KR101882584B1 - Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof - Google Patents

Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof Download PDF

Info

Publication number
KR101882584B1
KR101882584B1 KR1020160158900A KR20160158900A KR101882584B1 KR 101882584 B1 KR101882584 B1 KR 101882584B1 KR 1020160158900 A KR1020160158900 A KR 1020160158900A KR 20160158900 A KR20160158900 A KR 20160158900A KR 101882584 B1 KR101882584 B1 KR 101882584B1
Authority
KR
South Korea
Prior art keywords
crn
tio
layer
coating
corrosion resistance
Prior art date
Application number
KR1020160158900A
Other languages
Korean (ko)
Other versions
KR20180061435A (en
Inventor
만지흠
권세훈
최현진
하태권
배근득
장경수
Original Assignee
(주)서영
재단법인 부산테크노파크
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)서영, 재단법인 부산테크노파크, 부산대학교 산학협력단 filed Critical (주)서영
Priority to KR1020160158900A priority Critical patent/KR101882584B1/en
Publication of KR20180061435A publication Critical patent/KR20180061435A/en
Application granted granted Critical
Publication of KR101882584B1 publication Critical patent/KR101882584B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

본 발명은 모재에 경질막으로 CrN을 PVD법으로 코팅하고 하고, 나노두께로 적층된 Al2O3/TiO2(nanolaminate-Al2O3/TiO2)을 ALD법으로 적층한 다음 다시 CrN을 PVD법으로 코팅한 다층 코팅막을 제공하였다. 즉, 나노 두께로 적층 된 Al2O3/TiO2(nanolaminate-Al2O3/TiO2)층이 CrN 경질막층의 중간에 삽입된 다층코팅막을 제공한다. According to the present invention, CrN is coated as a hard film on a base material by PVD method, and a nano-layered Al 2 O 3 / TiO 2 (nanolaminate-Al 2 O 3 / TiO 2 ) Thereby providing a multilayer coating film coated by the PVD method. That is, the layers stacked to the nano-thick Al 2 O 3 / TiO 2 ( nanolaminate-Al 2 O 3 / TiO 2) this provides a multi-layer coating film inserted in the middle of the rigid film layer CrN.

Description

PVD와 ALD를 조합하여 구성되는 내식성 향상 코팅막 및 그 제조방법{Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof}TECHNICAL FIELD The present invention relates to a corrosion-resistant coating film comprising PVD and ALD,

본 발명은 CrN을 기재로 하여 그 내식성을 향상시키기 위한 고경도 코팅막을 제조하는 기술에 관한 것으로, 좀 더 상세하게는, 고경도 코팅막을 다층막으로 하여 제공하고, 원하는 특성을 강화하기 위해 PVD와 ALD를 조합하여 적용하는 코팅막 제조기술에 관한 것이다. The present invention relates to a technique for producing a high hardness coating film for improving corrosion resistance using CrN as a base material. More particularly, the present invention relates to a technique for producing a high hardness coating film as a multilayer film, To a coating film production technique.

산업상 널리 사용되는 금속 부재에 대해 부식은 치명적인 단점이다. 공격적인 환경에서 부식으로부터 금속을 보호하는 기술은 매우 중요한 분야이며, 금속 표면에 코팅층을 형성하는 것이 가장 일반적인 형태라 할 수 있다. 다양한 코팅층이 개발되어왔으며, 질화물, 탄화물, 규화물(nitrides, carbides, silicides) 및 전이금속 산화물과 같은 세라믹 보호 코팅을 예로 들 수 있으며, 이들은 비교적 높은 내식성, 내마모성, 그리고 기계적 강도를 나타내어 항공, 우주, 전자, 석유, 화학, 기계, 섬유, 및 자동차 산업에 널리 응용되고 있다. Corrosion is a fatal disadvantage to metal parts which are widely used in industry. In aggressive environments, the technique of protecting metals from corrosion is a very important field, and forming the coating layer on metal surfaces is the most common form. A variety of coating layers have been developed and are exemplified by ceramic protective coatings such as nitrides, carbides, silicides and transition metal oxides, which exhibit relatively high corrosion resistance, abrasion resistance, and mechanical strength, Electronic, petroleum, chemical, mechanical, textile, and automotive industries.

한편, CrN은 고경도, 고 내마모성 및 우수한 내식성으로 인해 각광받고 있는 소재라 할 수 있다. 지금까지 이러한 코팅 막들은 친환경적인 PDV 기술로 제작되어 오고 있지만, PVD 공정에 의한 코팅막은 많은 내부 결함을 포함한다는 문제가 있다. 즉, 컬럼 구조, 핀홀, 포어, 크랙, 불연속성 등의 결함은 내식성에 중대한 영향을 끼치며, 특히, 기판이 철과 같은 활성 합금일 경우, 주변의 연화 이온에 노출되면 더 큰 영향을 미친다. On the other hand, CrN is a material which is attracting attention due to high hardness, high abrasion resistance and excellent corrosion resistance. Although these coating films have been produced by environmentally friendly PDV technology, there is a problem that the coating film by the PVD process contains many internal defects. That is, defects such as column structure, pinholes, pores, cracks, discontinuities, etc. have a significant influence on corrosion resistance. Especially, when the substrate is an active alloy such as iron, it is affected more by exposure to surrounding softening ions.

최근 이러한 코팅막의 내부 결함 제거를 위한 연구가 다수 이루어지고 있으며, 나노복합체를 더하거나, 다층구조를 형성하는 경우가 그것이다. Recently, many researches for removing internal defects of such coating films have been conducted, and nanocomposites have been added or multi-layered structures have been formed.

한편, ALD 기술은 박막 성장에 적용되어 박막의 균일성, 정형성, 저온 공정, 정교한 두께 제어와 같은 장점으로 인해 주목받고 있으며, 고품질의 불투성 차단막층을 제조할 수 있게 한다. On the other hand, ALD technology has been attracting attention due to its advantages such as uniformity of thin film, uniformity, low temperature process, and precise thickness control applied to thin film growth, and makes it possible to manufacture a high quality impermeable barrier layer.

상기와 같은 PVD와 ALD의 장점을 고려하여 10-1659232호에서는 모재에 PVD법으로 CrN을 코팅하고 ALD로 Al2O3를 코팅하고 다시 CrN을 코팅하여 내식성과 기계적 특성을 모두 향상시킨 다층코팅막을 제공한 바 있다. 상기에서 ALD에 의한 Al2O3는 핀홀을 차단하여 낮은 결함과 우수한 절연 장벽으로 패시베이션 기능을 하여준다. 그러나 Al2O3는 물에 의한 부식에 근본적으로 취약하다. 따라서 고습도 환경이나 물에 침수되는 환경에서는 적합하지 않다. Taking into consideration the advantages of PVD and ALD as described above, 10-1659232 discloses a multilayer coating film in which CrN is coated on a base material by PVD, Al 2 O 3 is coated on ALD, and CrN is coated on the base material to improve both corrosion resistance and mechanical properties I have provided it. In the above, Al 2 O 3 by ALD blocks pinholes and provides a passivation function with a low defect and an excellent insulating barrier. However, Al 2 O 3 is fundamentally vulnerable to corrosion by water. Therefore, it is not suitable in a high humidity environment or an environment in which water is flooded.

한편, Al2O3 외에 TiO2는 높은 강도, 우수한 산화성과 내식성을 나타낸다. TiO2는 우수한 방수성을 나타내며, Al2O3 에 대해 물에 의한 침식을 보호할 수 있을 것으로 기대된다. On the other hand, Al 2 O 3 Besides, TiO 2 shows high strength, excellent oxidation and corrosion resistance. TiO 2 shows excellent water resistance, and Al 2 O 3 To protect against erosion by water.

본 발명의 목적은, 모재에 CrN을 코팅막으로 제공하여 내식성과 내마모성 및 기계적 특성을 향상시키고자 하는 코팅 기술에 있어서, PVD로 이루어지는 CrN 코팅막 사이에 ALD 방법으로 삽입 층을 형성하여 CrN에 내재 된 결함을 보완하고, 이에 더하여 물에 의한 침식이나 침투를 방지할 수 있는 코팅막의 구성을 제공하고자 하는 것이다. It is an object of the present invention to provide a coating technique for improving corrosion resistance, abrasion resistance and mechanical properties by providing CrN as a coating material to a base material, wherein an intercalation layer is formed between CrN coating layers made of PVD by the ALD method, And to provide a construction of a coating film capable of preventing erosion or penetration by water.

상기 목적에 따라 본 발명은 모재에 경질막으로 CrN을 PVD법으로 코팅하고 하고, 나노두께로 적층된 Al2O3/TiO2(nanolaminate-Al2O3/TiO2)을 ALD법으로 적층한 다음 다시 CrN을 PVD법으로 코팅한 다층 코팅막을 제공하였다. 즉, 나노 두께로 적층 된 Al2O3/TiO2(nanolaminate-Al2O3/TiO2)층이 CrN 경질막층의 중간에 삽입된 다층코팅막을 제공한다. The present invention and to coat the CrN by a hard film on a base material by PVD method, an Al 2 O 3 / TiO 2 ( nanolaminate-Al 2 O 3 / TiO 2) stacked in a nano-thickness according to the purpose of a stacked ALD method Next, a multilayer coating film obtained by coating CrN with the PVD method was provided. That is, the layers stacked to the nano-thick Al 2 O 3 / TiO 2 ( nanolaminate-Al 2 O 3 / TiO 2) this provides a multi-layer coating film inserted in the middle of the rigid film layer CrN.

상기에서, 전체 다층 코팅막의 두께는 3 내지 5um이고, 중간에 삽입된 Al2O3/TiO2(nanolaminate-Al2O3/TiO2)층의 두께는 15 내지 50nm 정도로 매우 얇다. In the above, the thickness of the entire multi-layer coating film is 3 to 5 μm, and the thickness of the interposed Al 2 O 3 / TiO 2 (nanolaminate-Al 2 O 3 / TiO 2 ) layer is as thin as 15 to 50 nm.

본 발명에 따르면, 나노라미네이트 Al2O3/TiO2층을 CrN 경질막 중간에 ALD로 삽입한 결과 PVD로 제작된 CrN 경질막의 그레인 사이즈를 10nm 정도 줄일 수 있었고, 반면에 CrN 경질막의 결정 구조는 변함없이 유지될 수 있었다. According to the present invention, when the nano-laminated Al 2 O 3 / TiO 2 layer was inserted into the middle of the CrN hard film, the grain size of the CrN hard film made of PVD was reduced by about 10 nm, while the crystal structure of the CrN hard film was It could be kept unchanged.

상기 나노라미네이트 Al2O3/TiO2층의 존재로 인해, 물에 의한 침투나 침식을 방지하며, 부식전류 I corr는 6.26 10-6A/cm2 정도를 한계로 하였고, 부식 전위 E corr는 약 -2.145 V를 한계로 하여 내식성이 향상된다. Due to the existence of the nano-laminated Al 2 O 3 / TiO 2 layer, the penetration or erosion by water is prevented, the corrosion current I corr is limited to about 6.26 10 -6 A / cm 2 , and the corrosion potential E corr The corrosion resistance is improved by setting the limit to about -2.145 V as a limit.

도 1은 모재에 CrN을 코팅한 경우, CrN 코팅층에 Al2O3층, TiO2, Al2O3/TiO2층을 중간층으로 삽입한 것을 보여주는 모식도이다.
도 2는 상기 도 1의 모식도에 나타낸 시료들에 대한 (a) XRD 패턴과 (b) 평균 그레인 사이즈를 보여주는 그래프들이다.
도 3은 상기 도 1의 모식도에 나타낸 시료들에 대한 SEM 사진이다.
도 4는 상기 도 1의 모식도에 나타낸 시료들에 대한 3차원 AFM 사진들로 표면조도를 보여준다.
도 5는 CrN-Al2O3/TiO2 코팅층에 대한 TEM/HRTEM/EDX 분석사진이다.
도 6은 SUS304, SUS304에 CrN, CrN-Al2O3, CrN-TiO2 및 CrN-Al2O3/TiO2 코팅막을 입힌 경우에 대하여 3.5 wt. % NaCl 용액 속에서 각각 동적전위와 정적전위(Potentiodynamic and potentialstatic)를 보여주는 그래프들이다.
도 7은 본 발명의 CrN-Al2O3/TiO2 코팅층 제작 공정 조건을 도시한 표이다.
FIG. 1 is a schematic view showing that an Al 2 O 3 layer, a TiO 2 layer, and an Al 2 O 3 / TiO 2 layer are inserted into a CrN coating layer as an intermediate layer when CrN is coated on a base material.
FIG. 2 is a graph showing (a) an XRD pattern and (b) an average grain size for the samples shown in the schematic diagram of FIG.
3 is a SEM photograph of the samples shown in the schematic diagram of FIG.
FIG. 4 shows the surface roughness of three-dimensional AFM images of the samples shown in the schematic diagram of FIG.
5 is a TEM / HRTEM / EDX analysis of pictures of the CrN-Al 2 O 3 / TiO 2 coating.
6 is a case clad with CrN, CrN-Al 2 O 3 , CrN-TiO 2 and CrN-Al 2 O 3 / TiO 2 coating on the SUS304, SUS304 3.5 wt. These are graphs showing the dynamic potential and the potential potential (Potentiodynamic and potential static) in the% NaCl solution, respectively.
FIG. 7 is a table showing conditions for manufacturing the CrN-Al 2 O 3 / TiO 2 coating layer of the present invention.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예들에 대해 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 실시예에서는 모재에 CrN-Al2O3-CrN, CrN-TiO2-CrN, 및 CrN-Al2O3/TiO2 -CrN의 세 종류의 코팅층을 형성하여 물성을 조사하였다. CrN은 PVD 방법으로, 중간에 삽입된 중간층들은 ALD방법으로 증착된다. In this embodiment, it was examined for physical properties by forming three kinds of coating layers of CrN-Al 2 O 3 -CrN, CrN-TiO 2 -CrN, and CrN-Al 2 O 3 / TiO 2 -CrN the base material. CrN is deposited by the PVD method and interposed intermediate layers are deposited by the ALD method.

먼저, 모재를 준비하고 CrN 코팅을 실시한다. First, prepare the base material and apply CrN coating.

본 실시예에서 모재는 SUS304로 하였고, 초음파로 세척된 단결정 Si 웨이퍼와 SUS304 기판에 Cr 점착층을 증착하였는데, 이는 코팅 접착력을 향상시키기 위한 것이다. CrN 층들은 Ar과 N2 가스 안에서 펄스 DC 스퍼터링 파워를 이용한 코팅 시스템을 사용해 Cr 타겟 (99.99 %) 으로부터 증착되었다. CrN 층들의 두께는 증착 시간의 조정을 통해 조절하였다. CrN의 증착 조건들은 도 7의 표 1에 정리되어 있다.In this embodiment, the base material was SUS304, and a Cr adhesive layer was deposited on a monocrystalline Si wafer and an SUS304 substrate ultrasonically cleaned, which is intended to improve coating adhesion. CrN layers were deposited from a Cr target (99.99%) using a coating system using pulsed DC sputtering power in Ar and N 2 gas. The thickness of the CrN layers was controlled by adjusting the deposition time. The deposition conditions of CrN are summarized in Table 1 in FIG.

다음으로, ALD-중간층을 증착한다. Next, an ALD-intermediate layer is deposited.

10nm 내지 최대 20nm 두께를 가진 ALD 중간층들은 미리 증착된 CrN 위에 LUCIDA D100 ALD 시스템을 이용해 증착되었다. 각각의 Al2O3와 TiO2 중간층들은 각각 트리메틸알루미늄(trimethylaluminium)(Al(CH3)3), 티타늄 이소프로폭시드(titanium isopropoxide)(TTIP), 그리고 H2O 반응물을 이용해 얻었다. ALD interlayers between 10 nm and 20 nm thick were deposited using a LUCIDA D100 ALD system on pre-deposited CrN. Each of Al 2 O 3 and TiO 2 The intermediate layers were obtained using trimethylaluminium (Al (CH 3 ) 3 ), titanium isopropoxide (TTIP), and H 2 O reactants, respectively.

두 가지의 증착들은 모두 150 °C의 낮은 온도에서 진행되었다. Al2O3와 TiO2의 증착 중에 TMA, TTIP, 그리고 H2O이 들어 있는 통은 25 °C, 60 °C, 그리고 10 °C에 보관되었으며, 이는 균일한 전구체를 공급하기 위함이었다.Both depositions proceeded at a low temperature of 150 ° C. During the deposition of Al 2 O 3 and TiO 2 , the tubes containing TMA, TTIP, and H 2 O were stored at 25 ° C, 60 ° C, and 10 ° C to provide a uniform precursor.

Al2O3의 성장 순서는 0.5 s TMA 펄스, 10 s N2 퍼지, 1 s H2O 펄스, 그리고 10 s N2 퍼지이며, TiO2의 성장 순서는 0.1 s TTIP 어시스트와 1 s TTIP 펄스, 10 s N2 퍼지, 1 s H2O 펄스, 그리고 10 s N2 퍼지를 포함하였다.The growth order of Al 2 O 3 is 0.5 s TMA pulse, 10 s N 2 purge, 1 s H 2 O pulse, and 10 s N 2 purge. The growth order of TiO 2 is 0.1 s TTIP assist and 1 s TTIP pulse, 10 s N 2 purge, 1 s H 2 O pulse, and 10 s N 2 purge.

앞서 언급하였듯 나노두께로 적층된 나노라미네이트 Al2O3/TiO2중간층들은 각각 Al2O3과 TiO2 를 서브사이클(subcycles)을 반복 증착하여 얻어졌으며, 양쪽 모두 단위 사이클 당 증착막의 두께를 2 nm로 고정하였고, 각각의 단위 사이클에 대한 증착 사이클 회수는 사이클 당 성장률 (GPC)인, Al2O3 의 경우는 ~ 0.15 nm/cycle, TiO2의 경우는 ~ 0.03 nm/cycle을 이용하여 측정되었다.As mentioned above, the nano-laminated Al 2 O 3 / TiO 2 interlayers laminated with nano-thickness were obtained by repeatedly subcycles of Al 2 O 3 and TiO 2 , respectively. In both cases, the thickness of the vapor- 2 nm. The deposition cycles for each unit cycle were ~ 0.15 nm / cycle for Al 2 O 3 and ~ 0.03 nm / cycle for TiO 2 , which is the growth rate per cycle (GPC) Respectively.

일반적으로, 순수 CrN 코팅과 Al2O3, TiO2 그리고 나노라미네이트-Al2O3/TiO2 중간층 구성은 PVD 증착 시간과 ALD 증착 사이클들을 통해 조절되었다. 샘플 1에서 4까지의 도식적인 그림이 도 1에 있으며, 증착 파라미터들은 Table 1(도 7)에 수록되어 있다. 도 1(d)에는 나노라미네이트-Al2O3/TiO2 중간층 구성은 Al2O3 및 TiO2 각각 2nm 정도의 두께로 교대로 10회정도 적층한 것이 나와있다. In general, the pure CrN coating and Al 2 O 3 , TiO 2 and nanolaminate-Al 2 O 3 / TiO 2 interlayer configurations were controlled through PVD deposition times and ALD deposition cycles. A schematic drawing of samples 1 to 4 is shown in FIG. 1, and deposition parameters are listed in Table 1 (FIG. 7). In FIG. 1 (d), the nanolaminate-Al 2 O 3 / TiO 2 intermediate layer structure is formed by alternately laminating about 10 times of Al 2 O 3 and TiO 2 each having a thickness of about 2 nm.

본 실시예에 의해 제작된 코팅막의 특성을 분석하여 다음과 같은 결과를 얻었다. The characteristics of the coating film produced by this example were analyzed and the following results were obtained.

1.54 Å Cu-Kα 방사선을 이용하는 X-선 회절기(XRD, D8-Discovery Brucker, 40kV)로 박막들의 결정 구조를 확인하였다. 코팅의 표면과 횡단면 마이크로그래프들은 주사전자 현미경(SEM, Hitachi, S-4800, 15 KV)을 이용해 평가되었다.The crystal structure of the films was confirmed with an X-ray diffractometer (XRD, D8-Discovery Brucker, 40 kV) using 1.54 Å Cu-Kα radiation. Surface and cross-sectional micrographs of the coatings were evaluated using a scanning electron microscope (SEM, Hitachi, S-4800, 15 KV).

표면 모폴로지는 원자력현미경(AFM, asylum research MFD-3D)을 사용해 관찰하였으며, CrN-Al2O3/TiO2코팅 내부의 관찰은 투과 전자 현미경(TEM, TALOS F200X)과 에너지 분산형 분광학(EDS)을 이용해 조사하였다.The surface morphology was observed using AFM (asylum research MFD-3D). The observation inside the CrN-Al 2 O 3 / TiO 2 coating was confirmed by transmission electron microscopy (TEM, TALOS F200X) and energy dispersive spectroscopy (EDS) .

코팅들의 전기화학적 내식특성은 삼전극 셀을 이용해 조사하였다. 샘플들의 포텐셜 다이내믹과 포텐셜 스태틱 극성 테스트들 결과들은 상온에서 3.5 wt. % 의 NaCl 수용액 속에서 얻어졌다.The electrochemical corrosion resistance of the coatings was investigated using a three electrode cell. Potential dynamics and potential static polarity test results of the samples were 3.5 wt. % NaCl aqueous solution.

포화된 칼로멜 전극(SCE)와 백금(Pt) 메쉬가 각각 기준 전극과 상대 전극으로 사용되었다.A saturated calomel electrode (SCE) and a platinum (Pt) mesh were used as reference and counter electrodes, respectively.

테스트 결과는 다음과 같았다.The test results were as follows.

단독으로 코팅된 CrN 과 CrN-Al2O3, CrN-TiO2 그리고 CrN-Al2O3/TiO2의 다층 코팅의 X-ray 패턴들은 도 2(a)에 소개되어 있다. 회절 패턴은 (111), (200), (220), (311), 그리고 (222)의 결정 평면들이 혼합된 방향을 갖는 큐빅 상(cubic phase)의 결정질 CrN을 보였다. 다른 결정상에 해당하는, 예를 들면 Al2O3, TiO2 혹은 다른 CrN 상들에 해당하는 XRD 피크는 전혀 없었으며, 이는 삽입된 중간층이 비결정질인 무정형 구조를 가졌으며 중간층의 삽입이 CrN 매트릭스의 상 전이를 야기하지 않았다는 것을 의미한다. 그레인 사이즈는 Scherrer's formula를 통해 계산하였으며, 이는 이전에 밝혀졌듯이 상기 공식이 Williamson-Hall method 보다 D를 예상하기에 더 나은 접근법을 제공하기 때문이다. 도 2(b)에서 보이듯이, 다층 코팅(대략 24 nm)의 그레인 사이즈는 단독 코팅된 CrN(about 34 nm)과 비교했을 때, 중간층을 삽입한 이후 현저히 감소하였는데 이는 원래의 CrN의 성장을 중간층이 방해하게 되며, 두 번째 증착 공정에서 ALD-modified 표면에서 CrN 그레인들의 새로운 핵형성 역시 방해한다.The exclusive coated with CrN and CrN-Al 2 O 3, CrN -TiO 2 and the X-ray pattern of the multi-layer coating of CrN-Al 2 O 3 / TiO 2 have been introduced in Fig. 2 (a). The diffraction pattern showed a cubic phase crystalline CrN with a mixed orientation of (111), (200), (220), (311), and (222) crystal planes. There was no XRD peak corresponding to another crystal phase, for example Al 2 O 3 , TiO 2 or other CrN phases, because the intercalated interlayer had an amorphous amorphous structure and intercalation of the interlayer resulted in the phase of the CrN matrix It means that it did not cause metastasis. The grain size was calculated using Scherrer's formula, as previously found, because the formula provides a better approach to predicting D than the Williamson-Hall method. As shown in FIG. 2 (b), the grain size of the multilayer coating (approximately 24 nm) was significantly reduced after inserting the intermediate layer as compared to the single coated CrN (about 34 nm) And also inhibits new nucleation of CrN grains on the ALD-modified surface in the second deposition process.

도 3은 SEM 관찰로 얻은 CrN과 CrN-Al2O3, CrN-TiO2 그리고 CrN-Al2O3/TiO2의 다층 코팅 평면도와 단면 이미지들을 보여준다. 도 3 (a, e, i)에서 보이는 것처럼 단독 코팅된 CrN은 피라미드 같은 표면과 다공성 주상(컬럼) 구조를 보였는데, 이는 긴 주상 그레인들과 명확한 그레인 바운더리로 이루어져 있었으며, 코팅 전체(약 3.5 mm)가 이와 같았다. Figure 3 shows the CrN and CrN-Al 2 O 3, the multi-layer coating in top view and cross-section image of a TiO 2-CrN and CrN-Al 2 O 3 / TiO 2 obtained by the SEM observation. As shown in FIG. 3 (a, e, i), the single-coated CrN showed a pyramid-like surface and a porous columnar structure consisting of long columnar grains and clear grain boundaries, ) Was like this.

그에 반해서, 다층 코팅들은 보다 조밀하고 짧은 주상 그레인 구조를 보였으며, 중간층의 위치가 명확히 확인될 수 있었다.On the contrary, multilayer coatings showed a denser and shorter columnar grain structure, and the location of the intermediate layer could be clearly identified.

불연속적인 모폴로지들은 주상 그레인들을 따라 존재하는 입간 균열을 시사하며, 중간층 위에 형성되는 CrN의 새로운 핵 형성에 의해 미세 그레인들이 코팅층 전체에 생성된다. 다른 중간층을 갖는 하이브리드 코팅들은 명확한 모폴로지 변화를 보이지 않았다(도 3 (f, g, h and j, k, i) 참조). 하지만, CrN 단독 코팅과 비교했을 때, 다층 코팅들의 그레인 크기의 감소는 명확히 발생하였으며(도 3 (b, c, d)), 이는 도 2(b)에서 보이는 계산 결과와도 잘 맞아떨어진다. The discontinuous morphology suggests the interstitial cracks along the columnar grains, and the fine grains are formed throughout the coating layer by the new nucleation of CrN formed on the intermediate layer. Hybrid coatings with different interlayers did not show definite morphology changes (see Fig. 3 (f, g, h and j, k, i). However, a reduction in the grain size of the multilayer coatings clearly occurred (Fig. 3 (b, c, d)) as compared to the CrN single coating, which also matches well with the calculation results shown in Fig. 2 (b).

CrN 단독 코팅과 CrN-Al2O3, CrN-TiO2 그리고 CrN-Al2O3/TiO2의 다층 코팅들의 표면 거칠기를 조사하기 위해 AFM 분석을 실시했다. 도 4에서 보여지듯, 이러한 코팅들의 5 um× 5 um 이미지의 표면 토포그래피를 도시하며, 모든 시편의 제곱 평균(RMS)값은 대략 60 nm였으며 중간층 삽입 이후 명확한 변화는 관찰되지 않았다.CrN and subjected to AFM analysis to examine the surface roughness of the single coating and multilayer coating of CrN-Al 2 O 3, CrN -TiO 2 and CrN-Al 2 O 3 / TiO 2. As shown in FIG. 4, the surface topography of a 5 um x 5 um image of these coatings is shown, wherein the root mean square (RMS) value of all the specimens was approximately 60 nm and no significant change was observed after interlayer insertion.

CrN-Al2O3/TiO2의 하이브리드 코팅들은 FIB 프레퍼레이션 이후에 TEM/HRTEM/EDX로 조사하기 위해 선택되었으며, 이는 도 5에 나타나 있다. 도 5 (a)에서 보이듯이, 검게 대조되어 보이는 선명한 선의 위치는 나노라미네이트-Al2O3/TiO2 중간층의 위치인 것으로 보이며, 여기서 거친 CrN의 표면 위에 균일한 ALD 중간층이 증착되었음이 확인된다. 또한, 변형된 나노라미네이트 중간층 위에서 실시된 두번째 PVD 증착 공정 중에 작고 방사상으로 된 새로운 CrN 사이트들이 관찰되었다.The hybrid coating of CrN-Al 2 O 3 / TiO 2 have been chosen in order to investigate a TEM / HRTEM / EDX after FIB stuffs, which is shown in Fig. As can be seen in FIG. 5 (a), the sharply contrasted bright line position appears to be the location of the nanolaminate-Al 2 O 3 / TiO 2 interlayer, where a uniform ALD interlayer was deposited on the surface of the coarse CrN . Also, during the second PVD deposition process performed on the modified nanoraminate interlayer, new small and radial CrN sites were observed.

HRTEM 관찰에 따르면(도 5 (b)), Al2O3 및 TiO2로 이루어진 내부 층(sublayers)을 가진 나노라미네이트- Al2O3/TiO2 중간층은 회색과 흰색의 대비로 명확하게 구분할 수 있다. 도 5 (c-h)에서 보이듯, 중간층의 EDX 분석은 Al과 Ti가 CrN 매트릭스의 계면(인터페이스)에 균일하게 분포되어 있음을 보여주었다. 또한, Al과 Ti의 존재 역시 그레인 바운더리를 따라 확인되었으며, 이는 다공성 PVD CrN 코팅 위를 ALD 증착이 완벽하게 커버하고 있음을 시사한다.According to HRTEM observed (Fig. 5 (b)), Al 2 O 3 And nano-laminates having an inner layer (sublayers) made of a TiO 2 - Al 2 O 3 / TiO 2 is the middle layer can be clearly distinguished by the contrast of gray and white. As shown in FIG. 5 (ch), the EDX analysis of the intermediate layer showed that Al and Ti were uniformly distributed at the interface (interface) of the CrN matrix. Also, the presence of Al and Ti was also found along grain boundaries, suggesting that the ALD deposition completely covers the porous PVD CrN coating.

동전위 분극 실험과 정전위 분극 실험(potentiodynamic and potentialstatic polarization tests)은 부식 특성을 조사하기 위해 이루어졌다.Potentiodynamic and potentialstatic polarization tests were conducted to investigate the corrosion characteristics.

도 6은 편광 곡선들과 부식 전류 밀도(I corr) 대 부식 전위(E corr), 순수 CrN과 다층 코팅들의 노출 시간에 따른 전류 밀도를 보여준다. 도 6 (a-b)에서 보이듯, CrN 코팅을 하지 않은 순수 SUS304 샘플이나 CrN 코팅을 한 SUS304 샘플과 비교하였을 때, 하이브리드 코팅들을 적용한 이후에 높은 전위가 관찰된다. Tafel plot을 통해서 음극 플롯의 선형 부분을 따라 연장된 직선과 양극과 음극 브랜치들의 비대칭적인 분극 곡선으로 인한 E corr축으로의 외삽으로 I corr값을 얻었다. Figure 6 shows the polarization curves and the current density according to the exposure time of corrosion current density ( I corr ) versus corrosion potential ( E corr ), pure CrN and multilayer coatings. As shown in FIG. 6 (ab), when compared with a pure SUS304 sample without CrN coating or a SUS304 sample with CrN coating, a high electric potential is observed after application of the hybrid coatings. I corr values were obtained by extrapolation to the E corr axis due to the asymmetrical polarization curves of the anode and cathode branches along a straight line extending along the linear portion of the cathode plot through a Tafel plot.

포텐티오다이내믹 곡선의 정량 분석이지만, I corrE corr 사이에 존재하는 역관계를 보이며, 순수 CrN 코팅 이후에 E corr는 지속적으로 증가하였으며, 그에 비해 I corr는 소폭 증가하였다. 또한, CrN의 ALD-중간층을 형성함과 함께 I corr는 감소하였는데, 이와 같은 하이브리드 코팅의 우수한 부식 저항성은 우수한 패시베이션 성능을 가진 ALD-중간층으로부터 유래함을 시사한다.Quantitative analysis of potentiometric dynamic curves reveals the inverse relationship between I corr and E corr . E corr continuously increases after pure CrN coating, whereas I corr slightly increases. Also, I corr decreased with formation of the ALD intermediate layer of CrN, suggesting that the excellent corrosion resistance of such a hybrid coating is derived from the ALD-interlayer having excellent passivation performance.

나노라미네이트-Al2O3/TiO2 중간층을 가지는 하이브리드 코팅들은 가장 낮은~ 6.26 ×10-6A/cm2의 Icorr에서, 그리고 가장 높은 -2.145 V의 Ecorr에서 가장 좋은 부식 성능을 보였다. 이는 나노라미네이트-Al2O3/TiO2 중간층 형성이 부식성 매질에서 하이브리드 코팅을 적용한 이후가 보다 효율적으로 부식에 대항한다는 것을 증명한다. 도 6 (c)에 CrN-Al2O3; CrN-TiO2; CrN-Al2O3/TiO2의 전류-시간 곡선이 나와 있는데, 이 실험은 피팅 영역(the pitting region)에서 주어진 전위(E=0.4 V vs. SCE)에 대해 특정 시간 동안의 보호 성능의 안정성을 가려내기 위해 행해졌다. 처음에는 모두 하향 전류 밀도를 보였다. CrN은 비교했을 때 5 ~ 6 × 10-5 A/cm2 정도의 안정적인 전류 밀도를 보였다. 그러나, 중간층 삽입 이후, 특히 나노라미네이트- Al2O3/TiO2에서 가장 낮고 안정적인 전류 밀도 6 ~ 9 × 10-6 A/cm2가 나타나 코팅들 중 우수한 부식 저항성 결과를 뒤집었다.Hybrid coatings with nano-laminate-Al 2 O 3 / TiO 2 interlayers showed the best corrosion performance at the lowest I corr of ~ 6.26 × 10 -6 A / cm 2 and at the highest E corr of -2.145 V. This demonstrates that the nano-laminate -Al 2 O 3 / TiO 2 intermediate layer is formed after applying a hybrid coating more efficiently against corrosion in the corrosive medium. Figure 6 (c) the CrN-Al 2 O 3; CrN-TiO 2; Current of the CrN-Al 2 O 3 / TiO 2 - there are listed the time curve, this experiment the stability of the protection for a specified time for the fitting area potential (E = 0.4 V vs. SCE) in a given (the pitting region) To find out. At first, they all showed a downward current density. CrN showed a stable current density of 5 ~ 6 × 10 -5 A / cm 2 . However, after interlayer insertion, the lowest and most stable current density in the nano-laminate-Al 2 O 3 / TiO 2 , especially 6 to 9 × 10 -6 A / cm 2 , reversed the superior corrosion resistance results of the coatings.

마이크로구조와 부식 성능 조사에 따르면, 하이브리드 코팅의 매커니즘이 부식성 매질의 공격을 막아냈음이 논의되었다. CrN 코팅의 중간층이 부식성 행동에 대해 향상된 효과를 보인 것은 크게 두 가지 이유에 의한 것으로 해석되었다. According to microstructure and corrosion performance studies, it was discussed that the mechanism of hybrid coating prevented the attack of corrosive media. The intermediate layer of the CrN coating showed an improved effect on the corrosive behavior was interpreted largely for two reasons.

첫째로, 밀도가 높은 중간층이 코팅에서 전자 운송을 막는 완벽한 절연층 역할을 했으며, 양극에서 음극으로 흐르는 전류 흐름에 대해서도 절연층 역할을 수행해 부식 전류 밀도를 감소시켰으며 부식 계면에서 양극 금속 이온들의 전자 교환율과 용해율 또한 감소시켰다.First, the dense intermediate layer served as a complete insulating layer to prevent electron transport in the coating, and also acts as an insulating layer against the current flow from the anode to the cathode, reducing the corrosion current density, and the electrons of the anode metal ions Exchange rate and dissolution rate were also reduced.

두 번째로, 낮은 결함을 가진 연속적인 중간층 역시 CrN의 다공성 벽을 덮는 방법으로, 예를 들면 염소 이온들과 같은 부식성 물질들의 확산을 막는 우수한 장벽으로 작용하였다. 염소 이온은 부식 과정에서 중요한 역할을 수행하는데, 이는 부식 저항성을 높이기 위해 자발적으로 형성되는 패시브 박막을 손상시키는 능력을 가지기 때문이다. 작은 이온지름 덕분에 염소 이온들은 주상 그레인 바운더리, 내부 핀홀들, 그리고 코팅의 결함들을 통해 쉽게 확산 될 수 있으며, 금속 이온들과 용해성 화합물로써 반응한다. 나노라미네이트-Al2O3/TiO2 중간층은 다른 다층 코팅들과 비교했을 때 가장 우수한 내부식 성능을 보여주었으며, 이는 Al2O3과 TiO2의 시너지 효과 덕분인 것으로 해석된다. 즉, 미세한 사이즈로 인해 CrN의 결함을 효과적으로 커버 하는 ALD-Al2O3과 물에 대한 내식성이 매우 강한 TiO2의 다층 구조가 전체적으로 강력한 내부식성을 부여하게 된 것으로 추측된다. 상대적으로 입도가 더 미세한 Al2O3를 CrN 상에 원자층 단위로 두께를 제어하여 결함을 철저하게 커버하고, 그 위에 Al2O3에 비해 입도가 조금 더 크지만 물에 대한 불투성이 큰 TiO2의 원자층 단위로의 적층, 그리고 TiO2가 형성된 면에 다시 미세한 입도의 Al2O3를 원자층 단위로 적층함으로써 TiO2에 의해 형성될 수 있는 공극을 철저히 메울 수 있을 것으로 예측된다. Second, a continuous intermediate layer with low defect also served as an excellent barrier to cover the porous walls of CrN, for example, to prevent the diffusion of corrosive materials such as chlorine ions. Chloride ion plays an important role in the corrosion process, because it has the ability to damage the passive film formed spontaneously to increase corrosion resistance. Thanks to the small diameter of the ions, chlorine ions can easily diffuse through defects in the pore grain boundary, internal pinholes, and coatings and react with metal ions and soluble compounds. The nano-laminate-Al 2 O 3 / TiO 2 interlayer showed the best internal performance when compared to other multilayer coatings, which is interpreted to be due to the synergy of Al 2 O 3 and TiO 2 . That is, it is presumed that the multi-layered structure of ALD-Al 2 O 3 and TiO 2 , which are highly resistant to water, which effectively cover the defects of CrN due to the fine size, gives strong overall corrosion resistance. Al 2 O 3, which is relatively finer in grain size, is controlled on the basis of atomic layer on the CrN surface to thoroughly cover the defects. TiO 2 , which is slightly larger in particle size than Al 2 O 3 , It is predicted that the pores that can be formed by TiO 2 can be completely buried by laminating Al 2 O 3 of 2 in atomic layer unit and Al 2 O 3 of minute particle size again on the surface where TiO 2 is formed.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

도면 부호 없음.No reference symbol.

Claims (3)

모재의 내식성을 향상하기 위한 코팅 막을 형성하는 방법에 있어서,
CrN층을 PVD(Physical Vapor Deposition) 방법으로 형성하고,
형성된 CrN층 위에 Al2O3층과 TiO2층을 ALD(atomic layer deposition)에 의해 나노라미네이트-Al2O3/TiO2층을 형성하되, 나노라미네이트-Al2O3/TiO2층은 Al2O3와 TiO2층를 각각 ALD법을 사용하여 교대로 반복 적층하여 구성하고,
형성된 나노라미네이트-Al2O3/TiO2층 위에 PVD에 의해 CrN층을 형성하여,
나노라미네이트-Al2O3/TiO2층의 삽입에 의해 CrN층의 결함을 커버하고 그레인 성장을 방해하고, 내부식성을 향상시키도록 한 것을 특징으로 하는 CrN/나노라미네이트-Al2O3/TiO2/CrN 다층 코팅막을 제조하는 코팅 막 형성방법.
A method of forming a coating film for improving the corrosion resistance of a base material,
CrN layer is formed by a PVD (Physical Vapor Deposition) method,
By the TiO 2 layer and the Al 2 O 3 layer on the CrN layer formed on the ALD (atomic layer deposition), but forming a nanolaminate -Al 2 O 3 / TiO 2 layer, a nano-laminate -Al 2 O 3 / TiO 2 layer is Al 2 O 3 and TiO 2 layers are alternately repeatedly laminated using the ALD method,
To form a CrN layer formed by PVD over nanolaminate -Al 2 O 3 / TiO 2 layer,
Nanolaminate -Al 2 O 3 / TiO 2 by the insertion of the layer covering the defect of the CrN layer, CrN / nano-laminate, characterized in that to prevent the grain growth and to improve the corrosion resistance -Al 2 O 3 / TiO 2 / CrN multilayer coating film.
삭제delete 제1항에 있어서, 나노라미네이트-Al2O3/TiO2층은 10 내지 20nm 두께로 형성되는 것을 특징으로 하는 코팅 막 형성방법.

The method according to claim 1, wherein the nanolaminate-Al 2 O 3 / TiO 2 layer is formed to a thickness of 10 to 20 nm.

KR1020160158900A 2016-11-28 2016-11-28 Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof KR101882584B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160158900A KR101882584B1 (en) 2016-11-28 2016-11-28 Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160158900A KR101882584B1 (en) 2016-11-28 2016-11-28 Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof

Publications (2)

Publication Number Publication Date
KR20180061435A KR20180061435A (en) 2018-06-08
KR101882584B1 true KR101882584B1 (en) 2018-07-27

Family

ID=62600395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160158900A KR101882584B1 (en) 2016-11-28 2016-11-28 Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof

Country Status (1)

Country Link
KR (1) KR101882584B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659232B1 (en) * 2015-07-20 2016-09-23 부산대학교 산학협력단 Manufacturing method for hard coatings with improved corrosion resistance and mechanical properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659232B1 (en) * 2015-07-20 2016-09-23 부산대학교 산학협력단 Manufacturing method for hard coatings with improved corrosion resistance and mechanical properties

Also Published As

Publication number Publication date
KR20180061435A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
Pogrebnjak et al. Structural and mechanical properties of NbN and Nb-Si-N films: Experiment and molecular dynamics simulations
Ding et al. Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc
Wang et al. Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution
Kong et al. Improved corrosion protection of CrN hard coating on steel sealed with TiOxNy-TiN composite layers
Wan et al. Enhanced corrosion resistance of PVD-CrN coatings by ALD sealing layers
Altun et al. The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys
Leppäniemi et al. Corrosion protection of steel with multilayer coatings: Improving the sealing properties of physical vapor deposition CrN coatings with Al2O3/TiO2 atomic layer deposition nanolaminates
Harkonen et al. Sealing of hard CrN and DLC coatings with atomic layer deposition
Movassagh-Alanagh et al. Improving wear and corrosion resistance of AISI 304 stainless steel by a multilayered nanocomposite Ti/TiN/TiSiN coating
Wang et al. Effect of Nb content on the microstructure and corrosion resistance of the sputtered Cr-Nb-N coatings
Mo et al. Influence of Y-addition and multilayer modulation on microstructure, oxidation resistance and corrosion behavior of Al0. 67Ti0. 33N coatings
Haftlang et al. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing
Guan et al. A novel duplex PDMS/CrN coating with superior corrosion resistance for marine applications
Galindo et al. Ag+ release and corrosion behavior of zirconium carbonitride coatings with silver nanoparticles for biomedical devices
Caicedo et al. Determination of the best behavior among AISI D3 steel, 304 stainless steel and CrN/AlN coatings under erosive-corrosive effect
KR101659232B1 (en) Manufacturing method for hard coatings with improved corrosion resistance and mechanical properties
Xu et al. The nature and role of passive films in controlling the corrosion resistance of MoSi 2-based nanocomposite coatings
Guzman et al. Vapour deposited Zn–Cr Alloy coatings for enhanced manufacturing and corrosion resistance of steel sheets
Olia et al. Corrosion study of TiN, TiAlN and CrN multilayer coatings deposit on martensitic stainless steel by arc cathodic physical vapour deposition
Guan et al. CrZrN/ZrN multilayer coatings on 316L stainless steel towards anticorrosion application
US9677169B2 (en) Arc-deposited Ai—Cr—O coatings having enchanced coating properties
Kaady et al. Al2O3-ZnO atomic layer deposited nanolaminates for improving mechanical and corrosion properties of sputtered CrN coatings
Cubillos et al. Resistance to corrosion of zirconia coatings deposited by spray pyrolysis in nitrided steel
Malik et al. Investigation of wear and corrosion characteristics of PTFE/TiN composite coating on SS-304 fabricated by two-step sputtering technique
KR101882584B1 (en) Enhanced Corrosion Resistance Coatings by a Hybrid PVD/ALD Process and Manufacturing Method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right