase the uniformity of the coating. The conditions of the deposition process in this embodiment are listed in the table of FIG. 5, and the presented values may have tolerances and may be applied with some modifications.

도 6은 본 실시예에 의해 다층코팅막이 형성된 피벗브라켓 금형의 사진이다.6 is a photograph of a pivot bracket mold in which a multilayer coating film is formed according to this embodiment.

이러한 경질의 다층코팅막이 형성된 금형은 내구성이 우수하고 수명이 길어 금형에 의한 피벗브라켓 생산성을 향상시킨다. The mold having such a hard multi-layer coating film has excellent durability and a long life, thereby improving the productivity of the pivot bracket by the mold.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

도면 부호 없음.No reference symbol.

Claims (4)

모재의 경도, 내부식성, 내마모성 또는 화학적 안정성 중 어느 하나 이상의 물성 향상을 위한 코팅 막을 형성하는 방법에 있어서,
CrAlSiN 층을 Cr, Al, Si를 포함하는 하나 이상의 타겟을 이용하여 N2 가스를 지속적으로 주입하며 PVD 법으로 일정시간 동안 CrAlSiN 층을 형성하고, 산소 가스를 주입하여 CrAlSiON층을 형성한 후, 산소 가스 주입을 멈춘 후 다시 CrAlSiN 층을 형성하여, CrAlSiN/CrAlSiON/CrAlSiN 층으로 다층 코팅막이 형성되는 것을 특징으로 하는 코팅 막 형성방법.
1. A method of forming a coating film for improving physical properties of a base material of at least one of hardness, corrosion resistance, abrasion resistance and chemical stability,
The CrAlSiN layer is continuously injected with N 2 gas using one or more targets including Cr, Al and Si, a CrAlSiN layer is formed by a PVD method for a predetermined time, an oxygen gas is injected to form a CrAlSiON layer, Wherein the gas injection is stopped and then a CrAlSiN layer is formed to form a multilayer coating film with a CrAlSiN / CrAlSiON / CrAlSiN layer.
제1항에 있어서, 산소 가스 주입시간은 30초 내지 3분으로 하여 CrAlSiON 층의 두께는 10 내지 50 nm인 것을 특징으로 하는 코팅 막 형성방법. The method for forming a coating film according to claim 1, wherein the oxygen gas injection time is 30 seconds to 3 minutes, and the thickness of the CrAlSiON layer is 10 to 50 nm. 제1항에 있어서, CrAlSiN 층 형성 시간은 30분 내지 1시간으로 하여 CrAlSiN 층은 두께가 0.5 내지 1.5 um인 것을 특징으로 하는 코팅 막 형성방법. The method according to claim 1, wherein the time for forming the CrAlSiN layer is from 30 minutes to 1 hour, and the thickness of the CrAlSiN layer is from 0.5 to 1.5 μm. 제1항 내지 제3항의 코팅 막 형성방법으로 금형 표면에 CrAlSiN/CrAlSiON/CrAlSiN 다층 코팅막을 구비한 것을 특징으로 하는 금형.


A mold according to any one of claims 1 to 3, comprising a multilayer coating film of CrAlSiN / CrAlSiON / CrAlSiN on the surface of the mold.


KR1020170183419A 2017-12-29 2017-12-29 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY KR102036974B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170183419A KR102036974B1 (en) 2017-12-29 2017-12-29 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170183419A KR102036974B1 (en) 2017-12-29 2017-12-29 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY

Publications (2)

Publication Number Publication Date
KR20190081103A true KR20190081103A (en) 2019-07-09
KR102036974B1 KR102036974B1 (en) 2019-11-26

Family

ID=67261550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170183419A KR102036974B1 (en) 2017-12-29 2017-12-29 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY

Country Status (1)

Country Link
KR (1) KR102036974B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057996A (en) * 2020-01-03 2020-04-24 创隆实业(深圳)有限公司 All-solid-state insulation wave-transparent PVD (physical vapor deposition) film layer and preparation method and application thereof
CN114632909A (en) * 2022-01-17 2022-06-17 温州瑞明工业股份有限公司 Method for preparing carbon oxygen nitrogen coating by ion implantation on surface of die-casting die
CN114632909B (en) * 2022-01-17 2024-04-30 温州瑞明工业股份有限公司 Method for preparing carbon oxygen nitrogen coating by ion implantation on surface of die casting die

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238687B2 (en) * 2006-04-21 2013-07-17 コムコン・アーゲー Coating
KR20130134057A (en) * 2012-05-30 2013-12-10 주식회사 한국몰드 Method for treating surface of injection mold with high surface area
KR101844687B1 (en) * 2016-11-28 2018-05-15 (주)서영 Manufacturing method for hard coatings with improved corrosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238687B2 (en) * 2006-04-21 2013-07-17 コムコン・アーゲー Coating
KR20130134057A (en) * 2012-05-30 2013-12-10 주식회사 한국몰드 Method for treating surface of injection mold with high surface area
KR101844687B1 (en) * 2016-11-28 2018-05-15 (주)서영 Manufacturing method for hard coatings with improved corrosion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057996A (en) * 2020-01-03 2020-04-24 创隆实业(深圳)有限公司 All-solid-state insulation wave-transparent PVD (physical vapor deposition) film layer and preparation method and application thereof
CN114632909A (en) * 2022-01-17 2022-06-17 温州瑞明工业股份有限公司 Method for preparing carbon oxygen nitrogen coating by ion implantation on surface of die-casting die
CN114632909B (en) * 2022-01-17 2024-04-30 温州瑞明工业股份有限公司 Method for preparing carbon oxygen nitrogen coating by ion implantation on surface of die casting die

Also Published As

Publication number Publication date
KR102036974B1 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
US6117280A (en) Duplex coated steel composite products and method of manufacturing them
US6599400B2 (en) Method for the manufacture of coatings and an article
JP7440508B2 (en) Heat resistant carbon coating
Lackner Industrially-scaled large-area and high-rate tribological coating by pulsed laser deposition
KR100818165B1 (en) Method for Producing Multilayered-film having Lubricant and Anti-abrasive Property
KR102036974B1 (en) MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY
KR20120059255A (en) Coating Material Comprising Titanium, Silver, and Nitrogen and Coating Method of the Same
KR101449116B1 (en) Multi coating layer and method for producing the same
KR100505003B1 (en) Deposition method for hard coating membrane in Ti-Al-Si-N field
US20120164418A1 (en) Article having hard film and method for making the article
JP6788913B2 (en) Coating targets for durability and low friction properties of combustion engine parts, metal multi-component nitride coating methods and combustion engine parts thereby
JP2022548893A (en) Substrate with molybdenum nitride coating system and coating method for producing coating system
KR20120129445A (en) The method of high wear and oxidation resistant multi-layer coating material process.
CN111014616A (en) HfZrWMoVNbN/CrSiN high-entropy alloy nano composite coating die-casting aluminum die and preparation method thereof
KR20150118665A (en) Coating material having improved mechanical properties and low friction for sliding part of vehicle and coating method thereof
KR101637945B1 (en) Nitride coating layer and the method thereof
KR101635814B1 (en) Mold for extruding metal with excellent seizure resistance and method of manufacturing the same
KR100633083B1 (en) Method of manufacturing CrN-based multi-layer film
KR101270282B1 (en) Low friction Coating Film And Manufacturing Thereof
KR100461980B1 (en) Hybrid Method of AIP and Sputtering for Superhard coatings Ti-Si-N
KR20070105614A (en) Coating materials with excellent oxidation resistance for surface covering for using at high temperature
KR101210118B1 (en) Molding device having surface of multi thin film
KR20050022764A (en) Multilayer Coating Process for High Speed Machining Tools
KR101367702B1 (en) A manufacturing method of steel having multi-coating layer
KR100777645B1 (en) Diamond Like Carbon Coating Device and the Method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant