KR101844687B1 - Manufacturing method for hard coatings with improved corrosion resistance - Google Patents

Manufacturing method for hard coatings with improved corrosion resistance Download PDF

Info

Publication number
KR101844687B1
KR101844687B1 KR1020160158910A KR20160158910A KR101844687B1 KR 101844687 B1 KR101844687 B1 KR 101844687B1 KR 1020160158910 A KR1020160158910 A KR 1020160158910A KR 20160158910 A KR20160158910 A KR 20160158910A KR 101844687 B1 KR101844687 B1 KR 101844687B1
Authority
KR
South Korea
Prior art keywords
layer
cralsin
coating
coating film
ald
Prior art date
Application number
KR1020160158910A
Other languages
Korean (ko)
Inventor
만지흠
권세훈
최현진
최우창
하태권
배근득
장경수
Original Assignee
(주)서영
재단법인 부산테크노파크
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)서영, 재단법인 부산테크노파크, 부산대학교 산학협력단 filed Critical (주)서영
Priority to KR1020160158910A priority Critical patent/KR101844687B1/en
Application granted granted Critical
Publication of KR101844687B1 publication Critical patent/KR101844687B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

An objective of the present invention to provide a novel configuration of a coating film and a manufacturing method thereof, capable of solving a problem in which defects are generated in a thin film according to an existing sputtering scheme when a high-hardness coating film is prepared. According to the above objective, the present invention provides a multilayered nanocomposite coating film prepared by forming a CrAlSiN layer on a base material to be subject to high-hardness coating by a hybrid coating scheme including arc ion plating, and forming an Al_2O_3 layer by atomic layer deposition (ALD). In other words, the present invention is directed to improve disadvantages of the high-hardness coating by performing a simplified ALD Al_2O_3 deposition process on the coating film by the hybrid coating scheme including the arc ion plating, which is an existing scheme of producing the high-hardness coating film. In a CrAlSiN/Al_2O_3 multilayered coating film produced by applying the hybrid coating scheme together with the ALD, CrAlSiN is formed by the hybrid coating scheme including the arc ion plating, and corrosion resistance and mechanical properties of CrAlSiN coating are enhanced by introduction of a nano-sized Al_2O_3 cover layer formed in a middle of the CrAlSiN/Al_2O_3 multilayered coating film by the ALD.

Description

내부식 특성이 향상된 고경도 코팅막의 제조방법 {MANUFACTURING METHOD FOR HARD COATINGS WITH IMPROVED CORROSION RESISTANCE}TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a high hardness coating film having improved anti-

본 발명은 내부식성 특성이 크게 향상된 고경도 코팅막의 제조 방법에 관한 것으로, 좀 더 상세하게는, 아크이온 플레이팅 단독 또는 아크이온 플레이팅과 스퍼터링 법을 이용하여 증착한 고경도 코팅막의 내부식성을 크게 개선할 수 있는 간소화된 공정에 관한 것이다.More particularly, the present invention relates to a method for producing a high hardness coating film having improved corrosion resistance, and more particularly, to a high hardness coating film using arc ion plating or arc ion plating and sputtering. And a simplified process which can be greatly improved.

고경도 코팅은 다양한 산업에 광범위하게 적용되고 있다. 예를 들면, 절삭, 포밍, 캐스팅 공구와 같이 내구성을 요하는 경우, 경도 향상과 화학적 열적 안정성을 향상시켜 공구의 수명연장과 성능 향상을 위해 고경도 코팅을 실시한다. 특히, 최근 CrAlN, CrSiN, CrAlSiN, TiAlN, TiSiN, TiAlSiN 과 같은 3가지 이상의 원소들이 혼합되어 제조되는 다성분계 질화물계 고경도 코팅막은 높은 경도와 함께, 우수한 내부식성 및 내산화성을 가져 기계가공 분야에 사용되는 공구 및 장치의 수명향상을 위한 보호막으로 그간 널리 연구 및 사용 되어져 왔다. High hardness coatings are widely applied in various industries. For example, when durability is required, such as cutting, forming, and casting tools, a high hardness coating is applied to improve hardness and improve chemical and thermal stability, thereby prolonging tool life and improving performance. In particular, a multi-component nitride-based high hardness coating film produced by mixing three or more elements such as CrAlN, CrSiN, CrAlSiN, TiAlN, TiSiN, and TiAlSiN has high hardness and excellent corrosion resistance and oxidation resistance, Has been widely studied and used as a protective film for improving the service life of tools and devices used.

일반적인 질화물계 고경도 코팅막은 높은 증착률과 이온화에 의한 밀착력을 얻기 위하여 주로 질소분위기에서 아크이온플레이팅 (arc ion plating)을 이용하여 형성하고 있으나, 위와 같은 다성분계 고경도 코팅막의 경우, Al, Si과 같이 질소분위기에서 절연층이 형성되는 원소들의 경우 아크 플라즈마의 발생이 어려운 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여, Ti, Cr과 같이 질화되어도 전도성을 가지는 원소는 아크이온 플레이팅을 이용하여 증착하고, 동시에 Al, Si과 같이 질화되는 경우 비전도성을 나타내는 원소는 스퍼터링을 이용하여 증착하는 하이브리드 코팅법이 위에 열거한 다성분계 코팅막을 형성하기 위한 방법으로 활용되고 있다. Generally, nitrided hard coating films are formed by arc ion plating in a nitrogen atmosphere in order to obtain high deposition rate and adhesion due to ionization. However, in the case of the multi-component hard coat film, In the case of elements such as Si, in which an insulating layer is formed in a nitrogen atmosphere, arc plasma is difficult to generate. In order to solve this problem, an element having conductivity even when nitrided such as Ti or Cr is deposited by arc ion plating, and at the same time, an element showing nonconductive when nitriding such as Al or Si is deposited using sputtering The hybrid coating method is utilized as a method for forming the multi-component coating films listed above.

그러나, 아크이온플레이팅 및 스퍼터링을 포함한 일반적인 PVD 공정에서는 플라즈마에 의해 기화된 종들이 직진성 이동(Line-of-Sight Transfer)특성을 가지므로, PVD 공정에 의한 고경도 코팅은 대게 고유의 결함을 보이며, 상기 결함은 기둥형 그레인(columnar grain) 구조, 핀홀, 구멍, 불연속체 등으로 나타나며, 내식성 특성에 악영향을 미칠 수 있다. 특히, 기판 내지 모재가 스틸계 활성 합금이거나 마모-부식 과정에서 사용 중일 경우, 이러한 결함에 의한 부식이 쉽게 일어나게 되는 문제점을 가지고 있다. However, in general PVD processes including arc ion plating and sputtering, hardened coatings by PVD processes often exhibit inherent defects because the species vaporized by the plasma have a linear-of-sight transfer characteristic , The defects appear as columnar grain structures, pinholes, holes, discontinuities, etc., and can adversely affect the corrosion resistance characteristics. Particularly, when the substrate or base material is a steel-based active alloy or is being used in a wear-corrosion process, corrosion due to such defects can easily occur.

특히, 밀착력 확보를 위하여, 아크이온 플레이팅을 단독으로 활용하거나, 아크이온 플레이팅 기법과 스퍼터링을 동시에 활용하여 하이브리드 코팅법을 고경도 코팅막을 제조하는 경우에, 아크 플라즈마 소스의 사용으로 인하여 macro particle (매크로 파티클)이라고 불리는 이온 덩어리에 의한 표면 결합이 손쉽게 발생된다. 이러한 매크로파티클의 발생은 코팅막의 결함으로서 작용하게 되며, 코팅층 두께의 상당부분을 형성함으로서, 다성분계 하드코팅막의 장점인 내부식성을 크게 감소시키는 문제점을 나타내게 된다.Particularly, in order to secure the adhesion, in the case of using the arc ion plating alone or using the arc ion plating technique and the sputtering at the same time, the hybrid coating method produces a hard coating film, (Macroparticle) can easily be generated by ion agglomeration. The occurrence of such macro-particles acts as a defect of the coating film and forms a substantial part of the thickness of the coating layer, thereby causing a problem of greatly reducing corrosion resistance, which is an advantage of the multi-component hard coating film.

따라서, 현재의 아크이온 플레이팅을 단독으로 활용하거나, 아크이온 플레이팅과 스퍼터링을 동시에 활용하는 하이브리드 코팅법을 통한 다성분계 고경도 코팅막의 내부식을 개선할 수 있는 효과적인 방법이 요구된다. Accordingly, there is a need for an effective method for improving the corrosion resistance of a multicomponent hard coating film by utilizing current arc ion plating alone or hybrid coating method using arc ion plating and sputtering at the same time.

중국공개 CN1321936C호에서는 Cr2N-Al2O3 나노복합체를 고경도 코팅에 적용하는 내용을 기재하나, 제조방법 면에서 조성물 화 한 후 소결하는 방법을 제안하여 결함 방지 면에서 별다른 조처를 하기 어렵다. In CN Publication No. CN1321936C, the application of the Cr 2 N-Al 2 O 3 nanocomposite to the hard coating is described, but it is difficult to propose a method of sintering after making the composition in terms of the manufacturing method, .

한편, ALD(atomic layer deposition) 방법은 각종 반도체 및 전자 산업에서 자리 잡아 왔다. ALD 방법은 높은 정밀도를 요하는 금속부품이나 장치에 대한 부식 보호 면에 대한 적응성에서 커다란 잠재력을 보여왔다. ALD 방법에서는, 전구체가 기판 표면에 도입되며, 교대로 그리고 별개로 가해지는 펄스로 도입되게 한다. 전구체 펄스는 불활성 가스 퍼징(purging)에 의해 격리되어 기판 표면에만 작용 된다. 자기 제한적인 표면 반응의 주기적인 반복을 통해 물질층의 성장이 이루어져, 이로 인한 박막은 고품질을 나타내며, 결함이 거의 없고, 균일도가 높고, 공정온도가 낮으며, 막 두께 제어가 매우 용이하다. 이러한 ALD의 장점은 코팅 구조에 잔류할 수 있는 핀홀 등 여타의 결함들을 차단할 수 있어 고경도 코팅의 부식 보호 기능을 향상시킬 수 있다. On the other hand, ALD (atomic layer deposition) methods have been established in various semiconductor and electronic industries. The ALD method has shown great potential for adaptability to corrosion protection surfaces for metal parts or devices that require high precision. In the ALD process, a precursor is introduced into the substrate surface, causing it to be introduced in alternating and distinctly applied pulses. Precursor pulses are isolated by inert gas purging and act on the substrate surface only. The material layer is grown through periodic repetition of the self-limiting surface reaction. The resulting thin film shows high quality, has few defects, has high uniformity, low process temperature, and is very easy to control film thickness. The advantage of this ALD is that it can block the pinholes and other defects that may remain in the coating structure, thus improving the corrosion protection function of the hard coat.

최근 국내 등록특허 제10-1659232호에서는 고경도 코팅막의 내식성 특성이 강화된 코팅막을 제조하기 위해, 모재에 CrN을 PVD로 코팅하고 중간에 ALD로 Al2O3를 나노 두께로 코팅하여 CrN 이 나타내는 결함을 원자층 단위로 치밀하게 메꾼 후, 다시 CrN을 PVD로 코팅한다. 이러한 하이브리드 코팅막은 고경도를 유지하며 내식성을 크게 향상시키지만 PVD→ALD→PVD 공정을 실시하여야 하기 때문에 공정이 번거롭다는 문제가 있다.Recently, in Korean Patent No. 10-1659232, in order to manufacture a coating film having enhanced corrosion resistance characteristics of a hard coating film, CrN is coated with PVD in the base material and Al 2 O 3 is coated with ALD in the middle in a nano thickness, After finishing the defect in atomic layer units, the CrN is again coated with PVD. Such a hybrid coating film maintains high hardness and greatly improves corrosion resistance, but there is a problem that the process is troublesome because it requires PVD? ALD? PVD process.

따라서 본 발명의 목적은 다성분계 고경도 코팅막을 형성함에 있어, 공정 효율과 동시에 내식성을 크게 향상시킬 수 있는 새로운 코팅막과 그 제조방법을 제공하고자 하는 것이다. Accordingly, an object of the present invention is to provide a novel coating film and a method of manufacturing the same, which can greatly improve corrosion resistance at the same time as the process efficiency in forming a multi-component hard coating film.

상기 목적에 따라, 본 발명은, 고경도 코팅을 실시하고자 하는 모재에 CrAlSiN층을 PVD인 HiPIMS법과 아크이온 플레팅법 간의 하이브리드 코팅법을 통해 형성한 다음, Al2O3층을 ALD에 의해 형성한 코팅막을 제공하였다. According to the above-mentioned object, the present invention provides a method of forming a CrAlSiN layer by a hybrid coating method between a HiPIMS method and an arc ion plating method, which is a PVD method, and a method of forming an Al 2 O 3 layer by ALD Thereby providing a coating film.

즉, 기존 고경도 코팅막 제조방법인 하이브리드 코팅법에 ALD 보호층을 형성하는 증착 공정에 의해 기존 하이브리드 코팅법 만을 활용하는 고경도 코팅막 및 제조방법의 단점을 개선하고자 한 것이다. That is, the present inventors have attempted to improve the disadvantages of the hard coating film using only the conventional hybrid coating method and the manufacturing method by the deposition process of forming the ALD protective layer in the hybrid coating method, which is a conventional method of manufacturing a hard coating layer.

HiPIMS(high power impulse magnetron sputtering) 기법이 높은 전위를 발생시킬 수 있다는 점에 기인하여 산업 응용 전반에 걸쳐 상당한 주목을 받고 있는 스퍼터링 방법으로, HiPIMS는 1 내지 3kW/cm2와 같은 높은 전력밀도로 200μs 정도의 짧은 지속시간을 갖는 펄스로 타겟(Target)을 스퍼터링 하여, 고밀도 플라즈마와 스퍼터된 종(species)들의 높은 이온화 효과를 얻을 수 있으며, 기존 dc 마그네트론 스퍼터링법에 비해 우수한 코팅 밀도, 코팅막의 접착력을 나타낸다.HiPIMS (high power impulse magnetron sputtering), due to the ability to generate a high technique potential to the sputtering method are receiving considerable attention throughout the industrial application, HiPIMS is 200μs with a high power density, such as from 1 to 3kW / cm 2 The target can be sputtered with pulses having a short duration as much as possible to obtain a high ionization effect of the high density plasma and the sputtered species and the excellent coating density and the adhesion force of the coating film as compared with the conventional dc magnetron sputtering method .

HiPIMS와 아크이온 플레이팅간 하이브리드 코팅법과 ALD를 함께 적용하여 제작되는 CrAlSiN/Al2O3 다층코팅막에서 CrAlSiN은 하이브리드 코팅법에 의해 형성되며 ALD에 의해 형성되는 Al2O3 커버층은 아주 얇은 두께로 형상되는데, 이때 형성되는 Al2O3 층이 CrAlSiN 고경도 코팅막의 매크로파티클 및 표면 결함을 메꿔주며, 결과적으로 단일 CrAlSiN 코팅막에 비하여 박막의 내부식성을 향상시킨다. In the CrAlSiN / Al 2 O 3 multilayer coating film fabricated by applying hybrid coating between HiPIMS and arc ion plating and ALD, CrAlSiN is formed by the hybrid coating method, and the Al 2 O 3 cover layer formed by ALD has a very thin thickness The Al 2 O 3 layer formed at this time covers the macroparticles and surface defects of the CrAlSiN hardness coating film and consequently improves the corrosion resistance of the thin film compared with the single CrAlSiN coating film.

미세구조 코팅층인 Al2O3 중간층의 추가로 인한 영향은, 표면 조도, 기계적 특성 및 부식 특성이며 이에 대해 본 발명자들에 의해 조사되었다. The effect of the addition of the Al 2 O 3 interlayer, which is a microstructure coating layer, is surface roughness, mechanical properties, and corrosion properties, which have been investigated by the present inventors.

즉, 본 발명은, That is,

모재의 경도, 내부식성, 내마모성 또는 화학적 안정성 중 어느 하나 이상의 물성 향상을 위한 코팅 막을 형성하는 방법에 있어서, 1. A method of forming a coating film for improving physical properties of a base material of at least one of hardness, corrosion resistance, abrasion resistance and chemical stability,

CrAlSiN층을 아크이온 플레이팅을 포함하는 PVD(Physical Vapor Deposition) 방법으로 형성하고,The CrAlSiN layer is formed by a PVD (Physical Vapor Deposition) method including arc ion plating,

형성된 CrAlSiN층 위에 Al2O3층을 ALD(atomic layer deposition)에 의해 형성하여 CrAlSiN층의 매크로 파티클을 포함한 경계면에 배리어층으로 기능하게 한 것을 특징으로 하는 CrAlSiN/Al2O3로 된 다층 코팅 막 형성방법을 제공한다. Formed CrAlSiN layer on the Al 2 O 3 layer of ALD (atomic layer deposition) to form by the that the functioning as a barrier layer at the interface, including the macro particles CrAlSiN layer was CrAlSiN / Al 2 O 3 which is characterized by a multi-layer coating film Lt; / RTI >

상기에 있어서, CrAlSiN/Al2O3로 된 다층 코팅막에서 Al2O3 코팅층의 두께는 CrAlSiN 코팅층에 비해 얇게 형성되는 것을 특징으로 하는 코팅 막 형성방법을 제공한다. In the above, a multilayer coating film made of CrAlSiN / Al 2 O 3 has a thickness of Al 2 O 3 coating layer thinner than that of a CrAlSiN coating layer.

본 발명은, According to the present invention,

Al2O3층이 CrAlSiN 고경도 막의 매크로파티클의 경계면에, Al2O3층의 두께가 원자층 단위로 제어되어 1 내지 100nm로 삽입되어 있는 CrAlSiN/Al2O3로 된 다층 코팅막을 제공한다.Al 2 O 3 layer is made of CrAlSiN / Al 2 O 3 in which the thickness of the Al 2 O 3 layer is controlled in the atomic layer unit and is inserted at 1 to 100 nm on the interface of macro particles of the CrAlSiN hardened film .

본 발명에 따르면, 하이브리드 코팅법에 의한 CrAlSiN 코팅층 위에 나노두께의 Al2O3 층을 ALD에 의해 추가함으로써, CrAlSiN 층에 형성될 수 있는 결함을 보완하여 준다. 즉, 하이브리드 코팅법에 의해 증착된 CrAlSiN에 포함될 수 있는 기둥형 그레인 구조, 핀홀, 구멍, 불연속체를 ALD에 의한 Al2O3층이 효율적으로 막아주어 형성된 CrAlSiN/Al2O3 다층코팅막은 부식이 쉽게 일어날 수 없는 구조로 바뀌게 된다. 특히, 하이브리드 코팅법을 구성하는 아크이온 플레이팅에 의해 불가피하게 발생되는 매크로파티클을 Al2O3층이 효과적으로 둘러싸는 구조를 가지게 된다.According to the present invention, by adding ALD to a nano-thick Al 2 O 3 layer on the CrAlSiN coating layer by the hybrid coating method, defects that can be formed in the CrAlSiN layer are compensated for. That is, the CrAlSiN / Al 2 O 3 multilayer coating film formed by efficiently blocking the Al 2 O 3 layer by the ALD from the columnar grain structure, pinhole, hole, and discontinuity that can be included in the CrAlSiN deposited by the hybrid coating method, Is changed into a structure that can not be easily realized. Particularly, the Al 2 O 3 layer effectively surrounds macro-particles inevitably generated by arc ion plating that constitutes the hybrid coating method.

이로써 CrAlSiN/Al2O3 다층코팅막은 고경도는 물론, 높은 내부식성을 갖추어 해양환경과 같은 내부식 특성이 요구되는 각종 공구나 전극체 등에 상업적으로 적용될 수 있다. Thus, the CrAlSiN / Al 2 O 3 multilayer coating film is commercially applicable to various tools and electrode bodies that have high hardness and high corrosion resistance, and which require corrosion resistance such as the marine environment.

게다가 본 발명은 PVD와 ALD 공정을 각각 한 번씩 진행하게 되므로 ALD층을 중간에 삽입하던 기존의 기술에 비해 공정이 간소화된다는 장점이 있다.In addition, since the PVD and ALD processes are performed once each, the present invention has an advantage in that the process is simpler than the conventional technique of inserting the ALD layer in the middle.

또한, 본 발명의 CrAlSiN/Al2O3 다층 코팅 막은 내 부식 전류 Icorr가 1×10-11A/cm2 이하로 기존의 코팅막에서 보여줄 수 없는, 매우 우수한 내식성을 나타내었다. In addition, the CrAlSiN / Al 2 O 3 multilayer coating film of the present invention exhibited a very excellent corrosion resistance that can not be exhibited in conventional coating films with a corrosion resistance current I corr of 1 × 10 -11 A / cm 2 or less.

도 1은 본 발명의 내부식 특성 개선을 위한 공정에 따른 코팅막의 구조도와 그에 따른 부식 전류밀도의 시간적 진행에 따른 추이를 보여준다.
도 2는 본 발명의 하이브리드 코팅법 및 원자층증착법을 실시하는 공정 조건을 보여주는 표이다.
도 3은 본 발명에 따른 ALD 공정을 실시하기 전, 경질 코팅막의 표면 SEM 사진이다.
도 4는 SUS 모재, SUS 모재에 CrAlSiN을 하이브리드 코팅법을 통해 증착한 시편, SUS 모재에 CrAlSiN/Al2O3 다층코팅막을 하이브리드 코팅법과 ALD로 각각 코팅한 시편에 대한 XRD 분석 결과를 나태낸다.
도 5은 SUS 모재, SUS 모재에 CrAlSiN을 하이브리드 코팅법으로 코팅한 시편, SUS 모재에 CrAlSiN/Al2O3 다층코팅막을 하이브리드 코팅법과 ALD로 각각 코팅한 시편에 대한 동전위(Potentiodynamic Polarization Test) 및 정전위(Potentiostatic Polarization Test) 분극 실험에 의한 전기화학적 특성을 측정한 그래프 이다.
도 6은 본 발명에 따른 하이브리드 코팅법에 대한 TEM 사진 및 조성을 보여준다.
FIG. 1 shows a structural diagram of a coating film according to a process for improving the internal characteristics of the present invention and a trend of the corrosion current density according to the temporal progression.
FIG. 2 is a table showing process conditions for carrying out the hybrid coating method and the atomic layer deposition method of the present invention.
3 is a SEM photograph of the surface of the hard coating film before the ALD process according to the present invention is performed.
FIG. 4 shows the results of XRD analysis of specimens of CrAlSiN deposited on SUS base material and SUS base material by hybrid coating method, and CrAlSiN / Al 2 O 3 multilayer coating films of SUS base material coated with hybrid coating and ALD, respectively.
Figure 5 is a SUS base material, a hybrid coating method, a specimen, CrAlSiN / Al 2 O 3 multi-layer coating film of the above coins for specimens each coated with a hybrid coating method and ALD (Potentiodynamic Polarization Test) in the SUS base material coated with a CrAlSiN the SUS base material and Potentiostatic Polarization Test This is a graph of electrochemical characteristics measured by polarization experiment.
FIG. 6 shows a TEM photograph and composition of the hybrid coating method according to the present invention.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, CrAlSiN/Al2O3 다층 코팅막의 제조에 대해 설명한다.First, the production of a CrAlSiN / Al 2 O 3 multilayer coating film will be described.

모재로서 SUS304 기판을 준비하고 초음파 세정한 다음, Cr 점착층(접착층이라고도 함)을 형성하여 이후 형성될 다층코팅막의 점착성을 강화한다. 세정 방법은 초음파 외에 플라즈마 세정 등 다른 방법을 적용할 수 있다. CrAlSiN 층은 아크이온 플레이팅과 HiPIMS법간의 하이브리드 코팅법을 이용하여 도 2와 같은 공정 조건으로 코팅막을 생성한다. 아크이온 플레이팅을 포함하는 하이브리드 코팅법에 의한 다성분계 코팅막인 CrAlSiN은 도 1에 보인 바와 같이 상당히 큰 매크로 파티클을 포함한다. 이로 인해 부식에 대한 취약성이 나타날 수 있으며, CrAlSiN 자체의 표면 결함의 존재 역시 동일한 문제를 나타낸다. An SUS304 substrate is prepared as a base material and ultrasonically cleaned, and then a Cr adhesive layer (also referred to as an adhesive layer) is formed to enhance the adhesion of the multilayer coating film to be formed thereafter. As the cleaning method, other methods such as plasma cleaning can be applied besides ultrasonic waves. The CrAlSiN layer is formed by a hybrid coating method between the arc ion plating and the HiPIMS method under the process conditions shown in FIG. CrAlSiN, a multicomponent coating film by a hybrid coating method including arc ion plating, includes a considerably large macro particle as shown in Fig. This may cause vulnerability to corrosion, and the presence of surface defects in CrAlSiN itself also presents the same problem.

실질적으로 도 3 및 도 6에 나와있는 TEM 사진에서 이러한 매크로 파티클의 존재와 그에 따른 결함부분을 확인할 수 있다. In the TEM photograph shown in FIGS. 3 and 6, it is possible to confirm the presence of such macro particles and the corresponding defective portions.

CrAlSiN층의 두께는 증착 시간을 조정하여 제어될 수 있다. The thickness of the CrAlSiN layer can be controlled by adjusting the deposition time.

다음으로, CrAlSiN층 위에 결함이 없는 균일한 막의 형태로 형성되는 Al2O3 층은 ALD에 의해 형성되고, TMA(trimethylaluminium)과 H2O 전구체를 사용하여 150 내지 250℃, 바람직하게는 200℃ 내외의 온도에서 증착된다. 본 실시예에서 사용한 ALD 장비는 LUCIDA D100 ALD이었다. Al2O3 층의 증착 동안, 50 sccm 질소 가스가 반응기에 지속적으로 공급되었다. 질소 이외에 다른 불활성 가스가 적용될 수 있다. 균일한 전구체 공급을 위해, TMA 와 H2O가 들어있는 캐니스터들은 각각 상온과 약간의 저온의 일정 온도로 유지되며, 본 실시예의 경우, 25℃와 10℃로 유지되었다. 증착막의 성장을 위한 공정 조건은 도 2의 우측 표에 나와있다. Al2O3 층의 두께는 증착 주기를 조정하여 제어될 수 있다. Next, the Al 2 O 3 layer formed in the form of a defect-free uniform film on the CrAlSiN layer is formed by ALD and is formed by using TMA (trimethylaluminium) and H 2 O precursor at 150 to 250 ° C, preferably 200 ° C And is deposited at a temperature of about < RTI ID = The ALD equipment used in this example was LUCIDA D100 ALD. During the deposition of the Al 2 O 3 layer, 50 sccm nitrogen gas was continuously supplied to the reactor. Inert gases other than nitrogen may be applied. For the uniform precursor supply, the canisters containing TMA and H 2 O are maintained at a constant temperature of room temperature and slightly low temperature, respectively, and maintained at 25 ° C and 10 ° C, respectively, in this embodiment. The process conditions for the growth of the deposited film are shown in the right table of FIG. The thickness of the Al 2 O 3 layer can be controlled by adjusting the deposition cycle.

도 3은 ALD-Al2O3 형성 전의 CrAlSiN 코팅막의 표면 모폴로지를 보여주는 SEM 사진이다. 코팅 막의 표면과 단면의 마이크로그래프가 전자주사현미경(SEM, Hitachi, S-4800, 15 KV)으로 관찰되었다. 도 1에서 보는 바와 같이 다양한 크기와 형상을 가지는 매크로파티클 (macro particle)층이 CrAlSiN 층 표면상에 형성되어 있음을 확인할 수 있으며, 매크로 파티클의 확대 이미지에서 볼 수 있듯이 매크로 파티클 주변에 박막이 형성되지 않은 부분이 관찰됨을 알 수 있다. 이러한 이유로 코팅층 표면에 형성된 매크로파티클 들은 표면 결함으로 작용하게 된다. 3 is a SEM photograph showing the surface morphology of CrAlSiN coating film before ALD-Al 2 O 3 formation. Micrographs of the surface and cross-section of the coating film were observed with a scanning electron microscope (SEM, Hitachi, S-4800, 15 KV). As shown in FIG. 1, it can be seen that a macro particle layer having various sizes and shapes is formed on the surface of the CrAlSiN layer. As shown in the enlarged image of the macro particle, a thin film is not formed around the macro particle Which are not observed. For this reason, macro-particles formed on the surface of the coating layer act as surface defects.

또한, CrAlSiN 코팅막과 CrAlSiN/Al2O3 다층 코팅막의 특성을 비교하기 위해, 도 4과 같이 XRD를 분석하였고, 도 5과 같이 전기화학적 특성을 측정하였다. 1.54 Å Cu-Kα선을 방사하는 X-ray 회절기(XRD, D8-Discovery Brucker, 40kV)를 이용하여 코팅 막의 결정구조를 살폈다.Also, in order to compare the characteristics of the CrAlSiN coating film with the CrAlSiN / Al 2 O 3 multilayer coating film, XRD was analyzed as shown in FIG. 4, and the electrochemical characteristics were measured as shown in FIG. The crystal structure of the coating film was observed using an X-ray diffractometer (XRD, D8-Discovery Brucker, 40 kV) emitting 1.54 Å Cu-Kα radiation.

각 시험 및 관찰 결과에 대해 설명한다.The results of each test and observation will be described.

도 4는 CrAlSiN 코팅과 CrAlSiN/Al2O3 다층코팅 각각의 XRD 패턴을 보여준다. 파우더 회절(Powder Diffraction)(JCPDS, 76-2494)에 대한 Joint Committee의 표준 참고값에 따르면, CrAlSiN 과 CrAlSiN/Al2O3 다층 코팅의 주된 상(main phases)은 모두 면심 입방 구조를 가지고 있으며 회절 피크는 (111), (200), (220)과 (222)의 평면으로 확인될 수 있다. Figure 4 shows the XRD patterns of the respective coating and CrAlSiN CrAlSiN / Al 2 O 3 multi-layer coating. According to the standard reference values of the Joint Committee on Powder Diffraction (JCPDS, 76-2494), the main phases of CrAlSiN and CrAlSiN / Al 2 O 3 multilayer coatings all have a face-centered cubic structure, The peak can be identified by the planes of (111), (200), (220) and (222).

약한 Cr(110) 피크 역시 관찰되었는데, 이는 코팅의 Cr 점착층과 관계되어 있다. 비정질 구조를 가지는 Al2O3 상에 상응하는 피크는 발견되지 않았다. ALD Al2O3 층을 형성한 이후에도 Cr2O3, CrO2, Al2O3, SiO2의 형성을 나타내는 어떠한 피크(peak)도 형성되지 않음을 확인할 수 있는데, 이는 ALD Al2O3 형성을 위한 공정이 200℃ 이하의 저온에서 행하여 졌기 때문이다A weak Cr (110) peak was also observed, which is related to the Cr adhesive layer of the coating. No peak corresponding to the Al 2 O 3 phase having an amorphous structure was found. It can be confirmed that no peak indicating the formation of Cr 2 O 3 , CrO 2 , Al 2 O 3 and SiO 2 is formed after the ALD Al 2 O 3 layer is formed. This shows that ALD Al 2 O 3 formation Is carried out at a low temperature of 200 DEG C or lower

다음으로, CrAlSiN/Al2O3 고경도 코팅막의 전기화학적 특성을 도 5와 같이 보였다. 전기화학적 특성 평가를 위한 테스트는 3.5 wt.% NaCl 용액을 전해질로 이용하였으며, 기준전극(reference electrode)로는 SCE, counter electrode로는 Pt을 사용하여 측정하였다. 먼저 도 5(a)에 도시한 동전위 분극 실험 결과를 보면, CrAlSiN/Al2O3 코팅의 부식전류는 1×10-11A/cm2 이하로 CrAlSiN 코팅과 SUS304에 비해 크게 향상되었음을 알 수 있다. 도 5 (b)에 도시한 바와 같이 정전위 분극 실험을 통해 시간에 따른 부식 전류 관찰에 있어서도 CrAlSiN/Al2O3 코팅의 경우 지속적으로 낮은 전류밀도를 보였다. 반면, CrAlSiN 코팅막의 경우 약 8ks의 시간후 피팅(pitting)에 의한 부식이 발생되기 시작하였다.Next, the electrochemical characteristics of the CrAlSiN / Al 2 O 3 hard coat film are shown in FIG. For the electrochemical characterization, a 3.5 wt.% NaCl solution was used as the electrolyte. SCE was used as a reference electrode and Pt was used as a counter electrode. 5 (a) shows that the corrosion current of the CrAlSiN / Al 2 O 3 coating is 1 × 10 -11 A / cm 2 or less, which is much higher than that of the CrAlSiN coating and SUS304 have. As shown in FIG. 5 (b), in the case of CrAlSiN / Al 2 O 3 coating, a constant current density was observed in the observation of the corrosion current over time through the electrostatic potential polarization experiment. On the other hand, in case of CrAlSiN coating film, corrosion due to pitting started to occur after about 8 ks.

도 6에는 도 1에서 제시한 모식도에 상응하는 실제 관찰 결과인 TEM 사진이 나와있다. CrAlSiN 코팅에 포함된 매크로 파티클이 보이며, ALD-Al2O3 커버층이 CrAlSiN 코팅면과 매크로 파티클의 돌출면 및 CrAlSiN 코팅과의 내부 경계면을 촘촘히 메꾸고 있는 것을 확인할 수 있다.FIG. 6 shows a TEM photograph as a result of actual observation corresponding to the schematic diagram shown in FIG. It showed that the particles contained in the macro CrAlSiN coating, the ALD-Al 2 O 3 covering layer can be verified that borrow methoxy closely the internal interface between the projecting surface and CrAlSiN CrAlSiN coating of the coated surface and the macro particles.

이는 다음과 같은 원리로 설명될 수 있다. This can be explained by the following principle.

표면을 따라 형성된 결함이 없는 고밀도의 Al2O3 커버층은 코팅 막 안에서의 전자 전달과 애노드(anode)에서 캐소드(cathode)로 흐르는 전류의 흐름을 차단하는 절연 배리어로 완벽하여 작용하였는데, 이로 인해 부식 전류 밀도 감소시키고 부식 경계면에서의 전자 교환율과 애노드 금속 이온의 용해 속도를 감소시켰다. 특히, 아크이온 플레이팅법을 단독으로 또는 실시예에서와 같이 아크이온 플레이팅을 이용하는 하이브리드 코팅법을 활용하는 경우, 도2 및 도 7에서 본 바와 같이 고경도 코팅막 표면에 매크로 파티클이 다수 존재하게 되는데, 이를 고밀도의 Al2O3 커버층이 둘러싸게 되어 보다 효율적으로 작동한다. The defect-free, high-density Al 2 O 3 cover layer formed along the surface worked perfectly with an electron barrier in the coating film and an insulating barrier to block the flow of current from the anode to the cathode, Reducing the corrosion current density and reducing the rate of exchange of electrons at the corrosion interface and the dissolution rate of the anode metal ions. Particularly, when the arc ion plating method alone or a hybrid coating method using arc ion plating as in the embodiment is used, as shown in FIGS. 2 and 7, a large number of macro particles are present on the surface of the hard coat layer , Which is surrounded by a high-density Al 2 O 3 cover layer, thereby operating more efficiently.

또한, 낮은 결함을 가진 연속적인 Al2O3 커버층은 염소 이온 같은 부식 물질의 확산을 막는 좋은 배리어로 작용한다. 염소 이온은 부식 과정에서 중요한 역할을 맡고 있는데, 이는 자발적으로 내부식성을 높이기 위해 코팅 표면에 형성된 보호층을 염소 이온이 침투하여 부식시키기 때문이다. 염소 이온의 반지름이 작기 때문에 기둥형 그레인 경계부, 내부의 고유 핀홀(intrinsic pinhole)들, 코팅의 결함들, 매크로 파티클 돌출부를 통해 쉽게 확산 될 수 있으며, 용해성이 있는 화합물과 같은 금속 이온들과 반응할 수 있다. Al2O3 커버층은 염소 이온들의 확산을 막고 그들의 파괴적인 효과를 약화했으며 CrAlSiN 코팅의 부식 저항성을 향상시켰다.In addition, the continuous Al 2 O 3 cover layer with low defect serves as a good barrier to prevent the diffusion of corrosive substances such as chlorine ions. Chlorine ions play an important role in the corrosion process because chlorine ions penetrate the protective layer formed on the surface of the coating to spontaneously increase corrosion resistance. Because of the small radius of chlorine ions, it can easily diffuse through columnar grain boundaries, internal intrinsic pinholes, coating defects, macroparticle protrusions, and reacts with metal ions such as soluble compounds . The Al 2 O 3 cover layer prevented the diffusion of chlorine ions and weakened their destructive effect and improved the corrosion resistance of CrAlSiN coatings.

결과적으로 Al2O3 층이 CrAlSiN 층의 표면 및 표면에 존재하는 매크로 파티클의 주위를 밀도있는 배리어 층으로 가능한 것이 가장 중요한 부식 방지를 나타낼 수 있다고 본다. Al2O3 층의 두께는 나노사이즈, 특히, 1 내지 100nm 안에서 선택될 수 있을 것이다. 이는 Al2O3 형성 전후의 CrAlSiN층의 두께가 마이크로사이즈(μm) 인 것과 대비된다. As a result, it is considered that the Al 2 O 3 layer can exhibit the most important corrosion inhibition possible as a dense barrier layer around the macroparticles existing on the surface and the surface of the CrAlSiN layer. The thickness of the Al 2 O 3 layer may be selected within nano-size, especially 1 to 100 nm. This is in contrast to the fact that the thickness of the CrAlSiN layer before and after Al 2 O 3 formation is micro-sized (μm).

기존에는 PVD로 CrN을 형성하고 그 위에 ALD로 형성한 Al2O3 층 위에 다시 PVD로 CrN을 형성하여 실질상 공정설계를 매우 복잡하게 하였는데, 본 발명에 따르면, PVD와 ALD를 각각 한번 실시하는 것으로 코팅막이 완성되어 훨씬 더 간소화된다. 간소화된 공정에도 불구하고 기존의 코팅막에 비해 더 우수한 내식성을 보여 산업상 적용가능성에서 매우 유리하다. Conventionally, CrN is formed by PVD and CrN is formed by PVD on Al 2 O 3 layer formed on ALD on the CrN. In this case, the process design is substantially complicated. According to the present invention, PVD and ALD are performed once This completes the coating and makes it much simpler. Despite the simplified process, it exhibits better corrosion resistance than conventional coatings, which is very advantageous in industrial applicability.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

도면 부호 없음.No reference symbol.

Claims (3)

모재의 경도, 내부식성, 내마모성 또는 화학적 안정성 중 어느 하나 이상의 물성 향상을 위한 코팅 막을 형성하는 방법에 있어서,
CrAlSiN층을 아크이온 플레이팅 단독 또는 아크이온 플레이팅을 포함하는 하이브리드 코팅법으로 형성하고,
형성된 CrAlSiN층 위에 Al2O3층을 ALD(atomic layer deposition)에 의해 결정질이 되게 형성하여 CrAlSiN층의 매크로 파티클을 포함한 경계면에 배리어층으로 기능하게 한 것을 특징으로 하는 CrAlSiN/Al2O3로 된 다층 코팅 막 형성방법.
1. A method of forming a coating film for improving physical properties of a base material of at least one of hardness, corrosion resistance, abrasion resistance and chemical stability,
The CrAlSiN layer is formed by a hybrid coating method including arc ion plating alone or arc ion plating,
Of the formed Al 2 O 3 layer on CrAlSiN layer by ALD (atomic layer deposition) of the crystalline is CrAlSiN / Al 2 O 3 formed, characterized in that the function as a barrier layer at the interface, including the macro particles CrAlSiN layer presented by A method for forming a multilayer coating film.
제1항에 있어서, CrAlSiN/Al2O3으로 구성된 다층 코팅막에서 Al2O3 코팅층의 두께는 CrAlSiN 코팅층에 비해 얇게 형성되는 것을 특징으로 하는 다층 코팅 막 형성방법. The method for forming a multilayer coating film according to claim 1, wherein the thickness of the Al 2 O 3 coating layer in the multi-layer coating film composed of CrAlSiN / Al 2 O 3 is thinner than that of the CrAlSiN coating layer. Al2O3층이 CrAlSiN층 위에 코팅되되, Al2O3층의 두께가 원자층 단위로 제어되어 1 내지 100nm로 형성되어, CrAlSiN 층에 포함된 매크로 파티클의 돌출면 및 CrAlSiN 코팅과의 내부 경계면을 결정질의 Al2O3 커버층이 메꾸고 있는 것을 특징으로 하는 CrAlSiN/Al2O3로 된 다층 코팅막.



The Al 2 O 3 layer is coated on the CrAlSiN layer and the thickness of the Al 2 O 3 layer is controlled to be 1 to 100 nm by controlling the atomic layer unit so that the protruding surface of the macro particle contained in the CrAlSiN layer and the inner boundary surface with the CrAlSiN coating the multi-layer coating film by CrAlSiN / Al 2 O 3 characterized in that the Al 2 O 3 covering layer of a crystalline borrow methoxy.



KR1020160158910A 2016-11-28 2016-11-28 Manufacturing method for hard coatings with improved corrosion resistance KR101844687B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160158910A KR101844687B1 (en) 2016-11-28 2016-11-28 Manufacturing method for hard coatings with improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160158910A KR101844687B1 (en) 2016-11-28 2016-11-28 Manufacturing method for hard coatings with improved corrosion resistance

Publications (1)

Publication Number Publication Date
KR101844687B1 true KR101844687B1 (en) 2018-05-15

Family

ID=62186892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160158910A KR101844687B1 (en) 2016-11-28 2016-11-28 Manufacturing method for hard coatings with improved corrosion resistance

Country Status (1)

Country Link
KR (1) KR101844687B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190081103A (en) * 2017-12-29 2019-07-09 (주)서영 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY
CN110257771A (en) * 2019-06-28 2019-09-20 广州大学 A kind of c-CrAlSiN hard coat of high Al content and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534524A (en) * 2006-04-21 2009-09-24 コムコン・アーゲー Coating
KR101659232B1 (en) * 2015-07-20 2016-09-23 부산대학교 산학협력단 Manufacturing method for hard coatings with improved corrosion resistance and mechanical properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534524A (en) * 2006-04-21 2009-09-24 コムコン・アーゲー Coating
KR101659232B1 (en) * 2015-07-20 2016-09-23 부산대학교 산학협력단 Manufacturing method for hard coatings with improved corrosion resistance and mechanical properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190081103A (en) * 2017-12-29 2019-07-09 (주)서영 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY
KR102036974B1 (en) 2017-12-29 2019-11-26 (주)서영 MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY
CN110257771A (en) * 2019-06-28 2019-09-20 广州大学 A kind of c-CrAlSiN hard coat of high Al content and preparation method thereof

Similar Documents

Publication Publication Date Title
US11639547B2 (en) Halogen resistant coatings and methods of making and using thereof
de Abreu Vieira et al. Approaches to influence the microstructure and the properties of Al–Cr–O layers synthesized by cathodic arc evaporation
KR101844687B1 (en) Manufacturing method for hard coatings with improved corrosion resistance
US20060016914A1 (en) Coated nozzle for laser cutting
US20230348290A1 (en) Yttrium oxide based coating and bulk compositions
JP2022507435A (en) Coating to improve performance and life in plastic processing applications
US9416438B2 (en) Method for producing coatings with a single composite target
KR101659232B1 (en) Manufacturing method for hard coatings with improved corrosion resistance and mechanical properties
JP6789503B2 (en) Hard film film formation method
JP6200488B2 (en) Arc-deposited Al-Cr-O coating using Si with enhanced coating properties
Ortiz et al. Structural and corrosion Evaluation for multilayer system conformed by TiCN/TiVCN
US11920234B2 (en) Yttrium oxide based coating composition
US20220098735A1 (en) Mixed substantially homogenous coatings deposited by ald
KR101926881B1 (en) Coating layer with nano multi-layer, method and apparatus for forming the smae
Bagcivan et al. Comparison of (Cr0. 75Al0. 25) N Coatings Deposited by Conventional and High Power Pulsed Magnetron Sputtering
KR102036974B1 (en) MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY
KR101882584B1 (en) Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof
KR101637945B1 (en) Nitride coating layer and the method thereof
Lisovenko et al. Structure and properties of nanoscale MoN/CrN multilayered coatings
Beresnev et al. Microstructure and High-hardness Effect in TiSiN/NbN Nanomultilayers: Experimental Research
AZZOLINI RESEARCH ON THIN FILM HARD MATERIALS AND DEVELOPMENT OF A NON-COMMERCIAL PHYSICAL VAPOR DEPOSITION SYSTEM FOR THE COATING OF TUNGSTEN CARBIDE WIRE ROLLS
Ortiz Ortiz et al. Structural and Corrosion Evaluation for Multilayer System Conformed by Ticn/Tivcn
KR20200082811A (en) Coating tool having Anti-Wear Property and Heat Resistance
JP2006152384A (en) Composite layer coating member having excellent halogen corrosion resistance and production method thereof
Haršáni ICMCTF2015 Session BP: Symposium B Poster Session

Legal Events

Date Code Title Description
GRNT Written decision to grant